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ABSTRACT

Text-to-image (T2I) diffusion models have achieved strong performance in seman-
tic alignment, yet they still struggle with generating the correct number of objects
specified in prompts. Existing approaches typically incorporate auxiliary counting
networks as external critics to enhance numeracy. However, since these critics must
provide gradient guidance during generation, they are restricted to regression-based
models that are inherently differentiable, thus excluding detector-based models,
whose count-via-enumeration nature is non-differentiable. To overcome this lim-
itation, we propose Detector-to-Differentiable (D2D), a novel framework that
transforms non-differentiable detection models into differentiable critics, thereby
leveraging their superior counting ability to guide numeracy generation. Specifi-
cally, we design custom activation functions to convert detector logits into binary
indicators, which are then used to optimize the noise prior at inference time with
pre-trained T2I models. Our extensive experiments on SDXL-Turbo, SD-Turbo,
and Pixart-DMD across four benchmarks of varying complexity (low-density,
high-density, and multi-object object scenarios) demonstrate consistent and sub-
stantial improvements in object counting accuracy, by up to 13.7%, with minimal
degradation in overall image quality and computational overhead.

1 INTRODUCTION

Diffusion-based text-to-image generative models (Podell et al., 2024; Rombach et al., 2022; Sauer
et al., 2025; Chen et al., 2024; 2025b) have achieved promising performance in semantic alignment
between synthesized images and text prompts, particularly with recent post-enhancement techniques
such as fine-tuning (Clark et al., 2024; Chen et al., 2025a; Yang et al., 2024; Wallace et al., 2024; Black
et al., 2024; Xu et al., 2023; Fan et al., 2023) or sampling-based, training-free strategies (Wallace et al.,
2023; Eyring et al., 2024; Chung et al., 2024; Chefer et al., 2023). However, even with such advanced
alignment techniques, T2I diffusion models continue to struggle at generating exact numbers of
objects, even in scenarios with fewer than 10 instances requested. As illustrated in Fig. 1, recent
semantic alignment methods, such as ReNO (Eyring et al., 2024), which enhances image alignment
with user intent via human preference rewards, fail to synthesize images with the exact number of
objects specified in the text input. Motivated by this observation, we tackle the challenge of accurate
numeracy generation in this work.

Since vanilla T2I models are not explicitly trained to count, existing methods (Kang et al., 2025;
Zafar et al., 2024) introduce auxiliary counting critics to provide additional supervision during
generation. These correction signals are propagated to the generative backbone through gradients
from the external critics, which restricts current approaches to differentiable, regression-based
models such as RCC (Hobley & Prisacariu, 2022) and CLIP-Count (Jiang et al., 2023). However,
this design inherently excludes detector-based models, which perform counting via bounding box
enumeration. Despite being non-differentiable, such detectors (e.g., OWLv2 (Minderer et al., 2023),
YOLOv9 (Wang et al., 2024)) often outperform regression-based counterparts (e.g., RCC (Hobley
& Prisacariu, 2022), CLIP-Count (Jiang et al., 2023), CounTR (Chang et al., 2022)) in low-density
object scenarios due to their more advanced object localization ability, as illustrated in Fig. 2b. To this
end, we propose resolving this bottleneck by converting existing object detectors into differentiable
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Figure 1: Qualitative examples illustrating the count-correction ability of our detector-based
critic on a variety of objects, counts 1-10. SDXL-Turbo (Sauer et al., 2025) is a base model with
no post-enhancement. ReNO (Eyring et al., 2024) is a generic alignment method, not specifically
designed to correct numeracy, that exhibits limited performance in this setting. More recent methods,
like Make It Count (Binyamin et al., 2025) and Counting Guidance (Kang et al., 2025), explicitly
address count-correction. Our method proposes a new and effective way to leverage detectors for this
challenging task. Prompt template: “A realistic photo of a scene with [count] [object class].”

critics, thereby allowing T2I diffusion models to benefit from stronger counting models for improved
numeracy.

