
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

PASSION: Towards Effective Incomplete Multi-Modal Medical
Image Segmentation with Imbalanced Missing Rates

Anonymous Authors

ABSTRACT
Incomplete multi-modal image segmentation is a fundamental task
in medical imaging to refine deployment efficiency when only par-
tial modalities are available. However, the common practice that
complete-modality data is visible during model training is far from
realistic, as modalities can have imbalanced missing rates in clinical
scenarios. In this paper, we, for the first time, formulate such a
challenging setting and propose Preference-Aware Self-diStillatION
(PASSION) for incomplete multi-modal medical image segmenta-
tion under imbalanced missing rates. Specifically, we first construct
pixel-wise and semantic-wise self-distillation to balance the op-
timization objective of each modality. Then, we define relative
preference to evaluate the dominance of each modality during
training, based on which to design task-wise and gradient-wise
regularization to balance the convergence rates of different modal-
ities. Experimental results on two publicly available multi-modal
datasets demonstrate the superiority of PASSION against existing
approaches for modality balancing. More importantly, PASSION
is validated to work as a plug-and-play module for consistent per-
formance improvement across different backbones. Code will be
available upon acceptance.

CCS CONCEPTS
• Computing methodologies→ Image segmentation.

KEYWORDS
Multi-modality image segmentation, Imbalancedmissing rate, Cross-
modality interaction, Prototype learning

1 INTRODUCTION
Multiple imaging modalities are widely used in clinical practice
like multi-parametric magnetic resonance imaging (MRI) [2–4].
Such homogeneous multi-modal data representing the same media
type provides various tissue contrast views and spatial resolutions,
making it possible to quantitatively categorize histological sub-
regions [9, 43]. Nevertheless, due to factors like image degradation,
patient motion-related artifacts, incorrect acquisition settings, and
cost constraints, MRI sequences may be incomplete [15, 17, 22].
Consequently, despite the great success of multi-modal learning on
medical segmentation [7, 16, 20, 41, 43], it can hardly be directly
deployed in practice.
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Figure 1: Comparison of modality settings in incomplete
multi-modal medical image segmentation. 𝑃𝐷𝑇 denotes per-
fect data training where modalities share equal missing rates
and masked modalities can be visible during training. 𝐼𝐷𝑇
denotes imperfect data training, formulated in this paper,
where modalities own imbalanced missing rates and missing
modalities are invisible during training. Incomplete multi-
modal sets 𝐷1, 𝐷2, 𝐷3, and 𝐷4 are generated/simulated from
full-modality data 𝐷 in 𝑃𝐷𝑇 and drawn from incomplete-
modality data 𝐷 following imbalanced missing rates in 𝐼𝐷𝑇 .

To deal with missing modalities, various approaches have been
proposed for incomplete multi-modal segmentation. One straight-
forward strategy is to synthesize missing modalities with available
full-modality data through generative adversarial networks [14],
which achieves full-modal segmentation with synthetic images
[25, 32, 42]. Another typical solution is to transfer knowledge from
full-modality networks to missing-modality ones [1, 39], which
requires superior teacher models trained with full-modality data
and dedicates student models for each combination of missing
modalities. Alternatively, another efficient approach is shared rep-
resentation learning, which aims to train a unified segmentation
model by sharing a spatial mapping across modalities with multiple
modality-specific encoders and a shared decoder [5, 9, 10, 33, 44].
Compared to the former two methodologies, it provides greater
flexibility with lower computational complexity and thus becomes
the state-of-the-art (SOTA) paradigm.

Unfortunately, previous studies tend to focus on deployment
efficiency while idealizing the training process. In other words,
they all assume perfect data training (𝑃𝐷𝑇 ) where data is available
with full-modality. As illustrated in Figure 1, in 𝑃𝐷𝑇 , incomplete
multi-modal data is generated by randomly masking modalities
with equal probabilities. One typical setting is to randomly mask
modalities during each training round, making invisible modalities
in one round visible in another round. The other setting is to ran-
domly mask modalities before training and keep masked modalities
invisible. Both settings assume different modalities share the same

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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missing rates. Nevertheless, imperfect data exists not only in de-
ployment but also during data collection and model training [21],
which is under-explored. Furthermore, the missing rates of different
modalities may vary in practical scenarios [34]. For instance, in MRI
modalities, T1 is the most commonly acquired while T2 usually is
unavailable due to its sensitivity to artifacts [15], resulting in situa-
tions where modalities are not equally available for model training
and clinical evaluation [6, 19]. Inspired by this, we, for the first
time, formulate such a scenario as imperfect data training (𝐼𝐷𝑇 )
where modalities own imbalanced missing rates and missing
modalities are kept invisible throughout training, as illus-
trated in Figure 1. Such imbalanced missing rates bring modality
imbalance, where weak modalities (i.e., with higher missing rates)
may be dominated by strong modalities (i.e., with lower missing
rates), suffering from being under-trained. Despite great efforts on
modality re-balancing [12, 28], how to balance unequal training in
𝐼𝐷𝑇 for multi-modal segmentation has not been exploited.

Under modality absence in model training, existing approaches
encounter severe issues. Relying on full-modality training data as
ground truth makes it challenging to supervise the reconstruction
task in image synthesis [32, 42] and to train teacher models for
knowledge transfer [1, 39]. In shared representation learning, the
unifiedmulti-modal model typically is trained bymasking modality-
specific features in the fusion stage. However, during training, such
“masked” modality data still plays a role in regularizing the uni-
modal performance [9, 33, 44]. Consequently, it would suffer from
imbalanced regularization for weak modalities in 𝐼𝐷𝑇 .

Based on the observation that, in multi-modal segmentation,
multi-modal always performs better than uni-modal, and the knowl-
edge gap between multi-modal and each uni-modal somewhat re-
flects modality dominance, we propose Preference-Aware Self diS-
tillatION (PASSION) transferring multi-modal knowledge to all
available uni-modals under the guidance of modality preference.
Specifically, pixel-wise and semantic-wise self-distillation is first
constructed to regularize the optimization objective of each uni-
modal in a unified framework. Compared to training via ground
truth, it would re-balance each modality according to its distance
to multi-modal knowledge. Then, considering the varying learn-
ing/optimization paces of different modalities, we define relative
preference to estimate how strong each uni-modal is compared to
others. Then, task-wise and gradient-wise preference-aware reg-
ularization is constructed to ensure a balanced convergence of
different modalities. The main contributions are as follows:

• We identify and formulate a more realistic and challenging
task — incomplete multi-modality medical image segmenta-
tion with imbalanced missing rates. To our knowledge, it is
the first exploration in multi-modal image segmentation.

