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Abstract

Previously, statistical textbook wisdom has held that interpolation of noisy training1

data will lead to poor generalization. However, recent work has shown that this2

is not true and that good generalization can be obtained with function fits that3

interpolate training data. This could explain why overparameterized deep nets with4

zero or small training error do not necessarily overfit and could generalize well.5

Data interpolation schemes have been exhibited that are provably Bayes optimal in6

the large sample limit and achieve the theoretical lower bounds for excess risk (Sta-7

tistically Consistent Interpolation) in any dimension. These interpolation schemes8

are non-parametric Nadaraya-Watson style estimators with singular kernels, which9

exhibit statistical consistency in any data dimension for large sample sizes. The10

recently proposed weighted interpolating nearest neighbors scheme (wiNN) is in11

this class, as is the previously studied Hilbert kernel interpolation scheme. In12

the Hilbert scheme, the regression function estimator for a set of labelled data13

pairs, (xi, yi) ∈ Rd × R, i = 0, ..., n, has the form f̂(x) =
∑
i yiwi(x), where14

wi(x) = ‖x − xi‖−d/
∑
j ‖x − xj‖−d. This interpolating function estimator is15

unique in being entirely free of parameters and does not require bandwidth se-16

lection. While statistical consistency was previously proven for this scheme, the17

precise convergence rates for the finite sample risk were not established. Here, we18

carry out a comprehensive study of the asymptotic finite sample behavior of the19

Hilbert kernel regression scheme and prove a number of relevant theorems. We20

prove under broad conditions that the excess risk of the Hilbert regression estimator21

is asymptotically equivalent pointwise to σ2(x)/ ln(n) where σ2(x) is the noise22

variance. We also show that the excess risk of the plugin classifier is upper bounded23

by 2|f(x) − 1/2|1−α (1 + ε)ασα(x)(ln(n))−
α
2 , for any 0 < α < 1, where f is24

the regression function x 7→ E[y|x]. Our proofs proceed by deriving asymptotic25

equivalents of the moments of the weight functions wi(x) for large n, for instance26

for β > 1, E[wβi (x)] ∼n→∞ ((β− 1)n ln(n))−1. We further derive an asymptotic27

equivalent for the Lagrange function and explicitly exhibit the nontrivial extrapola-28

tion properties of this estimator. Notably, the convergence rates are independent of29

data dimension and the excess risk is dominated by the noise variance. The bias30

term, for which we also give precise asymptotic estimates, is always subleading31

when the density of data at the considered point is strictly positive. If this local32

density is zero, we show that the bias term does not vanish in the limit of a large33

data set and we compute its limit explicitly. Finally, we present heuristic arguments34

for a universal w−2 power-law behavior of the probability density of the weights35

in the large n limit.36
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1 Introduction37

Data interpolation and statistical regression of noisy data are both classical subjects but their domain38

of application have been disjoint until recently. Scattered data interpolation techniques [1] are39

generally used for clean data. On the other hand, when supervised learning or statistical regression40

techniques are applied to noisy data, in general smoothing or regularization methods are applied41

to prevent training data interpolation, as the latter is believed to lead to poor generalization [2].42

However, accumulating empirical evidence from overparameterized deep networks has shown that43

data interpolation (equivalently, zero error on the training set) does not automatically imply poor44

generalization [3, 4]. This has in turn given rise to a rapidly growing body of theoretical work to45

understand how and why noisy data interpolation can still lead to good generalization [5, 6, 7, 8, 9,46

10, 11, 12, 13, 14, 15].47

A key observations in this regard is the phenomenon of Statistically Consistent Interpolation [16],48

i.e., regression function estimation that interpolates training data but also generalizes as well as49

possible by achieving the Bayes limit for expected generalization error (risk) when the sample size50

becomes large. This hints at a rich set of theoretical questions at the interface between the disciplines51

of scattered data interpolation and supervised learning, that have only begun to be addressed. In52

particular, there has been comparatively little study of the generalization error or risk of interpolating53

learners. Computation of generalization error bounds in machine learning often relies on the capacity54

of the class of fitting functions [17], however such model complexity based bounds are not tight55

enough to be useful for interpolating learners [4]. For nonparametric interpolation approaches such as56

that considered here, it is also not clear what model complexity means. Thus, there is a need for other57

approaches to understanding the generalization behavior of nonparametric interpolating learners,58

including more direct treatments of the generalization error for specific interpolation schemes so as59

to gain better theoretical understanding. The current paper addresses this need.60

