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ABSTRACT

Vision-language-action models (VLAs) often achieve high performance on demon-
strated tasks but struggle significantly when required to extrapolate, recombining
skills used in different tasks in novel ways. For instance, VLAs might successfully
put the cream cheese in the bowl and put the bowl on top of the cabinet, yet still
fail to put the cream cheese on top of the cabinet. This motivates us to investigate
whether VL As merely overfit to demonstrated tasks or still hold the potential to
extrapolate. Our study uses fext latent as the ingredient; it is a task-specific vector
derived from the models’ hidden states. It thus encodes semantics necessary for
completing a task and can be used to reconstruct the associated task behavior by
writing it to the model’s residual stream. Furthermore, we find that skills used
in distinct tasks can be combined to produce novel behaviors by blending their
respective text latent. Applying this to 7y, we increase its success rate from 9% to
83% on the proposed libero-ood benchmark, which features 20 tasks extrapolated
from standard LIBERO tasks. This reveals that the skill representations encoded in
text-latent are individual yet composable, while 7 fails to autonomously combine
these representations for extrapolation. This also validates the design of libero-ood,
it comprises tasks that the model fails, yet should be able to complete. We then
tested other VLAS on libero-ood, and none of them achieved a success rate higher
than 21%. Further analysis reveals VLAs share a common pattern to exhibit spatial
overfitting, associating object names with where the object is spatially located in
the demonstrated scene rather than achieving true object and goal understanding.

1 INTRODUCTION

Building toward generalist, vision-language-action models (VLAs) trained with large-scale multi-
modal datasets (O’Neill et al., [2023)) have shown remarkable visual and language generalizability,
leading to strong performance on diverse manipulation tasks (Brohan et al., 2023} |O’Neill et al.
2023} L1 et al., |2023b; Kim et al., 2024} |Durante et al., [2024; |Huang et al., 2024} |et al., [2024;
Zhen et al.| [2024; Black et al.| 2024; [Team et al., 2024; Hou et al.l [2025; |Qu et al.| 2025 |[Zheng
et al [2024). Typically, for satisfactory deployment on new tasks, VLAs are fine-tuned using
demonstrations of target tasks (Kim et al., [2025). Though this paradigm ensures good in-distribution
generalization to light conditions (L1 et al.;[2024b)) and small perturbations of scene layout (Liu et al.|
2024), we empirically find that VLAs struggle with out-of-distribution (OOD) tasks, particularly
those extrapolated from tasks that they can perform well individually. For instance, a VLA might
successfully "put the cream cheese in the bowl" and "put the bowl on top of the cabinet", yet fail to
perform the extrapolated task of "put the cream cheese on top of the cabinet", even though the motion
primitives required by this task, "picking the cream cheese" and "reaching the top of the cabinet",
have already been learned in different tasks. This raises a question: Do VLAs merely overfit to
demonstrated trajectories or do they learn composable representations that support broader
generalization? We study this on the SOTA VLA 7y (Black et al.,2024)) with its text latent, which is
a vector derived from the model’s internal states, and thus encodes the learned representations.

To identify the rext latent for a given task, we run 7y on the corresponding task demonstrations
and record the hidden states of text tokens for each transformer layer. After this, we average all
collected layer-wise features and obtain fext latent. By writing the text latent to the text tokens’
residual streams (Elhage et al.,2021) of 7y, we can reconstruct the associated task trajectory without
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Figure 1: UniVLA, openvla-oft, 7y, and 7o-fast achieve less than 21% success rate on the proposed
libero-ood benchmark. It consists of tasks extrapolated from standard LIBERO 2024) tasks
that those VLAs have been fine-tuned with. By applying the proposed Text Latent Interpolation (TLI),
we improve the performance of 7 up to 83%. Behaviors of my-TLI on three exemplary extrapolated
tasks are shown in the second row, while the first row shows the associated two base tasks.

providing the task prompt. We also find that unembedding text latent (nostalgebraist, 2020) produces
alternative task prompts, which can instruct the model to finish the corresponding tasks with about
70% success rate. However, these alternative prompts are encrypted and unreadable, enabling private
instruction and backdoor attacks. Furthermore, we find that by using Text Latent Interpolation (TLI)
to blend the representations learned for two tasks, the model can combine respective sub-behaviors
or skills to complete novel tasks. Specifically, TLI injects the temporal interpolation of the two
respective text latents to the residual stream, with the mixing ratio linearly adjusted at each timestep.
As a result, the intervention guides the model towards Task 1’s behavior at the beginning, and as the
episode progresses, the influence smoothly shifts towards Task 2’s behavior. As shown in Fig. [I] 7o
with text latent can stitch together sub-trajectories used in different tasks to finish extrapolated tasks,
even if the newly composed trajectories are not shown in training and fine-tuning data.

