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ABSTRACT

Vision-language-action models (VLAs) often achieve high performance on demon-
strated tasks but struggle significantly when required to extrapolate, recombining
skills used in different tasks in novel ways. For instance, VLAs might successfully
put the cream cheese in the bowl and put the bowl on top of the cabinet, yet still
fail to put the cream cheese on top of the cabinet. This motivates us to investigate
whether VLAs merely overfit to demonstrated tasks or still hold the potential to
extrapolate. Our study uses text latent as the ingredient; it is a task-specific vector
derived from the models’ hidden states. It thus encodes semantics necessary for
completing a task and can be used to reconstruct the associated task behavior by
writing it to the model’s residual stream. Furthermore, we find that skills used
in distinct tasks can be combined to produce novel behaviors by blending their
respective text latent. Applying this to π0, we increase its success rate from 9% to
83% on the proposed libero-ood benchmark, which features 20 tasks extrapolated
from standard LIBERO tasks. This reveals that the skill representations encoded in
text-latent are individual yet composable, while π0 fails to autonomously combine
these representations for extrapolation. This also validates the design of libero-ood;
it comprises tasks that the model fails, yet should be able to complete. We then
tested other VLAs on libero-ood, and none of them achieved a success rate higher
than 21%. Further analysis reveals VLAs share a common pattern to exhibit spatial
overfitting, associating object names with where the object is spatially located in
the demonstrated scene rather than achieving true object and goal understanding.

1 INTRODUCTION

Building toward generalist, vision-language-action models (VLAs) trained with large-scale multi-
modal datasets (O’Neill et al., 2023) have shown remarkable visual and language generalizability,
leading to strong performance on diverse manipulation tasks (Brohan et al., 2023; O’Neill et al.,
2023; Li et al., 2023b; Kim et al., 2024; Durante et al., 2024; Huang et al., 2024; et al., 2024;
Zhen et al., 2024; Black et al., 2024; Team et al., 2024; Hou et al., 2025; Qu et al., 2025; Zheng
et al., 2024). Typically, for satisfactory deployment on new tasks, VLAs are fine-tuned using
demonstrations of target tasks (Kim et al., 2025). Though this paradigm ensures good in-distribution
generalization to light conditions (Li et al., 2024b) and small perturbations of scene layout (Liu et al.,
2024), we empirically find that VLAs struggle with out-of-distribution (OOD) tasks, particularly
those extrapolated from tasks that they can perform well individually. For instance, a VLA might
successfully "put the cream cheese in the bowl" and "put the bowl on top of the cabinet", yet fail to
perform the extrapolated task of "put the cream cheese on top of the cabinet", even though the motion
primitives required by this task, "picking the cream cheese" and "reaching the top of the cabinet",
have already been learned in different tasks. This raises a question: Do VLAs merely overfit to
demonstrated trajectories or do they learn composable representations that support broader
generalization? We study this on the SOTA VLA π0 (Black et al., 2024) with its text latent, which is
a vector derived from the model’s internal states, and thus encodes the learned representations.

To identify the text latent for a given task, we run π0 on the corresponding task demonstrations
and record the hidden states of text tokens for each transformer layer. After this, we average all
collected layer-wise features and obtain text latent. By writing the text latent to the text tokens’
residual streams (Elhage et al., 2021) of π0, we can reconstruct the associated task trajectory without

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

libero-ood (20 tasks)

Success Rate 

put the wine bottle on 
the stove

put the wine bottle 
in the bowl

put the cream cheese
on top of the cabinet

+  text-latent on Extrapolated Tasksπ0

put the bowl on 
the stove

put the wine bottle on 
top of the cabinet 

put the cream cheese 
in the bowl

put the bowl on top 
of the cabinet 

on Demonstrated Tasks π0

Figure 1: UniVLA, openvla-oft, π0, and π0-fast achieve less than 21% success rate on the proposed
libero-ood benchmark. It consists of tasks extrapolated from standard LIBERO (Liu et al., 2024) tasks
that those VLAs have been fine-tuned with. By applying the proposed Text Latent Interpolation (TLI),
we improve the performance of π0 up to 83%. Behaviors of π0-TLI on three exemplary extrapolated
tasks are shown in the second row, while the first row shows the associated two base tasks.

providing the task prompt. We also find that unembedding text latent (nostalgebraist, 2020) produces
alternative task prompts, which can instruct the model to finish the corresponding tasks with about
70% success rate. However, these alternative prompts are encrypted and unreadable, enabling private
instruction and backdoor attacks. Furthermore, we find that by using Text Latent Interpolation (TLI)
to blend the representations learned for two tasks, the model can combine respective sub-behaviors
or skills to complete novel tasks. Specifically, TLI injects the temporal interpolation of the two
respective text latents to the residual stream, with the mixing ratio linearly adjusted at each timestep.
As a result, the intervention guides the model towards Task 1’s behavior at the beginning, and as the
episode progresses, the influence smoothly shifts towards Task 2’s behavior. As shown in Fig. 1, π0

with text latent can stitch together sub-trajectories used in different tasks to finish extrapolated tasks,
even if the newly composed trajectories are not shown in training and fine-tuning data.