Our Detector-to-Differentiable (D2D) framework builds on two key insights that set it apart from
existing numeracy-enhancement methods (Kang et al., 2025; Zafar et al., 2024; Binyamin et al., 2025).
First, rather than relying on the conventional non-differentiable “count-via-enumeration” mechanism,
we design a high-curvature activation function that converts bounding box logits outputted from
detectors into binary indicators, thereby making them gradient-friendly for count optimization.
Second, unlike prior approaches that intervene at intermediate states or denoised predictions along the
sampling trajectory, we instead optimize the initial noise using our “count-via-summation” gradient.
This backbone-agnostic design enables broader generalization of our method across diverse diffusion-
based T2I architectures across U-Net (Ronneberger et al., 2015) and DiT (Peebles & Xie, 2023).
We further demonstrate the effectiveness of D2D via comprehensive experiments using various
generative backbones (i.e., SDXL-Turbo (Sauer et al., 2025), SD-Turbo (Sauer et al., 2025), Pixart-
DMD Chen et al. (2025b)) and multiple benchmarks (i.e., CoCoCount (Binyamin et al., 2025),
D2D-Small, D2D-Multi, D2D-Large), covering diverse numeracy generation scenarios, including
single and multiple objects. D2D yields the highest numeracy across all multi-step and one-step
baselines and benchmarks. In particular, on base model SDXL-Turbo, D2D effectively corrects 42%
of under-generations (i.e., where the initial generation contains fewer than requested objects) and
40% of over-generations, nearly or more than 2x ReNO (Eyring et al., 2024) and Token Optimization
(TokenOpt)’s (Zafar et al., 2024) correction rate. In summary, our contributions are as follows:

• We highlight the importance of accurate numeracy in T2I generation and propose a frame-
work to convert robust object detectors into differentiable critics for count-correction with a
newly designed activation function, addressing the bottleneck of having to rely on existing
regression-based methods.

• We reposition count-correction problem within the initial noise optimization framework,
motivated by the presence of structural priors that exhibit cross-model consistency.

• Our method D2D outperforms previous one-step and multi-step count-correction methods
by up to 13.7% points (from 30% with Make It Count to 43.7% with D2D on D2D-Small),
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(a) Low and high-density examples with incorrect
numeracy, generated by SDXL-Turbo.

(b) Error by ground truth count on TallyQA (Acharya
et al., 2019) and FSC147 (Ranjan et al., 2021).

Figure 2: The low-density setting is where incorrect numeracy is most noticeable and also where
detectors count better than regression-based methods. But detectors are not differentiable, which

precludes them from being used as critics for count correction.

with minimal degradation in image quality (Fig. 1). On single-object prompts with counts 
10, our method introduces less than or comparable computational overhead to baselines.

2 RELATED WORK

Generic alignment enhancement methods. As noted in the literature (Black et al., 2024; Chen
et al., 2025a), the base log-likelihood objective of diffusion models is insufficient on its own to
achieve state-of-the-art alignment. To address this, prior works optimize human preference scores via
post-enhancement strategies ranging from fine-tuning the U-Net or text encoder (Clark et al., 2024;
Xu et al., 2023; Yang et al., 2024; Wallace et al., 2024; Black et al., 2024; Fan et al., 2023; Chen
et al., 2025a) to inference-time, training-free strategies that update the intermediate latents (Chung
et al., 2024; Chefer et al., 2023). A promising recent line of work (Wallace et al., 2023; Eyring et al.,
2024) proposes inference-time alignment via initial noise selection, motivated by the presence of
semantic/structural priors in the initial noise (Wang et al., 2025) that influence the semantics/structure
of the generated output consistently across diffusion models even with different backbones. But
regardless of whether the specific approach is to fine-tune model components or update latents, the
problem remains that generic alignment objectives like human-preference scores are insufficient to
solve numeracy, as we find there remains a significant gap relative to state-of-the-art count-correction
methods like Binyamin et al. (2025). In our work, we specifically address the challenge of improving
numeracy with a new formulation for the objective, as well as adopt initial noise optimization as the
method of learning, for the ease with which it can be applied across different backbones and the ability
to leverage optimized seeds to complement existing methods, as we demonstrate in experiments.