We present a detailed analysis of the finite-sample risk of an interpolating learner with intriguing61

theoretical properties, the Hilbert kernel estimator (Devroye et. al. [18]). A unique property of62

this Nadaraya-Watson (NW) style estimator [19, 20] is that it is fully parameter-free and does not63

have any bandwidth or scale parameter. It is global and uses all data points for each estimate: the64

associated kernel is a power law and thus scale-free. Although statistical consistency of this estimator65

was proven [18] when it was proposed, there has been no systematic analysis of the associated66

convergence rates and asymptotic finite sample behavior. We provide this analysis in the present67

study.68

Related work The only other interpolation scheme we are aware of, that is proven to be statistically69

consistent in arbitrary dimensions under general conditions, is the recently proposed weighted70

interpolating nearest neighbors method (wiNN) [7], which is also a NW estimator utilizing a singular71

power law kernel of a very similar form but with two important differences: a finite number of72

neighbors k is utilized (rather than all data points), and the power law exponent δ of the NW kernel73

satisfies 0 < δ < d/2 rather than δ = d. To achieve consistency k has to scale appropriately with74

sample size. Despite the superficial resemblance, the wiNN and Hilbert Kernel estimators have quite75

different convergence rates, as we will see from the results of this paper. Also worth mentioning is the76

Shepard interpolation scheme [21] originally proposed for interpolation of 2D geospatial data sets,77

also a NW style interpolating estimator, though used in the context of scattered data interpolation.78

In scattered data interpolation [1], the focus is generally on the approximation error (corresponding79

to the “bias” term in our analysis below). The approximation error of the Shepard scheme has been80

analyzed [22] but as we will see below the risk for Hilbert kernel interpolation is dominated by the81

noise or “variance” term. In contrast with wiNN or Hilbert kernel interpolation, other interpolating82

learning methods such as simplex interpolation [7] or ridgeless kernel regression [11] are generally83

not statistically consistent in fixed finite dimension [8].84

Summary of results of this paper Notation and assumptions pertaining to this summary are defined85

in the problem setup section below. We prove under broad conditions that the excess risk of the86

Hilbert regression estimator is asymptotically equivalent pointwise to σ2(x)/ ln(n) where σ2(x) is87

the noise variance. We also show that the excess risk of the plugin classifier is upper bounded by88

2|f(x)− 1/2|1−α (1 + ε)ασα(x)(ln(n))−
α
2 , for any 0 < α < 1, where f is the regression function89

x 7→ E[y|x]. Our proofs proceed by deriving asymptotic equivalents of the moments of the weight90

functions wi(x) for large n, for instance for β > 1, E[wβi (x)] ∼n→∞ ((β − 1)n ln(n))−1. We91

further derive an asymptotic equivalent for the Lagrange function and explicitly exhibit the nontrivial92
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extrapolation properties of this estimator. Notably, the convergence rates are independent of data93

dimension and the excess risk is dominated by the noise variance. The bias term, for which we also94

give precise asymptotic estimates, is always subleading when the density of data at the considered95

point is strictly positive. If this local density is zero, we show that the bias term does not vanish in the96

limit of a large data set and we compute its limit explicitly. Finally, we present heuristic arguments97

for a universal w−2 power-law behavior of the probability density of the weights in the large n limit.98

2 Problem setup99

Notation, Definitions, Statistical Model We model the labelled training data set100

(x0, y0), . . . , (xn, yn) as n + 1 i.i.d. observations of a random vector (X,Y ) with values in101

Rd × R for regression, and with values in Rd × {0, 1} for binary classification. Due to the indepen-102

dence property, the collection X0, . . . , Xn has the product density
∏n
i=0 ρ(xi). We will denote by E103

an expectation over the collection of n+ 1 random vectors and by EX the expectation over the col-104

lection X0, . . . , Xn. An expectation over the same collection while holding Xi = xi will be denoted105