To verify that learned representations can broadly support OOD generalization with TLI, we introduce
the libero-ood task suite. It comprises 20 challenging extrapolated tasks derived from the three
standard LIBERO suites: libero-goal, libero-spatial, and libero-object. Each task in libero-ood is
designed such that while the individual movements required for grasping and placement are present
in separate training tasks, the specific combination of these movements is novel. By applying TLI,
the success rate of π0 on libero-ood increases from 9% to 83%. And it manages to complete 19 out
of 20 tasks at least once in 10 repeated runs. This significant improvement confirms that the skill
representations, encoded in text latents, generally exist and are composable, while the model
cannot combine them autonomously and hence failed on novel extrapolated tasks. On the other
hand, this result validates the design of libero-ood as a suitable benchmark for OOD generalizability
for all VLAs. Rather than presenting VLAs in completely impossible OOD tasks (e.g., holding a
steering wheel to drive a car), libero-ood comprises OOD tasks that the model has the potential
to solve by simply mixing the learned representation. Therefore, we tested other SOTA VLAs on
libero-ood, including π0-fast (Pertsch et al., 2025), openvla-oft (Kim et al., 2025), and UniVLA (Bu
et al., 2025). Though they achieve about a 95% success rate on the three standard LIBERO task suites
after fine-tuning, their success rate on libero-ood is less than 21%, highlighting their limitations in
extrapolation. Further qualitative analysis reveals that VLAs commonly exhibit spatial overfitting,
associating object names with their locations in the demonstrated scene. When instructed to pick an
object, they always move to where the object has been placed before, ignoring its current location. It
uncovers that VLAs fail to learn true object or goal understanding even after fine-tuning.
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2 RELATED WORK

Vision-Language-Action Models. VLAs are usually initialized from vision-language models
(VLMs) pretrained with large-scale cross-modality data. To adapt it for decision-making, we need
to further train it with large-scale cross-embodiment datasets like Open X-Eombodiment (O’Neill
et al., 2023), following a fine-tuning on specific tasks with fewer demonstrations (Brohan et al., 2023;
O’Neill et al., 2023; Li et al., 2023b; Kim et al., 2024; Durante et al., 2024; Huang et al., 2024; et al.,
2024; Zhen et al., 2024; Black et al., 2024; Team et al., 2024; Hou et al., 2025; Bu et al., 2025; Qu
et al., 2025; Wang et al., 2024; NVIDIA et al., 2025; Team et al., 2025; Pertsch et al., 2025; Zheng
et al., 2024). Though VLAs are all built upon the transformer-based pre-trained VLMs (Vaswani
et al., 2023), it remains unclear what is the best way to decode actions. OpenVLA (Kim et al., 2024),
RT-2 (Brohan et al., 2023), and π0-fast (Pertsch et al., 2025) follow the next-token prediction manner
used by VLMs and LLMs and decode discrete action tokens, which will be converted to continuous
actions according to different tokenization schemes. Another widely adopted way to predict action is
to use a regression head or diffusion model with extra parameters (NVIDIA et al., 2025; Black et al.,
2024; Kim et al., 2024; Wen et al., 2024; Lee et al., 2024; Chi et al., 2023; Kim et al., 2025; Li et al.,
2024a). As the VLM is the core component for VLAs’ ability, we choose to mine the meaningful
internal representation of the transformer part of π0, which adopts an additional action expert to
generate continuous actions with flow matching.

Mechanistic Interpretability (MI). This is a subfield of interpretability, where researchers reverse
engineer the model’s internal computations to understand how it works (Rai et al., 2025; Elhage
et al., 2021; Vaswani et al., 2023) and reconstruct or activate certain behaviors. Some early works
analyze image classification models (Olah et al., 2020; Bau et al., 2017; Zhou et al., 2015) and find
that neurons play the role of feature detectors for patterns from simple curves to complex objects
like cats (Cammarata et al., 2020). Recent studies of MI on LLM and VLM identifies important
circuits that can perform specific tasks like induction head (Olsson et al., 2022) to output repeating
words, function vectors (Todd et al., 2024; Luo et al., 2024) to produce antonyms, attention head
to detect number or shape (Gandelsman et al., 2024), neurons contributing to recognize specific
objects (Gandelsman et al., 2024), and internal features making VLMs hallucinate (Jiang et al.,
2025). However, there are limited works that study the neural policies or VLAs from the MI
perspective. The most relevant works study adversarial attack with feature attribution (Wang et al.,
2025), symbolic representation uncovering (Lu et al., 2025), and motion-relevant neuron identifying
and characterization (Li et al., 2023a; Häon et al., 2025). Our work finds causal effects between the
internal representations and VLAs’ behaviors. As a result, we can produce obscure prompts with logit
lens (nostalgebraist, 2020), enabling private instruction or backdoor attack. In addition, the identified
functional component enables the π0 for extrapolated tasks, where all SOTA VLAs struggle with.

3 METHOD

We start by formulating how transformer-based VLAs work. Then, we illustrate how to identify text
latent and how to use them to change the model’s internal representation, steering its behavior.