Numeracy correction methods. Existing count-correction methods leverage two main mechanisms
at inference-time to correct count: (1) apply the gradient of external counting models to correct
a tunable portion of the generation process, like Counting Guidance (Kang et al., 2025) and To-
kenOpt (Zafar et al., 2024), or (2) use attention to control the layout of generated instances, like
Make It Count (Binyamin et al., 2025). Counting Guidance uses the RCC counting model (Hobley &
Prisacariu, 2022) to optimize the predicted noises, and TokenOpt uses CLIP-Count (Jiang et al., 2023)
to optimize the embedding of a count token injected into the prompt as well as a detector to scale
down CLIP-Count’s overestimates, which increases the computational overhead (about 2-6 times
longer than D2D on average). Make It Count (Binyamin et al., 2025) is an SDXL-specific (Podell
et al., 2024) method that uses self-attention features of the U-Net to extract masks of generated
instances and cross-attention to enforce a corrected set of masks. These works are either limited by
the need to rely on regression-based counters or manner in which they enforce structure at the cost of
image quality, a phenomenon documented in Dinh et al. (2023); Zafar et al. (2024); Patel & Serkh
(2025) and noted in our experiments. Instead, D2D leverages a more robust detector-based critic that
enables more effective correction in the low-density setting.
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Regression vs. detector-based counting models. Regression-based counting methods take an input
image and estimate count on a continuous scale. Different variations allow for (1) exemplar-based
(i.e., count the instances that look similar to the user-provided example), (2) zero-shot (i.e., count the
most salient object), and (3) text-prompted counting (i.e., count the text-specified object). Designed
to help count high-density images, where continuous-scale predictions are appropriate, they exhibit
limited performance in low-density images (Zhang et al., 2025), as illustrated in Fig. 2b. On the other
hand, our D2D critic is derived from detectors which show robust performance given low-density
images, which is critical to the generative setting (Fig. 2). Furthermore, our critic can be used to
generate objects in the open set by leveraging open-vocabulary detectors, like OWLv2 (Minderer
et al., 2023), with minimal modification to detector architecture. In our work, we compare our critic
against three regression-based counting methods: RCC (Hobley & Prisacariu, 2022) (zero-shot),
CLIP-Count (Jiang et al., 2023) (text-specified), and CounTR (zero-shot) (Chang et al., 2022).

3 THE D2D FRAMEWORK

Problem statement. Given a pre-trained, one-step T2I model G✓ and prompt p requesting N counts
of an object of class C, our goal is to generate an image with exactly N counts of C.

Summary of approach. We propose a detector-based count critic that provides a more effective
gradient signal. We then design a method to use that signal to influence the generation process, by
leveraging the structural priors in the initial latent which we modify to align with the gradient.

3.1 DETECTOR-TO-DIFFERENTIABLE CRITIC

Detector D takes as inputs an object class C and image I and outputs a set of n bboxes {Bi|1 
i  n} and logits z = {zi|1  i  n}. A standard sigmoid �(zi) =

1
1+e�zi

converts the logits into
confidence scores between 0 and 1, with the most salient bboxes filtered using threshold ⌧ , as follows:
B = {Bi|�(zi) � ⌧} = {Bi|zi � ⌧z}, where ⌧z = ��1(⌧). The final count is |B|. Our goal is to
derive a gradient from D that can effectively increase or decrease |B| as needed. Our approach is to
first, define a differentiable function f : z 2 Rn 7! N that can extract the count from the logits z, and
second, transform f so its gradient is more amenable to convergence, arriving at critic LD2D.

Extract the count via f . The main challenge behind counting is its discrete nature, featuring discon-
tinuous jumps between one count and the next. But converting discrete problems into continuous,
differentiable ones has been done before (e.g., logistic regression for binary classification). The
task of discrete 0/1 prediction is accomplished by optimizing the steepness and transition threshold
of the sigmoid-curve that best splits the classes. By drawing parallels to this space, we arrive at
the following insight: we can convert each logit into a binary indicator of whether to “count” the
corresponding bbox, by applying to each logit a steep sigmoid curve with transition threshold ⌧z and
steepness coefficient � (Eq. 1).

Transform f to effectively handle over/under-generation. An effective critic provides a strong
gradient signal above/below ⌧z (our domain of interest) to push logits beyond or below the threshold
as needed to add/erase objects in response to under/over-generation. However, by nature of its
sigmoidal shape, f has significant plateauing (i.e., weak gradient signals) above and below ⌧ . To
improve the gradient steepness in our domain of interest, we scale each sigmoid output by the
corresponding logit (Eq. 2), arriving at LD2D. At inference-time, we use rLD2D to optimize the
generated image.1

f�,⌧z (z) =
nX

i=1

�(� · (zi � ⌧z)). (1)

LD2D =

⇢Pn
i=1 �(� · (zi � ⌧z)) · (zi � ⌧z), if f�,⌧z > N (i.e., over-generation)Pn
i=1��(�� · (zi � ⌧z)) · (zi � ⌧z), if f�,⌧z < N (i.e., under-generation)

(2)

Extension to multiple classes. The main consideration in extending D2D to prompts with m > 1
object classes {Cj |1  j  m}, is that every bbox comes with m logits, the maximum of which
determines its class label. To extend D2D, we update Eq. 2 to correct each bbox’s largest logit, while
minimizing all others. Details in Appendix D.4.

1Unless otherwise noted, we use f to perform early-stopping once the requested count is met.
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Figure 3: The D2D pipeline for improving T2I numeracy. D2D consists of two main components
that work together to improve numeracy: our detector-based count critic guides the Latent Modifier
Network (LMN) on how to transform the original initial noise xT into a more optimal x0

T . Our count
critic uses sigmoid-based activation functions to convert logits into gradient signals, which are then
backpropagated through the frozen pipeline to update the weights of the LMN.