• We propose a new self-distillation solution PASSION to bal-
ance different modalities in both optimization objectives and
paces. In addition, PASSION is proven, through extensive
evaluation, to work as a plug-and-play module for perfor-
mance improvement across various backbones.

• Weprove the superiority of PASSION against SOTAmodality-
balancing approaches through comprehensive experiments
on BraTS2020 and MyoPS2020 for incomplete multi-modal
segmentation with imbalanced missing rates.

2 RELATEDWORK
2.1 Incomplete Multi-modal Segmentation
Incomplete data is a common and long-standing issue in practi-
cal scenarios, particularly in clinical practice. The most commonly
studied task is incomplete multi-modal medical image segmenta-
tion usually involving MRI images with various missing compo-
nents [17]. As standard multi-modal segmentation methods built
on full-modality data [20, 43] would encounter severe performance
degradation given only incomplete modalities, it is of great value
but also challenging.

To pursue effective multi-modal medical image segmentation, ex-
tensive research has been broadly explored including image synthe-
sis, knowledge transfer, and shared representation learning. Specifi-
cally, Sharma and Hamarneh [32] used a U-Net [8, 31] generator to
impute missing modalities, with a generative adversarial network
[14] learning to discriminate between real and synthesized inputs.
Ma et al. [25] proposed a meta-learning algorithm [13] to recon-
struct the features of missing modalities. Wang et al. [39] trained a
teacher-student framework for each subset of modalities. Azad et al.
[1] proposed a style-matching mechanism to reconstruct missing
information from a full-modality network. Chen et al. [6], Wang
et al. [36] trained uni-modal models by transferring privileged
knowledge from a full-modal teacher to each uni-modal student.
Liu et al. [23] focused on self-supervised pre-training. However, in
𝐼𝐷𝑇 , there may not exist sufficient full-modality data as a target
for image synthesis and full-modal teacher training, making them
hard to deploy in real-world training.

To overcome such limitations, Havaei et al. [17] and Dorent
et al. [10] computed variational statistics to construct a uniform
representation for segmentation. Chen et al. [5] and Ding et al. [9]
performed shared representation fusion by modality re-weighting
and attention-gating modules. Zhao et al. [45] introduced graph
convolutional networks for incomplete brain tumor segmentation.
Wang et al. [35] learned shared and specific features by distribution
alignment and domain classification. Zhang et al. [44] and Shi et al.
[33] introduced transformers to exploit both intra- and inter-modal
dependence for feature fusion. Qiu et al. [30] proposed a group
self-support algorithm to make use of the sensitive modality’s spe-
cific features. However, such shared representation learning-based
methods were proposed only for incomplete-modality inference
while ignoring data missing in training. In other words, the fre-
quency of each modality during training remains the same. Konwer
et al. [21] discussed the limited full-modality data scenario and pro-
posed a meta-learning method to enhance modality representations.
Unfortunately, how to pursue effective multi-modal medical im-
age segmentation with imbalanced missing rates is under-explored,
which is more valuable in clinical practice.

2.2 Imbalanced Multi-modal Learning
Due to modality discrepancy, multi-modal learning naturally en-
counters the concern of fairness and imbalance. Wang et al. [37]
found that different modalities could overfit and generalize at dif-
ferent rates and thus obtain sub-optimal solutions when jointly
training them using a unified optimization strategy. Peng et al.
[28] proposed that the better-performing modality would dominate
gradient updating while suppressing the learning process of other
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modalities. To address such issues, several approaches have been
proposed to deal with modal imbalance. Du et al. [11] proposed to
improve uni-modal performance through knowledge distillation
from well-trained models. Xiao et al. [40] proposed to randomly
drop the audio pathway during training as a regularization tech-
nique to adjust the learning paces between visual and audio path-
ways. Wang and Singh [38] proposed a re-weighting scheme by
assigning lower weights to data samples with missing values to
promote fairness. Peng et al. [28] chose to slow down the learning
rate of the mighty modality by online modulation to lessen the
inhibitory effect on other modalities. Fan et al. [12] performed stim-
ulation on the particularly slow-learning modality by enhancing
its clustering towards prototypes. Sun et al. [34] proposed the con-
cept of relative advantage for modalities and adaptively regulated
the supervision of all modalities during training. Though existing
works all focus on classification instead of segmentation, they mo-
tivate us to pursue effective incomplete multi-modal medical image
segmentation via re-balancing the convergence rates of different
modalities in 𝐼𝐷𝑇 .

3 METHODOLOGY
3.1 Problem Definition
Given a multi-modal training dataset containing 𝑁 samples, each
sample comprises 𝑀 modalities. Let [𝑃] for any positive integer
𝑃 denote the set {1, 2, . . . , 𝑃}. Each training sample is denoted as
({𝑥𝑚𝑛 }𝑚∈[𝑀 ] , {𝑦𝑚𝑛 }𝑚∈[𝑀 ] ), where 𝑛 ∈ [𝑁 ] is sample index. For
a segmentation task, it is to assign each pixel with an individ-
ual category label from 𝐾 categories. To formulate this, we use
(𝑥𝑚
𝑛,𝑖
, 𝑦𝑚
𝑛,𝑖

) to denote the raw input and label of pixel 𝑖 correspond-
ing to modality 𝑚 and sample 𝑛. For multi-modal segmentation
studied in this paper where all modalities share a common label,
𝑦𝑛,𝑖 = 𝑦

1
𝑛,𝑖

= 𝑦2
𝑛,𝑖

= · · · = 𝑦𝑀
𝑛,𝑖

holds. Let 𝐶 ∈ R𝑁×𝑀 be the modal-
ity presence indication matrix, and let 𝐶𝑛𝑚 denote the (𝑛,𝑚)-th
entry of 𝐶 . Then 𝐶𝑛𝑚 is 1, if modality𝑚 of sample 𝑛 is available;
otherwise 𝐶𝑛𝑚 equals to 0. The missing rate 𝑀𝑅 of modality 𝑚,
∀𝑚 ∈ [𝑀], is calculated as 𝑀𝑅𝑚 = (𝑁 − ∑

𝑛∈[𝑁 ] 𝐶𝑛𝑚)/𝑁 . We
assume 𝑀𝑅𝑚 ∈ [0, 1) to ensure that at least one sample of each
modality is available during training.