3.1 PRELIMINARY

Existing VLAs adopt VLMs as encoders to fuse both vision and language information. Concretely, a
pre-trained vision encoder, e.g., CLIP (Radford et al., 2021) and SigLIP (Zhai et al., 2023), is used to
generate d-dimensional sequential image embeddings from image patches, followed by d-dimensional
text embeddings that are tokenized and projected from the task description. For some VLAs (Kim
et al., 2024), the task description is encapsulated with certain context, like "what actions the robot
should take to {task description}”, which introduces extra tokens. In addition, the proprioceptive
state will be projected (Kim et al., 2024) or tokenized (Pertsch et al., 2025) into the d-dimensional
shared space to work with image-text embeddings. After tokenization, we assume there are totally
m d-dimensional embeddings, e = {ei : ei ∈ Rd, i = 1...m}, obtained from image, text, and robot
proprioception, which will go through L transformer layers. Except for the last layer, each layer l
outputs hidden states hl = {hi

l : h
i
l ∈ Rd, i = 1...m}. The action is then generated by a = f(e, h),

where h = {hl : hl ∈ Rm×d, l = 1...L − 1} is hidden states of all tokens across L − 1 layers.
More precisely, the action generation uses the KV cache derived from e and h, where the image-text
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embeddings e are passed through the first transformer layer (layer 0) to compute key and value
projections, and the hidden states hl are passed through their subsequent layer l + 1 to compute the
corresponding KV projections. To simplify the notation, we condition the action generation on e
and h. This formulation applies to most existing VLAs as long as the VLM is reused to do action
generation in an autoregressive way (Kim et al., 2024; Qu et al., 2025; Brohan et al., 2023; Pertsch
et al., 2025) or the extra action prediction module is also transformer-based (NVIDIA et al., 2025;
Black et al., 2024), which can take the KV-cache to do causal self-attention.

3.2 TEXT LATENT

As VLAs’ behavior depends on the task description, we hypothesize that the skill representations are
embedded in the internal representations of text (task description) tokens. To study this mechanism,
we denote the text embeddings as eT = {ei : ei ∈ Rd, i ∈ T} and their hidden state at each layer as
hT
l = {hi

l : h
i
l ∈ Rd, i ∈ T}, where T is the set of text tokens indices. Therefore, the hidden states

of all text tokens across all L− 1 layers can be represented by a tensor as hT ∈ RL−1×|T |×d after
preserving orders and stacking them. By denoting the rest of the embeddings and their hidden states
as e− = e \ eT and h− = h \ hT , we can update the action generation function at timestep i as

a = f(eT , hT (i), e−(i), h−(i)) (1)
Note that text embedding, eT , doesn’t condition on i, since it is fixed throughout the whole episode,
while the rest image and proprioceptive tokens are changed at different timesteps. Our goal is to
manipulate the hT (i) at each decision-making step to activate behaviors with specific semantics.

Text latent is the ingredient for doing this. It has the same shape as hT and thus can be written into the
text tokens’ residual stream. We identify it by averaging a set of text hidden states {hT (i) : hT (i) ∈
RL−1×n×d, i ∈ B}, where B is all timestep indices of a demonstrated episode for the target task,
and hT (i) is thus obtained by forwarding the model with the observation at timestep i. As multiple
demonstrated episodes exist for a single task in the training sets, the average is thus taken over K
demonstrations. Therefore, the text latent can be calculated by element-wise average:

T =
1∑k=K

k=1 |Bk|

k=K∑
k=1

∑
i∈Bk

hT (i) (2)

In our reconstruction experiment, we demonstrate that T captures the most essential knowledge for
finishing the corresponding task. And blending them enables skill combination for task extrapolation.

3.3 TEXT LATENT INTERPOLATION

A task derived from two base tasks can be interpreted as starting with Task 1 and gradually switching
to Task 2. Though text token ids are discrete and cannot be changed smoothly throughout the episode,
we can approximate a continuous transition by linearly interpolating the text embeddings of the two
base task prompts, eT1 and eT2 , at timestep i. This is called Text Embedding Interpolation (TEI).

eT = eT (i) = (1− α)eT1 + α eT2 , α = i/λ, 0 ≤ i ≤ λ, (3)
where the hyperparameter λ controls the transition speed. The λ is set to 24, the average number of
policy-execution steps, for π0, except for put the wine bottle in the bowl. As the wine bottle is near
the bowl, we shorten λ to 14 for this task, so the second task behavior is activated sooner.

Intuitively, TEI rewrites the task prompt at every step with a weighted blend of the two source
instructions. Additionally, we can leave the target task prompt (and thus its embedding) unchanged
and operate on the model’s residual stream with the two respective text latent (T 1, T 2). We term this
approach Text Latent Interpolation (TLI), which modifies the text hidden states hT (i) as follows:

hT (i) = hT (i) +
[
(1− α) T 1 + αT 2

]
−

[
(1− α) T 2 + αT 1

]
, α = i/λ, 0 ≤ i ≤ λ. (4)

At the beginning of the episode, Task 2’s context is suppressed and subtracted from the residual
stream. As the episode progresses (α : 0→ 1), Task 2’s context is gradually injected into the residual
stream while Task 1’s context fades out and is finally suppressed. TLI can also be applied to a
specific layer l by replacing hT

l (i) with the interpolated pair (T 1
l , T 2

l ) in the same fashion. The full
interpolation procedure is listed in Algorithm 1. Both TEI and TLI can be deployed independently or
jointly. In either case, the ratio i/λ is clipped between 0 and 1. If the length of the text dimension of
T 1 or T 2 differs from the number of tokens of the target prompt, we truncate it or pad it with zeros
to match the length of the target prompt, as the task descriptions are of a similar length.
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Algorithm 1 TEI and TLI during Task Execution
Require: text latent T 1, T 2, Interpolation steps λ, Initial observations o, Max timestep J

