
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

VLAS ARE CONFINED YET CAPABLE OF
GENERALIZING TO NOVEL TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Vision-language-action models (VLAs) often achieve high performance on demon-
strated tasks but struggle significantly when required to extrapolate, recombining
skills used in different tasks in novel ways. For instance, VLAs might successfully
put the cream cheese in the bowl and put the bowl on top of the cabinet, yet still
fail to put the cream cheese on top of the cabinet. This motivates us to investigate
whether VLAs merely overfit to demonstrated tasks or still hold the potential to
extrapolate. Our study uses text latent as the ingredient; it is a task-specific vector
derived from the models’ hidden states. It thus encodes semantics necessary for
completing a task and can be used to reconstruct the associated task behavior by
writing it to the model’s residual stream. Furthermore, we find that skills used
in distinct tasks can be combined to produce novel behaviors by blending their
respective text latent. Applying this to π0, we increase its success rate from 9% to
83% on the proposed libero-ood benchmark, which features 20 tasks extrapolated
from standard LIBERO tasks. This reveals that the skill representations encoded in
text-latent are individual yet composable, while π0 fails to autonomously combine
these representations for extrapolation. This also validates the design of libero-ood;
it comprises tasks that the model fails, yet should be able to complete. We then
tested other VLAs on libero-ood, and none of them achieved a success rate higher
than 21%. Further analysis reveals VLAs share a common pattern to exhibit spatial
overfitting, associating object names with where the object is spatially located in
the demonstrated scene rather than achieving true object and goal understanding.

1 INTRODUCTION

Building toward generalist, vision-language-action models (VLAs) trained with large-scale multi-
modal datasets (O’Neill et al., 2023) have shown remarkable visual and language generalizability,
leading to strong performance on diverse manipulation tasks (Brohan et al., 2023; O’Neill et al.,
2023; Li et al., 2023b; Kim et al., 2024; Durante et al., 2024; Huang et al., 2024; et al., 2024;
Zhen et al., 2024; Black et al., 2024; Team et al., 2024; Hou et al., 2025; Qu et al., 2025; Zheng
et al., 2024). Typically, for satisfactory deployment on new tasks, VLAs are fine-tuned using
demonstrations of target tasks (Kim et al., 2025). Though this paradigm ensures good in-distribution
generalization to light conditions (Li et al., 2024b) and small perturbations of scene layout (Liu et al.,
2024), we empirically find that VLAs struggle with out-of-distribution (OOD) tasks, particularly
those extrapolated from tasks that they can perform well individually. For instance, a VLA might
successfully "put the cream cheese in the bowl" and "put the bowl on top of the cabinet", yet fail to
perform the extrapolated task of "put the cream cheese on top of the cabinet", even though the motion
primitives required by this task, "picking the cream cheese" and "reaching the top of the cabinet",
have already been learned in different tasks. This raises a question: Do VLAs merely overfit to
demonstrated trajectories or do they learn composable representations that support broader
generalization? We study this on the SOTA VLA π0 (Black et al., 2024) with its text latent, which is
a vector derived from the model’s internal states, and thus encodes the learned representations.

To identify the text latent for a given task, we run π0 on the corresponding task demonstrations
and record the hidden states of text tokens for each transformer layer. After this, we average all
collected layer-wise features and obtain text latent. By writing the text latent to the text tokens’
residual streams (Elhage et al., 2021) of π0, we can reconstruct the associated task trajectory without

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

libero-ood (20 tasks)

Success Rate

put the wine bottle on
the stove

put the wine bottle
in the bowl

put the cream cheese
on top of the cabinet

+ text-latent on Extrapolated Tasksπ0

put the bowl on
the stove

put the wine bottle on
top of the cabinet

put the cream cheese
in the bowl

put the bowl on top
of the cabinet

on Demonstrated Tasks π0

Figure 1: UniVLA, openvla-oft, π0, and π0-fast achieve less than 21% success rate on the proposed
libero-ood benchmark. It consists of tasks extrapolated from standard LIBERO (Liu et al., 2024) tasks
that those VLAs have been fine-tuned with. By applying the proposed Text Latent Interpolation (TLI),
we improve the performance of π0 up to 83%. Behaviors of π0-TLI on three exemplary extrapolated
tasks are shown in the second row, while the first row shows the associated two base tasks.

providing the task prompt. We also find that unembedding text latent (nostalgebraist, 2020) produces
alternative task prompts, which can instruct the model to finish the corresponding tasks with about
70% success rate. However, these alternative prompts are encrypted and unreadable, enabling private
instruction and backdoor attacks. Furthermore, we find that by using Text Latent Interpolation (TLI)
to blend the representations learned for two tasks, the model can combine respective sub-behaviors
or skills to complete novel tasks. Specifically, TLI injects the temporal interpolation of the two
respective text latents to the residual stream, with the mixing ratio linearly adjusted at each timestep.
As a result, the intervention guides the model towards Task 1’s behavior at the beginning, and as the
episode progresses, the influence smoothly shifts towards Task 2’s behavior. As shown in Fig. 1, π0

with text latent can stitch together sub-trajectories used in different tasks to finish extrapolated tasks,
even if the newly composed trajectories are not shown in training and fine-tuning data.

To verify that learned representations can broadly support OOD generalization with TLI, we introduce
the libero-ood task suite. It comprises 20 challenging extrapolated tasks derived from the three
standard LIBERO suites: libero-goal, libero-spatial, and libero-object. Each task in libero-ood is
designed such that while the individual movements required for grasping and placement are present
in separate training tasks, the specific combination of these movements is novel. By applying TLI,
the success rate of π0 on libero-ood increases from 9% to 83%. And it manages to complete 19 out
of 20 tasks at least once in 10 repeated runs. This significant improvement confirms that the skill
representations, encoded in text latents, generally exist and are composable, while the model
cannot combine them autonomously and hence failed on novel extrapolated tasks. On the other
hand, this result validates the design of libero-ood as a suitable benchmark for OOD generalizability
for all VLAs. Rather than presenting VLAs in completely impossible OOD tasks (e.g., holding a
steering wheel to drive a car), libero-ood comprises OOD tasks that the model has the potential
to solve by simply mixing the learned representation. Therefore, we tested other SOTA VLAs on
libero-ood, including π0-fast (Pertsch et al., 2025), openvla-oft (Kim et al., 2025), and UniVLA (Bu
et al., 2025). Though they achieve about a 95% success rate on the three standard LIBERO task suites
after fine-tuning, their success rate on libero-ood is less than 21%, highlighting their limitations in
extrapolation. Further qualitative analysis reveals that VLAs commonly exhibit spatial overfitting,
associating object names with their locations in the demonstrated scene. When instructed to pick an
object, they always move to where the object has been placed before, ignoring its current location. It
uncovers that VLAs fail to learn true object or goal understanding even after fine-tuning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Vision-Language-Action Models. VLAs are usually initialized from vision-language models
(VLMs) pretrained with large-scale cross-modality data. To adapt it for decision-making, we need
to further train it with large-scale cross-embodiment datasets like Open X-Eombodiment (O’Neill
et al., 2023), following a fine-tuning on specific tasks with fewer demonstrations (Brohan et al., 2023;
O’Neill et al., 2023; Li et al., 2023b; Kim et al., 2024; Durante et al., 2024; Huang et al., 2024; et al.,
2024; Zhen et al., 2024; Black et al., 2024; Team et al., 2024; Hou et al., 2025; Bu et al., 2025; Qu
et al., 2025; Wang et al., 2024; NVIDIA et al., 2025; Team et al., 2025; Pertsch et al., 2025; Zheng
et al., 2024). Though VLAs are all built upon the transformer-based pre-trained VLMs (Vaswani
et al., 2023), it remains unclear what is the best way to decode actions. OpenVLA (Kim et al., 2024),
RT-2 (Brohan et al., 2023), and π0-fast (Pertsch et al., 2025) follow the next-token prediction manner
used by VLMs and LLMs and decode discrete action tokens, which will be converted to continuous
actions according to different tokenization schemes. Another widely adopted way to predict action is
to use a regression head or diffusion model with extra parameters (NVIDIA et al., 2025; Black et al.,
2024; Kim et al., 2024; Wen et al., 2024; Lee et al., 2024; Chi et al., 2023; Kim et al., 2025; Li et al.,
2024a). As the VLM is the core component for VLAs’ ability, we choose to mine the meaningful
internal representation of the transformer part of π0, which adopts an additional action expert to
generate continuous actions with flow matching.