To verify that learned representations can broadly support OOD generalization with TLI, we introduce
the libero-ood task suite. It comprises 20 challenging extrapolated tasks derived from the three
standard LIBERO suites: libero-goal, libero-spatial, and libero-object. Each task in libero-ood is
designed such that while the individual movements required for grasping and placement are present
in separate training tasks, the specific combination of these movements is novel. By applying TLI,
the success rate of 7y on libero-ood increases from 9% to 83%. And it manages to complete 19 out
of 20 tasks at least once in 10 repeated runs. This significant improvement confirms that the skill
representations, encoded in text latents, generally exist and are composable, while the model
cannot combine them autonomously and hence failed on novel extrapolated tasks. On the other
hand, this result validates the design of libero-ood as a suitable benchmark for OOD generalizability
for all VLAs. Rather than presenting VLAs in completely impossible OOD tasks (e.g., holding a
steering wheel to drive a car), libero-ood comprises OOD tasks that the model has the potential
to solve by simply mixing the learned representation. Therefore, we tested other SOTA VLAs on
libero-ood, including mo-fast (Pertsch et al., [2025)), openvla-oft 2025), and UniVLA
2025)). Though they achieve about a 95% success rate on the three standard LIBERO task suites
after fine-tuning, their success rate on /ibero-ood is less than 21%, highlighting their limitations in
extrapolation. Further qualitative analysis reveals that VLAs commonly exhibit spatial overfitting,
associating object names with their locations in the demonstrated scene. When instructed to pick an
object, they always move to where the object has been placed before, ignoring its current location. It
uncovers that VLAs fail to learn true object or goal understanding even after fine-tuning.
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2 RELATED WORK

Vision-Language-Action Models. VLAs are usually initialized from vision-language models
(VLMs) pretrained with large-scale cross-modality data. To adapt it for decision-making, we need
to further train it with large-scale cross-embodiment datasets like Open X-Eombodiment (O’ Neill
et al.,2023)), following a fine-tuning on specific tasks with fewer demonstrations (Brohan et al.| [2023];
O’Neill et al.} 2023} |Li et al.| 2023b; [Kim et al., 2024} |Durante et al.| 2024; [Huang et al.,2024; et al.}
2024; Zhen et al., [2024; Black et al., 2024} [Team et al., [2024; |Hou et al., 2025; |Bu et al., [2025; |Qu
et al.| 2025 [Wang et al., 2024; NVIDIA et al.} 2025} |Team et al., 2025} |[Pertsch et al., 2025 |Zheng
et al.| [2024). Though VLAs are all built upon the transformer-based pre-trained VLMs (Vaswani
et al.}2023), it remains unclear what is the best way to decode actions. OpenVLA (Kim et al.| [2024)),
RT-2 (Brohan et al., [2023)), and 7o-fast (Pertsch et al., 2025) follow the next-token prediction manner
used by VLMs and LLMs and decode discrete action tokens, which will be converted to continuous
actions according to different tokenization schemes. Another widely adopted way to predict action is
to use a regression head or diffusion model with extra parameters (NVIDIA et al.||2025; Black et al.|
2024; Kim et al., [2024; Wen et al., 2024; |[Lee et al., 2024 |Chi et al., 2023 [ Kim et al., [2025; L1 et al.,
20244a). As the VLM is the core component for VLAs’ ability, we choose to mine the meaningful
internal representation of the transformer part of 7y, which adopts an additional action expert to
generate continuous actions with flow matching.

Mechanistic Interpretability (MI). This is a subfield of interpretability, where researchers reverse
engineer the model’s internal computations to understand how it works (Rai et al., 2025} [Elhage
et al., 2021; Vaswani et al.,|2023)) and reconstruct or activate certain behaviors. Some early works
analyze image classification models (Olah et al.l 2020; Bau et al., |2017; |Zhou et al., 2015} and find
that neurons play the role of feature detectors for patterns from simple curves to complex objects
like cats (Cammarata et al., 2020). Recent studies of MI on LLM and VLM identifies important
circuits that can perform specific tasks like induction head (Olsson et al.,[2022) to output repeating
words, function vectors (Todd et al., 2024} |Luo et al., 2024} to produce antonyms, attention head
to detect number or shape (Gandelsman et al., 2024), neurons contributing to recognize specific
objects (Gandelsman et al., |2024), and internal features making VLMs hallucinate (Jiang et al.|
2025). However, there are limited works that study the neural policies or VLAs from the MI
perspective. The most relevant works study adversarial attack with feature attribution (Wang et al.,
2025)), symbolic representation uncovering (Lu et al.|[2025), and motion-relevant neuron identifying
and characterization (L1 et al., [2023a; [Hdon et al., [2025). Our work finds causal effects between the
internal representations and VLAs’ behaviors. As a result, we can produce obscure prompts with logit
lens (nostalgebraist, 2020), enabling private instruction or backdoor attack. In addition, the identified
functional component enables the 7 for extrapolated tasks, where all SOTA VLAs struggle with.

3 METHOD

We start by formulating how transformer-based VLAs work. Then, we illustrate how to identify text
latent and how to use them to change the model’s internal representation, steering its behavior.