1: for i = 1 to J do
2: e−, h−, eT , hT ← encode(o) ▷ Get internal representation
3: if Text Embedding Interpolation (TEI)
4: eT = (1− i/λ) eT1 + (i/λ)eT2 ▷ Overwrite text embedding
5:6: if Text Latent Interpolation (TLI)
7: hT (i) = hT (i) + (1− i/λ) (T 1 − T 2) + i/λ(T 2 − T 1) ▷ Write to residual stream
8:9: a = f(eT , hT (i), e−(i), h−(i)) ▷ Decode action

10: o← simulation(a) ▷ Forward simulation
11: end for

4 EXPERIMENTS

Benchmark. We conducted experiments with LIBERO (Liu et al., 2024), a simulation environment
widely employed for evaluating Vision-Language-Action (VLA) models (Black et al., 2024; Pertsch
et al., 2025; Kim et al., 2025; Qu et al., 2025; Zheng et al., 2024; Bu et al., 2025). We use three
standard task suites from LIBERO: libero-goal, libero-object, and libero-spatial. Each suite contains
10 tasks, and most of them require pick-and-place. It is recommended to learn their details first
in Appendix B. We also introduce a novel task suite, libero-ood, comprising two sub-suites libero-
goal-ood and libero-spatial-ood. Each also contains 10 extrapolated tasks. The key idea behind
these 20 tasks is to ensure that both the grasping and placement locations have individually appeared
in the training data, so the policy has already learned how to reach these locations. However, the
specific trajectory connecting these two locations has not been demonstrated. Thus, solving these
tasks requires the policy to stitch together sub-trajectories it has learned from demonstrated tasks.

libero-spatial-ood

put the bowl at the table 
center on the cabinet/stove

put the bowl next to the 
plate on the cabinet/stove

put the bowl on the cookie 
box on the cabinet/stove

put the butter/chocolate 
pudding  on the plate

put the milk/orange juice 
on the plate

put the wine bottle/cream 
cheese on the stove/plate/bowl

put the orange juice 
on the stove

put the bbq source
 on the plate

put the tomato sauce 
on top of the cabinet

put the cream cheese 
in the basket

libero-goal-ood

Figure 2: Visualization of scene layouts, object to pick and where to place (denoted by the red arrows),
and prompts for tasks in libero-ood, which can be further split into libero-goal-ood and libero-spatial-
ood. libero-goal-ood includes six extrapolated tasks that require combining sub-skills learned from
libero-goal and operating in the same scene layout as libero-goal tasks (the top-left figure), while
the remaining four tasks slightly change the layout and additionally demand transferring knowledge
about objects. On the other hand, libero-spatial-ood provides six tasks that require transferring
the skills learned in libero-goal and libero-spatial to place the object on the cabinet or stove. The
remaining four tasks require placing unseen objects from libero-object at new locations on the plate.
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Experiments. Our main experimental goal is to examine whether π0 learns individual yet com-
posable task representations, so it can complete these 20 extrapolated tasks by combining learned
representations, encoded in text latent. For each task in the three standard suites, we identify the
corresponding text latent using 20 demonstrations, calculated according to equation 2. We first
demonstrate on π0 that text latent encapsulates the essential knowledge required to complete standard
LIBERO tasks by reconstructing the task behavior without clear task prompts. Second, we show that
by interpolating between text latent or text embeddings, π0 can complete challenging extrapolated
tasks in libero-ood suite, where tasks pose difficulties for current state-of-the-art VLAs. Finally, our
analysis across specific tasks reveals that VLAs’ behavior relies on the mechanistic memorization of
demonstrated trajectories, rather than a genuine conceptual understanding of objects or goals.

Evaluation. For each task, we execute 10 independent runs using different random seeds. Therefore,
the final success rate for each task suite is calculated as the proportion of successful episodes across
the total 100 runs (10 tasks × 10 runs/task). All experiments are conducted with Nvidia RTX 4090.

4.1 TASK RECONSTRUCTION

In this experiment, we use text latent to reconstruct the behavior or trajectory learned for the three
standard task suites, demonstrating that individual task representation is encoded in text latent. We use
two ways to examine the effectiveness of text latent. The first way is to mask all the text tokens or set
each text token to the space character (" ") so the text prompt doesn’t provide any task information. We
can then add back the text latent to each hidden layer representation when executing the policy. The
second way is to unembed the early layer vectors of text latent into a set of token ids (nostalgebraist,
2020), producing alternative prompts. Thus, we can feed the alternative prompt to the model directly.

libero-object libero-goal libero-spatial
Original 0.98 0.95 0.97
Mask Prompt 0.11 0.14 0.24
Blank Prompt 0.28 0.16 0.23
Blank Prompt+T 0.94 0.82 0.81
T1-Prompt 0.92 0.66 0.98
T2-Prompt 0.73 0.19 0.85
T3-Prompt 0.56 - 0.68

Table 1: The success rate of different ways to reconstruct tasks.

