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ABSTRACT

TCBench is a benchmark for evaluating global, short to medium-range (1-5 days)
forecasts of tropical cyclone (TC) track and intensity. To allow a fair and model-
agnostic comparison, TCBench builds on the IBTrACS observational dataset and
formulates TC forecasting as predicting the time evolution of an existing tropical
system conditioned on its initial position and intensity. TCBench includes state-
of-the-art dynamical (TIGGE) and neural weather models (AIFS, Pangu-Weather,
FourCastNet v2, GenCast). If not readily available, baseline tracks are consistently
derived from model outputs using the TempestExtremes library. For evaluation,
TCBench provides deterministic and probabilistic storm-following metrics. On
2023 test cases, neural weather models skillfully forecast TC tracks, while skillful
intensity forecasts require additional steps such as post-processing. Designed for
accessibility, TCBench helps AI practitioners tackle domain-relevant TC challenges
and equips tropical meteorologists with data-driven tools and workflows to improve
prediction and TC process understanding. By lowering barriers to reproducible,
process-aware evaluation of extreme events, TCBench aims to democratize data-
driven TC forecasting.

1 INTRODUCTION

Tropical cyclones (TCs), also called “hurricanes” or “typhoons” depending on the basin (American
Meteorological Society, 2020), are globally devastating weather systems. In the U.S. alone, TCs
caused over $1.5 trillion in damages and over 7,000 deaths between 1980 and 2024 (NOAA National
Centers for Environmental Information, 2025). With over half of the global population projected to
live in the tropics and low-elevation coastal zones by 2050-2060 (Gu et al., 2021; Neumann et al.,
2015), improving TC forecasting is urgent for risk mitigation and community resilience.

TC forecasting can be framed as the task of forecasting two continuous time-series:
Track: the time-series of storm locations in latitude ϕ ∈ [−50, 50]◦ and longitude λ ∈ [0, 360]◦;
Intensity: commonly characterized by maximum sustained wind speed Vmax ∈ R+ (m s−1) and
minimum sea-level pressure pmin ∈ R+ (Pa). Both variables are used operationally.

Operational TC forecasts traditionally rely on physics-based models that solve coupled partial
differential equations to simulate global weather fields, with nested higher-resolution grids in the
vicinity of the TC (Hazelton et al., 2023). However, we require supercomputing infrastructure to run
these models at a spatial resolution that marginally resolves TCs (Davis, 2018) and this limits their
accessibility. This limitation, combined with the availability of high-quality, open-sourced benchmark
datasets (Rasp et al., 2024), has led to an increased interest in data-driven weather forecasting
(Ebert-Uphoff & Hilburn, 2023).

Several “neural weather models” now outperform state-of-the-art physics models on the 1–10 day fore-
casting of select meteorological fields at a 0.25◦ resolution (Rasp, 2024). Compared to physics-based
models, neural weather models—once trained— are computationally efficient and help democratize
forecasting. Neural weather models are scalable and ensemble well, which is a desirable property in
large forecasts to quantify and reduce uncertainty. Nonetheless, the performance of neural weather
models is often summarized in metrics calculated over the global prediction and focus less on
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Figure 1: TCBench defines TC forecasting as predicting time-series of track and intensity knowing the
system’s initial state. It integrates heterogeneous data sources (observations, reanalysis, physics/data-
driven models) into a unified evaluation framework to standardize model assessment.

process-based assessments and divergent approaches in evaluation complicates comparison between
models. For example, PanguWeather (Bi et al., 2023) and FourCastNet (Pathak et al., 2022) rely on
author-defined TC tracking algorithms, GraphCast (Lam et al., 2023) optimizes tracking for each
model, and GenCast (Price et al., 2025) relies on a well-established tracking algorithm (Ullrich
et al., 2021) but is forced to adapt it due to the frequency of their model outputs. Furthermore, other
data-driven approaches that focus on basin specific predictions (e.g., Huang et al., 2023; Park et al.,
2023) provide specialized predictions that may outperform global approaches, given the variance in
meteorological and oceanographic characteristics that drive TC behavior in each basin(Singh et al.,
2025).

While TC track prediction from neural weather models now rivals (DeMaria et al., 2024) and
sometimes outperforms physics-based models (Broad, 2024), TC intensity prediction remains a major
challenge. We know that intensity change of TCs is primarily determined by the oceanic energy
available for the TC to extract and the vertical structure of temperature in the vicinity of the TC
(Emanuel, 1986). It is thus possible to derive the theoretical maximum energy achievable by a TC
based on sea level pressure, sea surface temperature, relative humidity, and outflow layer temperature
(MPI–maximum potential intensity; e.g., Emanuel, 1999). Furthermore, the main processes that
keep TCs from intensifying and reaching their theoretical MPIs include vertical wind shear, which
introduce dry air intrusion into the TC (Wong & Chan, 2004; Alland et al., 2021), and upwelling of
cold deep ocean water underneath the TC (Price, 1981). Though some recent models explicitly predict
an ocean variable (e.g., sea surface temperature Price et al., 2025), most predict strictly atmospheric
data. Given that the state of the ocean can have a strong impact on TC intensity even under adverse
atmospheric conditions (Nickerson et al., 2025), this is likely to present an additional challenge for
accurately representing intensity. Furthermore, the spatial resolution of physics-based global models
is often too coarse to represent anomalies in wind speed, wind extremes, in TCs (DeMaria et al.,
2014; Baker et al., 2024). Similarly, neural models are often forecast low intensity due to biases in
their training data (Dulac et al., 2024). As a result, current data-driven intensity forecasts frequently
under-perform simple baselines such as persistence and climatology (DeMaria et al., 2024).

Accurate modeling of TC intensity is of special importance, given that Rapid Intensification (RI)—
defined as a large increase in intensity over a short period of time, typically around the 95th percentile
of intensification in a 24h window—is frequently observed in the most destructive TCs (Lockwood
et al., 2024b; Knutson, 2024) and the frequency of such storms is projected to increase with anthro-
pogenic warming Li et al. (2023). Furthermore, RI forecasting remains a major challenge because it
arises from nonlinear interactions between environmental forcing and inner-core dynamics Wang

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

& Wu (2004). These multiscale processes involve inner-core features such as eyewall dynamics,
vortex Rossby waves, and rainband structures, along with external influences including vertical
wind shear and synoptic flow. The balance between these internal and external factors governs how
efficiently a storm can intensify, and their nonlinear coupling across scales makes RI particularly
difficult to predict. Yet, the predictive performance of neural weather models for RI has to our
knowledge rarely been systematically assessed in previous literature. In this work, we treat RI as a
binary classification task, which determines whether Vmax will increase by at least 30 kt (≈ 15.4 m
s−1) over 24 hours (Kaplan & DeMaria, 2003; Kaplan et al., 2010), emphasizing that this roughly
corresponds to the 95th percentile of the rate of intensity increase. By formulating RI evaluation in
this way, we aim to evaluate how these models could be used as flags in warning systems. This is
important given the need for better forecasting of these events to coordinate prompt responses and
minimize the impacts associated with these storms (Appendini, 2024).