3.2 THE LATENT MODIFIER NETWORK (LMN)

Given our proposed count critic, we now turn to the learning method used to optimize this objective.
Motivated by the presence of meaningful priors in the initial noise, previous works (Eyring et al.,
2024; Wang et al., 2025) have used various generic alignment metrics to tune the initial noise directly.
Building on this motivation, we propose the Latent Modifier Network (LMN), a test-time tunable
module whose output is mixed with the original noise to determine the optimal initial noise and
whose weights are updated using our critic LD2D.

Given initial noise xT ⇠ N (0, I), xT 2 Rd and prompt p that requests N counts of an object of
class C, one-step T2I model G✓ generates image I . Our goal is to find an optimal x⇤

T that produces
an image I⇤ with exactly N of the specified object. To achieve this, we introduce a tunable Latent
Modifier Network (LMN) M�: a small, 3-layer perceptron, between the initial random latent and
T2I model (Fig. 3), with input/output dimensions equal to that of the initial latent and whose output
dictates how to update xT . As shown in Eq. 3, the new latent is a weighted sum of xT and M�(xT ),
with weight w = 0.2. Compared to tuning the initial latent directly, the LMN composes a relatively
larger parameter space and enforces more incremental updates that preserve a consistent Gaussian
component sourced from the original latent even through all iterations. At inference-time, we tune �
using rLD2D with the goal of correcting the initial noise, and thereby the numeracy, as described in
the following section.

x0
T = w · xT + (1� w) ·M�(xT ). (3)

3.3 OPTIMIZATION

The goal is to find the optimal set of parameters � that minimizes the error between the generated
and requested count, as seen in Eq. 4. Since detector D is non-differentiable, we leverage LD2D to
optimize � iteratively, rendering our final update rule (Eq. 5), with regularization term Lreg, learning
rate ⌘, and weights ↵ and �. We adaptively rescale the loss to address exploding gradients that we
may encounter due to the large number of tunable parameters. We apply a variant of the regularization
term used in ReNO (Eyring et al., 2024), using the negative log-likelihood of the norm of xT as
follows: L0

reg = ||x0
T ||2/2�(d�1) · log(||x0

T ||). We use Lreg = [aL0
reg+c]10, with scaling coefficient

a and shift constant c.
�⇤ = argmin

�
|D(G✓(x

0
T ))�N |. (4)

�( �� ⌘r(↵LD2D + �Lreg). (5)
� initialization. To give M� a good starting point (i.e., initialize the network’s initial output
distribution to Gaussian), we propose a short, pre-inference alignment stage to be performed one
time per base model using only the regularization term. Specifically, we train M� on 100 different
randomly sampled latents (xT ) for 200 epochs each (Algorithm 2 in the appendix).

At inference-time, given a new, randomly sampled xT the network has never seen before, we
introduce a ~0.2-second calibration phase to allow the network to adapt to the new input, using only
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the regularization term. Afterward, we leverage both D2D and regularization terms, according to Eq.
5. The full algorithm is detailed below (Algorithm 1).

Algorithm 1 Inference
Input: Prompt p specifying N of object of class C; pre-trained Latent Modifier Network M�; latent

dimension d; weight w, diffusion model G✓; minimum number of calibration iterations tmin;
threshold value specifying “good enough” regularization ⌧reg; counter f�,⌧z and critic LD2D; Stage
1 (Calibration) learning rate ⌘calib and loss weight �calib; Stage 2 numeracy optimization learning
rate ⌘ and loss weights ↵ and �; number of tuning steps K.

Output: Optimal noise x⇤
T .

resample True . Stage 1: Calibrate M� to newly sampled xT .
while resample do

Sample xT 2 Rd ⇠ N (0, I)
for 1  t  K do

x0
T = w · xT + (1� w) ·M�(xT )

Compute L = �calibL0
reg

if t � tmin and L <= ⌧reg then . Done aligning in t iterations.
resample False
break

else
� �� ⌘calibrL

end if
end for

end while
for t  epoch  K do . Stage 2: Optimize numeracy.