Mechanistic Interpretability (MI). This is a subfield of interpretability, where researchers reverse
engineer the model’s internal computations to understand how it works (Rai et al., 2025; Elhage
et al., 2021; Vaswani et al., 2023) and reconstruct or activate certain behaviors. Some early works
analyze image classification models (Olah et al., 2020; Bau et al., 2017; Zhou et al., 2015) and find
that neurons play the role of feature detectors for patterns from simple curves to complex objects
like cats (Cammarata et al., 2020). Recent studies of MI on LLM and VLM identifies important
circuits that can perform specific tasks like induction head (Olsson et al., 2022) to output repeating
words, function vectors (Todd et al., 2024; Luo et al., 2024) to produce antonyms, attention head
to detect number or shape (Gandelsman et al., 2024), neurons contributing to recognize specific
objects (Gandelsman et al., 2024), and internal features making VLMs hallucinate (Jiang et al.,
2025). However, there are limited works that study the neural policies or VLAs from the MI
perspective. The most relevant works study adversarial attack with feature attribution (Wang et al.,
2025), symbolic representation uncovering (Lu et al., 2025), and motion-relevant neuron identifying
and characterization (Li et al., 2023a; Häon et al., 2025). Our work finds causal effects between the
internal representations and VLAs’ behaviors. As a result, we can produce obscure prompts with logit
lens (nostalgebraist, 2020), enabling private instruction or backdoor attack. In addition, the identified
functional component enables the π0 for extrapolated tasks, where all SOTA VLAs struggle with.

3 METHOD

We start by formulating how transformer-based VLAs work. Then, we illustrate how to identify text
latent and how to use them to change the model’s internal representation, steering its behavior.

3.1 PRELIMINARY

Existing VLAs adopt VLMs as encoders to fuse both vision and language information. Concretely, a
pre-trained vision encoder, e.g., CLIP (Radford et al., 2021) and SigLIP (Zhai et al., 2023), is used to
generate d-dimensional sequential image embeddings from image patches, followed by d-dimensional
text embeddings that are tokenized and projected from the task description. For some VLAs (Kim
et al., 2024), the task description is encapsulated with certain context, like "what actions the robot
should take to {task description}”, which introduces extra tokens. In addition, the proprioceptive
state will be projected (Kim et al., 2024) or tokenized (Pertsch et al., 2025) into the d-dimensional
shared space to work with image-text embeddings. After tokenization, we assume there are totally
m d-dimensional embeddings, e = {ei : ei ∈ Rd, i = 1...m}, obtained from image, text, and robot
proprioception, which will go through L transformer layers. Except for the last layer, each layer l
outputs hidden states hl = {hi

l : h
i
l ∈ Rd, i = 1...m}. The action is then generated by a = f(e, h),

where h = {hl : hl ∈ Rm×d, l = 1...L − 1} is hidden states of all tokens across L − 1 layers.
More precisely, the action generation uses the KV cache derived from e and h, where the image-text

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

embeddings e are passed through the first transformer layer (layer 0) to compute key and value
projections, and the hidden states hl are passed through their subsequent layer l + 1 to compute the
corresponding KV projections. To simplify the notation, we condition the action generation on e
and h. This formulation applies to most existing VLAs as long as the VLM is reused to do action
generation in an autoregressive way (Kim et al., 2024; Qu et al., 2025; Brohan et al., 2023; Pertsch
et al., 2025) or the extra action prediction module is also transformer-based (NVIDIA et al., 2025;
Black et al., 2024), which can take the KV-cache to do causal self-attention.

3.2 TEXT LATENT

As VLAs’ behavior depends on the task description, we hypothesize that the skill representations are
embedded in the internal representations of text (task description) tokens. To study this mechanism,
we denote the text embeddings as eT = {ei : ei ∈ Rd, i ∈ T} and their hidden state at each layer as
hT
l = {hi

l : h
i
l ∈ Rd, i ∈ T}, where T is the set of text tokens indices. Therefore, the hidden states

of all text tokens across all L− 1 layers can be represented by a tensor as hT ∈ RL−1×|T |×d after
preserving orders and stacking them. By denoting the rest of the embeddings and their hidden states
as e− = e \ eT and h− = h \ hT , we can update the action generation function at timestep i as

a = f(eT , hT (i), e−(i), h−(i)) (1)
Note that text embedding, eT , doesn’t condition on i, since it is fixed throughout the whole episode,
while the rest image and proprioceptive tokens are changed at different timesteps. Our goal is to
manipulate the hT (i) at each decision-making step to activate behaviors with specific semantics.

Text latent is the ingredient for doing this. It has the same shape as hT and thus can be written into the
text tokens’ residual stream. We identify it by averaging a set of text hidden states {hT (i) : hT (i) ∈
RL−1×n×d, i ∈ B}, where B is all timestep indices of a demonstrated episode for the target task,
and hT (i) is thus obtained by forwarding the model with the observation at timestep i. As multiple
demonstrated episodes exist for a single task in the training sets, the average is thus taken over K
demonstrations. Therefore, the text latent can be calculated by element-wise average:

T =
1∑k=K

k=1 |Bk|

k=K∑
k=1

∑
i∈Bk

hT (i) (2)

In our reconstruction experiment, we demonstrate that T captures the most essential knowledge for
finishing the corresponding task. And blending them enables skill combination for task extrapolation.

3.3 TEXT LATENT INTERPOLATION

A task derived from two base tasks can be interpreted as starting with Task 1 and gradually switching
to Task 2. Though text token ids are discrete and cannot be changed smoothly throughout the episode,
we can approximate a continuous transition by linearly interpolating the text embeddings of the two
base task prompts, eT1 and eT2 , at timestep i. This is called Text Embedding Interpolation (TEI).

eT = eT (i) = (1− α)eT1 + α eT2 , α = i/λ, 0 ≤ i ≤ λ, (3)
where the hyperparameter λ controls the transition speed. The λ is set to 24, the average number of
policy-execution steps, for π0, except for put the wine bottle in the bowl. As the wine bottle is near
the bowl, we shorten λ to 14 for this task, so the second task behavior is activated sooner.