IncompleteMulti-modal Segmentation Baseline. In existing
research, the SOTA paradigm [9, 33, 44] adopts𝑚 modality-specific
encoders 𝐸𝑚 and a shared fusion decoder 𝐷 𝑓 . Layer-wise features
extracted from available 𝐸𝑚 are skipped like U-Net to be fused in
𝐷 𝑓 . For the consistency of expression, we use 𝑧𝑙𝑛 = 𝐷𝑙

𝑓
(𝑥𝑛) as the

fused features of all available modalities of sample 𝑛 in layer 𝑙 , and
𝑧
𝑚,𝑙
𝑛 = 𝐷𝑙

𝑓
(𝑥𝑚𝑛 ) as the features of only modality𝑚. Denoting 𝑙 = 0

as the output layer, the overall objective of the paradigm is

L𝑡𝑎𝑠𝑘 =

𝐿∑︁
𝑙=0

ℓ𝑑𝑖𝑐𝑒+𝑐𝑒 (Up2l (𝑧
𝑙
𝑛), 𝑦𝑛) +

∑︁
𝑚∈[𝑀 ]

ℓ𝑑𝑖𝑐𝑒+𝑐𝑒 (𝑧𝑚,0𝑛 , 𝑦𝑛), (1)

where ℓ𝑑𝑖𝑐𝑒+𝑐𝑒 denotes the Dice and weighted cross-entropy loss
and Up2𝑙 represents 2𝑙× upsampling. For simplification, we omit the
low-dim transform and softmax operation 𝜎 . In L𝑡𝑎𝑠𝑘 , the former
item imposes the final prediction objective and deep supervision,
and the latter forces eachmodality to attain its optimal task-relevant
representations. Denoting them L𝑠𝑒𝑔 and L𝑟𝑒𝑔 respectively, the

overall objective in 𝐼𝐷𝑇 is re-formulated as:

L𝑡𝑎𝑠𝑘 = L𝑠𝑒𝑔 +
∑︁

𝑚∈ [𝑀 ]
𝐶𝑛𝑚=1

L𝑚𝑟𝑒𝑔, (2)

where L𝑚𝑟𝑒𝑔 denotes the regularization term of modality𝑚 in L𝑟𝑒𝑔 .
Such an objective begs a problem: We cannot optimize unavailable
modalities in 𝐼𝐷𝑇 . In other words, it will result in a severe imbalance
across modalities given imbalanced missing rates, as L𝑟𝑒𝑔 would
emphasize more on modalities with lower missing rates for
loss minimization. What’s worse, as each single modality is not
well optimized, it may cause severe fusion issues in the SOTA
paradigm. Such observations motivate us to balance eachmodality’s
performance during unified end-to-end training given imbalanced
modality missing rates.

3.2 Multi-Uni Self-Distillation
Motivated by knowledge distillation (KD) [18], which aims to trans-
fer the teacher’s “dark knowledge” to students via soft labels, we
treat multi-modal knowledge as a common objective for each avail-
able uni-modal to balance inter-modal learning. As multi-modal
knowledge is learned through all modalities, it may be dominated
by certain modalities of lower missing rates. When penalized
through KD, such modalities would be less emphasized as
they are closer to multi-modal knowledge (i.e., soft labels).
In this way, it is promising to re-balance modalities in 𝐼𝐷𝑇 . Unlike
previous KD-based works relying on a separate complete multi-
modal teacher based on 𝑃𝐷𝑇 [1, 6, 36, 39], we prefer a unified
network to transfer knowledge from multi-modal to uni-modal,
denoted as multi-uni self-distillation. On the one hand, it reduces
the difficulty of training a sufficiently robust teacher model un-
der 𝐼𝐷𝑇 . On the other hand, multi-modal knowledge is innate but
under-exploited for uni-modal in a unified framework. Specifically,
multi-uni self-distillation is composed of pixel-wise and semantic-
wise self-distillation described in the following.

Pixel-wise Self-Distillation. As segmentation can be formu-
lated as a pixel-level classification task, we propose to align the
predictions of each pixel between multi-modal and uni-modal. It
is based on the observation, validated through experiments, that
feature-level alignment usually results in multi-modal performance
degradation while logit alignment in deep supervision is a more
robust option for imbalanced learning [26]. Therefore, pixel-wise
multi-uni self-distillation for each uni-modal𝑚 is formulated as:

L𝑚
𝑝𝑖𝑥𝑒𝑙

=

𝐿∑︁
𝑙=0

𝐾𝐿[𝜎 ( 𝑧
𝑚,𝑙
𝑛

𝜏
) | |𝜎 ( 𝑧

𝑙
𝑛

𝜏
)], (3)

where 𝐾𝐿 denotes the Kullback-Leibler divergence, 𝜏 is the tem-
perature hyper-parameter, 𝜎 is the softmax function, and 𝑧𝑙𝑛 and
𝑧
𝑚,𝑙
𝑛 represent features of multi-model and modality𝑚 respectively
from layer 𝑙 of sample 𝑛.

Semantic-wise Self-Distillation. By learning more informa-
tion from diverse modalities, the multi-modal teacher captures more
robust intra- and inter-class representations [36]. Therefore, not
only local pixel-wise knowledge but also global class-wise knowl-
edge should be transferred to uni-modal. By using prototypes to rep-
resent the general features of a class, we hope to build multi-modal
and uni-modal prototypes to achieve global knowledge transfer.
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Figure 2: Illustration of PASSION. L𝑚𝑝𝑟𝑜𝑡𝑜 and L𝑚
𝑝𝑖𝑥𝑒𝑙

represent multi-uni self-distillation and 𝛿𝑚 and 𝛽𝑚 represent preference-
aware regularization. ▲,⋆, and ■ represent prototypes in Eq. 4 while 𝑆𝑖𝑚 denotes feature-prototype similarity in Eq. 5

Here, the prototype of each sample is calculated individually, as
each sample contains sufficient pixels in segmentation.