Compute Lreg
I = G✓(x0

T , p)
Compute f�,⌧z and LD2D
return if f�,⌧z = N . if I is optimal, stop early
�( �� ⌘r(↵ · LD2D + � · Lreg)
x0
T = w · xT + (1� w) ·M�(xT )

end for

4 EXPERIMENTS AND ANALYSIS

4.1 EXPERIMENTAL SETUP

Benchmarks. Our main experimental setting of single-object, low-density prompts leverages two
benchmarks, CoCoCount (Binyamin et al., 2025) and D2D-Small. D2D-Small is a set of 400 prompts
created using 40 countable objects from COCO (Lin et al., 2014) with counts ranging from 1-10
and a prompt template adapted from Lian et al. (2024): “A realistic photo of a scene with {count}
{object}.” CoCoCount consists of 200 prompts from 20 COCO classes and requested counts roughly
equally split among 2, 3, 4, 5, 7, and 10. Experiments on multi-object or high-density prompts were
performed on D2D-Multi (400 prompts with two objects sampled from 40 countable COCO classes,
with N1, N2 < 10) and D2D-Large (similarly constructed with counts 11-20).

Base models. We apply D2D to three one-step models: SDXL-Turbo (Sauer et al., 2025), SD-
Turbo (Sauer et al., 2025), and Pixart-DMD (Chen et al., 2025b). SDXL-Turbo and SD-Turbo,
respectively distilled from SDXL (Podell et al., 2024) and SD2.1 (Rombach et al., 2022), have U-Net
backbones. Pixart-DMD, distilled from Pixart-↵ (Chen et al., 2024), has a Transformer backbone.

Comparison of numeracy enhancement methods. We compare D2D against multi-step count-
correction baselines Make It Count (Binyamin et al., 2025), an SDXL-based method which uses
attention-based mechanisms to identify and correct object layout via updates to the intermediate
latents, and Counting Guidance (Kang et al., 2025), an SD1.4-based method which uses the auxiliary
counting RCC (Hobley & Prisacariu, 2022) to correct the predicted noises, and one-step method
TokenOpt (Zafar et al., 2024), an SDXL-Turbo-based method that injects a count token into the prompt
and tunes it using CLIP-Count (Jiang et al., 2023). Importantly, Make It Count addresses the low-
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density, single-object setting and TokenOpt addresses the single-object setting, so we only evaluate
Make It Count on CoCoCount and D2D-Small and TokenOpt on CoCoCount and D2D-Small/Large.

Comparison with generic prompt-alignment method. The most relevant prior initial noise opti-
mization work is ReNO (Eyring et al., 2024), a framework for one-step T2I models that uses the
combined gradient of multiple image quality and prompt-image alignment metrics (ImageReward (Xu
et al., 2023), PickScore (Kirstain et al., 2023), HPSv2 (Wu et al., 2023), and CLIPScore (Hessel et al.,
2021)) to optimize semantic alignment and image quality. Instead of tuning an LMN, ReNO directly
tunes the initial latent over 20-50 iterations, with regularization to keep the noise within the initial
distribution and gradient clipping to prevent gradient explosion. Though its use of human-preference
reward models does improve numeracy relative to the base model, there remains a gap between
using such generic objectives and our count-tailored critic (Tab. 1). A key difference between our
method and ReNO’s is our introduction of the LMN, which expands the tunable parameter space
while preserving a portion of the original initial noise throughout the optimization process. To assess
the impact of introducing the LMN, we compare our initial noise optimization method with ReNO’s,
controlling for the loss by swapping out ReNO’s human-preference models for our D2D critic.

Count critic. We demonstrate D2D on detectors OWLv2 (Minderer et al., 2023) (open-vocabulary,
robust) and YOLOv9 (Wang et al., 2024) (high-throughput and trained on COCO (Lin et al., 2014)
objects). We expect a small accuracy-cost tradeoff, where OWLv2 enables superior numeracy with
greater computational overhead, while YOLOv9 yields slightly lower numeracy but faster inference.

Evaluation. Following similar evaluation protocols (Binyamin et al., 2025; Kang et al., 2025; Zafar
et al., 2024), we use CountGD (Amini-Naieni et al., 2024), a state-of-the-art counting model built on
detector GroundingDINO (Liu et al., 2025), to extract the count of generated objects and compute
the proportion of correctly-generated images (see Appendix G for CountGD’s counting accuracy
compared to other regression/detector-based methods). Like Eyring et al. (2024), we analyze image-
quality/prompt alignment with human-preference-trained models (ImageReward (Xu et al., 2023),
PickScore (Kirstain et al., 2023), HPSv2 (Wu et al., 2023)), and CLIPScore (Hessel et al., 2021).

Implementation details. Our main experiments were completed on an L40, with hyperparameter
ablations completed on an A6000. For Make It Count (Binyamin et al., 2025) which requires > 50
GB, we used an A100. Our key hyperparameters are the detector threshold ⌧ and steepness coefficient
�, which we set as 0.2 and 300 (ablations reported). Further details in Appendix D.