Intuitively, TEI rewrites the task prompt at every step with a weighted blend of the two source
instructions. Additionally, we can leave the target task prompt (and thus its embedding) unchanged
and operate on the model’s residual stream with the two respective text latent (T 1, T 2). We term this
approach Text Latent Interpolation (TLI), which modifies the text hidden states hT (i) as follows:

hT (i) = hT (i) +
[
(1− α) T 1 + αT 2

]
−

[
(1− α) T 2 + αT 1

]
, α = i/λ, 0 ≤ i ≤ λ. (4)

At the beginning of the episode, Task 2’s context is suppressed and subtracted from the residual
stream. As the episode progresses (α : 0→ 1), Task 2’s context is gradually injected into the residual
stream while Task 1’s context fades out and is finally suppressed. TLI can also be applied to a
specific layer l by replacing hT

l (i) with the interpolated pair (T 1
l , T 2

l) in the same fashion. The full
interpolation procedure is listed in Algorithm 1. Both TEI and TLI can be deployed independently or
jointly. In either case, the ratio i/λ is clipped between 0 and 1. If the length of the text dimension of
T 1 or T 2 differs from the number of tokens of the target prompt, we truncate it or pad it with zeros
to match the length of the target prompt, as the task descriptions are of a similar length.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 TEI and TLI during Task Execution
Require: text latent T 1, T 2, Interpolation steps λ, Initial observations o, Max timestep J

1: for i = 1 to J do
2: e−, h−, eT , hT ← encode(o) ▷ Get internal representation
3: if Text Embedding Interpolation (TEI)
4: eT = (1− i/λ) eT1 + (i/λ)eT2 ▷ Overwrite text embedding
5:6: if Text Latent Interpolation (TLI)
7: hT (i) = hT (i) + (1− i/λ) (T 1 − T 2) + i/λ(T 2 − T 1) ▷ Write to residual stream
8:9: a = f(eT , hT (i), e−(i), h−(i)) ▷ Decode action

10: o← simulation(a) ▷ Forward simulation
11: end for

4 EXPERIMENTS

Benchmark. We conducted experiments with LIBERO (Liu et al., 2024), a simulation environment
widely employed for evaluating Vision-Language-Action (VLA) models (Black et al., 2024; Pertsch
et al., 2025; Kim et al., 2025; Qu et al., 2025; Zheng et al., 2024; Bu et al., 2025). We use three
standard task suites from LIBERO: libero-goal, libero-object, and libero-spatial. Each suite contains
10 tasks, and most of them require pick-and-place. It is recommended to learn their details first
in Appendix B. We also introduce a novel task suite, libero-ood, comprising two sub-suites libero-
goal-ood and libero-spatial-ood. Each also contains 10 extrapolated tasks. The key idea behind
these 20 tasks is to ensure that both the grasping and placement locations have individually appeared
in the training data, so the policy has already learned how to reach these locations. However, the
specific trajectory connecting these two locations has not been demonstrated. Thus, solving these
tasks requires the policy to stitch together sub-trajectories it has learned from demonstrated tasks.

libero-spatial-ood

put the bowl at the table
center on the cabinet/stove

put the bowl next to the
plate on the cabinet/stove

put the bowl on the cookie
box on the cabinet/stove

put the butter/chocolate
pudding on the plate

put the milk/orange juice
on the plate

put the wine bottle/cream
cheese on the stove/plate/bowl

put the orange juice
on the stove

put the bbq source
 on the plate

put the tomato sauce
on top of the cabinet

put the cream cheese
in the basket

libero-goal-ood

Figure 2: Visualization of scene layouts, object to pick and where to place (denoted by the red arrows),
and prompts for tasks in libero-ood, which can be further split into libero-goal-ood and libero-spatial-
ood. libero-goal-ood includes six extrapolated tasks that require combining sub-skills learned from
libero-goal and operating in the same scene layout as libero-goal tasks (the top-left figure), while
the remaining four tasks slightly change the layout and additionally demand transferring knowledge
about objects. On the other hand, libero-spatial-ood provides six tasks that require transferring
the skills learned in libero-goal and libero-spatial to place the object on the cabinet or stove. The
remaining four tasks require placing unseen objects from libero-object at new locations on the plate.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Experiments. Our main experimental goal is to examine whether π0 learns individual yet com-
posable task representations, so it can complete these 20 extrapolated tasks by combining learned
representations, encoded in text latent. For each task in the three standard suites, we identify the
corresponding text latent using 20 demonstrations, calculated according to equation 2. We first
demonstrate on π0 that text latent encapsulates the essential knowledge required to complete standard
LIBERO tasks by reconstructing the task behavior without clear task prompts. Second, we show that
by interpolating between text latent or text embeddings, π0 can complete challenging extrapolated
tasks in libero-ood suite, where tasks pose difficulties for current state-of-the-art VLAs. Finally, our
analysis across specific tasks reveals that VLAs’ behavior relies on the mechanistic memorization of
demonstrated trajectories, rather than a genuine conceptual understanding of objects or goals.

Evaluation. For each task, we execute 10 independent runs using different random seeds. Therefore,
the final success rate for each task suite is calculated as the proportion of successful episodes across
the total 100 runs (10 tasks × 10 runs/task). All experiments are conducted with Nvidia RTX 4090.

4.1 TASK RECONSTRUCTION

In this experiment, we use text latent to reconstruct the behavior or trajectory learned for the three
standard task suites, demonstrating that individual task representation is encoded in text latent. We use
two ways to examine the effectiveness of text latent. The first way is to mask all the text tokens or set
each text token to the space character (" ") so the text prompt doesn’t provide any task information. We
can then add back the text latent to each hidden layer representation when executing the policy. The
second way is to unembed the early layer vectors of text latent into a set of token ids (nostalgebraist,
2020), producing alternative prompts. Thus, we can feed the alternative prompt to the model directly.

libero-object libero-goal libero-spatial
Original 0.98 0.95 0.97
Mask Prompt 0.11 0.14 0.24
Blank Prompt 0.28 0.16 0.23
Blank Prompt+T 0.94 0.82 0.81
T1-Prompt 0.92 0.66 0.98
T2-Prompt 0.73 0.19 0.85
T3-Prompt 0.56 - 0.68

Table 1: The success rate of different ways to reconstruct tasks.

The results are shown in Table 1.
The first line is the official perfor-
mance of π0 with the original task
prompt, serving as the upper bound.
The Mask Prompt experiment uses
only image input for all task execu-
tion, while the Blank Prompt adds
back text tokens but fills with space
characters (" "). In both settings,
the policy has no task instructions,
indicating the lower bound of per-
formance. The rest lines show the

performance of different ways to reconstruct the task. For each task suite, the settings yielding the
best performance are bolded, and the second-best performance is underlined. The experiment Blank
Prompt+T shows that by writing the text latent to the model’s residual stream, hT (i) = hT (i) + T ,
the tasks can be finished with a success rate higher than 80%, even if the prompt is blanked and
provides none of the task information. Thus, it confirms that text latent captures essential task
knowledge, and can remind π0 of a task by injecting it into the model’s internal states.