The results are shown in Table 1.
The first line is the official perfor-
mance of π0 with the original task
prompt, serving as the upper bound.
The Mask Prompt experiment uses
only image input for all task execu-
tion, while the Blank Prompt adds
back text tokens but fills with space
characters (" "). In both settings,
the policy has no task instructions,
indicating the lower bound of per-
formance. The rest lines show the

performance of different ways to reconstruct the task. For each task suite, the settings yielding the
best performance are bolded, and the second-best performance is underlined. The experiment Blank
Prompt+T shows that by writing the text latent to the model’s residual stream, hT (i) = hT (i) + T ,
the tasks can be finished with a success rate higher than 80%, even if the prompt is blanked and
provides none of the task information. Thus, it confirms that text latent captures essential task
knowledge, and can remind π0 of a task by injecting it into the model’s internal states.

As T ∈ RL−1×n×d, we can thus applying the language embedding matrix E to unembed Tl into
tokens by calculating the cosine similarity between each column of E and Tl, then selecting the indices
with maximum similarity as new tokens, composing the alternative prompt. As shown in Table 1,
we unembed T1, T2, and T3 and find that for libero-goal, the prompt produced by unembedding T1
achieves a 66% success rate, while the next layer’s vector can not reconstruct the task well. However,
for libero-object and libero-spatial, even the prompt unembedded by T2 and T3 can reconstruct
tasks with an average success rate of 70%. We find most prompts unembedded from text latent
are encrypted and unreadable, even for people who are familiar with the original prompts.
This enables an application, obscure prompting, for private instruction or backdoor attacks. The
unembedded prompt for the three task suites is shown in Appendix C.

4.2 TASK EXTRAPOLATION

As text latent encodes task context or skill representations, we then ask whether the behaviors learned
from separate tasks can be recombined using the respective text latent. We refer to any task that
demands such a behavior recombination as an extrapolated task. These new tasks keep objects’

6
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UniVLA openvla-oft π0-fast π0 πS
0 π0-TLI π0-TLI+ π0-TLI*

libero-goal-ood 0.32 0.01 0.13 0.02 0.72 0.85 0.85 0.33
libero-spatial-ood 0.11 0 0.17 0.16 0.66 0.81 0.69 0.18

All 0.21 0.01 0.15 0.09 0.69 0.83 0.77 0.25

Table 2: The success rate of SOTA VLAs and our methods on the libero-goal-ood task suite. Our
methods enable π0 for task extrapolation by simply combining its learned representation. Detailed
performance of each task and the behavior visualization of π0-TLI is available in Appendix E and D.

locations or layouts the same as the scenes for collecting training demonstrations. Thus, for each
libero-ood task, VLAs have learned to reach the grasping and placement locations, respectively.
However, π0 only shows a 9% success rate in libero-ood. After applying the proposed TLI for
π0, we can largely improve its success rate to 83%, as shown in Fig. 3. This confirms that skill
representations generally exist in π0 that can be rearranged to solve novel tasks. It also validates
that the tasks in libero-ood are within π0’s capability, while it fails on it. We further test other
SOTA VLAs’ extrapolation ability using libero-ood. The results are shown in Table 2. None of the
VLAs achieves a success rate higher than 21%. Among all VLAs, the best is UniVLA. It shows
trajectory stitching behavior in some tasks, and better language following ability, which results from
the disentangled training of the vision-language module and the action module (Huang et al., 2025).

put the bbq source on 
the plate

put the cream cheese 
in the basket

put the cream cheese 
on the plate

put the cream cheese 
on the stove

put the cream cheese 
on the cabinet

put the orange juice on 
the stove

put the tomato sauce 
on top of the cabinet

put the wine bottle on 
the plate

put the wine bottle on 
the stove

put the wine bottle in 
the bowl

Figure 3: Visualization of π0-TLI’s behavior in libero-ood. Result on libero-spatial is in Appendix D.

We also applied both TEI and TLI to the model inference together, yielding π0-TLI+. The results show
that TEI doesn’t further improve the performance of π0-TLI for libero-goal-ood, while it even slightly
harms the performance of libero-spatial-ood. We will use π0-TLI+ to reveal the spatial overfitting
exhibited in π0 in the next section. In addition, we run another experiment (π0-TLI*) using blank
prompts similar to the previous reconstruction experiment. Its performance drastically drops to 33%
and 18%, indicating the importance of the prompt for extrapolated tasks. The text embedding of an
extrapolated prompt can be viewed as stitching two base task prompts eT = concat(eT1 [: a], e

T
2 [b :]),

where a and b indicate the prompt truncation position. These stitched text prompts (π0-TLI) are better
for combining two base task behaviors than interpolated prompts (π0-TLI+).

