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Abstract
With the rapid scaling of large language models
(LLMs), structured pruning has become a widely
used technique to learn efficient, smaller mod-
els from larger ones, delivering superior perfor-
mance compared to training similarly sized mod-
els from scratch. In this paper, we move beyond
the traditional static pruning approach of deter-
mining a fixed pruning mask for a model, and
propose a dynamic approach to structured prun-
ing. In our method, the pruning mask is input-
dependent and adapts dynamically based on the
information described in a user instruction. Our
approach, termed “instruction-following pruning”,
introduces a sparse mask predictor that takes the
user instruction as input and dynamically selects
the most relevant model parameters for the given
task. To identify and activate effective parameters,
we jointly optimize the sparse mask predictor and
the LLM, leveraging both instruction-following
data and the pre-training corpus. Experimental
results demonstrate the effectiveness of our ap-
proach on a wide range of evaluation benchmarks.
For example, our 3B activated model improves
over the 3B dense model by 5-8 points of absolute
margin on domains such as math and coding, and
rivals the performance of a 9B model.

1. Introduction
Structured pruning techniques have become a widely
adopted method for reducing the inference cost of large lan-
guage models (Wang et al., 2020; Sreenivas et al., 2024; Mu-
ralidharan et al., 2024; Meta AI, 2024). These methods typ-
ically optimize a binary mask over language model parame-
ters to minimize either language modeling or task-specific
loss (Xia et al., 2024; Sreenivas et al., 2024; Meta AI, 2024).
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Once the mask is optimized, the resulting mask is fixed,
allowing deployment of a smaller, pruned model. However,
the fixed nature of the pruned model poses challenges in real-
world inference scenarios, where tasks can vary significantly,
for instance, coding, mathematics, or domain-specific re-
quirements, each demanding distinct skills and knowledge
from the original language model. A static pruned model
may struggle to balance inference efficiency with high per-
formance across diverse tasks.

Given this, we explore a paradigm shift from static pruning
masks to dynamic ones, addressing the central question:

Can LLMs learn to select the most suited parameters
based on the task description?

We aim to automatically generate input-specific pruning
masks tailored to the tasks described in user prompts. This
dynamic, context-aware pruning mechanism enables the
language model to perform inference using only the param-
eters necessary for the task, offering a compelling balance
between efficiency and expressivity compared to using a
static dense model. Moreover, because the parameters are
selected and fixed, our method avoids reloading new pa-
rameters during the decoding process. This design choice
contrasts with other dynamic methods such as contextual
sparsity (Liu et al., 2023; Zhou et al., 2024) and mixture-of-
experts (Lepikhin et al., 2020; Fedus et al., 2022; Dai et al.,
2024), which load different parameters at each decoding
step, leading to significant weight loading costs. Our design
is particularly suited for on-device models (e.g. smartphones
and laptops), where the inference typically samples a few re-
sponses given the same user query (or the same task). In this
case, the same activated parameters are selected and cached
as a dense model, therefore achieving the same speedup as
the static pruning.

To address the central question, we present Instruction-
Following Pruning (IFPRUNING), a method that integrates
a sparsity predictor with the language model to dynamically
generate input-dependent pruning masks, as illustrated in
Figure 1. Specifically, we focus on structured pruning of
the feed-forward neural network layers, where entire rows
or columns of the weight matrices are pruned (Xia et al.,
2024; Gunter et al., 2024; Sreenivas et al., 2024). The user
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Figure 1. Overview of IFPRUNING. (Left) For each given prompt, the sparsity predictor (much smaller than the LLM) determines
which rows and columns of the FFN matrices should be activated. (Middle) The LLM is then pruned accordingly and uses the selected
parameters to perform inference for that specific prompt. (Right) By pruning a 9B LLM to 3B for each input, IFPRUNING significantly
outperforms the dense 3B model and achieves performance levels close to the dense 9B model. It also achieves nearly the same inference
latency as the dense 3B model, as measured by time-to-first-token (TTFT).

prompt is first passed into the sparsity predictor, which as-
signs importance scores to the rows and columns of each
feed-forward network layer. These scores are then trans-
formed into differentiable masks using the SOFTTOPK op-
erator (Ainslie et al., 2023), to achieve a predefined number
of sparsity (e.g., reducing a 9B language model to 3B active
parameters). The resulting masks are applied to the lan-
guage model, in which the feed-forward layers are pruned
using the masks.