As T ∈ RL−1×n×d, we can thus applying the language embedding matrix E to unembed Tl into
tokens by calculating the cosine similarity between each column of E and Tl, then selecting the indices
with maximum similarity as new tokens, composing the alternative prompt. As shown in Table 1,
we unembed T1, T2, and T3 and find that for libero-goal, the prompt produced by unembedding T1
achieves a 66% success rate, while the next layer’s vector can not reconstruct the task well. However,
for libero-object and libero-spatial, even the prompt unembedded by T2 and T3 can reconstruct
tasks with an average success rate of 70%. We find most prompts unembedded from text latent
are encrypted and unreadable, even for people who are familiar with the original prompts.
This enables an application, obscure prompting, for private instruction or backdoor attacks. The
unembedded prompt for the three task suites is shown in Appendix C.

4.2 TASK EXTRAPOLATION

As text latent encodes task context or skill representations, we then ask whether the behaviors learned
from separate tasks can be recombined using the respective text latent. We refer to any task that
demands such a behavior recombination as an extrapolated task. These new tasks keep objects’

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

UniVLA openvla-oft π0-fast π0 πS
0 π0-TLI π0-TLI+ π0-TLI*

libero-goal-ood 0.32 0.01 0.13 0.02 0.72 0.85 0.85 0.33
libero-spatial-ood 0.11 0 0.17 0.16 0.66 0.81 0.69 0.18

All 0.21 0.01 0.15 0.09 0.69 0.83 0.77 0.25

Table 2: The success rate of SOTA VLAs and our methods on the libero-goal-ood task suite. Our
methods enable π0 for task extrapolation by simply combining its learned representation. Detailed
performance of each task and the behavior visualization of π0-TLI is available in Appendix E and D.

locations or layouts the same as the scenes for collecting training demonstrations. Thus, for each
libero-ood task, VLAs have learned to reach the grasping and placement locations, respectively.
However, π0 only shows a 9% success rate in libero-ood. After applying the proposed TLI for
π0, we can largely improve its success rate to 83%, as shown in Fig. 3. This confirms that skill
representations generally exist in π0 that can be rearranged to solve novel tasks. It also validates
that the tasks in libero-ood are within π0’s capability, while it fails on it. We further test other
SOTA VLAs’ extrapolation ability using libero-ood. The results are shown in Table 2. None of the
VLAs achieves a success rate higher than 21%. Among all VLAs, the best is UniVLA. It shows
trajectory stitching behavior in some tasks, and better language following ability, which results from
the disentangled training of the vision-language module and the action module (Huang et al., 2025).

put the bbq source on
the plate

put the cream cheese
in the basket

put the cream cheese
on the plate

put the cream cheese
on the stove

put the cream cheese
on the cabinet

put the orange juice on
the stove

put the tomato sauce
on top of the cabinet

put the wine bottle on
the plate

put the wine bottle on
the stove

put the wine bottle in
the bowl

Figure 3: Visualization of π0-TLI’s behavior in libero-ood. Result on libero-spatial is in Appendix D.

We also applied both TEI and TLI to the model inference together, yielding π0-TLI+. The results show
that TEI doesn’t further improve the performance of π0-TLI for libero-goal-ood, while it even slightly
harms the performance of libero-spatial-ood. We will use π0-TLI+ to reveal the spatial overfitting
exhibited in π0 in the next section. In addition, we run another experiment (π0-TLI*) using blank
prompts similar to the previous reconstruction experiment. Its performance drastically drops to 33%
and 18%, indicating the importance of the prompt for extrapolated tasks. The text embedding of an
extrapolated prompt can be viewed as stitching two base task prompts eT = concat(eT1 [: a], e

T
2 [b :]),

where a and b indicate the prompt truncation position. These stitched text prompts (π0-TLI) are better
for combining two base task behaviors than interpolated prompts (π0-TLI+).

On the other hand, π0-TLI* can be viewed as implicitly switching task context without explicit
prompts. This inspires us to try explicitly prompt switching to solve libero-ood. Concretely, we can
feed Task 1’s prompt to π0, and when timestep > λ/2, we switch to Task 2’s prompt. The πS

0 executes
in this way and reaches a 69% success rate. It suggests that augmenting the model’s ability with
learned representation (π0-TLI) is better than cheating it with what task it currently performs.
We also apply prompt switching to other VLAs, and openvla-oft, UniVLA, openpi-fast achieve 0%,
2%, 35% success rate, respectively, further highlighting the challenge of libero-ood.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

In addition, we try to find a more compact structure for text latent.
Specifically, we intervene in a specific layer l of the model with Tl
to find whether it contributes significantly to the extrapolated tasks.
As shown in the left figure, the early several layers can work alone
to finish tasks in libero-ood with more than 20% success rate. After
layer 6, the success rate begins to drop, while at layer 16 the success
rate recovers to 10%. As each layer of T can work independently
and contributes more or less to the success, we decide to keep all
of them. As a result, the π0 with all hidden layer interventions can

achieve an 83% success rate indicated by the blue dashed line.

4.3 SPATIAL OVERFITTING OF π0

 :cream cheese bowl
 :bowl cabinet

 :cream cheese bowl
 :bowl plate

 :cream cheese bowl
 :bowl stove

 :wine bottle cabinet
 :bowl stove

tomato sauce cabinet bbq sauce plate cream cheese basketorange juice stove

Figure 4: Trajectories of π0-TLI+ for the four tasks that require object recognition. Object to grasp
and place to drop are shown on top of the figure; The two text latent used to complete the task are
listed underneath. These behaviors reveal spatial overfitting. For example, we can use the text latent
and text embedding of "placing on the stove” to put any object into the basket that occupied the
original location of the stove in the training data, ignoring the current location of the stove.

As shown in Fig. 2, the rightmost 4 tasks in libero-goal-ood require the model to pick up objects
that have never been shown in the scene of libero-goal before. In these 4 tasks, we swap the original
objects with new ones from libero-object, while still keeping the displaced objects in the scene. Using
both TEI and TLI, π0 achieves an average success rate of 85% on these four tasks, which confirms the
existence of Spatial Overfitting in π0. Specifically, consider the task put the orange juice on the stove.
The orange juice is placed at the original position of the wine bottle, and the wine bottle is moved
to the former position of the cream cheese. We can instruct π0 to pick the orange juice, using the
text latents and text embeddings of put the wine bottle on top of the cabinet with π0-TLI+. Both text
embedding and hidden states request π0 to pick the wine bottle, while π0 ignores the current location
of the wine bottle that is reachable at the location of the cream cheese, and it still mechanically moves
to where the wine bottle is placed in the demonstrated scene. The trajectories produced by π0-TLI+
for all four tasks are shown in Fig. 4. This behavior indicates that the π0 does not understand
object identity but instead maps object names to fixed locations, termed as Spatial Overfitting.
Thus, “cream cheese” actually means “the object at the location where the cream cheese appeared
during training.” And π0 can grasp anything placed at the location of the cream cheese.