EX|xi . The regression function f : Rd → R is defined as the conditional mean of Y given X = x,106

f(x) := E[Y | X = x] and the conditional variance function is σ2(x) := E[|Y − f(X)|2|X = x].107

f minimizes the expected value of the mean squared prediction error (risk under squared loss),108

f = arg minRsq(h) where Rsq(h) := E[(h(X)− Y )2]. Given any regression estimator f̂(x) the109

corresponding risk can be decomposed as E[Rsq(f̂(X))] = Rsq(f) + E[(f̂(X) − f(X)2]. The110

excess risk is given by Rsq(f̂) − Rsq(f) = E[(f̂(X) − f(X))2]. For a consistent estimator this111

excess risk goes to zero as n→∞ and we are interested in characterizing the rate at which it goes to112

zero with increasing n (note our sample size is n + 1 for notational simplicity but for large n this113

does not change the rate).114

In the case of binary classification, Y ∈ {0, 1} and f(x) = P[Y = 1 | X = x)]. Let F : Rd → {0, 1}115

denote the Bayes optimal classifier, defined by F (x) := θ(f(x)− 1/2) where θ(·) is the Heaviside116

theta function. This classifier minimizes the riskR0/1(h) := E[1{h(X)6=Y }] = P(h(X) 6= Y ) under117

zero-one loss. Given the regression estimator f̂ , we consider the plugin classifier F̂ (x) = θ(f̂(x)− 1
2 ).118

The classification risk for the plugin classifier F̂ is bounded as E[R0/1(F̂ (x))] − R0/1(F (x)) ≤119

2E[|f̂(x)− f(x)|] ≤ 2

√
E[(f̂(x)− f(x))2].120

Finally, we define two sequences an, bn > 0, n ∈ N, to be asymptotically equivalent for n→ +∞,121

denoted an ∼n→+∞ bn, if the limit of their ratio exists and limn→∞ an/bn = 1.122

In summary, our work will focus on the estimation of asymptotic equivalents for E[(f̂(x)− f(x))2]123

and other relevant quantities as this determines the rate at which the excess risk goes to zero for124

regression, and bounds the rate at which the excess risk goes to zero for classification.125

Assumptions. We define the support Ω of the density ρ as Ω = {x ∈ Rd/ρ(x) > 0}, the closed126

support Ω̄ as the closure of Ω, and Ω◦ as the interior of Ω. Our results will not assume any compactness127

condition on Ω or Ω̄. The boundary of Ω is then defined as ∂Ω = Ω̄ \ Ω◦. We assume that ρ has a128

finite variance σ2
ρ. In addition, we will most of the time assume that the density ρ is continuous at the129

considered point x ∈ Ω◦, and in some cases, x ∈ ∂Ω ∩ Ω.130

For the regression function f , we will obtain results assuming either of the following conditions131

• CfCont: f is continuous at the considered x,132

• CfHolder: for all x ∈ Ω◦, there exist αx > 0, Kx > 0, and δx > 0, such that133

x′ ∈ Ω and ‖x− x′‖ ≤ δx =⇒ |f(x)− f(x′)| ≤ Kx ‖x− x′‖αx134

(local Hölder smoothness condition),135

where condition CfHolder is obviously stronger than CfCont. In addition, we will always assume a136

growth condition for the regression function f :137

• CfGrowth:
∫
ρ(y) f2(y)

1+‖y‖2d d
dy <∞.138
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As for the variance function σ, we will obtain results assuming either that σ is bounded or satisfies a139

growth condition similar to the one above140

• CσBound: there exists σ2
0 ≥ 0, such that, for all x ∈ Ω, we have σ2(x) ≤ σ2

0 ,141

• CσGrowth:
∫
ρ(y) σ2(y)

1+‖y‖2d d
dy <∞.142

When we will assume condition CσGrowth (obviously satisfied when σ2 is bounded), we will also143

assume a continuity condition CσCont for σ at the considered x.144

Note that all our results can be readily extended in the case where x ∈ ∂Ω = Ω̄ \ Ω◦ but keeping145

the condition ρ(x) > 0 (i.e., x ∈ ∂Ω ∩ Ω), and assuming the continuity at x of ρ as seen as a146

function restricted to Ω, i.e., limy∈Ω→x ρ(y) = ρ(x). Useful examples are when the support Ω of147

ρ is a d-dimensional sphere or hypercube and x is on the surface of Ω (but still with ρ(x) > 0). To148

guarantee these results for x ∈ ∂Ω ∩ Ω, we need also to assume the continuity at x of f , and assume149

that Ω is smooth enough near x, so that there exists a strictly positive local solid angle ωx defined by150