During training, the differentiable mask generation mecha-
nism allows us to jointly optimize both the sparsity predictor
and the language model by minimizing the next-token pre-
diction loss. We employ effective training strategies that
leverage both pre-training and supervised fine-tuning data.
At test time, only the selected parameters are activated for
inference. Parameter selection can be performed either per-
input or per-task: the input prompt can directly be used
for parameter selection (Section 4.2), or a predefined task
prompt can be used to select parameters shared across mul-
tiple inputs within the same task (Section 4.3).

We validate IFPRUNING through comprehensive experi-
ments across diverse tasks in Section 4. Specifically, we
fine-tune pre-trained language models of varying sizes (6B,
9B, and 12B parameters) using IFPRUNING and prune them
to activate only 3B parameters. In particular, IFPRUNING
consistently outperforms 3B dense models across tasks such
as math, coding, tool use, MMLU (Hendrycks et al., 2021a)
and AlpacaEval (Dubois et al., 2024). For example, when
dynamically pruning the 9B model to 3B, our method im-
proves over the 3B dense model by 8% on coding tasks and
by 5% on math benchmarks, incurring only marginal perfor-
mance degradation compared to the unpruned 9B model.

We conduct further analysis to better understand the prun-
ing decisions. Specifically, we observe that instructions
requiring similar skills or domain knowledge yield highly
homogeneous pruning patterns. Inspired by this analysis,
we explore per-task pruning in Section 4.3, where a single
task prompt generates shared masks for all test instances
within the same task. Results show that per-task pruning
maintains robust performance while further reducing data
loading overhead.

We also show that IFPRUNING can significantly improve
the LLM inference efficiency in Section 4.4. Compared to
the full model, IFPRUNING reduces the time-to-first token
by up to 57% and the generate time by up to 41%. In
addition, the overhead introduced by dynamic pruning and
parameter caching is negligible, adding less than 0.1 seconds
per example and accounting for only 1–2% of the total
generation time.

2. Related Work
In this section, we provide an overview of prior research that
closely relates to and partially motivates our work, including
model pruning, contextual sparsity, and mixture-of-experts.

Model pruning Pruning has been extensively studied to
compress neural networks and improve their efficiency (Han
et al., 2015; Zhu & Gupta, 2017). Previous work has ex-
plored different pruning techniques for both unstructured
pruning (Narang et al., 2017; Frankle & Carbin, 2018; Li
et al., 2020; Chen et al., 2020) and structured pruning (Wen
et al., 2016; Voita et al., 2019; Louizos et al., 2018; Wang
et al., 2020). As structured pruning removes entire compo-
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nents in the model such as channels, attention heads, and
feed-forward neural network intermediate dimensions, it is
more hardware-friendly than unstructured pruning to com-
press the large models.

Various methods have been proposed for structured prun-
ing of LLMs (Yang et al., 2024b; Kim et al., 2024; Kurtić
et al., 2024; Dery et al., 2024). LLM-PRUNER (Ma et al.,
2023) adopt the gradient information to find unimportant
components in LLMs and remove them. SLICEGPT trans-
forms each weight matrix in transformer blocks into a
smaller one by applying orthogonal transformations to re-
duce the embedding dimensions of weight matrices. SHORT-
GPT (Men et al., 2024) proposes to identify and remove
those less important layers, where the layer importance is
measured by the similarity between inputs and outputs of
that layer. In comparison, other optimization-based methods
directly learn the parameter masks. For example, SHEARED
LLAMA (Xia et al., 2024) use the HARDCONCRETE mask-
ing (Louizos et al., 2018; Wang et al., 2020) to generate
differentiable masks and optimize the model and masks on
pre-training data. Our method also directly optimize the
sparsity predictor and the LLM, and we further extend static
pruning to input-dependent pruning.