The prototypes of class 𝑘 for sample 𝑛 corresponding to the
teacher 𝑐𝑡

𝑛,𝑘
and any student 𝑐𝑚,𝑠

𝑛,𝑘
are calculated by

𝑐𝑡
𝑛,𝑘

=

∑
𝑖 𝑧

0
𝑛,𝑖

𝟙[𝑦𝑛,𝑖 = 𝑘]∑
𝑖 𝟙[𝑦𝑛,𝑖 = 𝑘]

,

𝑐
𝑚,𝑠

𝑛,𝑘
=

∑
𝑖 𝑧
𝑚,0
𝑛,𝑖

𝟙[𝑦𝑛,𝑖 = 𝑘]∑
𝑖 𝟙[𝑦𝑛,𝑖 = 𝑘]

,

(4)

where 𝑧0
𝑛,𝑖

and 𝑧𝑚,0
𝑛,𝑖

represent the multi- and uni-modal (i.e., modal-
ity𝑚) output (i.e., layer 𝑙 = 0) features of pixel 𝑖 for sample 𝑛. 𝟙
represents an indicator being 1 if the argument is true or 0 other-
wise. To measure the semantic richness within 𝑐𝑚,𝑠

𝑛,𝑘
, we define 𝑆𝑚,𝑠

𝑛,𝑘

to calculate the feature-prototype similarity for class 𝑘 , defined as

𝑆
𝑚,𝑠

𝑛,𝑘
=
∑︁
𝑖

𝐶𝑜𝑠 (𝑧𝑚,0
𝑛,𝑖

, 𝑐
𝑚,𝑠

𝑛,𝑘
), (5)

where𝐶𝑜𝑠 (·, ·) denotes cosine similarity. It should be noted that 𝑆𝑚,𝑠
𝑛,𝑘

measures both intra- or inter-class semantic correlations depending
on whether pixel 𝑖 belongs to class 𝑘 or not. Following this, the
semantic richness of multi-modal prototypes 𝑐𝑡

𝑛,𝑘
for class 𝑘 is

defined as

𝑆𝑡
𝑛,𝑘

=
∑︁
𝑖

𝐶𝑜𝑠 (𝑧0
𝑛,𝑖 , 𝑐

𝑡
𝑛,𝑘

). (6)

Then, the semantic-wise knowledge gap across all classes between
uni-modal𝑚 and multi-modal is defined as

𝐷𝑚𝑛 =
∑︁
𝑖

∑︁
𝑘∈[𝐾 ]

𝑆𝑚,𝑠
𝑛,𝑘

(𝑖) − 𝑆𝑡
𝑛,𝑘

(𝑖)


2
, (7)

where ∥·∥2 denotes the ℓ2-norm. Accordingly, semantic-/class-wise
knowledge transfer for modality𝑚 is accomplished by minimizing

L𝑚𝑝𝑟𝑜𝑡𝑜 =
∑︁
𝑖

∑︁
𝑘∈[𝐾 ]

𝑆𝑚,𝑠
𝑛,𝑘

(𝑖) − 𝑆𝑡
𝑛,𝑘

(𝑖)
2

2
. (8)

Here, using an L2-like loss is to further up-weight weak modalities
for balanced optimization.

3.3 Preference-Aware Regularization
As discussed above, multi-uni self-distillation equally transfers
knowledge to available uni-modal to balance inter-modal learning.
However, it may still make those modalities with higher missing
rates struggle to keep up with others. This is because the recurring
uni-modal wins at optimization more often than others. Therefore,
dynamically evaluating how strong (or weak) each uni-modal is
compared to others and balancing the learning paces across them
in 𝐼𝐷𝑇 is crucial.

Relative preference. Since different uni-modal students are
born with unequal talents and expertise, measuring the learning
progress of different students directly through their performance
seems to be inappropriate. Noting that the multi-modal teacher
usually prefers strong modalities that are easy to learn or have
lowermissing rates, we use the distance𝐷𝑚𝑛 to represent the relative
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preference of the multi-modal teacher to uni-modal𝑚. It is based
on the observation that the higher 𝐷𝑚𝑛 is, the more modality𝑚 is
neglected. Given any sample 𝑛, the average distance is calculated
as:

�̄�𝑛 =
∑︁

𝑚∈ [𝑀 ]
𝐶𝑛𝑚=1

𝐷𝑚𝑛 /
∑︁

𝑚∈[𝑀 ]
𝐶𝑛𝑚, (9)

where 𝐶𝑛𝑚 indicates the presence of modality𝑚 in sample 𝑛 ac-
cording to the modality presence indication matrix 𝐶 defined in
Sec. 3.1. With �̄�𝑛 , the relative preference to modality m is formally
defined as:

𝑅𝑃𝑚𝑛 = 1 − 𝐷𝑚𝑛

�̄�𝑛
. (10)

When 𝑅𝑃𝑚𝑛 > 0 (resp., < 0), modality m is more preferred (resp.,
neglected) compared to other modalities for sample 𝑛. Especially,
𝑅𝑃𝑚𝑛 = 0, if modality m is at the balancing point or unavailable.

Re-balancing regularization. Given the relative preference
𝑅𝑃𝑚 of modality𝑚 for each sample, it is expected to slow down
the learning paces of the preferred modalities and speed up the
neglected ones. Inspired by previous works on imbalanced multi-
modal learning [12, 28, 34], we develop two regularization items
for each modality: task-wise and gradient-wise.

Noting that strong modalities occupy the center of gravity in
early training due to their larger data amounts and easy learning
properties. In task-wise, we propose to identify and push the slow-
learning modalities based on sample-level relative preference. If
𝑅𝑃𝑚𝑛 is negative, we should further accelerate the slow-learning
modality m. Therefore, we set a task mask 𝛿𝑚𝑛 . If modality 𝑚 is
neglected, it should be accelerated for training by enhancing its
semantic learning from multi-modal. Such a rule is formulated as:

𝛿𝑚𝑛 = 𝟙[𝑅𝑃𝑚𝑛 < 0], (11)

where 𝟙 represents an indicator being 1 if the argument is true or 0
otherwise. It should be noted that 𝛿𝑚𝑛 is to regularize semantic-wise
self-distillation through L𝑚𝑝𝑟𝑜𝑡𝑜 .