ωx = lim
r→0

1

Vdρ(x)rd

∫
‖x−y‖≤r

ρ(y) ddy = lim
r→0

1

Vdrd

∫
y∈Ω/‖x−y‖≤r

ddy, (1)

where Vd = Sd/d = πd/2/Γ(d/2 + 1) is the volume of the unit ball in d dimensions, and the second151

inequality results from the continuity of ρ at x. If x ∈ Ω◦, we have ωx = 1, while for x ∈ ∂Ω, we152

have 0 ≤ ωx ≤ 1. For instance, if x is on the surface of a sphere or on the interior of a face of a153

hypercube (and in general, when the boundary near x is locally an hyperplane), we have ωx = 1
2 . If x154

is a corner of a hypercube, we have ωx = 1
2d

. From our methods of proof presented in the appendix,155

it should be clear that all our results for x ∈ Ω◦ perfectly generalize to any x ∈ ∂Ω ∩ Ω for which156

ωx > 0, by simply replacing Vd whenever it appears in our different results by ωxVd.157

Hilbert kernel interpolating estimator and Bias-Variance decomposition. The Hilbert kernel158

regression estimator f̂(x) is a Nadaraya-Watson style estimator employing a singular kernel:159

wi(x) =
‖x− xi‖−d∑n
j=0 ‖x− xj‖−d

, (2)

f̂(x) =

n∑
i=0

wi(x)yi. (3)

The weights wi(x) are also called Lagrange functions in the interpolation literature and satisfy the160

interpolation property wi(xj) = δij , where δij = 1, if i = j, and 0 otherwise. At any given point161

x, they provide a partition of unity so that
∑n
i=0 wi(x) = 1. The mean squared error between the162

Hilbert estimator and the true regression function has a bias-variance decomposition (using the i.i.d163

condition and the earlier definitions)164

f̂(x)− f(x) =
n∑
i=0

wi(x)[f(xi)− f(x)] +

n∑
i=0

wi(x)[yi − f(xi)], (4)

E[(f̂(x)− f(x))2] = B(x) + V(x), (5)

(Bias) B(x) = EX
[( n∑

i=0

wi(x)[f(xi)− f(x)]
)2]

, (6)

(V ariance) V(x) = E
[ n∑
i=0

w2
i (x)[yi − f(xi)]

2
]

= EX
[ n∑
i=0

w2
i (x)σ2(xi)

]
. (7)

The present work derives asymptotic behaviors and bounds for the regression and classification risk165

of the Hilbert estimator for large sample size n. These results are derived by analyzing the large n166

behaviors of the bias and variance terms, which in turn depend on the behavior of the moments of the167

weights or the Lagrange functions wi(x). For all these quantities, asymptotically equivalent forms168

are derived. The proofs exploit a simple integral form of the weight function and details are provided169

in the appendix, while the body of the paper provides the results and associated discussions.170
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3 Results171

3.1 The weights, variance and bias terms172

3.1.1 Moments of the weights: large n behavior173

In this section, we consider the moments and the distribution of the weights wi(x) at a given point x.174

The first moment is simple to compute. Since the weights sum to 1 and Xi are i.i.d, it follows that175

EX|xi [wi(x)] are all equal and thus EX|xi [wi(x)] = (n+ 1)−1. The other moments are much less176

trivial to compute and we prove the following theorem in the appendix A.2:177

Theorem 3.1. For x ∈ Ω◦ (so that ρ(x) > 0), we assume ρ continuous at x. Then, the moments of178

the weight w0(x) satisfy the following properties:179

• For β > 1:180

E
[
wβ0 (x)

]
∼

n→+∞

1

(β − 1)n ln(n)
. (8)

• For 0 < β < 1: defining κβ(x) :=
∫ ρ(x+y)
||y||βd d

dy <∞, we have181

E
[
wβ0 (x)

]
∼

n→+∞

κβ(x)

(Vdρ(x)n ln(n))β
. (9)

• For β < 0: all moments for β ≤ −1 are infinite, and the moments of order −1 < β < 0182

satisfy183

E
[
wβ0 (x)

]
≤ 1 + nκ|β|(x)κβ(x), (10)

so that a sufficient condition for its existence is κβ(x) =
∫
ρ(x+ y)||y|||β|d ddy <∞.184

Heuristically, the behavior of these moments are consistent with the random variable W = w0(x)185

having a probability distribution satisfying a scaling relation P (W ) = 1
Wn

p
(
W
Wn

)
, with the scaling186

function p having the universal tail (i.e., independent of x and ρ), p(w) ∼
w→+∞

w−2, and a scale Wn187

expected to vanish with n, when n→ +∞. With this assumption, we can determine the scale Wn by188

imposing the exact condition E[W ] = 1/(n+ 1) ∼ 1/n:189

E[W ] =
1

Wn

∫ 1

0

p

(
W

Wn

)
W dW = Wn

∫ 1
Wn

0

p(w)w dw (11)