4.2 NUMERACY IMPROVEMENTS

Tab. 1 shows our main D2D-to-baseline comparisons. Baseline evaluations illustrate that though
the prompt setting is relatively simple, generating accurate counts remains challenging. On numer-
acy, D2D consistently outperforms baselines across low-density, single-object, multi-object, and
high-density prompts, across base models with U-Net and DiT backbones. On SDXL-Turbo, we
demonstrate that performance boosts from D2D generalize across OWLv2 and YOLOv9 detector
backbones (i.e., the detector used to compute LD2D), with a small accuracy-cost tradeoff as expected
(Fig. 6). The robust OWLv2 detector yields higher numeracy with slightly more overhead, while
the real-time YOLOv9 detector yields slightly lower (but still high) numeracy with faster inference
(in all other experiments, we use the higher-performing OWLv2 backbone unless otherwise noted).
Additionally, D2D effectively complements baselines, boosting numeracy across all four benchmarks
when used in combination with TokenOpt or ReNO (Tab. 6 in appendix). For example, applying
D2D-optimized seeds to TokenOpt improves numeracy by 13.6% points, relative to TokenOpt’s
baseline performance (from 35.12% to 48.75%) on CoCoCount.

Improved numeracy on multi-object/high-density prompts. D2D maintains relative improvement
over baselines even in the more challenging multi-object/high-density settings. Nevertheless, the
accuracy drop from low-density benchmarks to D2D-Large illustrates the remaining challenge of
correctly generating large counts. Upon parsing D2D-Multi results, we see this pattern holds even
within multi-object prompts (Tab. 7 in appendix). For example, the accuracy of SDXL-Turbo + D2D

w/ OWLv2 on D2D-Multi prompts with low total-density (Ntot = N1 +N2  10) is 12.08%, which
drops to 3% for prompts with higher Ntot (though both are still higher than all baseline scores).

LD2D effectively boosts numeracy across all classes. Fig. 4 shows LD2D improves numeracy
across all 41 object categories in CoCoCount and D2D-Small, spanning a large variety (e.g., apples,
elephants, cars, etc.) Upon applying D2D to SDXL-Turbo, umbrella and vase are the two classes
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Table 1: Quantitative results. D2D outperforms all baselines across all four benchmarks, even
generalizing across detector variants OWLv2 (Minderer et al., 2023) and YOLOv9 (Wang et al.,
2024). D2D with YOLOv9 italicized and bolded to show that while it outperforms all baselines, it is
second to using OWLv2. Standard deviations indicate the significance of our findings. Base models
with no post-enhancement highlighted in gray. Avg. over four seeds.

Method CoCoCount D2D-Small D2D-Multi D2D-Large
SDXL (Podell et al., 2024) 24.88 ±1.70 16.06 ±1.86 2.44 ±0.59 1.44 ±0.38

+ Make It Count (Binyamin et al., 2025) 46.75 ±2.10 30.00 ±1.93 —– —–
SDXL-Turbo (Sauer et al., 2025) 27.38 ±2.69 20.31 ±1.95 2.12 ±0.83 2.56 ±0.55

+ ReNO (Eyring et al., 2024) 41.88 ±1.03 27.50 ±0.68 5.31 ±0.38 4.69 ±1.25
+ TokenOpt (Zafar et al., 2024) 35.12 ±0.75 23.31 ±1.66 —– 3.94 ±0.72
+ D2D w/ OWLv2 (Ours) 55.62 ±2.72 43.69 ±2.36 9.81 ±0.97 9.94 ±1.57
+ D2D w/ YOLOv9 (Ours) 52.75 ±1.55 36.69 ±2.40 6.25 ±1.77 7.50 ±1.06

SD2.1 (Rombach et al., 2022) 32.75 ±1.32 24.75 ±2.85 4.81 ±1.23 2.94 ±0.75
SD1.4 (Rombach et al., 2022) 27.62 ±4.11 16.69 ±2.59 2.81 ±0.31 2.12 ±0.32

+ Counting Guidance (Kang et al., 2025) 25.25 ±3.75 17.12 ±1.69 3.38 ±1.16 1.88 ±0.60
SD-Turbo (Rombach et al., 2022) 20.88 ±3.07 15.31 ±0.87 2.56 ±0.83 3.19 ±1.18

+ ReNO (Eyring et al., 2024) 43.38 ±3.47 32.06 ±0.99 8.94 ±1.76 4.25 ±1.14
+ D2D w/ OWLv2 (Ours) 48.38 ±3.09 39.44 ±2.37 10.75 ±1.06 11.44 ±1.98

Pixart-↵ (Rombach et al., 2022) 19.62 ±1.03 14.00 ±1.08 1.31 ±0.75 1.81 ±0.66
Pixart-DMD (Chen et al., 2025b) 38.12 ±2.32 27.88 ±1.51 6.25 ±0.46 3.19 ±0.62

+ ReNO (Eyring et al., 2024) 44.75 ±1.44 37.25 ±1.70 9.44 ±0.75 4.75 ±0.74
+ D2D w/ OWLv2 (Ours) 53.25 ±2.40 41.25 ±2.81 13.31 ±1.36 7.62 ±1.18
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Figure 4: D2D improves numeracy across all 41
objects in CoCoCount and D2D-Small. Evalu-
ated against ReNO (Eyring et al., 2024) and To-
kenOpt (Zafar et al., 2024) on base SDXL-Turbo.
Avg. over four seeds.