Contextual sparsity Our approach is also directly moti-
vated by the contextual sparsity of LLMs (Liu et al., 2023;
Akhauri et al., 2024; Lee et al., 2024). Previous work has
identified the existence of input-dependent sub-networks
(e.g., attention heads and MLP parameters) within ReLU-
based LLMs that can generate approximately the same out-
put as the full model for an input. By predicting such
sparsity patterns at each decoding step, we can achieve a
favorable balance between accuracy and speedup. But state-
of-the-art LLMs (Dubey et al., 2024; Liu et al., 2024a; Yang
et al., 2024a) design MLP blocks based on more complex
non-linear activation functions such as SwiGLU (Shazeer,
2020), SiLU (Elfwing et al., 2018; Ramachandran et al.,
2017) and GELU (Hendrycks & Gimpel, 2016) that do not
inherently induce sparsity (Mirzadeh et al., 2023; Song et al.,
2024). Therefore, directly predicting the sparsity patterns
can lead to significant performance degradation (Zhou et al.,
2024; Dong et al., 2024). In comparison, we co-optimize
the sparsity predictor and the LLM with non-ReLU acti-
vation functions to achieve better contextual sparsity with
minimum performance degradation. Also, most contextual
sparsity methods require predicting sparsity and loading
different parameters at each decoding step. Our method
eliminates this overhead by selecting the parameters based
on the input or task description before decoding starts. The
selected parameters are fixed for the entire decoding process,
avoiding the parameter reloading cost.

Mixture-of-experts Mixture-of-Experts (MoE) have
emerged as a popular architecture for scaling LLMs while
managing inference costs (Lepikhin et al., 2020; Du et al.,
2022; Fedus et al., 2022; Zhou et al., 2022; Dai et al., 2024;
Liu et al., 2024b). These models organize every FFN layer
into multiple large FFN blocks referred to as experts, and
selectively activate a few experts for each input token via a
routing mechanism (Lepikhin et al., 2020; Zoph et al., 2022;
Sun et al., 2024). Our method share the same spirit as MoE
by dynamically activating a subset of parameters. However,
our method selects the activated parameters given the input
prompt, and reuses the same activated parameters during
decoding. Although this choice loses the flexibility of us-
ing different parameters per token, it significantly reduces
weight loading costs for decoding. In this regard, our model
is a sparse model designed for on-device scenarios where
both memory and computational resources are constrained.
Another difference is that our method performs more fine-
grained selection of parameters by activating or pruning
each FFN dimension independently, which enhances model
expressivity.

3. Method
In this section, we elaborate on the details of IFPRUNING,
including the architecture design, data mixture, and training
method. We focus on pruning the feed forward blocks
(FFNs) in this work, but our method can be easily extend to
pruning other components such as attention heads.

3.1. Overview of Structured Pruning

Denote the hidden dimension of the LLM as d, the interme-
diate dimension of the FFN blocks as dffn, the input length
as n, and X ∈ Rn×d as the input of a transformer FFN
block Fffn(·). The goal of our structured pruning method is
to reduce the FFN intermediate dimension from dffn to tffn.
Without loss of generality, consider a standard FFN block
defined as

Fffn(X) = FF2(FF1(X)) = σ(XW1)W2, (1)

where W1 ∈ Rd×dffn , W2 ∈ Rdffn×d are weight matrices,
and σ is the non-linear activation function. The structured
pruning of the FFN block can be expressed as applying a
mask variable m ∈ {0, 1}dffn to the output of the first linear
transformation

Fffn(X,m) = FF2(FF1(X)⊙m). (2)

where ⊙ is an element-wise multiplication between m and
each row of FF1(X). For each dimension of m, mi = 0
indicates that the i-th column of W1 and i-th row of W2 are
pruned. This is because the output Fffn(X,m) is equiva-
lent to the output of the FFN layer after we prune the i-th
column of W1 and i-th row of W2. Here m satisfies the
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sparsity constraint
∑

i mi = tffn, where tffn is the target
intermediate dimension of the FFN blocks after pruning.