∼ Wn

∫ 1
Wn

1

dw

w
∼ −Wn ln(Wn) ∼ 1

n
, (12)

leading to Wn ∼ 1
n ln(n) . Then, the moment of order β > 1 is given by190

E[W β ] =
1

Wn

∫ 1

0

p

(
W

Wn

)
W β dW ∼Wn

∫ 1

0

W β−2 dW ∼
n→+∞

1

(β − 1)n ln(n)
, (13)

which indeed coincides with the first result of Theorem 3.1. Our heuristic argument also suggests191

that in the case 0 < β < 1, we have192

E[W ] =
1

Wn

∫ 1

0

p

(
W

Wn

)
W β dW ∼

n→+∞

∫ +∞
0

p (w)wβ dw

(n ln(n))β
, (14)

where the last integral converges since p(w) ∼
w→+∞

w−2 and β < 1. This result is perfectly consistent193

with Eq. (9) in Theorem 3.1, and suggests that
∫ +∞

0
p (w)wβ dw =

κβ(x)
(Vdρ(x))β

. Interestingly, for194

0 < β < 1, and contrary to the case β > 1, we find that the large n equivalent of the moment is not195

universal and depends explicitly on x and the density ρ. As for moments of order −1 < β < 0, we196

conjecture that they are still given by Eq. (9) (and equivalently, by Eq. (14)) provided they exist, and197

that the sufficient condition for their existence κβ(x) <∞ is hence also necessary, since κβ(x) also198

appears in Eq. (9). The fact that moments for β ≤ −1 do not exist strongly suggests that p(0) > 0.199
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In fact, Eq. (14)) also suggests that all moments for −1 < β < 0 exist if and only if 0 < p(0) <∞.200

In the Fig. 2 of the appendix, we present numerical simulations confirming our scaling ansatz, the201

fact that p(w) ∼
w→+∞

w−2, and the quantitative prediction for Wn.202

It is shown in Devroye et al. [18] that the Hilbert kernel regression estimate does not converge203

almost surely (a.s.) by giving a specific example. Insight can be gained into this lack of almost sure204

convergence by considering the weight function w0(x), for a sequence of independent training sample205

sets of increasing size n+ 1. Let the corresponding sequence of weights be denoted as ωn ∈ [0, 1].206

From Theorem 3.1, it is clear that ωn converges to zero in probability, since the following Chebyshev207

bound holds (analogous to the bound on the regression risk):208

P(ωn > ε) ≤ 1 + δ

ε2n ln(n)
, (15)

for arbitrary ε > 0 and δ > 0, and for n larger than some constant Nx,δ. Alternatively, one can209

exploit the fact that E[ωn] = 1
n+1 , leading to P(ωn > ε) ≤ 1

ε n , which is less stringent than Eq. (15)210

as far as the n-dependence is concerned, but is more stringent for the ε-dependence of the bounds.211

Let us show heuristically that ωn does not converge a.s. to zero. Consider the infinite sequence of212

events En ≡ {ωn > ε}, n ∈ N, and the corresponding infinite sum
∑
n P(En) =

∑
n P(ωn > ε).213

Exploiting our previous heuristic argument for the scaling form of the distribution of weights, we214

obtain215

P(ωn > ε) =

∫ 1

ε

1

Wn
p

(
W

Wn

)
dW ∼

∫ n lnn

εn lnn

dw

w2
∼ 1− ε
ε n ln(n)

. (16)

Since
∑N
n=2

1
n ln(n) ∼ ln(ln(N)) is a divergent series, a Borel-Cantelli argument suggests that an216

infinite number of the events En (i.e., ωn > ε) must occur, which implies that ωn does not converge217

a.s. to 0. Note that the weights are equal to 1 at the data points due to the interpolation condition, so218

that large weights occasionally occur, causing the lack of a.s. convergence.219

3.1.2 Lagrange function: scaling limit220

The expected value of the Lagrange functions wi(x) have a simple form in the large n limit. Due221

to the i.i.d. condition the indices i are exchangeable and we set i = 0 for the computation of the222

expected Lagrange function L0(x) = EX|x0
[w0(x)]. Thus, one of the sample points (denoted x0) is223

held fixed and the other ones are averaged over in computing the expected Lagrange function. For224

x0 6= x kept fixed, we have limn→∞ L0(x) = 0. However, we show in the appendix A.3 that L0(x)225

takes a very simple form when taking a specific scaling limit:226

Theorem 3.2. For x ∈ Ω◦, we assume ρ continuous at x. Then, in the limit (denoted by limZ ), n→227