In terms of gradient-wise regularization, we propose to con-
tinually balance pixel-wise self-distillation through epoch-level
relative preference. Let 𝛽𝑚 denote the gradient-weighted coeffi-
cient of modality𝑚 which is initialized as 1

1−𝑀𝑅𝑚 to balance the
inequality in modality amounts. Then we calculate epoch-average
relative preference

𝑅𝑃
𝑚

=

∑
𝑛∈[𝑁 ] 𝑅𝑃

𝑚
𝑛∑

𝑛∈[𝑁 ] 𝐶𝑛𝑚
, (12)

and apply gradient descent to update 𝛽𝑚 every epoch by

𝛽𝑚𝑟+1 = 𝛽𝑚𝑟 − 𝛾 · 𝑅𝑃𝑚, (13)

where 𝛾 is the updating rate and 𝑟 indexes the epoch. For modality
𝑚 with 𝑅𝑃𝑚 > 0 or 𝑅𝑃𝑚 < 0, its learning speed will be decreased
or increased accordingly.

3.4 Overall Objective
Combining multi-uni self-distillation and preference-aware regu-
larization, the overall optimization objective is written as

L = L𝑠𝑒𝑔 +
∑︁

𝑚∈ [𝑀 ]
𝐶𝑛𝑚=1

(𝜆1𝛽
𝑚L𝑚

𝑝𝑖𝑥𝑒𝑙
+ 𝜆2𝛿

𝑚
𝑛 L𝑚𝑝𝑟𝑜𝑡𝑜 ), (14)

where 𝜆1 and 𝜆2 are balancing hyper-parameters.

4 EXPERIMENTS
4.1 Datasets and Evaluation Metrics
Two segmentation tasks with publicly-available multi-sequence
MRI datasets are adopted for evaluation, including:

(1) BraTS2020 [27]: The multimodal brain tumor segmenta-
tion challenge (BraTS2020) dataset consists of 369 cases with
ground truth labels and four MRI modalities (i.e., T1, T1c,
Flair, and T2). Ground truth is provided with the normal
tissue and three tumor sub-regions including the necrotic
and non-enhancing tumor core (NCR/NET), the peritumoral
edema (ED), and GD-enhancing tumor (ET). Following the
task setting in the challenge, tumor classes are merged into
the whole tumor (WT) including all tumor sub-regions, tu-
mor core (TC) consisting of NCR/NET and ET, and enhancing
tumor involves ET. The dataset is split into 219, 50, and 100
cases for training, validation, and testing respectively.

(2) MyoPS2020 [29, 46]: The MyoPS 2020 challenge dataset
consists of 25 cases of multi-sequence CMR (i.e., bSSFP, LGE,
and T2), with labels being provided for myocardial pathol-
ogy segmentation. Targets include the normal tissue, left
ventricular blood pool (LVB), right ventricular blood pool
(RVB), normal myocardium, myocardial edema, and myocar-
dial scars of the left ventricle. Following standard practice,
the last three classes are grouped as myocardium of the left
ventricle (MYO). The dataset is split into 20 and 5 cases with
multi-slices for training and test respectively.

For image pre-processing, each brain MRI volume is re-sampled
to the 1𝑚𝑚3 resolution and each cardiac CMR scan is resampled
into the same spatial resolution. Following [6, 9], we cut out the
black background areas outside the brain, center-crop the heart
regions, and further normalize the intensity of each volume to zero
mean and unit variance. Considering the specificity of two datasets,
we perform the former task (i.e., BraTS2020) in 3D and the latter
(i.e.,MyoPS2020) in 2D to verify the flexibility of PASSION.

For evaluation, two most commonly-used metrics are selected,
including the Dice similarity coefficient (i.e., Dice) and Hausdorff
distance (i.e., HD). Dice measures the voxel-wise accuracy and
HD evaluates the surface distance. Higher Dice and lower HD
indicate better segmentation performance. Quantitative evaluation
is performed on subject-level volume segmentation to be consistent
with the BraTS and MyoPS challenges.

4.2 Implementation Details
For comparison against SOTA imbalanced multi-modal learning
approaches, mmFormer [44] is set as the backbone while for plug-
and-play evaluation another two SOTA multi-modal segmentation
methods RFNet [9] and M2FTrans [33] are included as backbones.
All models are implemented and modified with the same basic-
dimension size in Pytorch and trained using the optimizer AdamW
[24] with an initial learning rate of 2e-4, a weight decay of 1e-4, and
a batch size of 1 on NVIDIA Geforce RTX 3090 GPUs for 300 epochs.
Specifically, we adopt a poly decay strategy with 𝑝 = 0.9 during
training and set the temperature 𝜏 for pixel-wise self-distillation as
4 and the hyper-parameters 𝜆1 and 𝜆2 as 0.5 and 0.1 respectively
for the self-distillation loss. The parameter setting for re-balancing
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Table 1: Quantitative comparison on BraTS2020 and MyoPS2020 under various settings.𝑀𝑅 is short for the missing rates of
modalities (T1/T1c, Flair, T2) for BraTS2020 and (bSSFP, LGE, T2) for MyoPS2020 respectively. 𝑠,𝑚, and 𝑙 correspond to small,
medium, and large, set as 𝑠 = 0.2,𝑚 = 0.5, and 𝑙 = 0.8 for BraTS2020 and 𝑠 = 0.3,𝑚 = 0.5, and 𝑙 = 0.7 for MyoPS2020 respectively.
𝑃𝐷𝑇 denotes balanced modality distributions𝑀𝑅 = (0, 0, 0) for perfect data training. Here, T1 and T1c share the same missing
rate but are treated as separate modalities.

𝑀𝑅

Dataset BraTS2020 MyoPS2020
Metric DSC [%] ↑ HD [mm] ↓ DSC [%] ↑ HD [mm] ↓
Method WT TC ET Avg. WT TC ET Avg. LVB RVB MYO Avg. LVB RVB MYO Avg.