4.4 SPATIAL OVERFITTING IS COMMON IN VLAS

The spatial overfitting commonly exists for VLAs besides π0, which can be confirmed by experiments
on libero-object suite, where five tasks place the target object at the center of the scene, and the other
five place it in the top-right corner. After fine-tuning with demonstrations, VLAs can always pick
the central object with any of the five “center” prompts and the top-right object with any of the five
“top-right” prompts. In the two-prompt experiments shown in Table 3, we always use the prompt,
pick up the cream cheese to pick the object at the scene center, and the prompt, pick up the alphabet
soup for the objects at the top-right corner. We then run the libero-object with the two prompts. All
SOTA VLAs can maintain the performance on the libero-object with incorrect prompts, even though
the "cream cheese" and "alphabet soup" still appear in the scene somewhere.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

π0 π0-fast openvla-oft UniVLA
Two-prompt 0.94 0.86 0.99 0.90
OOD-position 0 0 0 0

Table 3: The success rate on modified libero-object suite

In addition, when the target object is
located anywhere other than the cen-
ter or top-right, the policy fails. In
the OOD-position experiment 3, we
relocated the target objects to a place
other than the centre or the top-right

corner. As expected, all VLAs failed. The end effector still travelled to the original location of the
target object, picked up whatever object happened to occupy that spot, and dropped it in the basket.

Figure 5: The object to grasp is framed in white. Even if the end effector is close to the object, the π0

model is still not interested in the target object. Also, during the inference, π0 always focuses on the
posture of the end effector, suggesting that the image input is mainly for estimating the robot state.

As text latent encodes the task context, we can analyze which part of the image observation contributes
most to the formation of text latent for π0 with logit lens (nostalgebraist, 2020; Jiang et al., 2025).
Fig. 5 highlights the information extracted from the image observation to build text-latent in 4
libero-object tasks at different timesteps. We find that the π0 always absorbs the information about
the destination and the robot pose to build text latent, with less attention on the object to grasp or treat
all objects equally. Thus, π0 relies on the text instruction instead of image information to differentiate
the two grasping locations. This suggests a poor vision-language alignment and shortcut learning.

5 CONCLUSION

Existing VLAs show promising in-distribution generalization after fine-tuning, but their out-of-
distribution (OOD) robustness is understudied due to a lack of suitable benchmarks. This is primarily
because it is difficult to determine how far new tasks should deviate from the training data distribution.
For instance, it would be unreasonable to expect a robot arm trained solely on tabletop manipulation
to hold a steering wheel and drive a car. An ideal OOD benchmark should therefore comprise tasks
that VLAs have the potential to complete but currently cannot. In this work, we find that by using the
learned internal representation, π0 can be augmented to solve novel tasks that it can not complete on
its own. Since the injected knowledge is derived from the model’s own learned representations, we
conclude that π0 inherently possesses the capability to complete these new tasks, although this ability
appears to be latent or "locked". Tasks constructed in this manner are thus well-suited for our purpose,
leading us to introduce an OOD benchmark named libero-ood. Besides π0, we further evaluate other
SOTA VLAs on LIBERO, including π0-fast, UniVLA, and openvla-oft. Unfortunately, none of them
achieved a success rate higher than 21%. Their failure may stem from the same issue as π0, an
inability to recombine learned representations into new skills, or skill representations don’t emerge
during the training. We thus make libero-ood public to encourage investigating their failure mode
and developing more generalist models without using inference tricks like TLI or prompt switching.

Reproducibility statement. The code to reproduce the results of this work is anonymously at https:
//anonymous.4open.science/r/iclr26_anonymous-3D4E/README.md. The full
videos of π0-TLI on the proposed libero-ood benchmark can be found in the supplementary materials.

9

https://anonymous.4open.science/r/iclr26_anonymous-3D4E/README.md
https://anonymous.4open.science/r/iclr26_anonymous-3D4E/README.md

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and Antonio Torralba. Network dissection:
Quantifying interpretability of deep visual representations, 2017. URL https://arxiv.org/
abs/1704.05796.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai,
Lachy Groom, Karol Hausman, Brian Ichter, et al. pi0: A vision-language-action flow model for
general robot control. arXiv preprint arXiv:2410.24164, 2024.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Xi Chen, Krzysztof Choromanski,
Tianli Ding, Danny Driess, Avinava Dubey, Chelsea Finn, et al. Rt-2: Vision-language-action
models transfer web knowledge to robotic control. arXiv preprint arXiv:2307.15818, 2023.

Qingwen Bu, Yanting Yang, Jisong Cai, Shenyuan Gao, Guanghui Ren, Maoqing Yao, Ping Luo,
and Hongyang Li. Univla: Learning to act anywhere with task-centric latent actions, 2025. URL
https://arxiv.org/abs/2505.06111.

Nick Cammarata, Shan Carter, Gabriel Goh, Chris Olah, Michael Petrov, Ludwig Schubert, Chelsea
Voss, Ben Egan, and Swee Kiat Lim. Thread: Circuits. Distill, 2020. doi: 10.23915/distill.00024.
https://distill.pub/2020/circuits.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The
International Journal of Robotics Research, page 02783649241273668, 2023.

Zane Durante, Bidipta Sarkar, Ran Gong, Rohan Taori, Yusuke Noda, Paul Tang, Ehsan Adeli,
Shrinidhi Kowshika Lakshmikanth, Kevin Schulman, Arnold Milstein, et al. An interactive agent
foundation model. arXiv preprint arXiv:2402.05929, 2024.

Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann, Amanda
Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt, Kamal
Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and Chris
Olah. A mathematical framework for transformer circuits. Transformer Circuits Thread, 2021.
https://transformer-circuits.pub/2021/framework/index.html.

Andrew Sohn et al. Introducing rfm-1: Giving robots human-like rea-
soning capabilities, 2024. URL https://covariant.ai/insights/
introducing-rfm-1-giving-robots-human-like-reasoning-capabilities/.

Yossi Gandelsman, Alexei A. Efros, and Jacob Steinhardt. Interpreting clip’s image representation
via text-based decomposition, 2024. URL https://arxiv.org/abs/2310.05916.

Zhi Hou, Tianyi Zhang, Yuwen Xiong, Hengjun Pu, Chengyang Zhao, Ronglei Tong, Yu Qiao, Jifeng
Dai, and Yuntao Chen. Diffusion transformer policy: Scaling diffusion transformer for generalist
vision-language-action learning, 2025. URL https://arxiv.org/abs/2410.15959.

Huang Huang, Fangchen Liu, Letian Fu, Tingfan Wu, Mustafa Mukadam, Jitendra Malik, Ken
Goldberg, and Pieter Abbeel. Otter: A vision-language-action model with text-aware visual feature
extraction, 2025. URL https://arxiv.org/abs/2503.03734.

Jiangyong Huang, Silong Yong, Xiaojian Ma, Xiongkun Linghu, Puhao Li, Yan Wang, Qing Li,
Song-Chun Zhu, Baoxiong Jia, and Siyuan Huang. An embodied generalist agent in 3d world. In
Proceedings of the International Conference on Machine Learning (ICML), 2024.

Bear Häon, Kaylene Stocking, Ian Chuang, and Claire Tomlin. Mechanistic interpretability for steer-
ing vision-language-action models, 2025. URL https://arxiv.org/abs/2509.00328.