+∞, ‖x−x0‖−d → +∞ (i.e., x0 → x), and such that zx(n, x0) = Vdρ(x)‖x−x0‖dn log(n)→ Z,228

the Lagrange function L0(x) = EX|x0
[w0(x)] converges to a proper limit,229

lim
Z
L0(x) =

1

1 + Z
. (17)

The proof of this theorem shows that the relative error between L0(x) and 1
1+Z for finite but large n230

and large ‖x− x0‖−d, such that zx(n, x0) remains close to Z, is O(1/ ln(n)).231

Exploiting Theorem 3.2, we can use a simple heuristic argument to estimate the tail of the distribution232

of the random variable W = w0(x). Indeed, approximating L0(x) for finite but large n by its233

asymptotic form 1
1+zx(n,x0) , with zx(n, x0) = Vdρ(x)n log(n)‖x− x0‖d, we obtain234 ∫ 1

W

P (W ′) dW ′ ∼
∫
ρ(x0) θ

(
1

1 + Vdρ(x)n log(n)‖x− x0‖d
−W

)
ddx0, (18)

∼ Vdρ(x)

∫ +∞

0

θ

(
1

1 + Vdρ(x)n log(n)u
−W

)
du, (19)

∼ 1

n ln(n)W
=⇒ P (W ) ∼ 1

n ln(n)W 2
, (20)

where θ(.) is the Heaviside function. This heuristic result is again perfectly consistent with our guess235

of the previous section that P (W ) = 1
Wn

p
(
W
Wn

)
, with the scaling function p having the universal236
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tail, p(w) ∼
w→+∞

w−2, and a scale Wn ∼ 1
n ln(n) . Indeed, in this case and in the limit n→ +∞, we237

obtain that P (W ) ∼ 1
Wn

(
Wn

W

)2

∼ Wn

W 2 ∼ 1
n ln(n)W 2 , which is identical to the result of Eq. (20).238

3.1.3 The variance term239

A simple application of the result of Theorem 3.1 for β = 2 (see appendix A.4) allows us to bound240

the variance term V(x) = E
[∑n

i=0 w
2
i (x)[yi − f(xi)]

2
]

for a bounded variance function σ2:241

Theorem 3.3. For x ∈ Ω◦, ρ continuous at x, σ2 ≤ σ2
0 , and for any ε > 0, there exists a constant242

Nx,ε such that for n ≥ Nx,ε, we have243

V(x) ≤ (1 + ε)
σ2

0

ln(n)
. (21)

Relaxing the boundedness condition for σ, but assuming the continuity of σ2 at x along with a growth244

condition, allows us to obtain a precise asymptotic equivalent of V(x), when n→ +∞:245

Theorem 3.4. For x ∈ Ω◦, σ(x) > 0, ρσ2 continuous at x, and assuming the condition CσGrowth,246

i.e.,
∫
ρ(y) σ2(y)

1+‖y‖2d d
dy <∞, we have247

V(x) ∼
n→+∞

σ2(x)

ln(n)
. (22)

Note that if the mean variance
∫
ρ(y)σ2(y) ddy < ∞, which is in particular the case when σ2 is248

bounded over Ω, then the condition CσGrowth is in fact automatically satisfied.249

3.1.4 The bias term250

In appendix A.5, we prove the following three theorems for the bias term.251

Theorem 3.5. For x ∈ Ω◦ (so that ρ(x) > 0), we assume that ρ is continuous at x, and the conditions252

• CfGrowth:
∫
ρ(y) f2(y)

1+‖y‖2d d
dy <∞,253

• CfHolder: there exist αx > 0, Kx > 0, and δx > 0, such that254

x′ ∈ Ω and ‖x− x′‖ ≤ δx =⇒ |f(x)− f(x′)| ≤ Kx ‖x− x′‖αx255

(local Hölder condition for f ).256

Moreover, we define κ(x) =
∫
ρ(x+ y) f(x+y)−f(x)

||y||d ddy, where we have |κ(x)| <∞.257

Then, for κ(x) 6= 0, the bias term B(x) = EX
[(∑n

i=0 wi(x)[f(xi)− f(x)]
)2]

satisfies258

B(x) ∼
n→+∞

(
E
[
f̂(x)