𝑃𝐷𝑇 Baseline 83.66 73.18 54.91 70.58 14.99 17.18 11.88 14.68 84.61 58.08 80.13 74.27 5.90 15.46 7.63 9.66

(𝑠 ,𝑚,𝑙 )

Baseline 81.89 69.36 51.72 67.66 16.51 16.41 10.14 14.35 77.69 56.94 71.81 68.81 19.38 22.62 21.32 21.11
+ModDrop 81.31 68.75 51.53 67.20 19.24 17.94 10.91 16.03 80.63 51.42 75.70 69.25 15.42 31.84 20.13 22.46
+PMR 82.59 70.44 52.86 68.63 16.84 18.22 11.68 15.58 78.05 57.61 74.32 69.99 18.16 23.04 17.42 19.54
+PASSION 83.42 71.74 52.78 69.31 11.98 11.78 7.80 10.52 81.44 60.97 77.44 73.28 11.36 20.49 11.64 14.50

(𝑠 ,𝑙 ,𝑚)

Baseline 81.53 67.74 50.02 66.43 19.88 19.71 11.70 17.10 74.25 54.82 66.79 65.29 25.18 32.92 25.86 27.99
+ModDrop 80.54 69.10 51.64 67.09 26.98 25.12 16.05 22.72 78.57 54.93 74.83 69.44 15.91 25.52 17.12 19.52
+PMR 82.32 68.39 50.88 67.20 15.39 17.63 10.76 14.59 77.67 57.38 73.98 69.68 16.84 23.12 18.68 19.55
+PASSION 83.47 71.57 53.06 69.37 10.52 11.21 7.20 9.64 80.20 58.22 77.56 71.99 16.23 18.13 13.01 15.79

(𝑚,𝑠 ,𝑙 )

Baseline 81.56 70.22 52.06 67.95 21.00 22.98 14.33 19.44 77.16 54.44 72.08 67.89 15.78 21.13 24.56 20.49
+ModDrop 80.40 68.74 50.58 66.57 27.80 29.57 20.67 26.01 79.07 55.30 75.69 70.02 12.46 22.32 17.27 17.35
+PMR 81.73 70.29 51.76 67.93 18.62 20.27 13.75 17.55 77.49 57.62 71.90 69.00 19.21 23.03 20.39 20.88
+PASSION 83.09 70.80 52.82 68.90 10.47 12.30 8.35 10.37 80.55 64.56 74.53 73.21 10.74 18.69 14.95 14.79

(𝑚,𝑙 ,𝑠)

Baseline 81.40 68.49 51.81 67.23 17.34 20.37 12.87 16.86 75.60 47.37 70.85 64.61 22.04 30.43 19.48 23.98
+ModDrop 80.83 68.92 50.94 66.90 24.70 26.19 18.84 23.24 76.86 50.29 74.13 67.09 21.63 25.86 17.75 21.75
+PMR 82.18 69.27 52.73 68.06 16.57 20.09 12.90 16.52 78.59 50.64 71.16 66.80 20.85 22.77 23.60 22.41
+PASSION 83.41 70.49 53.27 69.06 12.12 14.42 10.10 12.21 79.80 54.06 75.86 69.91 15.59 21.95 15.42 17.65

(𝑙 ,𝑠 ,𝑚)

Baseline 80.77 68.15 50.85 66.59 17.68 17.84 10.96 15.49 77.74 52.86 70.97 67.19 18.72 28.28 18.91 21.97
+ModDrop 80.22 68.50 50.69 66.47 25.93 25.47 17.78 23.06 80.99 53.16 75.90 70.02 15.70 22.17 17.34 18.40
+PMR 80.94 68.18 51.54 66.89 14.97 16.29 10.94 14.07 79.72 54.21 72.72 68.88 16.57 24.96 23.02 21.52
+PASSION 82.69 69.88 52.35 68.31 11.27 13.99 9.05 11.44 81.91 55.04 77.52 71.49 13.25 22.63 14.71 16.86

(𝑙 ,𝑚,𝑠)

Baseline 80.33 68.06 52.01 66.80 17.43 18.87 13.57 16.62 80.44 51.70 75.14 69.09 13.06 21.65 15.38 16.70
+ModDrop 80.60 67.75 50.63 66.33 23.59 24.24 17.12 21.65 80.59 51.95 76.41 69.65 12.81 20.95 13.07 15.61
+PMR 81.13 67.96 50.99 66.69 17.70 19.61 13.05 16.79 80.15 54.54 76.39 70.36 12.64 22.02 12.56 15.74
+PASSION 82.55 69.11 52.06 67.91 11.88 14.43 8.81 11.71 81.25 57.65 76.67 71.86 11.92 20.66 12.34 14.97

supervision is 𝛾 = 0.01. During training, each brain volume is
randomly cropped to 80× 80× 80 pixels, each cardiac scan is center-
cropped to 256×256 pixels, and both are then augmented by random
rotation and intensity change. To emulate modality-imperfect data
training, we randomly mask each sample’s modalities according
to the corresponding missing rates before training, directly drop
those masked-modality inputs (i.e., invisible), and set corresponding
encoded features as all-zero vectors in training.

4.3 Evaluation on BraTS2020
Quantitative evaluation. Quantitative comparison results by in-
troducing SOTA modality-balancing approaches to the baseline
(i.e., mmFormer [44]) on BraTS2020 are summarized in Table 1.
Compared to PDT, segmentation under imbalanced modality miss-
ing rates is more challenging, resulting in apparent performance
degradation of the baseline. Through modality re-balancing, PMR
[12] achieves marginal performance improvements under most
settings while ModDrop [40] even brings negative effects. This is
because modalities are imbalanced not only in data amounts but
also in semantics. For instance, Flair and T2 are much more infor-
mative than T1/T1c. Given relatively limited Flair and T2, it is more
challenging to explore sufficient semantic information, making
both PMR and ModDrop fail. Simply re-balancing modalities with-
out considering semantic misalignment can be counter-productive.

A
vg

. D
ic

e 
(%

)

71

70

69

68

67

66

65

64

MR
s,m,l s,l,m m,s,l m,l,s l,s,m l,m,s

MR

A
vg

. D
ic

e 
(%

)
76

74

72

70

68

66

64s,m,l s,l,m m,s,l m,l,s l,s,m l,m,s

BraTS2020 MyoPS2020

Baseline ModDrop PMR PASSION

Figure 3: Visualized average performance comparison on
BraTS2020 and MyoPS2020 given (𝑠 = 0.2,𝑚 = 0.5, 𝑙 = 0.8) and
(𝑠 = 0.3,𝑚 = 0.5, 𝑙 = 0.7) respectively.