In this work, we present TCBench, a benchmark dataset that bridges state-of-the-art neural and
physics-based weather models with TC observational records to accelerate progress in data-
driven forecasting of TCs. This enables a transparent, reproducible assessment of how TC prediction
can be further improved with machine learning. We demonstrate that neural weather models can
skillfully forecast TC intensity up to 5 days ahead, particularly when combined with observational
data and processed through tools provided in TCBench. Furthermore, we show that ensemble neural
weather models demonstrate TC track prediction skill that rivals traditional, physics-based ensembles.

TCBench frames the problem of TC forecasting under the assumption that there is already a tropical
system that exists at an initial time of forecast, thereby focusing on predicting how the system will
evolve. TCBench provides pre-processing pipelines, evaluation protocols, visualization tools, and
baselines from both physics- and neural-based models to benefit the atmospheric science and AI
communities. Designed for rapid iteration and anticipating fast innovation in data-driven forecasting,
TCBench is extensible to new models, additional predictive targets, and encourages creative use of
the data’s spatiotemporal structure.

2 RELATED WORK

Statistical models skillfully forecast TC intensity up to 5 days ahead when combined with
physics-based global atmospheric models, a strategy known as “statistical-dynamical” predic-
tion. A prominent example is the Statistical Hurricane Intensity Prediction Scheme (SHIPS, (DeMaria
& Kaplan, 1994; Kaplan & DeMaria, 1999; DeMaria et al., 2005)), which uses a multiple regression
model with area-averaged climatological, persistence, satellite observations, and environmental
predictors from physics-based models to forecast TC intensity. Statistical-dynamical TC intensity
prediction models remain in use operationally due to their skill, particularly at longer forecast lead
times (Cangialosi et al., 2020). Statistical-dynamical models are also skillful at predicting RI, unlike
purely physics-based models (Torn & DeMaria, 2021). Statistical-dynamical methods for RI forecasts,
such as the SHIPS Rapid Intensification Index, or SHIPS-RII (Kaplan et al., 2010; 2015), use linear
discriminant analysis (Kaplan et al., 2010; Knaff et al., 2018), Bayesian and logistic regression
models (Rozoff & Kossin, 2011; Knaff et al., 2018), binomial logistic regression (DeMaria et al.,
2021), as well as consensus models (Kaplan et al., 2015).

In recent years, machine learning models have begun tackling the problem of TC intensity
prediction. Machine learning models trained on SHIPS predictors and satellite imagery skillfully
predict TC intensity and RI (Su et al., 2020; Griffin et al., 2022), as well as intensity and track errors
(Barnes et al., 2023; Fernandez et al., 2025). Convolutional neural networks (CNNs) and k-means
clustering better distinguish between environments that are favorable and not favorable to RI (Mercer
et al., 2021). Other approaches, such as decision tree-based models trained on SHIPS predictors
(Shaiba & Hahsler, 2016), the random Forest-based RI Scheme (FRIA) (Slocum, 2021; Sampson
et al., 2023), and the Long Short-Term Memory method (Yang et al., 2020) have also shown skill in RI
prediction. The advent of neural weather models for the global atmosphere opens new opportunities
for data-driven post-processing, analogous to statistical-dynamical prediction, with the potential to
significantly extend the lead time for skillful TC forecasts.

TCBench targets the challenging problem of global TC forecasting, providing open,
real-time–available data for these notoriously difficult-to-predict phenomena in an accessible format
designed to accelerate improvement of data-driven models (Table 1). As key contributions from
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TCBench to the community, we include routines to deterministically and probabilistically evaluate
tracks predicted by models, neural weather model output data associated with our selected test
year, and the necessary inputs for the training and validating postprocessing baselines—facilitating
evaluation by community members of their own models and approaches with respect to the provided
baselines. Furthermore, our forecasting setup provides a straightforward comparison between TC
track prediction models to our best observational record, and does not limit comparisons to storms
predicted by all models. Finally, we as provide scores for baseline models and thereby streamline
comparisons between current and future models.

Dataset Forecast
evaluation

Global
coverage

Open
source

TC-
specific

Environ.
predictors

AI-ready
format

WeatherBench 21 ✓ ✓ ✓ ✗ ✓ ✓

ChaosBench2 ✓ ✓ ✓ ✗ ✓ ✓

SHIPS3 ✗ ✗ ✗ ✓ ✓ ✗

IBTrACS4 (“ground truth”) ✗ ✓ ✓ ✓ ✗ ✗

TC-PRIMED5 ✗ ✓ ✓ ✓ ✓ ✓

TropiCycloneNet6 ✗ ✓ ✓ ✓ ✓ ✓

TCBench ✓ ✓ ✓ ✓ ✓ ✓

Table 1: Comparison of datasets and benchmarks across key criteria: forecast evaluation support,
coverage, openness, TC specificity, environmental predictors, and ML readiness.
1 Rasp et al. (2024); 2 Nathaniel et al. (2024); 3 DeMaria et al. (2022); 4 Knapp et al. (2010); 5 Razin et al. (2023);

6 Huang et al. (2025).

3 TCBENCH DATA TOOLBOX

Figure 2: (a) 2023 tropical cyclones in the TCBench test year, from IBTrACS. The lines represent
the position of each tropical cyclone over time, with the line color representing the storm’s intensity
at that position. (b) IBTrACS estimate of tropical cyclone numbers from 2017-2022 (corresponding
to TCBench’s training and validation years). Tropical cyclone counts binned into a 1◦ latitude
by 1◦ longitude grid. (c) Mean sea level pressure from ERA5 reanalysis during Typhoon Doksuri,
25/07/2023 06:00:00 UTC. Represents the ground truth targeted by neural weather models, as opposed
to the best record of TC intensity (IBTrACS) (d) 6-hour forecast of sea level pressure from the
FourCastNet-v2 neural weather model during Typhoon Doksuri, valid at 25/07/2023 06:00:00 UTC.
Panels a) and b) were made using the troPYcal software package (Burg & Lillo, 2019).

To provide a clear test set and baselines ensuring fair inter-model comparison, TCBench integrates a
diverse set of climate data with physics-based and neural weather model forecasts. A summary of
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all data sources used in TCBench is provided in Appendix C. These sources were selected based
on availability, spatial resolution, historical record length, and their relevance to forecasting or post-
processing TC intensity of tracks (Section 3.2). Figure 2 provides an example of some of the various
data sources included in TCBench, including observed TC track and intensity data (Figure 2a,b),
reanalysis (Figure 2c), and neural weather model forecasts (Figure 2d). In addition to the data we
provide, we set forth guidelines for community members to submit data/and or models for their
evaluation and listing on the leaderboard.

3.1 DATA PROVIDED WITH TCBENCH

The International Best Track Archive for Climate Stewardship (IBTrACS) serves as the “ground
truth” for model evaluation. IBTrACS is the most complete observational archive of global TCs that
is currently available (Knapp et al., 2010; Gahtan et al., 2024). IBTrACS provides global coverage of
TC tracks, including various parameters, such as location, intensity, and size. For consistency, we
retain only the 6-hourly time stamps (00:00, 06:00, 12:00, 18:00 UTC). We note that the definition of
TC intensity is inconsistent across different meteorological agencies (Schreck III et al., 2014). In
TCBench, we use the U.S. agencies’ definition: minimum sea-level pressure and 1-minute maximum
sustained wind speed at an altitude of 10 meters, both of which are provided in IBTrACS. Another
source of uncertainty and inconsistency across agencies and time periods is the first data point
included in each TC track in the IBTrACS dataset, e.g. there is no specific intensity for when the
agencies start the track of a specific TC. We provide tools for processing the IBTrACS file provided
by NOAA and provide the subsection of data of interest per identified TC.