On the other hand, π0-TLI* can be viewed as implicitly switching task context without explicit
prompts. This inspires us to try explicitly prompt switching to solve libero-ood. Concretely, we can
feed Task 1’s prompt to π0, and when timestep > λ/2, we switch to Task 2’s prompt. The πS

0 executes
in this way and reaches a 69% success rate. It suggests that augmenting the model’s ability with
learned representation (π0-TLI) is better than cheating it with what task it currently performs.
We also apply prompt switching to other VLAs, and openvla-oft, UniVLA, openpi-fast achieve 0%,
2%, 35% success rate, respectively, further highlighting the challenge of libero-ood.
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In addition, we try to find a more compact structure for text latent.
Specifically, we intervene in a specific layer l of the model with Tl
to find whether it contributes significantly to the extrapolated tasks.
As shown in the left figure, the early several layers can work alone
to finish tasks in libero-ood with more than 20% success rate. After
layer 6, the success rate begins to drop, while at layer 16 the success
rate recovers to 10%. As each layer of T can work independently
and contributes more or less to the success, we decide to keep all
of them. As a result, the π0 with all hidden layer interventions can

achieve an 83% success rate indicated by the blue dashed line.

4.3 SPATIAL OVERFITTING OF π0

     :cream cheese            bowl
     :bowl              cabinet

     :cream cheese             bowl
     :bowl              plate

     :cream cheese             bowl
     :bowl              stove

     :wine bottle             cabinet
     :bowl              stove

tomato sauce            cabinet bbq sauce               plate cream cheese             basketorange juice               stove

Figure 4: Trajectories of π0-TLI+ for the four tasks that require object recognition. Object to grasp
and place to drop are shown on top of the figure; The two text latent used to complete the task are
listed underneath. These behaviors reveal spatial overfitting. For example, we can use the text latent
and text embedding of "placing on the stove” to put any object into the basket that occupied the
original location of the stove in the training data, ignoring the current location of the stove.

As shown in Fig. 2, the rightmost 4 tasks in libero-goal-ood require the model to pick up objects
that have never been shown in the scene of libero-goal before. In these 4 tasks, we swap the original
objects with new ones from libero-object, while still keeping the displaced objects in the scene. Using
both TEI and TLI, π0 achieves an average success rate of 85% on these four tasks, which confirms the
existence of Spatial Overfitting in π0. Specifically, consider the task put the orange juice on the stove.
The orange juice is placed at the original position of the wine bottle, and the wine bottle is moved
to the former position of the cream cheese. We can instruct π0 to pick the orange juice, using the
text latents and text embeddings of put the wine bottle on top of the cabinet with π0-TLI+. Both text
embedding and hidden states request π0 to pick the wine bottle, while π0 ignores the current location
of the wine bottle that is reachable at the location of the cream cheese, and it still mechanically moves
to where the wine bottle is placed in the demonstrated scene. The trajectories produced by π0-TLI+
for all four tasks are shown in Fig. 4. This behavior indicates that the π0 does not understand
object identity but instead maps object names to fixed locations, termed as Spatial Overfitting.
Thus, “cream cheese” actually means “the object at the location where the cream cheese appeared
during training.” And π0 can grasp anything placed at the location of the cream cheese.

4.4 SPATIAL OVERFITTING IS COMMON IN VLAS

The spatial overfitting commonly exists for VLAs besides π0, which can be confirmed by experiments
on libero-object suite, where five tasks place the target object at the center of the scene, and the other
five place it in the top-right corner. After fine-tuning with demonstrations, VLAs can always pick
the central object with any of the five “center” prompts and the top-right object with any of the five
“top-right” prompts. In the two-prompt experiments shown in Table 3, we always use the prompt,
pick up the cream cheese to pick the object at the scene center, and the prompt, pick up the alphabet
soup for the objects at the top-right corner. We then run the libero-object with the two prompts. All
SOTA VLAs can maintain the performance on the libero-object with incorrect prompts, even though
the "cream cheese" and "alphabet soup" still appear in the scene somewhere.
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π0 π0-fast openvla-oft UniVLA
Two-prompt 0.94 0.86 0.99 0.90
OOD-position 0 0 0 0

Table 3: The success rate on modified libero-object suite

In addition, when the target object is
located anywhere other than the cen-
ter or top-right, the policy fails. In
the OOD-position experiment 3, we
relocated the target objects to a place
other than the centre or the top-right

corner. As expected, all VLAs failed. The end effector still travelled to the original location of the
target object, picked up whatever object happened to occupy that spot, and dropped it in the basket.

Figure 5: The object to grasp is framed in white. Even if the end effector is close to the object, the π0

model is still not interested in the target object. Also, during the inference, π0 always focuses on the
posture of the end effector, suggesting that the image input is mainly for estimating the robot state.

As text latent encodes the task context, we can analyze which part of the image observation contributes
most to the formation of text latent for π0 with logit lens (nostalgebraist, 2020; Jiang et al., 2025).
Fig. 5 highlights the information extracted from the image observation to build text-latent in 4
libero-object tasks at different timesteps. We find that the π0 always absorbs the information about
the destination and the robot pose to build text latent, with less attention on the object to grasp or treat
all objects equally. Thus, π0 relies on the text instruction instead of image information to differentiate
the two grasping locations. This suggests a poor vision-language alignment and shortcut learning.