3.2. Architecture

As shown in Figure 1, our architecture comprises two key
components: a sparsity predictor and a dense LLM to be
dynamically pruned. For any given user prompt, the spar-
sity predictor generates masks that are applied to the LLM
backbone, pruning the corresponding rows and columns of
the FFN blocks.

Sparsity predictor The sparsity predictor consists of
two modules: ❶ a much smaller LLM backbone to ex-
tract the features of user prompts and ❷ a mask prediction
head. Specifically, the LLM backbone takes the prompt
x = (x1, . . . , xn) as input with length n, and we use the
hidden states of the last token xn in the last layer to represent
the prompt. The mask prediction head is a two-layer MLP,
which predicts the masks given the prompt presentations.
The output of the FFN mask prediction head is the masking
score z ∈ RL×dffn , where L is the number of layers of the
LLM. We include more details about the architecture of the
sparsity predictor in Appendix A.1.

Given the predicted masking score z, a mask generation
operator will be applied to z to convert it to the mask m ∈
[0, 1]L×dffn , which contains tffn nonzero elements. In this
paper, we use the SoftTopK (Lei et al., 2023; Ainslie et al.,
2023) algorithm to generate a differentiable m, but we also
acknowledge that other algorithms such as the HardConcrete
masking (Louizos et al., 2018; Wang et al., 2020) are also
applicable. Particularly, given the FFN masking score z,
SoftTopK converts it to masks m via:

λ(i) = g(z(i)), m(i) = λ(i) ⊙ Top(λ(i), tffn). (3)

Here z(i), λ(i) and m(i) represent the i-th row of each ma-
trix, g(·) : Rdffn → [0, 1]dffn is a normalization function,
and Top(·, tffn) ∈ {0, 1}dffn is an indicator function that
returns a binary mask indicating the top-k values in λ. The
normalization function g(·) ensures that λ satisfies the spar-
sity constraint, i.e.,

∑
k λ

(i)
k = tffn, where tffn is the target

size of the FFN layers. More details of SoftTopK can be
found in the previous work (Lei et al., 2023; Ainslie et al.,
2023).

Masked LLM During training, the LLM takes the masks
m as an additional input and prune its FFN blocks. We use
standard next token prediction loss computed over tokens
within a training batch, and we co-optimize the LLM and
the sparsity predictor.

3.3. Model Training

The training of IFPRUNING incorporates two stages. We
first perform continued pre-training in which we initialize
our model using a pretrained dense model, and then perform
supervised fine-tuning (SFT) on instruction-following data.
In what follows, we elaborate on the details of the two
training stages.

Continued pre-training Learning to select input-specific
sub-networks may require a lot of training data. Instead
of directly training the models on the SFT data only, we
first use pre-training data to jointly optimize the sparsity
predictor and masked LLM. Specifically, denoting the input
text as x = (x1, . . . , xn), we split it into K consecutive
chunks with fixed size:

x(k) = x(k−1)s+1, . . . , xks, k = 1, . . . ,K, (4)

where s = n/K is the fixed size of each chunk. We then
use the each chunk to select parameters of the LLM for the
next token predictions in the next chunk, i.e.,

L =

K−1∑
k=1

∑
xi∈x(k+1)

ℓ
[
f(x<i;θ,m

(k)), xi

]
, (5)

where θ refers to the parameters of the LLM, m(k) is the
predicted mask based on chunk x(k), f(x<i;θ,m

(k)) is
the next token prediction distribution from the LLM with
m(k) applied, and ℓ(·) is the Cross-Entropy loss. Since the
chunks are consecutive, the sparsity predictor can learn to
utilize the contextual information of each chunk to predict
which parameters of the LLM are best suited for the next
token prediction in the next text chunk. Because both the
sparsity predictor and LLM are co-optimized in this stage,
it provides a good initialization for the fine-tuning stage.