Comparatively, through multi-uni self-distillation to re-balance loss
penalization and preference-aware re-balancing regularization to
adaptively align modality learning speeds, PASSION effectively
re-balances modalities for feature extraction, leading to consistent
performance improvements under various modality missing rates.
Visualized quantitative comparison is plotted in Figure 3, showing
the superiority of PASSION for modality balancing in 𝐼𝐷𝑇 .

Qualitative evaluation. Exemplar segmentation results under
different modality combinations on BraTS2020 are illustrated in
Figure 4. Given only T2 (i.e., the fewest modality), all comparison
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Figure 4: Exemplar segmentation results on BraTS2020 under
four modality combinations given𝑀𝑅 = (0.2, 0.4, 0.6, 0.8) for
T1, T1c, Flair, and T2 respectively.

approaches produce extensive false positives. With more modali-
ties introduced, segmentation performance is gradually improved,
indicating imbalanced learning, especially for T2. Comparatively,
PASSION significantly outperforms comparison approaches by ef-
fectively reducing false positives. More importantly, relatively sta-
ble/consistent performance across different modality combinations
shows its effectiveness in modality re-balancing in 𝐼𝐷𝑇 .

4.4 Evaluation on MyoPS2020
Quantitative evaluation. Quantitative comparison results on My-
oPS2020 are summarized in Table 1. Different from BraTS2020,
modality-wise semantic information across modalities is closer in
MyoPS2020. In other words, modalities contribute more equally to
different sub-types instead of certain modalities being dominant for
specific sub-types. As a result, both ModDrop and PMR achieve no-
ticeable performance improvements bymodality re-balancing. Com-
paratively, PASSION consistently achieves greater performance
improvements under all modality settings, demonstrating its supe-
riority in exploring richer semantic information. Visualized quanti-
tative comparison in Figure 3 further validates this.

Qualitative evaluation. Exemplar segmentation results on My-
oPS2020 are illustrated in Figure 5. Compared to BraTS2020, seg-
mentation performance across different settings is more consistent
even given only T2 (i.e., the least modality), indicating more equal
semantic contributions of modalities. With more modalities, more
false positives are recalled while more false positives are introduced.
Comparatively, PASSION achieves the most consistent segmenta-
tion performance with the fewest false positives and false negatives.

4.5 Component-wise Ablation Study
We first validate the concept of relative preference defined in Sec-
tion 3.3 by plotting 𝑅𝑃 curves with and without PASSION and

T1

bSSFP

T2

LGE

Raw Baseline ModDrop PMR PASSION

GT

T2

Bsffp+LGE+T2

LGE

bSSFP+T2

bSSFP+LGE+T2

Figure 5: Exemplar segmentation results on MyoPS2020 un-
der three modality combinations given𝑀𝑅 = (0.3, 0.5, 0.7) for
bSSFP, LGE, and T2 respectively.

Figure 6: 𝑅𝑃 curves of baseline, baseline with PASSION, and
baseline with modified PASSION by removing preference-
aware regularization during 𝐼𝐷𝑇 training on BraTS2020 given
𝑀𝑅 = (0.2, 0.4, 0.6, 0.8).

preference-aware regularization during training as illustrated in
Figure 6. It should be noted that the closer 𝑅𝑃 approaches 0, the
more balanced modalities are. Given only multi-uni self-distillation,
modalities are marginally balanced, making 𝑅𝑃 curves closer to 0.
Comparatively, PASSION effectively re-balances different modali-
ties with greater improvements.

Component-wise ablation study on BraTS2020 and MyoPS2020
is summarized in Table 2. In general, introducing each component
separately is beneficial. Directly combining pixel-wise and semantic-
wise self-distillation brings marginal performance improvements



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ACM MM, 2024, Melbourne, Australia Anonymous Authors

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 2: Component-wise ablation study on BraTS2020 and MyoPS2020.

Component
BraTS2020𝑀𝑅 = (0.2, 0.4, 0.6, 0.8) MyoPS2020𝑀𝑅 = (0.3, 0.5, 0.7)

DSC [%] ↑ HD [mm] ↓ DSC [%] ↑ HD [mm] ↓
L𝑝𝑖𝑥𝑒𝑙 L𝑝𝑟𝑜𝑡𝑜 𝛿 𝛽 WT TC ET Avg. WT TC ET Avg. LVB RVB MYO Avg. LVB RVB MYO Avg.
% % % % 80.03 68.26 50.29 66.19 27.06 22.30 13.09 20.82 77.69 56.94 71.81 68.81 19.38 22.62 21.32 21.11
! % % % 83.67 70.47 51.67 68.60 12.61 12.62 9.40 11.54 80.72 53.60 77.02 70.45 14.29 28.73 18.52 20.51
% ! % % 82.30 69.96 52.19 68.15 19.11 18.22 10.99 16.11 78.75 57.25 74.13 70.04 15.43 26.79 16.25 19.49
! ! % % 83.39 70.37 52.15 68.64 12.59 13.85 9.25 11.90 80.89 57.69 76.99 71.86 12.79 25.64 13.10 17.18
! ! ! % 83.73 71.10 52.03 68.95 12.48 12.80 9.35 11.54 80.52 59.61 76.36 72.16 13.25 21.55 13.22 16.01
! ! ! ! 83.91 71.15 52.77 69.28 11.92 11.78 8.42 10.71 81.44 60.97 77.44 73.28 11.36 20.49 11.64 14.50

Table 3: Quantitative comparison on various backbones evaluated on BraTS2020 under the 𝐼𝐷𝑇 (i.e., imperfect data training)
setting𝑀𝑅 = (0.2, 0.4, 0.6, 0.8) and the 𝑃𝐷𝑇 (i.e., perfect data training) setting𝑀𝑅 = (0, 0, 0, 0) for T1, T1c, Flair, and T2 respectively.