3.1 PRELIMINARY

Existing VLAs adopt VLMs as encoders to fuse both vision and language information. Concretely, a
pre-trained vision encoder, e.g., CLIP (Radford et al.l[2021)) and SigL.IP (Zhai et al.| 2023)), is used to
generate d-dimensional sequential image embeddings from image patches, followed by d-dimensional
text embeddings that are tokenized and projected from the task description. For some VLAs (Kim
et al.| | 2024)), the task description is encapsulated with certain context, like "what actions the robot
should take to {task description}”, which introduces extra tokens. In addition, the proprioceptive
state will be projected (Kim et al.,2024) or tokenized (Pertsch et al.,2025) into the d-dimensional
shared space to work with image-text embeddings. After tokenization, we assume there are totally
m d-dimensional embeddings, ¢ = { elet e Rd, i = 1...m}, obtained from image, text, and robot
proprioception, which will go through L transformer layers. Except for the last layer, each layer [
outputs hidden states h; = {h{ : bt € R% i = 1...m}. The action is then generated by a = f(e, h),
where h = {h; : h; € R™>d | = 1. L — 1} is hidden states of all tokens across L — 1 layers.
More precisely, the action generation uses the KV cache derived from e and h, where the image-text
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embeddings e are passed through the first transformer layer (layer 0) to compute key and value
projections, and the hidden states h; are passed through their subsequent layer [ + 1 to compute the
corresponding KV projections. To simplify the notation, we condition the action generation on e
and h. This formulation applies to most existing VLAs as long as the VLM is reused to do action
generation in an autoregressive way (Kim et al., [2024}|Qu et al., 2025} [Brohan et al., [2023}; [Pertsch
et al.,|2025) or the extra action prediction module is also transformer-based (NVIDIA et al., [2025;
Black et al., 2024), which can take the KV-cache to do causal self-attention.

3.2 TEXT LATENT

As VLAs’ behavior depends on the task description, we hypothesize that the skill representations are
embedded in the internal representations of text (task description) tokens. To study this mechanism,
we denote the text embeddings as e” = {e’ : ¢! € RY,i € T'} and their hidden state at each layer as
hT ={hi:hi € R% i € T}, where T is the set of text tokens indices. Therefore, the hidden states
of all text tokens across all L — 1 layers can be represented by a tensor as h7 € RE=1xIT1xd after
preserving orders and stacking them. By denoting the rest of the embeddings and their hidden states
ase” =e\ el and h~ = h\ h', we can update the action generation function at timestep i as

a= f(e",h"(i),e” (i), h~(3)) M
Note that text embedding, e”, doesn’t condition on 4, since it is fixed throughout the whole episode,

while the rest image and proprioceptive tokens are changed at different timesteps. Our goal is to
manipulate the h” (i) at each decision-making step to activate behaviors with specific semantics.

Text latent is the ingredient for doing this. It has the same shape as A7 and thus can be written into the
text tokens’ residual stream. We identify it by averaging a set of text hidden states {h7 (i) : KT (i) €
RE-1xnxd i ¢ B}, where B is all timestep indices of a demonstrated episode for the target task,
and h” (i) is thus obtained by forwarding the model with the observation at tlmestep 1. As multiple
demonstrated episodes exist for a single task in the training sets, the average is thus taken over K
demonstrations. Therefore, the text latent can be calculated by element-wise average:

T B \Bk Z 2" .

k=1 1€ By
In our reconstruction experiment, we demonstrate that 7 captures the most essential knowledge for
finishing the corresponding task. And blending them enables skill combination for task extrapolation.

3.3 TEXT LATENT INTERPOLATION

A task derived from two base tasks can be interpreted as starting with Task 1 and gradually switching
to Task 2. Though text token ids are discrete and cannot be changed smoothly throughout the episode,
we can approximate a continuous transition by linearly interpolating the text embeddings of the two
base task prompts, el and eZ’, at timestep i. This is called Text Embedding Interpolation (TEI).

el =eT(iy=(1—-a)el +ael, a=i/\, 0<i<), 3)
where the hyperparameter \ controls the transition speed. The A is set to 24, the average number of

policy-execution steps, for 7y, except for put the wine bottle in the bowl. As the wine bottle is near
the bowl, we shorten \ to 14 for this task, so the second task behavior is activated sooner.

Intuitively, TEI rewrites the task prompt at every step with a weighted blend of the two source
instructions. Additionally, we can leave the target task prompt (and thus its embedding) unchanged
and operate on the model’s residual stream with the two respective text latent (T, T?). We term this
approach Text Latent Interpolation (TLI), which modifies the text hidden states hT( ) as follows:

W) =hT(i)+ [(1-a) T +aT?] - [1—a)T*+aT'], a=i/A, 0<i<\ @
At the beginning of the episode, Task 2’s context is suppressed and subtracted from the residual
stream. As the episode progresses (o : 0 — 1), Task 2’s context is gradually injected into the residual
stream while Task 1’s context fades out and is finally suppressed. TLI can also be applied to a
specific layer [ by replacing h/ (i) with the interpolated pair (7;, 7,%) in the same fashion. The full
interpolation procedure is listed in Algorithm[I} Both TEI and TLI can be deployed independently or
jointly. In either case, the ratio ¢/ is clipped between 0 and 1. If the length of the text dimension of
T or T2 differs from the number of tokens of the target prompt, we truncate it or pad it with zeros
to match the length of the target prompt, as the task descriptions are of a similar length.
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Algorithm 1 TEI and TLI during Task Execution

Require: text latent T, T2, Interpolation steps A, Initial observations o, Max timestep .J
1: for:=1to J do

2: e ,h=,e?' hT « encode(o) > Get internal representation

3: if Text Embedding Interpolation (TEI)

4: el' = (1 —i/A) el + (i/\)ed &> Overwrite text embedding

6: if Text Latent Interpolation (TLI)

7: BTy =hT () + (1 —i/A) (T =TH +i/MNT? =T > Write to residual stream

8  a=f(eT,hT(i),e (i), h™ (7)) > Decode action
10 o0 + simulation(a) > Forward simulation
11: end for