ERA5 (Hersbach et al., 2020) is the 5th generation reanalysis product provided by the European
Centre for Medium-Range Weather Forecasts (ECMWF). ERA5 provides dozens of meteorological
variables at high spatial, vertical, and temporal resolutions, and models or assimilates a large amount
of historical data. Though ERA5 is used to provide initial conditions to physical and neural weather
models, we do not provide this data as it is made available by the ECMWF through its Copernicus
programme.

Physics-based models predict the weather by solving partial differential equations, such as the
laws of fluid dynamics, thermodynamics, radiative transfer, and atmospheric chemistry. We include
hindcasts from several of these models via The International Grand Global Ensemble (TIGGE)
product, including ensemble hindcasts of the Global Ensemble Forecasting System (the GEFS) and
the International Forecast System (the IFS)(Bougeault & Coauthors, 2010). In contrast, neural
weather models make weather forecasts using entirely data driven methods. These methods vary by
model but include graph neural networks (Lam et al., 2023), Fourier Neural Operators (Pathak et al.,
2022), and vision transformers (Bi et al., 2023). We include hindcasts from several neural weather
models, including NVIDIA’s FourCastNetv2 (Bonev et al., 2023), Huawei’s Pangu-Weather (Bi et al.,
2023), Google DeepMind’s GenCast (Price et al., 2025), and the ECMWF’s single-member AIFS
v1.0 (Lang et al., 2024).

With regards to data processing, all datasets were reformatted into a unified structure based on
IBTrACS for consistency across sources, using the IBTrACS storm identifier for identifying TCs and
following unit conventions in IBTrACS. For the physics based models, track data (position, intensity)
from international weather prediction centers was extracted from .xml files and standardized to
the format. For neural weather model forecasts, forecast tracks and intensities were parsed from
model outputs and matched to IBTrACS using TempestExtremes (Ullrich et al., 2021) and HuracanPy
(Bourdin & Saffin, 2025) and then standardized to the format. The postprocessing models we
provide predict intensification via a parametric distribution, and we thus sample in order to follow the
standardized. Additional details for the postprocessing models are provided in Appendix D.4.

3.2 DATA INCLUSION CRITERIA

To ensure consistency and usefulness across all experiments, each forecast or model dataset included
in TCBench had to meet the following requirements: a) They must provide at least 2 forecast
initializations per day (00z, 12z); b) They must provide forecasts at least through a 5-day lead time,
or forecasts until the IBTrACS record for that TC ends; c) the forecasts must be available as 6-hourly
forecast data; d) the forecasts must provide at least the latitude, longitude, minimum pressure, and
maximum wind speed track variables; e) models must provide any accompanying environmental
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fields (e.g., surface wind speed, surface pressure, geopotential height; additional examples are given
in Appendix C) used for tracking and intensity estimation; f) if tracking storms in environmental
fields, a documented tracking algorithm and reproducible code examples; and g) if not directly
forecasting track and intensity, the provided fields must have a minimum resolution corresponding to
about 0.5° on a global lat-lon grid, preferably 0.25°. These criteria are guidelines for both the data
we provide, and data provided by community members in the future.

3.3 GUIDELINES FOR MODEL SUBMISSION

Dataset Split Recommendation: IBTrACS storms are divided based on the year they occurred
to prevent leakage, noting that we divide based on calendar year and not TC season. We suggest at
least 4 years be used for training and at least 2 years be used for validation, noting that we assign
2017-2020 to training and 2021-2022 to validation. We require that the year 2023 be left for
testing, given that the models we include as baselines are not trained or tuned on this year.

Model Submission Guidelines: TCBench submissions must include: a) a list of open data sources
used for model training, including any relevant links; b) any additional data needed to run the model
on the test set; c) the minimal data sources needed to train the baselines presented for the training
and validation years, d) code and hyperparameters to train and run the model and generate the
predictions, e) the model and/or trained weights in a standard format (e.g., a pickled file – .pkl), f)
and an environment file to recreate the computing environment (or a container with which to run the
model). All data will be added to the GitHub and HuggingFace repositories as appropriate.

4 TCBENCH BENCHMARKING TOOLBOX

TCBench provides a standardized set of metrics to provide objective comparisons for TC forecasting.

Intensity: Intensity forecasts are evaluated using the root mean square error (RMSE) and the mean
absolute error (MAE).

Track Error Metrics: To evaluate the quality of predicted storm tracks, a set of deterministic
error metrics is computed following the methodology described by Heming (Heming, 2017). These
include:

Direct Positional Error (DPE): The straight-line distance between the forecast and observed
storm positions at the same verification time.
Cross-Track Error (CTE): The component of DPE that lies perpendicular to the observed storm
motion, indicating lateral displacement.
Along-Track Error (ATE): The component of DPE that lies along the observed storm motion,
indicating whether the forecast storm is ahead or behind in time.

A complete description of the formulae and computational procedures is provided in Appendix E.

Probabilistic Evaluation: To quantify uncertainty in ensemble forecasts, we report the fair variant
of the continuous ranked probability score (CRPS). Given an ensemble of N forecast values {xi}Ni=1
and an observation y, the fair CRPS provides an unbiased estimation of the discrepancy between the
forecast distribution and the observed outcome:

CRPS({xi}, y) =
1

N

N∑
i=1

|xi − y| − 1

2N (N − 1)

N∑
i=1

N∑
j=1

|xi − xj |. (1)

The first term captures ensemble accuracy (mean absolute error), while the second reflects ensemble
sharpness (spread). Lower CRPS indicates better-calibrated forecasts centered on the observation.
We define Track CRPS for TC tracks by replacing absolute differences with Haversine distances
between predicted and observed storm center positions.

Rapid Intensification Evaluation: Though Rapid intensification (RI) is a rare event, it is not
exceedingly so. We define it as approximately the 95th percentile of intensity change over a 24-hour
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Closed Contour Command Parameters Stitch Nodes Parameters

Variable Delta Dist. (◦) Min/Max Dist. (◦) Parameter Value

MSLP 200 Pa 6.5 0 Minimum Track Duration 12h
∆z300,500 -58.8 m2s−2 5.5 1.0 Vmax Threshold 10 m/s

Latitude (ϕ) |ϕ| ≤ 50◦

Table 2: TempestExtremes Parameters. Distances are expressed in great circle degrees.

window. Thus, we evaluate model performance on RI forecasts using metrics more tailored for rare
event forecasts. We note that while most of TCBench is configured as a regression problem, we have
formulated RI as a binary classification problem. Thus, rapid intensification models are tasked with
making a simple “yes/no" prediction for the occurrence of rapid intensification (i.e., the presence of
an intensification of 30 knots per 24h window, where the window is rolled over the 120h forecasts).
For these metrics, TP refers to true positives (hits); TN refers to true negatives, or correct negatives;
FP refers to false positives, or false alarms; and FN refers to false negatives, or misses.

Critical Success Index (CSI): Also known as the Threat Score, measures the ratio of correctly
predicted positive observations to the sum of all predicted positives, actual positives, and minus true
positives. CSI can be used both for probabilistic track evaluation and RI.