Supervised fine-tuning Starting from the models after
the first stage, we train the sparsity predictor and the LLM
on a supervised fine-tuning dataset that contains several
million examples. During training, the input prompts will
be fed into the sparsity predictor which predicts the masks
for each input. The LLM is then masked and optimized to
predict the target outputs conditioned on the input prompts.
Our SFT data contains a diverse set of prompts to predict
the sub-networks. Some prompts specify the task with a
task description and an input, while others include few-shot
examples along with the input. Lastly, many examples only
contain a task description, like “write a comprehensive blog
post about the top 10 most eco-friendly cities in the world.”.

For multi-turn conversational data, we only use the first
human message as the prompt for sub-network selection.
During training, with the exception of removing all instances
of personal data, all these prompts are fed directly into the
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sparsity predictor without any additional processing. This
approach maximizes flexibility during inference, allowing
the predictor to generate a sub-network regardless of the
prompt format during inference. The training objective
follows the standard SFT approach, namely minimizing
the cross-entropy loss on the target outputs. Through this
process, the model learns to selectively activate the most
suited parameters for different input examples.

4. Experiment
In this section, we conduct empirical evaluations to assess
the effectiveness of our proposed method.

4.1. Experiment Setup

Dataset and backbone models Our models are trained on
an internal SFT dataset with several million examples. We
also follow the setup used in TÜLU 2 and sample additional
800K examples from the FLAN-V2 collection (Chung et al.,
2024) to enhance task prompt diversity. The experiments
are conducted using a series of pre-trained LLMs. Partic-
ularly, for the sparsity prediction component, we initialize
it with a 302M model that has been pre-trained on web-
crawled data. To test the performance of our method across
various model scales, we separately train three different
models that use 6B, 9B, and 12B parameters, respectively,
in the masked LLM component. For all these models, our
approach activates 3B parameters (and prunes the rest of the
parameters). More details about the model architecture are
given in Appendix A.1.

Comparison baselines We compare our method with the
following models: ❶ DENSE-3B. We compare with a 3B
dense LLM that is trained using twice as many pretraining
tokens compared to our models. ❷ PRUNING+DISTILL. We
also compare our method with static pruning approaches.
Similar to recent work such as Sheared LLaMA (Xia
et al., 2024), LLAMA 3.2 (Meta AI, 2024), and MINI-
TRON(Sreenivas et al., 2024), we include a baseline where
a 3B dense LLM is pruned and distilled from a larger pre-
trained LLM. we first prune the larger LLM into a dense
3B model by learning masks on the FFN layers similar to
Sheared LLaMA (Xia et al., 2024). After pruning, the model
undergoes further continuous pre-training through knowl-
edge distillation (Hinton, 2015), using a larger dense model
with 12B parameters as the teacher model. Therefore, this
approach serves as a stronger baseline compared to models
using pruning alone. More details of the knowledge distilla-
tion can be found in Appendix A.2. ❸ DENSE-9B. We also
include a 9B dense model without pruning as a reference
for upper-bound performance.

Implementation We use the AXLearn (Apple, 2023)
framework and JAX (Bradbury et al., 2018) for model train-
ing. Following the previous work (Dubey et al., 2024), all
the pre-trained model used in our experiments are achieved
by performing two-stage pre-training. All models are pre-
trained with a batch size of 2048 and a total number of 5T
tokens, except that the DENSE-3B is trained for 9T tokens.
The SFT training for the baselines and our method is per-
formed with a batch size of 1024 for 60k training steps. We
use the same pre-train and SFT data mixture for all models.