]
− f(x)

)2

, with E
[
f̂(x)

]
− f(x) ∼

n→+∞

κ(x)

Vdρ(x) ln(n)
. (23)

In the non generic case κ(x) = 0, we have the weaker result259

B(x) =


O
(
n−

2αx
d (ln(n))−1− 2αx

d

)
, for d > 2αx

O
(
n−1(ln(n))−1

)
, for d = 2αx

O
(
n−1(ln(n))−2

)
, for d < 2αx

(24)

Note that κ(x) = 0 is non generic but can still happen, even if f is not constant. For instance, if Ω is a260

sphere centered at x or Ω = Rd, if ρ(x+y) = ρ̂(||y||) is isotropic around x, and if fx : y 7→ f(x+y)261

is an odd function of y, then we indeed have κ(x) = 0 at this symmetric point x.262
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Interestingly, for κ(x) 6= 0, Eq. (23) shows that the bias B(x) is asymptotically dominated by263

the square of E
[
f̂(x)

]
− f(x), showing that the fluctuations of E

[
f̂(x)

]
−
∑n
i=0 wi(x)f(xi) are264

negligible compared to E
[
f̂(x)

]
− f(x), in the limit n→ +∞ and for κ(x) 6= 0.265

One can relax the local Hölder condition, but at the price of a weaker estimate for B(x) which will266

however be enough to obtain strong results for the regression and classification risks (see below):267

Theorem 3.6. For x ∈ Ω◦, we assume ρ and f continuous at x, and the growth condition CfGrowth:268 ∫
ρ(y) f2(y)

1+‖y‖2d d
dy <∞. Then, the bias term satisfies269

B(x) = o

(
1

ln(n)

)
, (25)

or equivalently, for any ε > 0, there exists Nx,ε, such that for n ≥ Nx,ε270

B(x) ≤ ε

ln(n)
. (26)

Let us now consider a point x ∈ ∂Ω for which we have ρ(x) = 0 (note that x ∈ ∂Ω does not271

necessarily imply ρ(x) = 0). In appendix A.5, we show the following theorem for the expectation272

value of the estimator f̂(x) in the limit n→ +∞:273

Theorem 3.7. For x ∈ ∂Ω such that ρ(x) = 0, we assume that f and ρ satisfy the conditions274

• CfGrowth:
∫
ρ(y) |f(y)|

1+‖y‖d d
dy <∞,275

• CρHolder: there exist αx > 0, Kx > 0, and δx > 0, such that276

x′ ∈ Ω and ‖x− x′‖ ≤ δx =⇒ |ρ(x′)| ≤ Kx ‖x− x′‖αx277

(local Hölder condition for ρ).278

Moreover, we define κ(x) =
∫
ρ(x + y) f(x+y)−f(x)

||y||d ddy (|κ(x)| < ∞ under condition CfGrowth),279

and λ(x) =
∫ ρ(x+y)
||y||d ddy (0 < λ(x) <∞ under condition CσHolder). Then,280

lim
n→+∞

E[f̂(x)]− f(x) =
κ(x)

λ(x)
. (27)

Hence, in the generic case κ(x) 6= 0 (see Theorem 3.5 and the discussion below it) and under281

condition CρHolder, we find that the bias does not vanish when ρ(x) = 0, and that the estimator f̂(x)282

does not converge to f(x). When ρ(x) = 0, the scarcity of data near the point x indeed prevents the283

estimator to converge to the actual value of f(x). In appendix A.5, we show an example of a density284

ρ continuous at x and such that ρ(x) = 0, but not satisfying the condition CρHolder, and for which285

limn→+∞ E[f̂(x)] = f(x), even if κ(x) 6= 0.286

3.2 Asymptotic equivalent for the regression risk287

In appendix A.6, we prove the following theorem establishing the asymptotic rate at which the excess288

risk goes to zero with large sample size n for Hilbert kernel regression, under mild conditions that do289

not require f or σ to be bounded, but only to satisfy some growth conditions:290

Theorem 3.8. For x ∈ Ω◦, we assume σ(x) > 0, ρ, σ, and f continuous at x, and the growth291

conditions CσGrowth:
∫
ρ(y) σ2(y)

1+‖y‖2d d
dy <∞ and CfGrowth:

∫
ρ(y) f2(y)