CSI =
TP

TP + FN+ FP
,

5 BASELINES

Following standard evaluation procedures (Knaff et al., 2003), we first compare TC forecasts to the
Mean Tendency by Lead & Basin (MT-LB) and persistence baselines. MT-LB samples the empirical
distribution of IBTrACS targets (intensity and position changes relative to initial conditions) from
1980 to 2022, conditioned on basin and lead time. For Persistence, at each lead time L the forecast
equals the initial state at t0 (i.e., we predict neither motion nor a change in intensity)

Baselines for Track and Intensity Predictions: We provide scores for tracks obtained directly
from DeepMind’s Weather Lab website for GenCast and Weatherlab FNv3, and for the ECMWF IFS
ensemble and the NCEP GEFS models using tracks from the TIGGE dataset. For PanguWeather,
FourcastNetv2, and the single-member version of AIFS, we process global outputs to obtain tracks
using TempestExtremes (Ullrich et al., 2021). The parameters we used are listed in Table 2, and
are the same as in Ullrich et al. (2021), with the exception of the minimum track duration, which
is set to 12h. While this would normally lead to overly sensitive tracking (i.e., resulting in less
filtering of short-lived systems that are not true cyclones), we frame the problem of TC prediction
with the assumption that there is a prior system of interest known to exist at an initial time and we are
interested in the evolution of said tropical system. We thus eliminate all spurious tracks that could
not be matched to the systems of interest. We generate two sets of tracks to evaluate - one in which
there is a fall back to the persistence baseline whenever the model does not produce a forecast for a
storm (e.g., because the storm does not exist in the model outputs) and one that includes only the
storms predicted by the models. Our main results rely on the former, while plots associated with the
latter can be found in Appendix F.

We provide additional baselines that post-process data-driven weather model forecasts to predict
tropical cyclone intensity, using a pipeline that follows (Gomez et al., 2025). These baselines
provide only an intensity forecast, and a more thorough description of these baselines is given in
Appendix D.4. Finally, we use all baselines for intensity prediction to evaluate for rapid intensification
(RI) by thresholding the wind speed change—i.e., if the 24 hour change in wind speed is at least 30
kts, RI has occurred.
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6 RESULTS

In this section we present examples of using TCBench to evaluate the deterministic and probabilistic
skills of neural weather models (AI Models) and physics-based models on TC track and intensity
predictions, covering lead times of up to five days. The results are summarized in Figures 3 and 4.

Some AI Models perform well for tracks: As shown in Figure 3, track prediction skills deteriorate
with increasing lead time. All evaluated models exhibit track errors that are smaller than the
persistence error at all lead times, indicating that all models produce useful track prediction. This is
especially apparent when looking at the error for the predicted tracks without a fallback to persistence,
shown by Figure 6 in Appendix F. While the track error for most AI models and physics-based
models are very similar across lead times, we see a clear indication of the AIFS model to outperform
other models in deterministic metrics beyond 24 hours. We largely attribute this to AIFS producing
TC track predictions for a greater number of time steps (see Figure 7 in Appendix F ), which
greatly reduces the number of samples for which the evaluation falls back to the persistence baseline.
Regarding the quality of model track ensembles, the physics-based GEFS model still outperforms the
AI model alternatives we evaluated with regards to track displacement CRPS. These results highlight
the potential of some existing data-driven forecasting models to provide reliable deterministic TC
track forecasts, but suggest that they are yet to be as good as physics-based ensemble models in
probabilistic track predictions.

Postprocessing AI models yields skillful intensity predictions: The coarse spatial resolution
of the physics-based global weather prediction models and the underlying training data for the AI
models mean that neither type of model is likely to perform well for intensity predictions. In fact,
all models produce forecasts of Vmax and pmin that are worse than the persistence baseline for
shorter lead times but that outperform it for longer lead times (fig. 3). We see that the lead time at
which the intensity predictions become useful varies between 24 hours and 48 hours, and that the
physics-based GEFS model tends to perform best for both Vmax and pmin. However, the difference in
deterministic and probabilistic skills between the best raw AI model and GEFS is slight. Furthermore,
we do not discount the possibility that a high spatial resolution, non-global physics-based model
can be dramatically better than both GEFS and the AI models at predicting TC intensity. Finally,
a well-designed post-processing algorithm of raw AI predictions can improve upon an originally
inaccurate AI model (e.g., PanguWeather) to the extent of producing predictions on par with or better
than the GEFS model.

Only the postprocessed AI models capture RI: The challenges of predicting TC RI events with
existing global AI models and physics-based models can clearly be observed in Fig. 4, where most
models show little to no ability to forecast such events across different lead times. Of the models we
evaluated, only the post-processed PanguWeather model shows any skill at RI prediction, with some
success in detecting RI for lead times between 48 and 96 hours. We note that neural weather models
have generally been trained on ERA5 reanalysis, which is known to have a negative bias with regards
to TC intensity. This issue, combined with the fact that many models have been trained to reduced a
mean error (e.g., MAE, RMSE) and the relatively coarse resolution of the predicted fields, makes
predictions of rapid intensification by the models a significantly more challenging task.

Overall, our evaluation reveals that:
• Some AI models outperform GEFS in deterministic track prediction, but not probabilistic ones.
• GEFS provides slightly better deterministic and probabilistic intensity forecasts than AI models.
• Intensity forecasts from AI models can be improved with a postprocessing pipeline.

These findings emphasize the complementary strengths of neural and physics-based systems, and
point toward hybrid approaches as a promising future direction in TC forecasting. These findings
also agree with (DeMaria et al., 2024; Sahu et al., 2025), who found that neural weather models
could make skillful TC track predictions, but lacked skill in intensity forecasting. The results from
the post-processed neural models are encouraging and point the way towards making data-driven TC
intensity forecasts more reliable.
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7 DISCUSSION AND CONCLUSION

Other Potential Applications: In addition to the simple deterministic and probabilistic TC track
and intensity predictions presented above, the TCBench dataset can be applied to other scientific
applications related to different aspects of tropical cyclones. These include assessments of wind-
related risks posed by tropical cyclones, tropical cyclone wind and precipitation nowcasting, wind
field reconstruction, and data aggregation for physics discovery. Additional description of these
potential applications is provided in Appendix G.

Limitations: There are clear limitations regarding this work, including the variance and evolution
of uncertainty in the data, a limited selection of sources for tractability, and TC track inconsistencies
across agencies. We acknowledge these and expand on them further in Appendix H.

Conclusion: By emphasizing flexibility in data experimentation, TCBench provides a data founda-
tion that can be extended with advancements in TC observations and modeling. TCBench’s goal is
to help the research community improve TC forecasts, our understanding of the physical processes
governing TC behavior, ultimately mitigating TC impacts on local communities and society at large.
We additionally provide a common point of comparison between TC forecasting models that is
centered around the prediction of TC behavior once systems have formed. We show that for this task
there is ample space for further research and improvement beyond our current data-driven forecasting
capabilities, and provide tools for helping researchers in this field.