Evaluation configurations We include the following
tasks for evaluation:

• Instruction-following. We include IFEval (Zhou et al.,
2023), AlpacaEval 2.0 (Dubois et al., 2024), and
Arena-Hard-Auto (Li et al., 2024) for evaluation.
We report the prompt-level and instruction-level accuracy
on IFEval, the length-controlled win rate on AlpacaEval
2.0, and win rate on Arena-Hard-Auto.

• Coding tasks. We evaluate the pass@1 perfor-
mance on HumanEval-python (Chen et al., 2021),
mbpp (Austin et al., 2021), and MultiPL-E (Cassano
et al., 2022). For MultiPL-E benchmark, we use the Swift
subset for evaluation.

• Math. We use GSM8K (Cobbe et al., 2021) and
MATH (Hendrycks et al., 2021b) to evaluate the math
capabilities of LLMs. we report the accuracy with few-
shot examples on both datasets (8-shot for GSM8K and
4-shot for MATH).

• Core Text. We include a set of tasks to evaluate the
model’s core capabilities of natural language understand-
ing, scientific knowledge, and reasoning. We report
the zero-shot performance on ARC-challenge (Clark
et al., 2018), ARC-easy (Clark et al., 2018),
HellaSwag (Zellers et al., 2019), WinoGrande (Sak-
aguchi et al., 2021), PiQA (Bisk et al., 2020),
LAMBADA-OpenAI (Paperno et al., 2016), and
SciQ (Welbl et al., 2017).

• MMLU (Hendrycks et al., 2021a). We evaluate the 5-shot
performance and report the multiple-choice accuracy.

• Tool use. We evaluate the tool use performance on
MMAU (Yin et al., 2024) and report the performance on
Tool Execution and Tool Planning.

We mainly use LM-Evaluation-Harness (Gao et al.,
2021) to evaluate the tasks, with the exception of instruction-
following and tool-use tasks, which are based on their offi-
cial implementations.
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Table 1. Performance comparison between IFPRUNING and other dense LLMs. PRUNING+DISTILL 3B is first pruned from larger model
into 3B parameters and undergoes continuous pre-training with knowledge distillation using a 12B LLM as the teacher model. Three
versions of IFPRUNING are included which activate 3B parameters of LLMs with 6B, 9B, and 12B parameters. The best results are
highlighted in bold and the second-best results are underlined. DENSE-9B is included for reference.

Category Dataset DENSE 3B PRUNING+
DISTILL 3B

IFPRUNING DENSE 9B
6B→3B 9B→3B 12B→3B

Instruction
Following

IFEval-Instruction 85.0 86.7 83.9 85.9 85.3 87.5
IFEval-Prompt 77.8 80.8 77.6 78.9 78.6 81.7
AlpacaEval 2.0 27.3 30.0 29.0 31.3 32.5 38.6
Arena-Hard-Auto 15.8 16.4 18.0 18.6 19.8 24.8

Coding

HumanEval 35.2 37.1 41.0 42.4 43.3 46.5
MultiPL-E 39.0 37.9 37.6 41.8 43.0 44.0
MBPP 28.8 38.0 37.4 41.8 42.8 42.2
Average 34.3 37.7 38.7 42.0 43.0 44.2

Tool Use Tool Execution 74.8 74.4 75.8 75.7 73.9 76.5
Tool Planning 25.2 17.5 36.6 45.4 37.5 46.5

Math GSM8K 69.3 70.0 72.2 72.0 70.2 75.4
MATH 31.8 32.7 36.2 36.7 37.1 37.3

Core
Text

ARC-Challenge 47.4 46.2 50.4 50.4 51.9 53.9
ARC-Easy 79.3 79.9 81.9 81.4 82.3 83.4
HellaSwag 53.0 53.0 54.1 55.5 55.8 57.7
LAMBDA 66.5 68.2 68.8 68.9 69.0 70.8
PiQA 77.4 77.3 77.7 78.0 78.7 79.4
SciQ 95.9 96.0 96.4 96.7 96.5 96.9
WinoGrande 69.8 69.1 67.7 67.0 68.4 74.3
Average 69.9 70.0 71.0 71.1 71.8 73.8