Figure 5: D2D effectively corrects over and
under-generation. The initial generation con-
tains six more dogs/one fewer cup than requested,
which our method iteratively corrects, arriving at
an image of 10 dogs/four cups, as requested.

that see the most improvement, each jumping from 3% (base) to 53% (D2D) accuracy. Wine glass
and bottle, both of which are (semi)transparent objects, are among the classes that see the least
improvement (4.8% to 5.3% and 25% to 30% accuracy, respectively), which may suggest a future
direction where detectors are fine-tuned on more difficult classes, or similar, with the purpose of
generating highly-tailored scenes of objects.

D2D best handles over and under-generation. Tab. 2 breaks down results by the numeracy of the
initial generation I , illustrating how well different methods are able to correct over/under-generation
while maintaining the numeracy of already-correct images. Specifically, we compare TokenOpt,
ReNO, and D2D on base model SDXL-Turbo, across benchmarks CoCoCount and D2D-Small.
D2D has the highest correction rate, correcting 40.13% of over-generations and 41.83% of under-
generations, which is at least 16% points over the baselines, while maintaining minimal decline in
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Table 2: Given the same initial conditions, D2D
is the most effective at correcting over and
under-generation. We report the correction rate
of initial over/under-generations, as well as the
proportion of correct generations that were main-
tained. On SDXL-Turbo, across CoCoCount and
D2D-Small benchmarks. Avg. over four seeds.
Numeracy of initial generation Over Under Correct
TokenOpt (Zafar et al., 2024) 13.28 25.24 69.92
ReNO (Eyring et al., 2024) 23.32 25.11 62.19
D2D w/ OWLv2 40.13 41.83 72.57

Table 3: Ablation study on key hyperparam-
eters ⌧ and �. Detector threshold ⌧ = 0.2 is
optimal. A lower ⌧ (which counts low-confidence
bboxes) and higher ⌧ (which potentially discards
actually-legitimate bboxes) results in drops in nu-
meracy. Steepness coefficient � = 300 is optimal.
Tested on CoCoCount, seed=0.

Hyperparameters
⌧ �

0.1 0.2 0.5 0.8 1 10 20 300 400

CountGD 51.50 55.50 43.50 32.50 43.00 40.00 32.50 55.50 52.50

Table 4: Among count critics, LD2D is the most effective. On SDXL-Turbo. Avg. over four seeds.
Count Critic CoCoCount D2D-Small D2D-Multi D2D-Large

RCC (Hobley & Prisacariu, 2022) 37.75 26.38 —– 04.25
CLIP-Count (Jiang et al., 2023) 40.00 25.88 05.19 06.38
CounTR (Chang et al., 2022) 38.38 25.62 —– 05.31
f (OWLv2) 32.00 20.75 03.06 03.38
LD2D (OWLv2) 55.62 43.69 09.81 09.94

correct generations. Fig. 5 illustrates D2D’s iterative correction process on two sample prompts,
going from 16 dogs to the requested 10 dogs and from three cups to the requested four.

4.3 ADDITIONAL ANALYSIS AND ABLATIONS

Impact of hyperparameters. We report our hyperparameter studies on values for ⌧ (detector
threshold) and � (steepness coefficient). Results (Tab. 3) show that ⌧ = 0.2, � = 300 are optimal.

D2D vs. regression-based counters. Tab. 4 compares the effectiveness of our critic against existing
regression-based ones and additionally shows that the formulation LD2D is indeed more convergence-
friendly than f�,⌧z . Across all four benchmarks, our detector-based critic outperforms regression-
based methods RCC, CLIP-Count, and CounTR on numeracy (e.g., ours reaches 55.62% when
the max score reached by any regression-based model is 40% on CoCoCount). Notably, LD2D
outperforms even on the high-density benchmark D2D-Large, though regression-based methods
outperform detectors in the non-generative, counting setting (Fig. 2b). Furthermore, not only
does LD2D, which produces a stronger gradient signal, outperform f�,⌧z on numeracy; f�,⌧z yields
the lowest numeracy compared to the other critics, which indicates that though it composes the
mathematical backbone of LD2D, f�,⌧z itself is not a suitable critic, as expected (Tab. 4).