Nick Jiang, Anish Kachinthaya, Suzie Petryk, and Yossi Gandelsman. Interpreting and editing
vision-language representations to mitigate hallucinations, 2025. URL https://arxiv.org/
abs/2410.02762.

10

https://arxiv.org/abs/1704.05796
https://arxiv.org/abs/1704.05796
https://arxiv.org/abs/2505.06111
https://covariant.ai/insights/introducing-rfm-1-giving-robots-human-like-reasoning-capabilities/
https://covariant.ai/insights/introducing-rfm-1-giving-robots-human-like-reasoning-capabilities/
https://arxiv.org/abs/2310.05916
https://arxiv.org/abs/2410.15959
https://arxiv.org/abs/2503.03734
https://arxiv.org/abs/2509.00328
https://arxiv.org/abs/2410.02762
https://arxiv.org/abs/2410.02762

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

Moo Jin Kim, Chelsea Finn, and Percy Liang. Fine-tuning vision-language-action models: Optimizing
speed and success, 2025. URL https://arxiv.org/abs/2502.19645.

Seungjae Lee, Yibin Wang, Haritheja Etukuru, H Jin Kim, Nur Muhammad Mahi Shafiullah, and
Lerrel Pinto. Behavior generation with latent actions. arXiv preprint arXiv:2403.03181, 2024.

Qixiu Li, Yaobo Liang, Zeyu Wang, Lin Luo, Xi Chen, Mozheng Liao, Fangyun Wei, Yu Deng,
Sicheng Xu, Yizhong Zhang, Xiaofan Wang, Bei Liu, Jianlong Fu, Jianmin Bao, Dong Chen,
Yuanchun Shi, Jiaolong Yang, and Baining Guo. Cogact: A foundational vision-language-action
model for synergizing cognition and action in robotic manipulation, 2024a. URL https://
arxiv.org/abs/2411.19650.

Quanyi Li, Zhenghao Peng, Haibin Wu, Lan Feng, and Bolei Zhou. Human-ai shared control via
policy dissection, 2023a. URL https://arxiv.org/abs/2206.00152.

Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chilam Cheang,
Ya Jing, Weinan Zhang, Huaping Liu, et al. Vision-language foundation models as effective robot
imitators. arXiv preprint arXiv:2311.01378, 2023b.

Xuanlin Li, Kyle Hsu, Jiayuan Gu, Karl Pertsch, Oier Mees, Homer Rich Walke, Chuyuan Fu, Ishikaa
Lunawat, Isabel Sieh, Sean Kirmani, Sergey Levine, Jiajun Wu, Chelsea Finn, Hao Su, Quan
Vuong, and Ted Xiao. Evaluating real-world robot manipulation policies in simulation, 2024b.
URL https://arxiv.org/abs/2405.05941.

Bo Liu, Yifeng Zhu, Chongkai Gao, Yihao Feng, Qiang Liu, Yuke Zhu, and Peter Stone. Libero:
Benchmarking knowledge transfer for lifelong robot learning. Advances in Neural Information
Processing Systems, 36, 2024.

Hong Lu, Hengxu Li, Prithviraj Singh Shahani, Stephanie Herbers, and Matthias Scheutz. Probing
a vision-language-action model for symbolic states and integration into a cognitive architecture,
2025. URL https://arxiv.org/abs/2502.04558.

Grace Luo, Trevor Darrell, and Amir Bar. Task vectors are cross-modal, 2024. URL https:
//arxiv.org/abs/2410.22330.

nostalgebraist. Interpreting GPT: The logit lens. LessWrong, Aug 2020.
URL https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/
interpreting-gpt-the-logit-lens.

NVIDIA, :, Johan Bjorck, Fernando Castañeda, Nikita Cherniadev, Xingye Da, Runyu Ding,
Linxi "Jim" Fan, Yu Fang, Dieter Fox, Fengyuan Hu, Spencer Huang, Joel Jang, Zhenyu Jiang,
Jan Kautz, Kaushil Kundalia, Lawrence Lao, Zhiqi Li, Zongyu Lin, Kevin Lin, Guilin Liu, Edith
Llontop, Loic Magne, Ajay Mandlekar, Avnish Narayan, Soroush Nasiriany, Scott Reed, You Liang
Tan, Guanzhi Wang, Zu Wang, Jing Wang, Qi Wang, Jiannan Xiang, Yuqi Xie, Yinzhen Xu, Zhen-
jia Xu, Seonghyeon Ye, Zhiding Yu, Ao Zhang, Hao Zhang, Yizhou Zhao, Ruijie Zheng, and
Yuke Zhu. Gr00t n1: An open foundation model for generalist humanoid robots, 2025. URL
https://arxiv.org/abs/2503.14734.

Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan Carter.
Zoom in: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.

11

https://arxiv.org/abs/2502.19645
https://arxiv.org/abs/2411.19650
https://arxiv.org/abs/2411.19650
https://arxiv.org/abs/2206.00152
https://arxiv.org/abs/2405.05941
https://arxiv.org/abs/2502.04558
https://arxiv.org/abs/2410.22330
https://arxiv.org/abs/2410.22330
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://www.lesswrong.com/posts/AcKRB8wDpdaN6v6ru/interpreting-gpt-the-logit-lens
https://arxiv.org/abs/2503.14734

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Abby O’Neill, Abdul Rehman, Abhinav Gupta, Abhiram Maddukuri, Abhishek Gupta, Abhishek
Padalkar, Abraham Lee, Acorn Pooley, Agrim Gupta, Ajay Mandlekar, et al. Open x-embodiment:
Robotic learning datasets and rt-x models. arXiv preprint arXiv:2310.08864, 2023.

Karl Pertsch, Kyle Stachowicz, Brian Ichter, Danny Driess, Suraj Nair, Quan Vuong, Oier Mees,
Chelsea Finn, and Sergey Levine. Fast: Efficient action tokenization for vision-language-action
models, 2025. URL https://arxiv.org/abs/2501.09747.

Delin Qu, Haoming Song, Qizhi Chen, Yuanqi Yao, Xinyi Ye, Yan Ding, Zhigang Wang, JiaYuan
Gu, Bin Zhao, Dong Wang, and Xuelong Li. Spatialvla: Exploring spatial representations for
visual-language-action model, 2025. URL https://arxiv.org/abs/2501.15830.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pages
8748–8763. PMLR, 2021.

Daking Rai, Yilun Zhou, Shi Feng, Abulhair Saparov, and Ziyu Yao. A practical review of mechanistic
interpretability for transformer-based language models, 2025. URL https://arxiv.org/
abs/2407.02646.