9
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Figure 3: FAIR per-lead comparison on TCBench-2023. Deterministic (left) and probabilistic
(right) scores from 6–120 h for: (a) DPE, (b) CRPS–track, (c) AE–pressure, (d) CRPS–pressure,
(e) AE–wind, (f) CRPS–wind. Means are computed on IBTrACS verification keys (00/12Z inits),
with missing entries filled via persistence for fair comparison. Baselines: persistence (black dashed)
and MT-LB (cyan dashed; mean tendency by lead & basin from IBTrACS, 1980–2022). For CRPS,
persistence equals the MAE delta forecast. GENC and FNV3 are italicized because we use the
providers’ tracks (not re-derived). The post-processing model (dotted; e.g., PANGU_POST_ANN)
deviates from our protocol (non-6 h lead grid; trained/validated on different years). Right axes show
IBTrACS case counts. See SI for the corresponding raw (non-filled) comparison.
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Figure 4: TCBench deterministic scorecard (2023, baseline = Persistence). Cells show mean error;
colors show % difference vs baseline at the same lead (12-120h; columns) for each model (rows).
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8 LLM USAGE DISCLAIMER

Conversational AI tools (e.g., ChatGPT and Copilot) were used for the following tasks during the
manuscript’s preparation: text editing (specifically, in making certain sections more succinct), latex
formatting, and as an aid in code development when writing the benchmark framework.
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APPENDICES

A ACCOUNTABILITY AND REPRODUCIBILITY

TCBench is released under the open-source GNU General Public License. Continued development,
including updates discussed in the limitations section, will be managed on the official TCBench
GitHub page. Maintenance includes community support, issue tracking, and ongoing curation of
benchmark content. All assets are hosted on GitHub and HuggingFace to ensure stability and
accessibility.

Resources:

• Dataset: Available at redacted for anonymity
• Model Checkpoints: redacted for anonymity
• Code: redacted for anonymity
• Documentation: redacted for anonymity

An anonymized subset of the code and data has been prepared and uploaded to ProtonDrive:

https://drive.proton.me/urls/SKT1FGC3KG#lIOFkFcL4xOU

Please note that though any reference to usernames and paths that might be used to identify the
developers were removed, metadata scrubs were not conducted. We request that reviewers refrain
from viewing file metadata in case any identifying information be contained within.

A.1 HUGGINGFACE REPOSITORY STRUCTURE

We organize the TCBench HuggingFace repository as follows:

• texttt2023_IBTrACS.csv: The subset of IBTrACS with the storms and timestamps that we use
to evaluate models.
• matched_tracks/: A collection of CSVs with the tracks we evaluate as baselines, including
AIFS, FourCastNetv2, Weatherlab FNv3, GenCast, Panguweather, TIGGE GEFS, and TIGGE
IFS.
• neural_weather_models/: Raw, global neural weather model outputs for up to 5 days
lead time, initialized at each timestamp associated with a storm in 2023_IBTrACS.csv (i.e., the
ground truth).
• postprocessing_models/: Postprocessing model weights and the data required to run
them on the test set.
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A.2 GITHUB REPOSITORY STRUCTURE

We organize the TCBench Github repository as follows:

• track_processing/: The TempestExtremes routines needed to generate the tracks associ-
ated with the neural weather models, and the python routines that rely on HuracanPY to match the
tracks found with TempestExtremes to the TCs in IBTrACS.
• utils/: Collection of utilities used to process IBTrACS data, to process neural weather model
data for post-processing, and to calculate metrics on the tracks.
• scriptnames.py: various python scripts used to generate the track baseline predictions
(e.g., baselines.py, climatology_maker.py, compute_persistence.py), to evaluate a set of tracks
(e.g., evaluate_tracks.py)

B GETTING STARTED

We provide a detailed description of how to prepare the necessary data, perform training, and
benchmark your own model on our website. Please visit the following URL to see the guide: redacted
for anonymity. We also ask that if you encounter any issues to please feel free to contact us or raise
an issue on GitHub.

A getting started notebook for the anonymized review was prepared and is available at:
https://drive.proton.me/urls/SKT1FGC3KG#lIOFkFcL4xOU
under the filename Getting_Started.ipynb

C TCBENCH DATA ORGANIZATION AND WORKFLOW

C.1 DATA SOURCES

TCBench integrates multiple observational, reanalysis, forecast model, and AI-based data sources
relevant to tropical cyclone (TC) analysis and prediction. Table S1 summarizes datasets currently
included, and points to additional datasets of relevance.

Atmospheric Field Data: We use atmospheric field data from a variety of sources, including:

• Climate reanalysis and forecast datasets including ERA-5, TIGGE, IFS, and GFS.
• Outputs from AI models, including PanguWeather, FourcastNet, and the single member version
of AIFS 1.0.

C.2 DATA WORKFLOW

The TCBench workflow standardizes diverse data sources into a common format for evaluation:

1. Forecast and reanalysis fields are subset in space (storm-centered region) and time (forecast
lead times) using storm initialization from IBTrACS.

2. Model-specific track outputs (e.g., TIGGE XML files, neural weather model forecasts in
netCDF format) are converted into a uniform CSV format that includes the storm identifier
(taken from IBTrACS), position, maximum sustained wind, and minimum sea-level pressure.

3. A TCTrack object is created for each storm, encapsulating observed and predicted values
across time steps.

4. Gridded predictors (e.g., neural weather model forecasts) are stored as multidimensional
arrays [samples, time, lat, lon, variables] for use in ML-based experi-
ments.

C.3 DATA PROCESSING

Each dataset undergoes preprocessing to ensure comparability:
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Data Source Description Website Provided

Reanalysis

ERA5 European Re-Analysis 5 https://cds.climate.
copernicus.eu/datasets/
reanalysis-era5-pressure-levels?
tab=overview

No

Operational Analysis

HRES Analysis ECMWF’s archive of oper-
ational analysis, distributed
through MARS

https://confluence.
ecmwf.int/display/
UDOC/MARS+content#
MARScontent-Atmosphericmodels#
Analysis:~:text=models-,
Analysis

No

Ground Truth

IBTrACS Best Track Archive https://www.ncdc.noaa.gov/
ibtracs/

Yes

Extended Best-
Tracks

TC tracks with size https://rammb2.cira.
colostate.edu/research/
tropical-cyclones/tc_
extended_best_track_
dataset/

No

TC PRIMED ML Ready Benchmark dataset https://rammb-data.cira.
colostate.edu/tcprimed/

No

Statistical Models

SHIPS Statistical Hurricane Intensity
Prediction Scheme (develop-
mental dataset)

https://rammb2.cira.
colostate.edu/research/
tropical-cyclones/ships/
development_data/

No

Models

NCEP GFS Global Forecast System https://www.nco.ncep.noaa.
gov/pmb/products/gfs/

No

TIGGE GFS NCEP GEFS ensemble model
tracks dataset

https://rda.ucar.edu/
datasets/d330003/
dataaccess/#

Yes†

TIGGE IFS ECMWF IFS ensemble model
tracks dataset

https://rda.ucar.edu/
datasets/d330003/
dataaccess/#

Yes†

PanguWeather AI global model outputs https://github.com/
198808xc/Pangu-Weather

Yes

FourCastNet AI model outputs https://github.com/NVlabs/
FourCastNet

No

FourCastNetv2 AI model outputs https://github.com/NVIDIA/
torch-harmonics

Yes

AIFS AI global forecasting https://arxiv.org/abs/2406.
01465

Yes

Table S1: Data Sources Summary. † non-gridded data only

• TIGGE ensembles: Extract ensemble mean and member tracks, harmonize to IBTrACS
temporal resolution.
• AI models: Post-process global forecasts to storm-centered tracks; derive intensity and MSLP
comparable to IBTrACS.
• Post-processing Models: Extract 50 member ensemble from parametric distribution through
sampling, clip predictions to physical values (Vmax ≥ 0 kt).
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Environmental
Variable

Pressure Level (hPa)

1000 975 950 925 900 850 800 700 600 500 400 300 250 200 150 100 50*

Relative Vorticity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Relative Humidity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Geopotential

Height ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Vertical Velocity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Horizontal
Divergence ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Equivalent
Potential

Temperature ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Zonal Wind (u) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Meridional Wind (v) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table S2: Pressure level environmental fields potentially useful for TC intensity prediction. Adapted
from (Ganesh Sudheesh et al., 2023).