4 EXPERIMENTS

Benchmark. We conducted experiments with LIBERO 2024), a simulation environment
widely employed for evaluating Vision-Language-Action (VLA) models (Black et al., [2024; [Pertsch
let all 2025; [Kim et al., 2025}, [Qu et al.| 2025}, Zheng et al., 2024} [Bu et al., 2025). We use three
standard task suites from LIBERO: libero-goal, libero-object, and libero-spatial. Each suite contains
10 tasks, and most of them require pick-and-place. It is recommended to learn their details first
in Appendix@ We also introduce a novel task suite, libero-ood, comprising two sub-suites libero-
goal-ood and libero-spatial-ood. Each also contains 10 extrapolated tasks. The key idea behind
these 20 tasks is to ensure that both the grasping and placement locations have individually appeared
in the training data, so the policy has already learned how to reach these locations. However, the
specific trajectory connecting these two locations has not been demonstrated. Thus, solving these
tasks requires the policy to stitch together sub-trajectories it has learned from demonstrated tasks.

put the wine bottle/cream put the cream cheese put the orange juice put the bbq source put the tomato sauce
cheese on the stove/plate/bowl! in the basket on the stove on the plate on top of the cabinet

libero-goal-ood
libero-spatial-ood

put the bowl at the table put the bowl next to the put the bowl on the cookie put the butter/chocolate put the milk/orange juice
center on the cabinet/stove plate on the cabinet/stove box on the cabinet/stove pudding on the plate on the plate

Figure 2: Visualization of scene layouts, object to pick and where to place (denoted by the red arrows),
and prompts for tasks in libero-ood, which can be further split into libero-goal-ood and libero-spatial-
ood. libero-goal-ood includes six extrapolated tasks that require combining sub-skills learned from
libero-goal and operating in the same scene layout as libero-goal tasks (the top-left figure), while
the remaining four tasks slightly change the layout and additionally demand transferring knowledge
about objects. On the other hand, libero-spatial-ood provides six tasks that require transferring
the skills learned in libero-goal and libero-spatial to place the object on the cabinet or stove. The
remaining four tasks require placing unseen objects from libero-object at new locations on the plate.
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Experiments. Our main experimental goal is to examine whether 7y learns individual yet com-
posable task representations, so it can complete these 20 extrapolated tasks by combining learned
representations, encoded in fext latent. For each task in the three standard suites, we identify the
corresponding fext latent using 20 demonstrations, calculated according to equation [2] We first
demonstrate on 7y that text latent encapsulates the essential knowledge required to complete standard
LIBERO tasks by reconstructing the task behavior without clear task prompts. Second, we show that
by interpolating between fext latent or text embeddings, mo can complete challenging extrapolated
tasks in libero-ood suite, where tasks pose difficulties for current state-of-the-art VLAs. Finally, our
analysis across specific tasks reveals that VLAs’ behavior relies on the mechanistic memorization of
demonstrated trajectories, rather than a genuine conceptual understanding of objects or goals.

Evaluation. For each task, we execute 10 independent runs using different random seeds. Therefore,
the final success rate for each task suite is calculated as the proportion of successful episodes across
the total 100 runs (10 tasks x 10 runs/task). All experiments are conducted with Nvidia RTX 4090.

4.1 TASK RECONSTRUCTION

In this experiment, we use fext latent to reconstruct the behavior or trajectory learned for the three
standard task suites, demonstrating that individual task representation is encoded in text latent. We use
two ways to examine the effectiveness of text latent. The first way is to mask all the text tokens or set
each text token to the space character (" ") so the text prompt doesn’t provide any task information. We
can then add back the text latent to each hidden layer representation when executing the policy. The
second way is to unembed the early layer vectors of text latent into a set of token ids (nostalgebraist,
2020), producing alternative prompts. Thus, we can feed the alternative prompt to the model directly.

The results are shown in Table

libero-object | libero-goal | libero-spatial The first line is the official perfor-

Original 0.98 0.95 0.97 mance of 7y with the original task
Mask Prompt 0.11 0.14 0.24 prompt, serving as the upper bound.
Blank Prompt 0.28 0.16 0.23 The Mask Prompt experiment uses
Blank Prompt+7~ 0.94 0.82 0.81 only image input for all task execu-
7 -Prompt 0.92 0.66 0.98 tion, while the Blank Prompt adds
Ta-Prompt 073 0.19 085 back text tokfn?'s but fills with space
characters (" "). In both settings,

Ts-Prompt 0.56 - 0.68 the policy has no task instructions,

indicating the lower bound of per-
formance. The rest lines show the
performance of different ways to reconstruct the task. For each task suite, the settings yielding the
best performance are bolded, and the second-best performance is underlined. The experiment Blank
Prompt+T shows that by writing the text latent to the model’s residual stream, hT (i) = hT (i) + T,
the tasks can be finished with a success rate higher than 80%, even if the prompt is blanked and
provides none of the task information. Thus, it confirms that text latent captures essential task
knowledge, and can remind 7, of a task by injecting it into the model’s internal states.

Table 1: The success rate of different ways to reconstruct tasks.