Gemini Robotics Team, Saminda Abeyruwan, Joshua Ainslie, Jean-Baptiste Alayrac, Montser-
rat Gonzalez Arenas, Travis Armstrong, Ashwin Balakrishna, Robert Baruch, Maria Bauza,
Michiel Blokzijl, Steven Bohez, Konstantinos Bousmalis, Anthony Brohan, Thomas Buschmann,
Arunkumar Byravan, Serkan Cabi, Ken Caluwaerts, Federico Casarini, Oscar Chang, Jose Enrique
Chen, Xi Chen, Hao-Tien Lewis Chiang, Krzysztof Choromanski, David D’Ambrosio, Sudeep
Dasari, Todor Davchev, Coline Devin, Norman Di Palo, Tianli Ding, Adil Dostmohamed, Danny
Driess, Yilun Du, Debidatta Dwibedi, Michael Elabd, Claudio Fantacci, Cody Fong, Erik Frey,
Chuyuan Fu, Marissa Giustina, Keerthana Gopalakrishnan, Laura Graesser, Leonard Hasenclever,
Nicolas Heess, Brandon Hernaez, Alexander Herzog, R. Alex Hofer, Jan Humplik, Atil Iscen,
Mithun George Jacob, Deepali Jain, Ryan Julian, Dmitry Kalashnikov, M. Emre Karagozler,
Stefani Karp, Chase Kew, Jerad Kirkland, Sean Kirmani, Yuheng Kuang, Thomas Lampe, Antoine
Laurens, Isabel Leal, Alex X. Lee, Tsang-Wei Edward Lee, Jacky Liang, Yixin Lin, Sharath
Maddineni, Anirudha Majumdar, Assaf Hurwitz Michaely, Robert Moreno, Michael Neunert,
Francesco Nori, Carolina Parada, Emilio Parisotto, Peter Pastor, Acorn Pooley, Kanishka Rao,
Krista Reymann, Dorsa Sadigh, Stefano Saliceti, Pannag Sanketi, Pierre Sermanet, Dhruv Shah,
Mohit Sharma, Kathryn Shea, Charles Shu, Vikas Sindhwani, Sumeet Singh, Radu Soricut, Jost To-
bias Springenberg, Rachel Sterneck, Razvan Surdulescu, Jie Tan, Jonathan Tompson, Vincent
Vanhoucke, Jake Varley, Grace Vesom, Giulia Vezzani, Oriol Vinyals, Ayzaan Wahid, Stefan
Welker, Paul Wohlhart, Fei Xia, Ted Xiao, Annie Xie, Jinyu Xie, Peng Xu, Sichun Xu, Ying Xu,
Zhuo Xu, Yuxiang Yang, Rui Yao, Sergey Yaroshenko, Wenhao Yu, Wentao Yuan, Jingwei Zhang,
Tingnan Zhang, Allan Zhou, and Yuxiang Zhou. Gemini robotics: Bringing ai into the physical
world, 2025. URL https://arxiv.org/abs/2503.20020.

Octo Model Team, Dibya Ghosh, Homer Walke, Karl Pertsch, Kevin Black, Oier Mees, Sudeep
Dasari, Joey Hejna, Tobias Kreiman, Charles Xu, et al. Octo: An open-source generalist robot
policy. arXiv preprint arXiv:2405.12213, 2024.

Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron Mueller, Byron C. Wallace, and David Bau.
Function vectors in large language models, 2024. URL https://arxiv.org/abs/2310.
15213.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.org/
abs/1706.03762.

Lirui Wang, Xinlei Chen, Jialiang Zhao, and Kaiming He. Scaling proprioceptive-visual learning
with heterogeneous pre-trained transformers, 2024. URL https://arxiv.org/abs/2409.
20537.

Taowen Wang, Cheng Han, James Chenhao Liang, Wenhao Yang, Dongfang Liu, Luna Xinyu Zhang,
Qifan Wang, Jiebo Luo, and Ruixiang Tang. Exploring the adversarial vulnerabilities of vision-
language-action models in robotics, 2025. URL https://arxiv.org/abs/2411.13587.

12

https://arxiv.org/abs/2501.09747
https://arxiv.org/abs/2501.15830
https://arxiv.org/abs/2407.02646
https://arxiv.org/abs/2407.02646
https://arxiv.org/abs/2503.20020
https://arxiv.org/abs/2310.15213
https://arxiv.org/abs/2310.15213
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2409.20537
https://arxiv.org/abs/2409.20537
https://arxiv.org/abs/2411.13587

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Junjie Wen, Yichen Zhu, Jinming Li, Minjie Zhu, Kun Wu, Zhiyuan Xu, Ran Cheng, Chaomin Shen,
Yaxin Peng, Feifei Feng, et al. Tinyvla: Towards fast, data-efficient vision-language-action models
for robotic manipulation. arXiv preprint arXiv:2409.12514, 2024.

Xiaohua Zhai, Basil Mustafa, Alexander Kolesnikov, and Lucas Beyer. Sigmoid loss for language
image pre-training, 2023. URL https://arxiv.org/abs/2303.15343.

Haoyu Zhen, Xiaowen Qiu, Peihao Chen, Jincheng Yang, Xin Yan, Yilun Du, Yining Hong,
and Chuang Gan. 3d-vla: 3d vision-language-action generative world model. arXiv preprint
arXiv:2403.09631, 2024.

Ruijie Zheng, Yongyuan Liang, Shuaiyi Huang, Jianfeng Gao, Hal Daumé III, Andrey Kolobov,
Furong Huang, and Jianwei Yang. Tracevla: Visual trace prompting enhances spatial-temporal
awareness for generalist robotic policies, 2024. URL https://arxiv.org/abs/2412.
10345.

Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba. Object detectors
emerge in deep scene cnns, 2015. URL https://arxiv.org/abs/1412.6856.

13

https://arxiv.org/abs/2303.15343
https://arxiv.org/abs/2412.10345
https://arxiv.org/abs/2412.10345
https://arxiv.org/abs/1412.6856

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

APPENDIX

A DISCLOSE OF LLM USAGE

The LLM is only used to polish the writing, mainly the introduction and conclusion.

B LIBERO-BENCHMARK

The libero-goal suite evaluates goal-completion capabilities, reflecting procedural knowledge (know-
ing how to complete a task). Conversely, the libero-object and libero-spatial suite assess object
recognition, localization, and interaction capabilities, highlighting declarative knowledge (under-
standing entities and concepts). Tasks in libero-object share the same goal, picking up a specific
object and placing it into a basket, but differ in object layouts. In contrast, libero-goal tasks require
policies to achieve various goals within the same scene layout. The libero-spatial instead operates in
different layouts to test whether the policy can find the correct bowl to pick and place it on the plate.

libero-spatial

···

pick up the {object_name} and place it in the basket

open the middle drawer of the cabinet
push the plate to the front of the stove
put the wine bottle on top of the cabinet
put the bowl on top of the cabinet
put the cream cheese in the bowl
open the top drawer and put the bowl inside
put the cream cheese in the bowl
put the wine bottle on the rack

put the bowl on the stove
put the bowl on the plate
turn on the stove

libero-goallibero-object

pick up the black bowl
{describe where/which}
and place it on the plate

Figure 6: The three basic libero task suites used to build extrapolated tasks. The libero-object tasks
ask the robot to pick a specific object and place it in the basket; The libero-goal tasks operate in the
same scene and require the robot to finish several different tasks where 7 of them are pick and place
tasks and will be used to finish extrapolated tasks; The libero-spatial aims to test whether the robots
can understand the space, and thus asks the robot to pick the specified bowl and place it on the plate.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C UNEMBEDDED PROMPTS

For libero-goal, we use T1 to get the alternative prompt, while for libero-object, we use T2.