The latent modifier network M�. Next, we assess the impact of introducing the LMN, a module
whose output is mixed with the original noise to arrive at the optimal noise, by comparing our
method with ReNO’s, controlling for the optimization objectives used (LD2D, L0

reg) and number of
iterations tuned. Tab. 5 shows the LMN generally improves numeracy, while maintaining image
quality; numeracy jumps 10% points on CoCoCount and D2D-Small from 43.25% to 53.88% and
from 32% to 42.44%, respectively.

Impact on image quality and computational overhead. ImageReward, PickScore, HPSv2, and
CLIPScore metrics in Fig. 6a show D2D’s image quality and overall prompt alignment is comparable
to counting baselines and even surpasses multi-step baselines in many cases, including the layout
control-based method, Make It Count (MIC). For example, SDXL-Turbo + D2D (OWLv2) yields
ImageReward 0.51 (MIC: 0.30), PickScore 21.98 (MIC: 21.48), and HPSv2 0.28 (MIC: 0.26) on
D2D-Small. D2D does not add significantly to inference cost, averaging between 11 and 21 seconds,
compared to counting baselines, which average upwards of 28 to 100 secs (Fig. 6b).

5 CONCLUSION AND DISCUSSIONS

In this work, we address the challenge of correcting numeracy in generation. We identify a central
limitation of previous methods, specifically their reliance on differentiable, regression-based counting
models as critics. We propose a novel way to convert more robust detectors into differentiable count
critics and then use them to optimize the initial noise at inference-time to improve numeracy. Our
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Table 5: The LMN boosts numeracy. We compare D2D against ReNO (Eyring et al., 2024) using
LD2D and L0

reg for both, controlling for the number of iterations tuned. We note boosts in numeracy,
with comparable image quality. On SDXL-Turbo. Avg. over four seeds.

Method CountGD " ImageReward " PickScore " HPSv2 " CLIPScore "
CoCoCount D2D-Small CoCoCount D2D-Small CoCoCount D2D-Small CoCoCount D2D-Small CoCoCount D2D-Small

ReNO w/ LD2D, L0
reg 43.25 32.00 1.04 0.45 23.25 21.98 0.296 0.281 32.81 31.79

D2D w/ LD2D, L0
reg 53.88 42.44 1.08 0.52 23.28 21.99 0.299 0.282 32.77 31.71

(a) Image quality/alignment scores (ImageReward (Xu
et al., 2023), PickScore (Kirstain et al., 2023),
HPSv2 (Wu et al., 2023), CLIPScore (Hessel et al.,
2021)) by method. Aside from ReNO (Eyring et al.,
2024), which often scores highest (it specifically opti-
mizes those metrics), D2D is comparable to counting
baselines. Min-max normalized.

(b) Numeracy vs. inference cost by method. Across
base models (SDXL-Turbo, SD-Turbo, Pixart-DMD)
and detectors (OWLv2 (Minderer et al., 2023),
YOLOv9 (Wang et al., 2024)), D2D scores in the top
left (i.e. it is both high-numeracy and low-cost). D2D

w/ YOLOv9 is even more compute-efficient than w/
OWLv2. Base model/detector noted in gray.

Figure 6: D2D yields image quality/alignment comparable to counting baselines, with min-
imal addition to computational overhead. Comparisons against counting baselines (Make It
Count (Binyamin et al., 2025), Counting Guidance (Kang et al., 2025), TokenOpt (Zafar et al., 2024))
and generic alignment method ReNO. On CoCoCount and D2D-Small. Avg. over four seeds.

method yields the highest numeracy across various prompt scenarios, including low-density, single-
object, multi-object, high-density settings, effectively correcting both over and under-generation,
with minimal additions to temporal overhead and minimal degradation in image quality.

Limitation and future directions. While our method exhibits significant improvements in numeracy,
high-density scenarios remain challenging. Given regression-based methods are more appropriate
in this setting, a future direction may explore how to adapt them into the generative setting. D2D is
limited in more fine-grained control (e.g., object placement) as it avoids direct enforcement and layout
control, which can come at the cost of image quality. Furthermore, D2D is inherently bottlenecked
by detector performance, though detectors are relatively robust. Future directions may explore
using D2D to perform other complex tasks, like attribute binding and object positioning, leveraging
detectors that can robustly work with prompts specifying objects and associated attributes.

REPRODUCIBILITY STATEMENT

The paper, appendix, along with code that we will release, contain the details for reproducibility.
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