As T € RE=1xnxd "we can thus applying the language embedding matrix E to unembed 7; into
tokens by calculating the cosine similarity between each column of E and 7;, then selecting the indices
with maximum similarity as new tokens, composing the alternative prompt. As shown in Table
we unembed 77, T3, and T3 and find that for libero-goal, the prompt produced by unembedding 7;
achieves a 66% success rate, while the next layer’s vector can not reconstruct the task well. However,
for libero-object and libero-spatial, even the prompt unembedded by 73 and 73 can reconstruct
tasks with an average success rate of 70%. We find most prompts unembedded from text latent
are encrypted and unreadable, even for people who are familiar with the original prompts.
This enables an application, obscure prompting, for private instruction or backdoor attacks. The
unembedded prompt for the three task suites is shown in Appendix [C]

4.2 TASK EXTRAPOLATION

As text latent encodes task context or skill representations, we then ask whether the behaviors learned
from separate tasks can be recombined using the respective fext latent. We refer to any task that
demands such a behavior recombination as an extrapolated task. These new tasks keep objects’
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UniVLA  openvla-oft mo-fast m w5  mo-TLI  mo-TLIT  mo-TLI*

libero-goal-ood 0.32 0.01 0.13 0.02 0.72 0.85 0.85 0.33
libero-spatial-ood 0.11 0 0.17 0.16 0.66 0.81 0.69 0.18
All 0.21 0.01 0.15 0.09 0.69 0.83 0.77 0.25

Table 2: The success rate of SOTA VLAs and our methods on the libero-goal-ood task suite. Our
methods enable 7 for task extrapolation by simply combining its learned representation. Detailed
performance of each task and the behavior visualization of 7o-TLI is available in Appendix [E|and [D]

locations or layouts the same as the scenes for collecting training demonstrations. Thus, for each
libero-ood task, VLAs have learned to reach the grasping and placement locations, respectively.
However, 7y only shows a 9% success rate in libero-ood. After applying the proposed TLI for
mp, we can largely improve its success rate to 83%, as shown in Fig. 3] This confirms that skill
representations generally exist in 7y that can be rearranged to solve novel tasks. It also validates
that the tasks in libero-ood are within 7(’s capability, while it fails on it. We further test other
SOTA VLASs’ extrapolation ability using libero-ood. The results are shown in Table 2] None of the
VLAs achieves a success rate higher than 21%. Among all VLAs, the best is UniVLA. It shows
trajectory stitching behavior in some tasks, and better language following ability, which results from
the disentangled training of the vision-language module and the action module (Huang et al., 2025).

put the bbq source on put the cream cheese put the cream cheese put the cream cheese put the wine bottle on
the plate in the basket on the plate on the stove the stove

put the cream cheese put the orange juice on put the tomato sauce put the wine bottle on put the wine bottle in
on the cabinet the stove on top of the cabinet the plate the bowl

Figure 3: Visualization of my-TLI's behavior in libero-ood. Result on libero-spatial is in Appendix [D]

We also applied both TEI and TLI to the model inference together, yielding 7o-TLIT. The results show
that TEI doesn’t further improve the performance of 7o-TLI for libero-goal-ood, while it even slightly
harms the performance of libero-spatial-ood. We will use mo-TLIT to reveal the spatial overfitting
exhibited in 7y in the next section. In addition, we run another experiment (7y-TLI*) using blank
prompts similar to the previous reconstruction experiment. Its performance drastically drops to 33%
and 18%, indicating the importance of the prompt for extrapolated tasks. The text embedding of an
extrapolated prompt can be viewed as stitching two base task prompts e” = concat(eT[: a], e2'[b :]),
where a and b indicate the prompt truncation position. These stitched text prompts (7o-TLI) are better
for combining two base task behaviors than interpolated prompts (mg-TLIT).

On the other hand, my-TLI* can be viewed as implicitly switching task context without explicit
prompts. This inspires us to try explicitly prompt switching to solve libero-ood. Concretely, we can
feed Task 1’s prompt to 7, and when timestep > \/2, we switch to Task 2’s prompt. The 7 executes
in this way and reaches a 69% success rate. It suggests that augmenting the model’s ability with
learned representation (7-TLI) is better than cheating it with what task it currently performs.
We also apply prompt switching to other VLAs, and openvla-oft, UniVLA, openpi-fast achieve 0%,
2%, 35% success rate, respectively, further highlighting the challenge of libero-ood.
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________________ In addition, we try to find a more compact structure for fext latent.
Specifically, we intervene in a specific layer [ of the model with 7;
os to find whether it contributes significantly to the extrapolated tasks.
As shown in the left figure, the early several layers can work alone

to finish tasks in libero-ood with more than 20% success rate. After
02 layer 6, the success rate begins to drop, while at layer 16 the success
rate recovers to 10%. As each layer of 7 can work independently

%53 4 6 5 m B o1 1 and contributes more or less to the success, we decide to keep all
Hidden Layer to Intervene of them. As a result, the 7y with all hidden layer interventions can
achieve an 83% success rate indicated by the blue dashed line.

Success Rate

4.3  SPATIAL OVERFITTING OF 7

T —>bowl T!: : —> cabinet 7T:
T2 :bowl —> T2 :bowl —> T2 :bowl —> T2 :bowl —>

Figure 4: Trajectories of mo-TLI™ for the four tasks that require object recognition. Object to grasp
and place to drop are shown on top of the figure; The two fext latent used to complete the task are
listed underneath. These behaviors reveal spatial overfitting. For example, we can use the fext latent
and text embedding of "placing on the stove” to put any object into the basket that occupied the
original location of the stove in the training data, ignoring the current location of the stove.