libero-object libero-goal

['ഛ', 'ഛ', '\U000e0062', 'ഛ', ' sauce', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'QSize'] ['\U000e0062', '\U000e0062', ' wine', ' bottle', '\U000e0062', 'Top', 'QSize', '\U000e0062', ' cabinet']

['ഛ', 'ഛ', '\U000e0062', 'QSize', ' soup', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'QSize'] ['\U000e0062', '\U000e0062', 'ഛ', '\U000e0062', '\U000e0062', ' plate']

['ഛ', 'ഛ', '\U000e0062', ' milk', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'QSize'] ['\U000e0062', '\U000e0062', 'ഛ', '\U000e0062', '\U000e0062', ' stove']

['ഛ', 'ഛ', '\U000e0062', ' salad', ' dressing', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'QSize'] ['\U000e0062', '\U000e0062', ' cream', ' cheese', '\U000e0062', '\U000e0062', 'ഛ']

['ഛ', 'ഛ', '\U000e0062', 'ഛ', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'QSize'] ['Open', '\U000e0062', ' middle', 'ValueError', 'QSize', '\U000e0062', ' cabinet']

['ഛ', 'ഛ', '\U000e0062', ' cream', 'ഛ', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'QSize'] ['push', '\U000e0062', ' plate', 'QSize', '\U000e0062', ' front', 'QSize', '\U000e0062', ' stove']

['ഛ', 'ഛ', '\U000e0062', ' orange', 'ഛ', 'QSize', 'QSize', "]=='", '\U000e0062', '\U000e0062', 'QSize'] ['Turn', 'QSize', '\U000e0062', ' stove']

['ഛ', 'ഛ', '\U000e0062', 'ഛ', 'ഛ', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'QSize'] ['Open', '\U000e0062', 'Top', 'Einf', 'QSize', 'Einf', '\U000e0062', 'ഛ', ' inside']

['ഛ', 'ഛ', '\U000e0062', 'ഛ', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', ' basket'] ['\U000e0062', '\U000e0062', ' wine', ' bottle', '\U000e0062', '\U000e0062', ' rack']

['ഛ', 'ഛ', '\U000e0062', 'QSize', ' sauce', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'QSize'] ['\U000e0062', '\U000e0062', 'ഛ', '\U000e0062', 'Top', 'QSize', '\U000e0062', ' cabinet']

Table 4: The alternative prompts for libero-goal and libero-object. It is hard to understand them, even
if one knows the original prompts shown in Appendix B,

Original Prompt Prompt umembedded from text-latent (tokens)

pick up the black bowl next to the plate and place it on the plate 'ഛ', 'QSize', '\U000e0062', ' black', 'ഛ', 'ഛ', 'QSize', '\U000e0062', ' plate', 'QSize', 'QSize', 'QSize', 'QSize', '\U000e0062', 'QSize'

pick up the black bowl on the cookie box and place it on the plate 'ഛ', 'ഛ', '\U000e0062', ' black', 'ഛ', '\U000e0062', '\U000e0062', ' cookie', 'QSize', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'QSize'

pick up the black bowl on the wooden cabinet and place it on the plate 'ഛ', 'ഛ', '\U000e0062', ' black', 'ഛ', '\U000e0062', '\U000e0062', ' wooden', ' cabina', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'QSize'

pick up the black bowl on the ramekin and place it on the plate 'ഛ', 'ഛ', '\U000e0062', ' black', 'ഛ', '\U000e0062', '\U000e0062', 'ഛ', 'kin', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'QSize'

pick up the black bowl on the stove and place it on the plate 'ഛ', 'ഛ', '\U000e0062', ' black', 'ഛ', '\U000e0062', '\U000e0062', ' stove', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'QSize'

pick up the black bowl next to the ramekin and place it on the plate 'ഛ', 'QSize', '\U000e0062', ' black', 'ഛ', 'ഛ', 'QSize', '\U000e0062', 'ഛ', 'kin', 'QSize', 'QSize', 'QSize', '\U000e0062', '\U000e0062', 'QSize'

pick up the black bowl from table center and place it on the plate 'ഛ', 'QSize', '\U000e0062', ' black', 'QSize', ' FROM', ' table', 'ഛ', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'ഛ'

pick up the black bowl between the plate and the ramekin and place
it on the plate

'ഛ', 'ഛ', '\U000e0062', ' black', 'ഛ', ' between', '\U000e0062', 'ഛ', 'QSize', '\U000e0062', 'ഛ', 'kin', 'QSize', 'QSize', 'ഛ', '\U000e0062',
'\U000e0062', 'QSize'

pick up the black bowl in the top drawer of the wooden cabinet and
place it on the plate

'QSize', 'QSize', '\U000e0062', ' black', 'QSize', '\U000e0062', '\U000e0062', 'Top', 'ഛ', 'QSize', '\U000e0062', ' wooden', ' cabina', 'QSize',
'QSize', 'QSize', '\U000e0062', '\U000e0062', 'QSize'

pick up the black bowl next to the cookie box and place it on the plate 'ഛ', 'QSize', '\U000e0062', ' black', 'QSize', 'QSize', 'QSize', '\U000e0062', ' cookie', 'QSize', 'QSize', 'QSize', 'QSize', 'QSize', '\U000e0062',
'QSize'

Table 5: Prompts decoded from T3 for libero-spatial tasks and can instruct π0 to finish tasks with
around 70% success rate. This enables adversarial attacks and private instructions.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D BEHAVIOR VISUALIZATION

put the bowl at table
center on the cabinet

put the bowl at table
center on the stove

put bowl next to the
plate on the cabinet

put the bowl next to
the plate on the stove

put the bowl on cookie
box on the cabinet

put the bowl on cookie
box on the stove

put the butter on the
plate

put the chocolate
pudding on the plate

put the milk on the
plate

put the orange juice on
the plate

libero-spatial-ood

put the bbq source on
the plate

put the cream cheese
in the basket

put the cream cheese
on the plate

put the cream cheese
on the stove

put the cream cheese
on the cabinet

put the orange juice on
the stove

put the tomato sauce
on top of the cabinet

put the wine bottle on
the plate

put the wine bottle on
the stove

put the wine bottle in
the bowl

libero-goal-ood

Figure 7: Trajectories of finishing tasks in libero-ood. The only failed task is highlighted in red. A
fun fact is that these colored dots indicating the trajectory can be observed by the π0 as well, while
it is still robust to this visual perturbation. The only failure case is put the bowl next to the plate
on the stove. It keeps picking up the bowl next to the plate and placing it on the plate. We suspect
that the second task context is not strong enough to trigger the behavior "put on the stove", or the
context of the first task is too strong to be fully removed from the residual stream, so the policy keeps
implementing the behaviors of the first task and put the bowl on the plate.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E DETAIL TASK PERFORMANCE

lib
er
o-
go

al
-o
od

lib
er
o-
sp
at
ia
l-o

od

17

	Introduction
	Related Work
	Method
	Preliminary
	Text Latent
	Text Latent Interpolation

	Experiments
	Task Reconstruction
	Task Extrapolation
	Spatial Overfitting of pi0
	Spatial Overfitting is Common in VLAs

	Conclusion
	Disclose of LLM Usage
	LIBERO-Benchmark
	Unembedded Prompts
	Behavior Visualization
	Detail Task Performance