1+‖y‖2d d
dy <∞.292

Then the following statements are true:293

• The excess regression risk at the point x satisfies294

E[(f̂(x)− f(x))2] ∼
n→+∞

σ2(x)

ln(n)
. (28)
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• The Hilbert kernel estimate converges pointwise to the regression function in probability.295

More specifically, for any δ > 0, there exists a constant Nx,δ, such that for any ε > 0, we296

have the following Chebyshev bound, valid for n ≥ Nx,δ297

P[|f̂(x)− f(x)| ≥ ε] ≤ 1 + δ

ε2

σ2(x)

ln(n)
. (29)

This theorem is a consequence of the corresponding asymptotically equivalent forms of the variance298

and bias terms presented above. Note that as long as ρ(x) > 0, the variance term dominates over the299

bias term and the regression risk has the same form as the variance term.300

3.3 Rates for the plugin classifier301

In appendix A.7, we prove the following theorem establishing the asymptotic rate at which the302

classification risk goes to zero with large sample size n for Hilbert kernel regression:303

Theorem 3.9. For x ∈ Ω◦, we assume σ(x) > 0, ρ, σ, and f continuous at x. Then, the classification304

risk E[R0/1(F̂ (x))]−R0/1(F (x)) vanishes for n→ +∞.305

More precisely, for any ε > 0, there exists Nx,ε, such that for any n ≥ Nx,ε,306

0 ≤ E[R0/1(F̂ (x))]−R0/1(F (x)) ≤ 2(1 + ε)
σ(x)√
ln(n)

, (30)

In addition, for any 0 < α < 1, the general inequality307

E[R0/1(F̂ (x))]−R0/1(F (x)) ≤ 2|f(x)− 1/2|1−α E
[
|f̂(x)− f(x)|2

]α
2

, (31)

holds unconditionally and, for n ≥ Nx,ε, leads to308

0 ≤ E[R0/1(F̂ (x))]−R0/1(F (x)) ≤ 2|f(x)− 1/2|1−α (1 + ε)α
σα(x)

(ln(n))
α
2
. (32)

For 0 < α < 1, Eq. (32) is weaker than Eq. (30) in terms of its dependence on n, but explicitly309

shows that the classification risk vanishes for f(x) = 1/2. This theorem does not require any growth310

condition for f or σ, since both functions takes values in [0, 1] in the classification context.311

3.4 Extrapolation behavior outside the support of ρ312

We now take the point x outside the closed support Ω̄ of the distribution ρ (which excludes the case313

Ω = Rd). We are interested in the behavior of E
[
f̂(x)

]
as n→ +∞. In appendix A.8 we prove:314

Theorem 3.10. For x /∈ Ω̄, we assume the growth condition
∫
ρ(y) |f(y)|

1+‖y‖d d
dy <∞. Then,315

f̂∞(x) := lim
n→+∞

E
[
f̂(x)

]
=

∫
ρ(y)f(y)‖x− y‖−d ddy∫
ρ(y)‖x− y‖−d ddy

, (33)

and f̂∞ is continuous at all x /∈ Ω̄.316

In addition, if
∫
ρ(y)|f(y)| ddy <∞, and defining d(x,Ω) > 0 as the distance between x and Ω, we317

have318

lim
d(x,Ω)→+∞

f̂∞(x) =

∫
ρ(y)f(y) ddy. (34)

Finally, we consider x0 ∈ ∂Ω such that ρ(x0) > 0 (i.e., x0 ∈ ∂Ω ∩ Ω), and assume319

that f and ρ seen as functions restricted to Ω are continuous at x0, i.e. limy∈Ω→x0
ρ(y) =320

ρ(x0) and limy∈Ω→x0
f(y) = f(x0). We also assume that the local solid angle ω0 =321

limr→0
1

Vdρ(x0)rd

∫
‖x0−y‖≤r ρ(y) ddy exists and satisfies ω0 > 0. Then,322

lim
x/∈Ω̄→x0

f̂∞(x) = f(x0). (35)

Eq. (34) shows that far away from Ω (which is possible to realize, for instance, when Ω is bounded),323

f̂∞(x) goes smoothly to the ρ-mean of f . Moreover, Eq. (35) establishes a continuity property for324

the extrapolation f̂∞ at x0 ∈ ∂Ω ∩ Ω under the stated conditions (remember that for x ∈ Ω◦, we325

have limn→+∞ E
[
f̂(x)

]
= f(x); see Theorem 3.5, and in particular Eq. (23)).326
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