5 CONCLUSION

Existing VLAs show promising in-distribution generalization after fine-tuning, but their out-of-
distribution (OOD) robustness is understudied due to a lack of suitable benchmarks. This is primarily
because it is difficult to determine how far new tasks should deviate from the training data distribution.
For instance, it would be unreasonable to expect a robot arm trained solely on tabletop manipulation
to hold a steering wheel and drive a car. An ideal OOD benchmark should therefore comprise tasks
that VLAs have the potential to complete but currently cannot. In this work, we find that by using the
learned internal representation, π0 can be augmented to solve novel tasks that it can not complete on
its own. Since the injected knowledge is derived from the model’s own learned representations, we
conclude that π0 inherently possesses the capability to complete these new tasks, although this ability
appears to be latent or "locked". Tasks constructed in this manner are thus well-suited for our purpose,
leading us to introduce an OOD benchmark named libero-ood. Besides π0, we further evaluate other
SOTA VLAs on LIBERO, including π0-fast, UniVLA, and openvla-oft. Unfortunately, none of them
achieved a success rate higher than 21%. Their failure may stem from the same issue as π0, an
inability to recombine learned representations into new skills, or skill representations don’t emerge
during the training. We thus make libero-ood public to encourage investigating their failure mode
and developing more generalist models without using inference tricks like TLI or prompt switching.

Reproducibility statement. The code to reproduce the results of this work is anonymously at https:
//anonymous.4open.science/r/iclr26_anonymous-3D4E/README.md. The full
videos of π0-TLI on the proposed libero-ood benchmark can be found in the supplementary materials.
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APPENDIX

A DISCLOSE OF LLM USAGE

The LLM is only used to polish the writing, mainly the introduction and conclusion.

B LIBERO-BENCHMARK

The libero-goal suite evaluates goal-completion capabilities, reflecting procedural knowledge (know-
ing how to complete a task). Conversely, the libero-object and libero-spatial suite assess object
recognition, localization, and interaction capabilities, highlighting declarative knowledge (under-
standing entities and concepts). Tasks in libero-object share the same goal, picking up a specific
object and placing it into a basket, but differ in object layouts. In contrast, libero-goal tasks require
policies to achieve various goals within the same scene layout. The libero-spatial instead operates in
different layouts to test whether the policy can find the correct bowl to pick and place it on the plate.

libero-spatial

···

pick up the {object_name} and place it in the basket

open the middle drawer of the cabinet
push the plate to the front of the stove
put the wine bottle on top of the cabinet
put the bowl on top of the cabinet
put the cream cheese in the bowl
open the top drawer and put the bowl inside
put the cream cheese in the bowl
put the wine bottle on the rack

        

put the bowl on the stove
put the bowl on the plate
turn on the stove

        

libero-goallibero-object

pick up the black bowl 
{describe where/which} 
and place it on the plate

Figure 6: The three basic libero task suites used to build extrapolated tasks. The libero-object tasks
ask the robot to pick a specific object and place it in the basket; The libero-goal tasks operate in the
same scene and require the robot to finish several different tasks where 7 of them are pick and place
tasks and will be used to finish extrapolated tasks; The libero-spatial aims to test whether the robots
can understand the space, and thus asks the robot to pick the specified bowl and place it on the plate.
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C UNEMBEDDED PROMPTS

For libero-goal, we use T1 to get the alternative prompt, while for libero-object, we use T2.

libero-object libero-goal

['ഛ', 'ഛ', '\U000e0062', 'ഛ', ' sauce', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'QSize'] ['\U000e0062', '\U000e0062', ' wine', ' bottle', '\U000e0062', 'Top', 'QSize', '\U000e0062', ' cabinet']

['ഛ', 'ഛ', '\U000e0062', 'QSize', ' soup', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'QSize'] ['\U000e0062', '\U000e0062', 'ഛ', '\U000e0062', '\U000e0062', ' plate']

['ഛ', 'ഛ', '\U000e0062', ' milk', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'QSize'] ['\U000e0062', '\U000e0062', 'ഛ', '\U000e0062', '\U000e0062', ' stove']

['ഛ', 'ഛ', '\U000e0062', ' salad', ' dressing', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'QSize'] ['\U000e0062', '\U000e0062', ' cream', ' cheese', '\U000e0062', '\U000e0062', 'ഛ']

['ഛ', 'ഛ', '\U000e0062', 'ഛ', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'QSize'] ['Open', '\U000e0062', ' middle', 'ValueError', 'QSize', '\U000e0062', ' cabinet']

['ഛ', 'ഛ', '\U000e0062', ' cream', 'ഛ', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'QSize'] ['push', '\U000e0062', ' plate', 'QSize', '\U000e0062', ' front', 'QSize', '\U000e0062', ' stove']

['ഛ', 'ഛ', '\U000e0062', ' orange', 'ഛ', 'QSize', 'QSize', "]=='", '\U000e0062', '\U000e0062', 'QSize'] ['Turn', 'QSize', '\U000e0062', ' stove']

['ഛ', 'ഛ', '\U000e0062', 'ഛ', 'ഛ', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'QSize'] ['Open', '\U000e0062', 'Top', 'Einf', 'QSize', 'Einf', '\U000e0062', 'ഛ', ' inside']

['ഛ', 'ഛ', '\U000e0062', 'ഛ', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', ' basket'] ['\U000e0062', '\U000e0062', ' wine', ' bottle', '\U000e0062', '\U000e0062', ' rack']

['ഛ', 'ഛ', '\U000e0062', 'QSize', ' sauce', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'QSize'] ['\U000e0062', '\U000e0062', 'ഛ', '\U000e0062', 'Top', 'QSize', '\U000e0062', ' cabinet']