As shown in Fig. 2] the rightmost 4 tasks in libero-goal-ood require the model to pick up objects
that have never been shown in the scene of libero-goal before. In these 4 tasks, we swap the original
objects with new ones from libero-object, while still keeping the displaced objects in the scene. Using
both TEI and TLI, 7 achieves an average success rate of 85% on these four tasks, which confirms the
existence of Spatial Overfitting in my. Specifically, consider the task put the orange juice on the stove.
The orange juice is placed at the original position of the wine bottle, and the wine bottle is moved
to the former position of the cream cheese. We can instruct 7 to pick the orange juice, using the
text latents and text embeddings of put the wine bottle on top of the cabinet with mo-TLIT. Both text
embedding and hidden states request 7 to pick the wine bottle, while 7 ignores the current location
of the wine bottle that is reachable at the location of the cream cheese, and it still mechanically moves
to where the wine bottle is placed in the demonstrated scene. The trajectories produced by mo-TLIT
for all four tasks are shown in Fig.[d This behavior indicates that the 7, does not understand
object identity but instead maps object names to fixed locations, termed as Spatial Overfitting.
Thus, “cream cheese” actually means “the object at the location where the cream cheese appeared
during training.” And 7y can grasp anything placed at the location of the cream cheese.

4.4  SPATIAL OVERFITTING IS COMMON IN VLAS

The spatial overfitting commonly exists for VLAs besides 7, which can be confirmed by experiments
on libero-object suite, where five tasks place the target object at the center of the scene, and the other
five place it in the top-right corner. After fine-tuning with demonstrations, VLAs can always pick
the central object with any of the five “center” prompts and the top-right object with any of the five
“top-right” prompts. In the two-prompt experiments shown in Table[3] we always use the prompt,
pick up the cream cheese to pick the object at the scene center, and the prompt, pick up the alphabet
soup for the objects at the top-right corner. We then run the libero-object with the two prompts. All
SOTA VLAs can maintain the performance on the libero-object with incorrect prompts, even though
the "cream cheese" and "alphabet soup" still appear in the scene somewhere.
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openvla-oft | UniVLA In addition, when the target object is
located anywhere other than the cen-
ter or top-right, the policy fails. In
the OOD-position experiment [3] we
relocated the target objects to a place
other than the centre or the top-right
corner. As expected, all VLAs failed. The end effector still travelled to the original location of the
target object, picked up whatever object happened to occupy that spot, and dropped it in the basket.

™o mo-fast
Two-prompt 0.94 0.86 0.99 0.90
OOD-position 0 0 0 0

Table 3: The success rate on modified libero-object suite

Figure 5: The object to grasp is framed in white. Even if the end effector is close to the object, the 7
model is still not interested in the target object. Also, during the inference, my always focuses on the
posture of the end effector, suggesting that the image input is mainly for estimating the robot state.

As text latent encodes the task context, we can analyze which part of the image observation contributes
most to the formation of zext latent for o with logit lens (nostalgebraist, 2020} Jiang et al.,[2025).
Fig. [5] highlights the information extracted from the image observation to build text-latent in 4
libero-object tasks at different timesteps. We find that the 7y always absorbs the information about
the destination and the robot pose to build text latent, with less attention on the object to grasp or treat
all objects equally. Thus, 7 relies on the text instruction instead of image information to differentiate
the two grasping locations. This suggests a poor vision-language alignment and shortcut learning.

5 CONCLUSION

Existing VLAs show promising in-distribution generalization after fine-tuning, but their out-of-
distribution (OOD) robustness is understudied due to a lack of suitable benchmarks. This is primarily
because it is difficult to determine how far new tasks should deviate from the training data distribution.
For instance, it would be unreasonable to expect a robot arm trained solely on tabletop manipulation
to hold a steering wheel and drive a car. An ideal OOD benchmark should therefore comprise tasks
that VLAs have the potential to complete but currently cannot. In this work, we find that by using the
learned internal representation, 7y can be augmented to solve novel tasks that it can not complete on
its own. Since the injected knowledge is derived from the model’s own learned representations, we
conclude that 7 inherently possesses the capability to complete these new tasks, although this ability
appears to be latent or "locked". Tasks constructed in this manner are thus well-suited for our purpose,
leading us to introduce an OOD benchmark named libero-ood. Besides 7, we further evaluate other
SOTA VLAs on LIBERO, including 7o-fast, UniVLA, and openvla-oft. Unfortunately, none of them
achieved a success rate higher than 21%. Their failure may stem from the same issue as 7y, an
inability to recombine learned representations into new skills, or skill representations don’t emerge
during the training. We thus make libero-ood public to encourage investigating their failure mode
and developing more generalist models without using inference tricks like TLI or prompt switching.

Reproducibility statement. The code to reproduce the results of this work is anonymously at ht tps :
//anonymous.4open.science/r/iclr26_anonymous—3D4E/README .md. The full
videos of 7-TLI on the proposed libero-ood benchmark can be found in the supplementary materials.
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APPENDIX

A DISCLOSE OF LLM USAGE

The LLM is only used to polish the writing, mainly the introduction and conclusion.