Temperature (2m) Dew point temperature (2m)

Convective available potential energy Sea surface temperature

Total column water vapor Total column cloud ice water

Total column cloud liquid water Total column super-cooled liquid water

Total column cloud rain water Vertical integral of divergence of cloud frozen water flux

Vertical integral of divergence of cloud liquid water flux Vertical integral of divergence of mass flux

Vertical integral of divergence of moisture flux Vertical integral of divergence of total energy flux

Vertical integral of potential and internal energy

Table S3: Single level environmental fields potentially useful for TC intensity prediction. Adapted
from (Ganesh Sudheesh et al., 2023).

C.4 MODEL EVALUATION AND METRICS

We evaluate forecast performance using the following metrics, standard in tropical cyclone verifica-
tion:

• Track error: Great-circle distance (km) between forecast and observed positions.
• Intensity error: Mean absolute error (MAE) of maximum sustained winds (kt) and minimum
sea-level pressure (hPa).
• Skill scores: Relative to climatology, persistence, and SHIPS baselines.
• Probabilistic metrics: Brier score and reliability diagrams for ensemble/AI probability forecasts.
• Partitioning: Cross-validation by year ensures temporal independence between training and
evaluation sets.

C.5 BIASES AND LIMITATIONS

• The dataset represents a subset of all possible TC tracks; some regions and seasons may be
underrepresented, especially where fewer storms materialize.
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• Forecast evaluation may omit rare teleconnection patterns or unusual environmental scenarios,
limiting generalizability.
• Definitions of storm intensity (e.g., 1-min vs. 10-min sustained winds) vary by agency and
observation method, introducing potential inconsistencies across basins. We control for this by
relying on USA reported values.
• IBTrACS quality varies by basin, with lower reliability in the South Indian Ocean and in the
pre-satellite era.
• Reanalysis products such as ERA5 contain uncertainties in poorly observed regions and for
weak or short-lived systems.
• AI models are rapidly updated (e.g., FourCastNet v1 vs. v2 vs. v3); benchmark results reflect
the versions available to the authors at the time of dataset creation.
• Storm size and structural parameters are inconsistently available across sources, limiting
evaluation beyond track and intensity.

D BASELINE MODELS

TCBench provides a set of baseline models including traditional statistical approaches, numerical
weather prediction (NWP) models, and simple machine learning (ML) approaches. These baselines
serve as reference points for track, intensity, and rapid intensification forecasts.

D.1 PERSISTENCE AND CLIMATOLOGY BASELINES

We rely on persistence and climatology as so called "naïve" baselines to provide context for the
performance of the evaluated models against straightforward, transparent prediction methods.

• Persistence: Assumes that storm position, intensity, and structure remain unchanged from the
current state. Provides a naive forecast useful for short-lead comparisons.
• Climatology / Mean Track – Long Baseline (MT-LB): Uses historical averages of storm
positions and intensities within each basin and season to generate forecasts. Captures long-term
trends and typical seasonal behavior.

D.2 NUMERICAL WEATHER PREDICTION (NWP) BASELINES

We rely on physics-based Numerical Weather Prediction models as baselines for global predictions of
TCs. These models rely on physics and numerical solutions of known equations to predict the state of
the atmosphere based on initial conditions. We use the following models in TCBench:

• NCEP GFS / GEFS: Global Forecast System provides deterministic forecasts, while GEFS
provides ensemble reforecasts from TIGGE. Baselines include position, maximum wind, and
minimum sea-level pressure.
• ECMWF IFS / TIGGE IFS: Ensemble forecasts from ECMWF’s Integrated Forecasting
System. Used for both track and intensity benchmarks.

We take the data provided by TIGGE as it is openly available and due to computational limitations
associated with running ensembles of physics-based NWP models.

D.3 NEURAL WEATHER MODEL BASELINES

We rely on neural weather models available at the time of writing to provide baselines for global
weather prediction using artificial intelligence. A brief description of the models is given below:

• FourCastNetV2 - neural weather model that relies on spherical harmonics based neural operators
to learn a grid-invariant evolution of the state of the atmosphere.
• PanguWeather - neural weather model that relies on an earth-specific transformer architecture
and multiple, lead time specific models to predict the evolution of the atmosphere.
• AIFS Single 1.0 - neural weather model whose architecture relies on a graph-based latent
representation of the earth and a sliding window transformer processor in order to predict the
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evolution of the atmosphere.
• Weathernext Gen (GenCast)† - neural weather model that relies on a conditional diffusion
architecture to predict a possible evolution of the state of the atmosphere.
• FNv3† - neural weather model that is not currently open, but is purported to be a functional
generative network (FGN) (Alet et al., 2025) fine-tuned on IBTrACS to better predict tropical
cyclones.

Track and intensity forecasts for the models marked with †are taken from Google WeatherLab
(https://deepmind.google.com/science/weatherlab), due to either computational
limitations for running the models or to the models not being open at the time of writing.

D.4 POST PROCESSING BASELINES

We provide a set of postprocessing baseline models following Gomez et al. (2025). Each postprocess-
ing model uses square, clipped neural weather model fields centered on the position of the tropical
cyclone at the initial time of forecast, with an extent of +/- 30°latitude and longitude. These models
further use an embedding of the position, maximum wind speed, and minimum sea level pressure at
the initial time of forecast for their prediction. These models are set up for distributional regression of
the rate of the intensification, and output the mean and standard deviation for a gaussian distribution
associated with forecast. Of particular note, the postprocessing models only predict intensification,
and do not predict the motion of the storm (i.e., the evolution of the position of the TC).

We provide three postprocessing models with varying levels of computational complexity:

• Multiple Linear Regression: the neural weather model forecasts are reduced (e.g., by calculat-
ing extrema) and a pair of MLRs are trained to predict the mean and standard deviation of the rate
of intensification.
• Multilayer Perceptron (ANN): the neural weather model forecasts are reduced in a manner
consistent with the reduction used for the MLR, but the regression algorithm is instead a MLP.
• UNet: the neural weather model forecasts and an embedding of the scalar quantities associated
with the forecast (e.g., the position and intensity at the initial time of forecast) are used in the
regression task.

We use the details provided for these architectures and associated hyperparameters provided by
Gomez et al. (2025) in training the models.

D.5 TRAINING SETUP

All baselines are trained and evaluated consistently:

• Data Splits: Storms are split into folds by year to minimize temporal leakage, ensuring that
models are evaluated on unseen storms.