Table 4: The alternative prompts for libero-goal and libero-object. It is hard to understand them, even
if one knows the original prompts shown in Appendix B,

Original Prompt Prompt umembedded from text-latent (tokens)

pick up the black bowl next to the plate and place it on the plate 'ഛ', 'QSize', '\U000e0062', ' black', 'ഛ', 'ഛ', 'QSize', '\U000e0062', ' plate', 'QSize', 'QSize', 'QSize', 'QSize', '\U000e0062', 'QSize'

pick up the black bowl on the cookie box and place it on the plate 'ഛ', 'ഛ', '\U000e0062', ' black', 'ഛ', '\U000e0062', '\U000e0062', ' cookie', 'QSize', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'QSize'

pick up the black bowl on the wooden cabinet and place it on the plate 'ഛ', 'ഛ', '\U000e0062', ' black', 'ഛ', '\U000e0062', '\U000e0062', ' wooden', ' cabina', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'QSize'

pick up the black bowl on the ramekin and place it on the plate 'ഛ', 'ഛ', '\U000e0062', ' black', 'ഛ', '\U000e0062', '\U000e0062', 'ഛ', 'kin', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'QSize'

pick up the black bowl on the stove and place it on the plate 'ഛ', 'ഛ', '\U000e0062', ' black', 'ഛ', '\U000e0062', '\U000e0062', ' stove', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'QSize'

pick up the black bowl next to the ramekin and place it on the plate 'ഛ', 'QSize', '\U000e0062', ' black', 'ഛ', 'ഛ', 'QSize', '\U000e0062', 'ഛ', 'kin', 'QSize', 'QSize', 'QSize', '\U000e0062', '\U000e0062', 'QSize'

pick up the black bowl from table center and place it on the plate 'ഛ', 'QSize', '\U000e0062', ' black', 'QSize', ' FROM', ' table', 'ഛ', 'QSize', 'QSize', 'ഛ', '\U000e0062', '\U000e0062', 'ഛ'

pick up the black bowl between the plate and the ramekin and place
it on the plate

'ഛ', 'ഛ', '\U000e0062', ' black', 'ഛ', ' between', '\U000e0062', 'ഛ', 'QSize', '\U000e0062', 'ഛ', 'kin', 'QSize', 'QSize', 'ഛ', '\U000e0062', 
'\U000e0062', 'QSize'

pick up the black bowl in the top drawer of the wooden cabinet and
place it on the plate

'QSize', 'QSize', '\U000e0062', ' black', 'QSize', '\U000e0062', '\U000e0062', 'Top', 'ഛ', 'QSize', '\U000e0062', ' wooden', ' cabina', 'QSize', 
'QSize', 'QSize', '\U000e0062', '\U000e0062', 'QSize'

pick up the black bowl next to the cookie box and place it on the plate 'ഛ', 'QSize', '\U000e0062', ' black', 'QSize', 'QSize', 'QSize', '\U000e0062', ' cookie', 'QSize', 'QSize', 'QSize', 'QSize', 'QSize', '\U000e0062', 
'QSize'

Table 5: Prompts decoded from T3 for libero-spatial tasks and can instruct π0 to finish tasks with
around 70% success rate. This enables adversarial attacks and private instructions.
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D BEHAVIOR VISUALIZATION

put the bowl at table 
center on the cabinet

put the bowl at table 
center on the stove

put bowl next to the 
plate on the cabinet

put the bowl next to 
the plate on the stove

put the bowl on cookie 
box on the cabinet

put the bowl on cookie 
box on the stove

put the butter on the 
plate

put the chocolate 
pudding on the plate

put the milk on the 
plate

put the orange juice on 
the plate

libero-spatial-ood

put the bbq source on 
the plate

put the cream cheese 
in the basket

put the cream cheese 
on the plate

put the cream cheese 
on the stove

put the cream cheese 
on the cabinet

put the orange juice on 
the stove

put the tomato sauce 
on top of the cabinet

put the wine bottle on 
the plate

put the wine bottle on 
the stove

put the wine bottle in 
the bowl

libero-goal-ood

Figure 7: Trajectories of finishing tasks in libero-ood. The only failed task is highlighted in red. A
fun fact is that these colored dots indicating the trajectory can be observed by the π0 as well, while
it is still robust to this visual perturbation. The only failure case is put the bowl next to the plate
on the stove. It keeps picking up the bowl next to the plate and placing it on the plate. We suspect
that the second task context is not strong enough to trigger the behavior "put on the stove", or the
context of the first task is too strong to be fully removed from the residual stream, so the policy keeps
implementing the behaviors of the first task and put the bowl on the plate.
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E DETAIL TASK PERFORMANCE

lib
er
o-
go

al
-o
od

lib
er
o-
sp
at
ia
l-o

od

17


	Introduction
	Related Work
	Method
	Preliminary
	Text Latent
	Text Latent Interpolation

	Experiments
	Task Reconstruction
	Task Extrapolation
	Spatial Overfitting of pi0
	Spatial Overfitting is Common in VLAs

	Conclusion
	Disclose of LLM Usage
	LIBERO-Benchmark
	Unembedded Prompts
	Behavior Visualization
	Detail Task Performance