B LIBERO-BENCHMARK

The libero-goal suite evaluates goal-completion capabilities, reflecting procedural knowledge (know-
ing how to complete a task). Conversely, the libero-object and libero-spatial suite assess object
recognition, localization, and interaction capabilities, highlighting declarative knowledge (under-
standing entities and concepts). Tasks in libero-object share the same goal, picking up a specific
object and placing it into a basket, but differ in object layouts. In contrast, libero-goal tasks require
policies to achieve various goals within the same scene layout. The libero-spatial instead operates in
different layouts to test whether the policy can find the correct bowl to pick and place it on the plate.

libero-object libero-goal

open the middle drawer of the cabinet put the bowl on the stove
push the plate to the front of the stove put the bowl on the plate
put the wine bottle on top of the cabinet turn on the stove

@ put the bowl on top of the cabinet

put the cream cheese in the bowl

open the top drawer and put the bowl inside

put the cream cheese in the bowl

put the wine bottle on the rack

pick up the black bowl!
{describe where/which}
and place it on the plate

Figure 6: The three basic libero task suites used to build extrapolated tasks. The libero-object tasks
ask the robot to pick a specific object and place it in the basket; The libero-goal tasks operate in the
same scene and require the robot to finish several different tasks where 7 of them are pick and place
tasks and will be used to finish extrapolated tasks; The libero-spatial aims to test whether the robots
can understand the space, and thus asks the robot to pick the specified bowl and place it on the plate.
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C UNEMBEDDED PROMPTS

For libero-goal, we use 71 to get the alternative prompt, while for libero-object, we use Ts.

libero-object libero-goal

['2( 'a® "U000e0062', 'a@ ' sauce', 'QSize', 'QSize’, 'aM \U000e0062', \UOD0e0062', 'QSize’] ['\U000e0062", \U000e0062', * wine', ' bottle', \U000e0062', ‘Top', 'QSize', \U000e0062', ' cabinet]

['a@ 'a® \U000e0062', 'QSize’, ' soup', 'QSize’, 'ASize’, 'a@ \U000e0062', \U000e0062", '‘QSize’] ['\U000e0062", \U000e0062", 2@ \U000e0062', \UOD0e0062', ' plate’]
['a@ ‘2@ \U000e0062", * milk', 'QSize', 'QSize’, 'a@ \U000e0062', \U000e0062', 'QSize] ['\U000e0062", '\U000e0062", 'a(@ "\U000e0062", \U000e0062", * stove']
['2@ '2@ "\U0O00e0062", * salad', ' dressing', 'QSize’, 'QSize’, 'a@ "\U000e0062", \U000e0062', 'QSize’] | [\U000e0062', \U0O0e0062', ' cream', ' cheese', \U000e0062', \U000e0062", 'a@
['2(@ 'a@ "U000e0062', 'a@ 'QSize', 'QSize', '@ "\U000e0062', \U000e0062", 'QSize’] ['Open’, \U000e0062', ' middle’, 'ValueError', 'QSize', \U000e0062", ' cabinet]
['2(® 'a®@ "\U000e0062', ' cream', ‘2 'QSize’, 'QSize', 'a@ '\U000e0062', '\U000e0062', 'QSize'] ['push’, \U000e0062', ' plate', ‘QSize', \U000e0062", ' front', 'QSize', "\U000e0062', ' stove']

['a@ 'a@ \U000e0062", ' orange', 'a@ 'QSize', 'QSize’, " ", \U000e0062", \U000e0062", 'QSize’] [Turn', 'QSize', \U000e0062", ' stove']

['a@ 2@ \U0O00e0062", ‘2@ ‘2 '‘QSize’, 'QSize’, 'aM "U000e0062', \U000e0062', 'QSize’] ['Open’, \U000e0062', ‘Top', 'Einf', 'QSize’, 'Einf’, \U000e0062', 'a ' inside']

['a@ "2 "\U000e0062', '@ 'QSize", 'QSize’, 'aM "U000e0062', \U000e0062', ' basket] ['\U000e0062", '\U000e0062", * wine', ' bottle', "\U000e0062", \U000e0062', * rack]

['2(@ 'a@ \U000e0062', 'QSize’, ' sauce', 'QSize’, 'QSize', 'a@ \U000e0062', \U000e0062', '‘QSize’] ['\U000e0062", \U000e0062", 2@ L ', 'Top', 'QSize', "L ", ' cabinet]

Table 4: The alternative prompts for libero-goal and libero-object. 1t is hard to understand them, even

if one knows the original prompts shown in Appendix B}

Original Prompt

Prompt umembedded from text-latent (tokens)

pick up the black bowl next to the plate and place it on the plate

'a( 'QSize', \U000e0062', ' black', 'a(@ 'af 'QSize', '\U000e0062', ' plate', 'QSize’, 'QSize’, 'QSize', 'QSize', \U000e0062', 'QSize'

pick up the black bowl on the cookie box and place it on the plate

'a@'a\U000e0062", ' black', 'a( "\U0O00e0062', \UO00e0062", ' cookie', 'QSize’, 'QSize', 'QSize', 'aM \U000e0062', \UO00e0062', 'QSize"

pick up the black bowl on the wooden cabinet and place it on the plate

'a'a(@ \U000e0062', ' black', 2 "\U0O00e0062', \UOD0e0062', ' wooden', ' cabina', 'QSize’, 'QSize’, 'a@ "U000e0062', \U000e0062', 'QSize"

pick up the black bowl on the ramekin and place it on the plate

'a'a@ \U000e0062', ' black', 'a( "\U0O00e0062', \UO00e0062", ‘2 'kin', 'QSize’, 'QSize', 'a® \U000e0062", "\U000e0062", 'QSize’

pick up the black bowl on the stove and place it on the plate

'a@'a@ \U000e0062', ' black', 'a® "\U000e0062', \U0D0e0062', ' stove', 'QSize’, 'QSize', 'a@ "\U000e0062', \U000e0062', 'QSize"

pick up the black bow! next to the ramekin and place it on the plate

'a@ 'QSize', \U000e0062', ' black', 'a(@ 'a@ 'QSize', '\U000e0062', "2 'kin', 'QSize’, 'ASize', 'QSize', \U000e0062', \U0O00e0062', 'QSize’

pick up the black bowl from table center and place it on the plate

'a@'QSize', \U000e0062', ' black', 'QSize’, ' FROM', ' table', 'a@ 'QSize’, 'QSize’, 'aM \U000€0062', \U000e0062", 'a®

pick up the black bowl between the plate and the ramekin and place
it on the plate