Type Setting

T1  # # #    # # #    #  

Avg.T1c #  # #  # #   #   #   
Flair # #  # #  #  #   #    
T2 # # #  # #  #   #     

WT

𝑃𝐷𝑇

RFNet 68.53 69.27 82.28 82.25 74.07 85.51 84.90 85.18 83.94 86.42 86.61 85.40 87.63 87.36 88.30 82.51
mmFormer 69.60 69.87 83.34 83.33 74.74 86.60 85.81 87.39 85.47 87.73 87.99 86.40 88.60 88.84 89.27 83.67
M2FTrans 67.99 67.23 79.72 80.05 73.40 85.54 83.03 83.94 82.84 86.66 86.40 84.23 87.57 87.38 87.86 81.59

𝐼𝐷𝑇

RFNet 69.46 69.95 78.79 72.82 75.82 85.04 78.77 84.12 77.89 83.16 86.23 81.95 86.25 85.00 86.85 80.14
mmFormer 65.93 68.07 78.10 72.16 76.40 83.60 81.71 83.86 78.17 83.24 86.39 84.28 85.98 85.23 87.36 80.03
M2FTrans 52.02 69.24 80.26 71.39 76.27 85.92 81.14 84.26 78.91 81.68 86.71 83.15 86.19 84.91 87.29 79.29

𝐼𝐷𝑇

(+PASSION)

RFNet 72.20 75.02 83.95 81.35 76.45 86.78 82.38 85.57 82.60 86.85 87.46 83.04 87.91 87.45 88.20 83.15
mmFormer 71.78 73.73 84.37 82.27 77.93 86.93 84.05 87.14 84.78 86.85 88.07 85.88 87.58 88.44 88.88 83.91
M2FTrans 71.95 74.19 84.26 80.84 77.59 86.79 82.62 86.31 83.85 85.65 87.18 83.99 86.59 86.59 87.06 83.03

TC

𝑃𝐷𝑇

RFNet 59.53 77.24 64.30 66.77 81.45 70.28 70.39 80.16 81.90 70.70 81.67 83.28 72.83 81.97 82.80 75.02
mmFormer 56.00 76.40 61.74 63.74 80.50 67.07 66.61 79.67 81.36 68.66 80.71 82.23 69.89 81.25 81.90 73.18
M2FTrans 57.91 74.68 58.82 64.47 79.59 67.69 68.28 77.97 80.68 68.73 81.56 82.06 71.32 81.16 82.31 73.15

𝐼𝐷𝑇

RFNet 55.98 73.35 50.86 46.39 80.04 63.04 58.69 76.43 77.52 56.65 78.50 80.07 64.72 76.86 79.89 67.93
mmFormer 53.47 72.29 52.91 49.46 81.13 60.50 59.18 74.66 78.45 59.60 78.50 81.81 63.73 77.74 80.53 68.26
M2FTrans 35.94 73.44 52.38 39.83 80.99 62.54 57.99 76.83 78.30 52.32 80.22 81.64 63.97 77.03 80.92 66.29

𝐼𝐷𝑇

(+PASSION)

RFNet 57.20 77.25 58.60 53.69 79.83 65.57 61.70 78.38 78.16 61.54 79.54 80.00 66.50 78.88 80.79 70.51
mmFormer 54.77 77.35 61.05 53.32 80.86 66.58 60.33 78.78 80.31 63.03 80.14 81.81 67.37 80.03 81.48 71.15
M2FTrans 57.03 77.39 58.63 52.83 80.21 65.33 62.21 78.03 79.40 62.49 79.58 80.49 67.50 78.98 80.34 70.70

ET

𝑃𝐷𝑇

RFNet 31.99 65.81 36.67 40.08 68.56 41.19 43.61 68.38 69.18 43.62 69.47 71.04 45.21 68.76 69.64 55.55
mmFormer 28.66 67.25 33.76 38.20 70.70 38.51 41.02 68.11 69.83 42.17 70.86 70.82 43.22 69.91 70.62 54.91
M2FTrans 29.78 66.30 33.45 39.12 70.93 38.53 41.38 68.16 69.96 42.39 69.95 70.80 44.21 69.42 70.93 55.02

𝐼𝐷𝑇

RFNet 28.19 63.85 18.22 25.66 69.56 36.98 33.35 67.42 71.20 22.04 70.19 69.09 29.88 68.92 69.94 49.63
mmFormer 28.09 65.26 20.22 23.94 71.50 36.82 33.86 66.93 69.74 26.74 69.25 72.20 31.55 67.93 70.39 50.29
M2FTrans 26.63 65.43 13.37 21.00 71.89 34.45 33.20 66.28 67.53 24.96 70.38 71.92 37.62 67.91 70.62 49.55

𝐼𝐷𝑇

(+PASSION)

RFNet 30.42 69.15 26.40 32.13 70.34 36.62 37.26 68.60 69.52 31.47 72.24 69.90 37.48 70.18 71.35 52.87
mmFormer 29.57 70.50 27.54 31.17 72.56 37.61 35.30 67.65 70.20 30.26 70.87 70.97 36.93 69.97 70.50 52.77
M2FTrans 29.93 67.53 28.40 32.18 70.86 37.01 37.28 67.18 69.15 36.55 68.22 70.14 39.62 67.68 69.82 52.77

without further regularization. Comparatively, jointly adopting all
components leads to the best segmentation performance, greatly
outperforming the baseline.

4.6 Plug-and-Play Ablation Study
PASSION is expected to work as a plug-and-play module onto vari-
ous backbones for modality re-balancing. To validate this, PASSION
is integrated into SOTA incomplete multi-modal medical image seg-
mentation methods and evaluated under various modality missing
rates, as summarized in Table 3. Compared to 𝑃𝐷𝑇 , there exists
noticeable performance degradation under 𝐼𝐷𝑇 for all backbones.
By introducing PASSION, consistent performance improvements
across different sub-types under various modality combinations are
achieved. One interesting observation is that adopting PASSION to

address 𝐼𝐷𝑇 even outperforms 𝑃𝐷𝑇 for WT segmentation, proving
the robustness and flexibility of PASSION.

5 CONCLUSION
In this paper, we present PASSION to solve a new challenging
task, namely incomplete multi-modal medical image segmenta-
tion with imbalanced missing rates. PASSION adopts pixel-wise
and semantic-wise self-distillation to regularize modality-specific
optimization objectives and preference-aware regularization in task-
wise and gradient-wise to balance convergence rates of different
modalities. Comprehensive evaluation demonstrates that PASSION
outperforms SOTA modality-balancing approaches and works as
a plug-and-play module for consistent performance improvement
across various backbones.
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