• Input Variables: Depending on the baseline, inputs include:

– Current storm state: latitude, longitude, maximum wind, minimum pressure

– Environmental predictors: derived from ERA5 or TIGGE

– Historical storm statistics (for climatology/MT-LB)

• Ensemble Strategy: For probabilistic evaluation, ML ensembles produce multiple real-
izations; NWP ensembles (e.g., GEFS, IFS) are used directly as provided; Post-processing
model output distributions are sampled to produce a 50-member ensemble.

Baseline forecasts are evaluated using the same deterministic, probabilistic, and rare event metrics
described in Section 4.
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D.6 BASELINE MODELS SUMMARY TABLE

Baseline Type Inputs Outputs / Target

Persistence Deterministic Current storm state Track, intensity
Climatology / MT-LB Statistical Historical storm averages Track, intensity
NCEP GFS / GEFS NWP / Ensemble Model initial conditions Track, intensity
TIGGE IFS NWP / Ensemble Model initial conditions Track, intensity
FourCastNetv2 AI Model Initial Conditions Track, intensity
PanguWeather AI Model Initial Conditions Track, intensity
AIFS Single AI Model Initial Conditions Track, intensity
WeatherNext Gen AI N/A* Track, intensity
FNv3 AI N/A* Track, intensity
Pangu+MLR PostProcessing AI AI Model Forecasts, Current

Storm state
Intensity

Pangu+ANN PostProcessing AI AI Model Forecasts, Current
Storm state

Intensity

Pangu+UNet PostProcessing AI AI Model Forecasts, Current
Storm state

Intensity

Table 4: Summary of baseline models included in TCBench. Each baseline serves as a reference for
model evaluation.*Forecasts taken directly from Google WeatherLab

E EVALUATION METRICS

To test the forecast performance, TCBench use both deterministic and probabilistic metrics. De-
terministic evaluation focuses on the accuracy of predicted intensity and track positions. Standard
regression metrics include the root mean square error (RMSE), mean absolute error (MAE), and the
coefficient of determination (R2). Track errors are quantified using direct positional error (DPE),
cross-track error (CTE), and along-track error (ATE), which decompose the forecast position error
along and across the observed storm motion.

For probabilistic forecasts, we evaluate ensemble predictions using the Continuous Ranked Probability
Score (CRPS), which measures the discrepancy between the forecast distribution and the observed
outcome, capturing both ensemble accuracy and spread. For track forecasts, CRPS is generalized by
replacing absolute differences with Haversine distances between forecast and observed storm centers.
Additional probabilistic metrics include Brier Skill Score (BSS), Continuous ranked probability score
(CRPS), that provide complementary assessments of calibration and uncertainty representation. All
details of metrics and computational procedures for all metrics are provided in this section.

E.1 DETERMINISTIC METRICS

• Root Mean Square Error (RMSE): Measures the square root of the average squared differ-
ences between predicted and actual values, indicating the model’s prediction accuracy.

• Mean Absolute Error (MAE): Represents the average absolute differences between predicted
and actual values, reflecting the magnitude of errors in predictions.

• R-squared Score (R2): Quantifies the proportion of the variance in the dependent variable
that is predictable from the independent variables, indicating the model’s explanatory power.

Direct Positional Error (DPE) is the most basic measure of the positional accuracy of a tropical
cyclone (TC) forecast. It is defined as the distance between the forecast and observed positions of the
storm at the same verification time (VT).

There are two commonly used approaches for calculating DPE:

• Great Circle Distance (GCD)-based DPE: This version computes the shortest distance
over the Earth’s surface between the forecast and observed positions, treating Earth as a
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sphere. The Haversine formula is commonly used:

d = 2r arcsin

(√
sin2

(
∆ϕ

2

)
+ cos(ϕ1) cos(ϕ2) sin

2

(
∆λ

2

))
where:

– ϕ1, ϕ2 are the latitudes of the observed and forecast points (in radians),
– ∆ϕ = ϕ2 − ϕ1, ∆λ = λ2 − λ1 are the latitude and longitude differences,
– r is the Earth’s radius (typically ≈ 6371 km).

This method accounts for Earth’s curvature and is the standard in operational TC verification.
• Cartesian Projection-based DPE: An alternative approach involves projecting both ob-

served and forecast positions onto a local tangent plane (e.g., using an azimuthal equidistant
or equirectangular projection). The DPE is then computed using standard Euclidean distance:

d =
√
(xfcst − xobs)2 + (yfcst − yobs)2

where (x, y) are the projected coordinates. This method may be preferred for regional
studies or error decomposition in zonal/meridional directions.

Note: DPE provides a scalar magnitude of error but does not convey directionality (e.g., north/south
or ahead/behind). Directional errors are captured by the metrics below.

Figure 5: Illustration of track error metrics adapted from (Heming, 2017)

Cross-Track Error (CTE) measures the component of the track forecast error perpendicular to the
observed direction of storm motion.

1. Define the observed motion vector from the storm position 12 hours prior to VT to the
observed position at VT.

2. Draw a perpendicular line from the forecast position to this vector.
3. Find the intersection point of this perpendicular with the observed vector.
4. CTE is the great circle distance between the forecast position and this intersection point.

• In the Northern Hemisphere, a positive CTE indicates the forecast is to the right of the
observed path.

• In the Southern Hemisphere, the interpretation is reversed.

Note: CTE is undefined at the first valid time (due to lack of a 12-hour prior observed position).

Along-Track Error (ATE) ATE measures the component of the error along the direction of storm
motion and reflects timing accuracy.
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• Using the same intersection point from the CTE calculation, compute the great circle
distance between the observed position at VT and the intersection point.

• Positive ATE indicates the forecast is ahead of the observed position (i.e., storm is moving
too fast).

• Negative ATE indicates the forecast is behind (i.e., storm is too slow).

E.2 PROBABILISTIC METRICS

Here, we consider an ensemble of N forecasts as a set denoted {xi|i = 1, . . . , N}, and {xi}N for
short.

The Brier skill score (BSS) (Brier, 1950) is a relative measure that evaluates the improvement of a
probabilistic forecast over a reference forecast or climatology. BSS ranges -∞ to 1, where 1 indicates
a perfect skill and 0 indicates no improvement over the reference. A negative BSS suggests that the
forecast is less accurate than the reference. The BSS is based on the Brier Score (BS), a metric used
to measure the accuracy of probabilistic predictions for binary outcomes, defined as

BS =
1

N

N∑
i=1

(xi − oi)

where xi is a forecast probability, oi is the actual outcome, and N is the number of forecasts. Then
BSS is defined as

BSS = 1− BSforecast
BSreference

The Continuous Ranked Probability Score (CRPS) is widely used to assess the skill of ensemble
forecasts by measuring the discrepancy between the predicted and observed cumulative distribution
functions (CDFs). Unlike the BS, which applies to binary events, the CRPS evaluates the accuracy of
probabilistic forecasts for continuous variables. Formally, for a forecast CDF F̂ and a realized value
y, the CRPS is

CRPS =

∫
R

[
F̂ (x)−H(x− y)

]2
dx, (2)

where H denotes the Heaviside step function, which represents the degenerate CDF of a single
observation. For discrete ensembles, we use the kernel representation of the CRPS (Gneiting & and,
2007):

CRPS({xi}N , y) =
1

N

N∑
i=1

|xi − y| − 1

2N2

N∑
i=1

N∑
j=1

|xi − xj |. (3)

The first term is the mean absolute error of the ensemble members, while the second term measures
the ensemble spread via the mean absolute pairwise difference. To mitigate finite-ensemble bias
(inflated scores due to underestimation of the second term), we adopt the fair CRPS (Zamo & Naveau,
2018):

fCRPS({xi}N , y) =
1

N

N∑
i=1

|xi − y| − 1

2N (N − 1)

N∑
i=1

N∑
j=1

|xi − xj |. (4)

E.3 METRICS FOR EXTREMES

Rapid Intensification: Rapid intensification is a rare event, but not an exceedingly rare event; by
definition, it is the 95th percentile of intensity change. Thus, we evaluate model performance on rapid
intensification forecasts using metrics more tailored for rare event forecasts. We note that while most
of TCBench is configured as a regression problem, we have formulated rapid intensification as a
binary classification problem. This means rapid intensification models will be tasked with making
a simple “yes/no" prediction for the occurrence of rapid intensification.