'a(@ "2 "\U000e0062', ' black’, ‘2 ' between', \U000e0062', ' 2 'QSize’, \U000e0062', 'a@ 'kin', '‘QSize’, 'QSize’, 'aM "U000e0062",
"\U000e0062", 'QSize"

pick up the black bowl in the top drawer of the wooden cabinet and
place it on the plate

'QSize', 'QSize’, "\l ", ' black', 'QSize’, "L

f ", \U000e0062', 'Top', 'af 'QSize', \U000e0062', ' wooden', ' cabina', 'QSize',
'QSize', 'QSize’, \U000e0062', \U000e0062', 'QSize"

pick up the black bowl next to the cookie box and place it on the plate

'a(® 'QSize', \U000e0062', ' black', 'QSize', 'QSize', 'QSize', \U000e0062', ' cookie', 'QSize’, 'QSize’, 'QSize', 'QSize’, 'QSize’, \U000e0062',
'QSize'

Table 5: Prompts decoded from 73 for libero-spatial tasks and can instruct g to finish tasks with
around 70% success rate. This enables adversarial attacks and private instructions.
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D BEHAVIOR VISUALIZATION

libero-goal-ood

2

put the bbq source on put the cream cheese put the cream cheese put the cream cheese put the wine bottle on
the plate in the basket on the plate on the stove the stove

put the cream cheese put the orange juice on put the tomato sauce put the wine bottle on put the wine bottle in
on the cabinet the stove on top of the cabinet the plate the bowl

libero-spatial-ood

OnR

put the bowl at table put the bowl at table put bowl next to the put the bowl next to put the bowl on cookie
center on the cabinet center on the stove plate on the cabinet the plate on the stove box on the cabinet

..é

put the bowl on cookie put the butter on the put the chocolate put the milk on the put the orange juice on
box on the stove plate pudding on the plate plate the plate

Figure 7: Trajectories of finishing tasks in libero-ood. The only failed task is highlighted in red. A
fun fact is that these colored dots indicating the trajectory can be observed by the 7y as well, while
it is still robust to this visual perturbation. The only failure case is put the bowl next to the plate
on the stove. It keeps picking up the bowl next to the plate and placing it on the plate. We suspect
that the second task context is not strong enough to trigger the behavior "put on the stove", or the
context of the first task is too strong to be fully removed from the residual stream, so the policy keeps
implementing the behaviors of the first task and put the bowl on the plate.
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E DETAIL TASK PERFORMANCE

810 00 10 50 z0 z0 z0 00 z0 0 00 #1100
690 0T 01 01 60 60 0 00 v'0 60 0 ML-ELo
180 60 0T 60 01 80 01 00 80 0T L0 Lo
150 80 60 01 50 10 00 10 00 90 10 13-
910 00 70 L0 90 00 00 00 00 10 00 oy
LTO 0 0 0T 00 00 00 00 00 0 00 1se4-0u
00 00 00 00 00 00 00 00 00 00 00 hjo-ejnuado

ajeld s eno3s oyl euUIqe) BYL BhoAS AeuiqeD 8n0}s oYL euIqe) ByL
covsms o | (ZULU0 S | oS s g | *oamiani | mara owisng | uoxeR e | uoren spee> | LGN | S ow | 40 oD o | o seie? s
ayLand imogayLind | |mog syl ind
poo-jeneds-oJaqy
€E0 T0 G0 0 90 £0 01 0 0 00 00 +01.L-0u
680 60 L0 90 60 80 60 0t 0T 80 60 ML-ELo
680 90 80 50 01 L0 01 01 01 60 0T Lo
o 10 10 00 90 L0 €0 50 z0 80 60 3L
200 00 00 00 00 00 00 00 10 10 00 oy
vT0 00 10 00 00 00 z0 00 01 00 10 15301
00 00 00 00 00 00 00 00 00 00 00 hj0-ejauado
(%) @30y 24035 a3eld Imog JouIqe) ayL an01s j8UIGE) Y1 JO ano3s areld Joyseg ajeld
55930n§ [€301 a8yl uo spog 8yl uo 8oy 8yl uje3og |jo doL up @dnes| @ayy ug @dInf doj uQ eseayd | eyl up aseayd | 8yl up eseayd | 8yl ujesesyd | a8yl up 2Inos
sumayLind | eummoyLind | sumeyLind | ojewol syl ind | ebueig eyp Ind | weeid eyl ind | weesd eyiind | weesd eyLind | wessseyring | bgasyLang

poo-jeo8-04aqi|

17



	Introduction
	Related Work
	Method
	Preliminary
	Text Latent
	Text Latent Interpolation

	Experiments
	Task Reconstruction
	Task Extrapolation
	Spatial Overfitting of pi0
	Spatial Overfitting is Common in VLAs

	Conclusion
	Disclose of LLM Usage
	LIBERO-Benchmark
	Unembedded Prompts
	Behavior Visualization
	Detail Task Performance