• Critical Success Index (CSI): Also known as the Threat Score, measures the ratio of correctly
predicted positive observations to the sum of all predicted positives, actual positives, and
minus true positives. Can be used both for probabilistic track evaluation and RI.
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• Peirce skill score (PSS): The Peirce skill score (also known as the Hansen and Kuipers
discriminant, or the true skill statistic) is an estimate of how well the forecast separates
"yes" events from "no" events. It ranges from -1 to 1, with +1 being a perfect score and
0 indicating no skill. PSS is generally considered to be better for rare events, though for
extremely rare events it tends to 0.

PSS = TPR− FPR where TPR =
TP

TP + FN
, FPR =

FP

FP + TN
. (5)

F EXTENDED RESULTS
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Figure 6: Per–lead verification on TCBench-2023 (6–120 h), non-filled. Rows: track, pressure,
wind; columns: AE, R2, CRPS (track uses DPE, CRPS-track, along-track). Curves use raw model
coverage—no persistence filling—so each mean is over the forecast–verification pairs available for
that model and lead. Models are colored (WeatherLab FNv3 in gray). Baselines: persistence (black
dashed) and climatology/MT-LB (cyan dashed). R2 = 1−MSE/Var vs. IBTrACS
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Figure 7: Coverage on the 2023 test set (% of IBTrACS verification pairs) by lead. An IBTrACS
pair is a unique (SID, t0, t0+L) observed on the 6-hour grid with t0 ∈ {00, 12} UTC. A model
covers a pair if it outputs any row for that key. Shaded regions indicate the fraction covered at each
lead. Large coverage disparities motivate the FAIR comparison (persistence-filled on the same IB
grid) reported elsewhere in the paper.
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Figure 8: CRPS scorecards (probabilistic). Track displacement (km), max wind (kt), and min
pressure (hPa) on TCBench-2023 for 6–120,h leads. Each cell is the percent difference in CRPS
relative to the Persistence baseline at the same lead (lower is better); the Persistence row reports
absolute CRPS (units in panel titles). Results use non-filled data (raw model coverage); dashes denote
no verification pairs at that lead. Hatched rows mark externally provided products (GENC, FNv3);
PANGU_POST_ANN is a learned post-processor.
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Figure 9: Rapid Intensification (RI) skill—overall by model. Bars show overall Critical Success
Index (CSI; left) and Peirce Skill Score (PSS = TPR−FPR; right) computed against the IBTrACS RI
ground truth for 2023. Scores use the common (SID, t0, t0+L) key set on the 6 h IBTrACS grid.
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Figure 10: Rapid Intensification (RI) skill by lead time. CSI (left) and PSS (right) as a function of
lead time (6–120 h, 6 h steps), evaluated vs. the IBTrACS 2023 RI ground truth on the 6 h grid. Axes
are capped for readability.

G POTENTIAL APPLICATIONS

Accurate assessments of the wind-related risks posed by tropical cyclones rely heavily on knowledge
of their full wind structures (2D images stacked in the vertical). It is challenging to obtain such wind
fields because satellite observations often only provide partial coverage of TCs with limited temporal
sampling. Various methods have been proposed to address this challenge, ranging from analytical
parametric models (Chavas et al., 2015) to modern machine learning techniques (Yang et al., 2022),
which attempt to infer spatial wind fields from easily observed scalar quantities such as minimum
sea-level pressure or the radius of maximum surface winds. By offering IBTrACS in an AI-ready
format, TCBench facilitates the design and training of models to predict key scalars needed for
wind reconstruction. Moreover, the standardized aggregation of outputs from multiple AI models
allows users to assess and compare tropical cyclone size predictions across models, thereby helping
to identify and quantify TC size biases in neural weather models.

By providing different routines to process TC observations in different formats, the TCBench dataset
is ideal for developing very short-term TC winds and precipitation predictions. Data-driven
nowcasting models (Agrawal et al., 2019) are more computationally competitive than explicitly
simulating the TCs with high-resolution numerical models. The ability of probabilistic data-driven
models to create hundreds of possible predictions for a given initial condition within minutes and
adjust based on new satellite image inputs makes them useful additions to the existing weather
forecasting pipeline.

The examples provided in the previous sections only evaluate the intensity at a given point in the TCs.
Similar to the wind field reconstruction tasks described earlier, we can develop wind downscaling
models (Lockwood et al., 2024a) to add additional spatial details to the TCs in the neural weather
model outputs in coarse resolution. Another extension to the prediction tasks shown in the text is
to provide global prediction of TC activity across timescales. The neural weather model outputs
and simple tracking algorithm in TCBench facilitate consistent evaluation of the skill of different
AI models in developing the TCs at the right time and right place. Based on the comparison of TC
activity patterns of different neural weather models, basin-specific refinements can be made to reduce
potential spatial biases in the existing trained neural weather models.

Finally, the aggregation of satellite images, environmental fields, and intensity observations in an
easy-to-access dataset enables identification of critical predictive environmental properties for
TC intensity (Bister & Emanuel, 2002), thereby forming the basis for novel discovery on tropical
cyclone physics.

27



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

H LIMITATIONS

First, uncertainties associated with each product vary, which pose a challenge in estimating and
providing accurate error margins for reanalyses and observations. An ambitious goal is to include ob-
servational error estimates (e.g., intensity, track location) that vary over time, reflecting improvements
in satellites and technology.

Although using multiple reanalyses and tracking algorithms is ideal due to the variation in data
quality and sensitivity of cyclone detection schemes, initial efforts may need to rely on a single
reanalysis dataset for tractability, while clearly acknowledging its limitations (Pinheiro et al., 2020).
Furthermore, creating a single dataset that fits all purposes is impossible, necessitating trade-offs
such as neglecting some teleconnections or using datasets only available for the past approximately
15 years. Additionally, the definition of TC intensity varies by agency, primarily in the number of
minutes used to calculate maximum sustained wind speeds, which introduces inconsistency.

The first position of TCs across agencies and across time is also subject to large uncertainty and
inconsistency. Therefore, in subseasonal to seasonal time-scales and climate studies, it is common
to consider the first time the TC reaches tropical storm intensity (35 kt) in the track to improve
consistency. Moreover, creating a seamless list of predictors for the entire tropics is challenging due
to the variation in relevant variables across different basins or seasons.
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