MMLU MMLU 61.8 62.8 63.1 65.5 66.1 67.8

4.2. Evaluation with Input-Specific Masks

In this section, we evaluate our model using input-specific
masks, which align with the training scheme. For all ex-
amples across the included datasets, we generate masks by
feeding the testing question and few-shot examples (if appli-
cable) into the sparsity predictor. The LLM is then pruned
with the resulting mask and performs inference on the same
input. The datasets provide a diverse range of inputs for
the sparsity predictor, including combinations of few-shot
examples and testing questions (e.g., MATH and MMLU)
and question-only formats (e.g., AlpacaEval and IFEval).

Overall comparison We visualize the evaluation results
in Table 1. We highlight the following observations. First,
with an equivalent number of activated parameters, IFPRUN-
ING significantly outperforms the dense LLM, demonstrat-
ing its ability to select the most relevant parameters for var-
ious inputs effectively. Specifically, IFPRUNING achieves
a 5% and 4% higher win rate over the dense LLM on Al-
pacaEval and Arena Hard, respectively. Also, our method
improves upon the dense baseline by 6% to 14% on coding
tasks and by 3% to 5% on math benchmarks. We also ob-
serve substantial improvement on Tool Use and the MMLU
benchmark. Finally, IFPRUNING shows strong performance

on Core Text tasks, highlighting its broad applicability. The
effectiveness of our approach is further underscored by its
performance relative to the 9B-parameter “upper bound”
model. Notably, on coding, math, and MMLU benchmarks,
our method closely approaches upper-bound performance.

Second, IFPRUNING demonstrates superior performance
compared to the structured pruning method. Please note that
the structured pruning model, PRUNING+DISTILL, benefits
from additional training signals due to knowledge distil-
lation from a larger teacher model as the teacher. Never-
theless, IFPRUNING consistently outperforms this baseline.
Our method achieves higher performance across a variety
of benchmarks, including AlpacaEval, Arena Hard, math
problems, coding tasks, tool use, MMLU, and most Core
Text tasks.

Third, we observe a clear improvement in performance with
IFPRUNING as the size of the LLM increases. As the source
model size scales from 6B to 9B and then to 12B, there is a
noticeable performance boost on most of the datasets.

Scaling behavior of dense models and IFPRUNING We
illustrate the scaling behavior of dense LLMs (without prun-
ing) and our IFPRUNING method in relation to model size
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Figure 2. Scaling behavior of dense models and IFPRUNING. IFPRUNING activates 3B parameters for each input. The x-axis represents
the total number of LLM parameters for dense models and IFPRUNING, while the y-axis indicates the performance scores.
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Figure 3. Sub-network overlap rates for the first layer (left), layer 16 (middle), and the last layer (right) of the LLM.

(total number of parameters) in Figure 2. In our approach,
we consistently activate 3B parameters across LLMs with
varying numbers of total parameters. In general, increasing
the size of the LLM leads to performance improvements.
This trend is especially clear on Math, coding, and MMLU
tasks, where IFPRUNING achieves performance levels close
to the upper bound. In contrast, we observe less performance
gain on the AlpacaEval dataset, suggesting an opportunity
for improvement and/or better understanding of the scaling
behavior in future work.

Interpretability of parameter selection In this section,
we examine the parameter pruning and selection patterns
across different domains and visualize the similarities be-
tween them. We measure the similarity between two pruned
models based on their overlap rate, defined as the propor-
tion of parameters commonly activated by both models.
More details of the implementation can be found in Ap-
pendix A.3. We perform this analysis of IFPRUNING us-
ing our 6B→3B model. We include the following datasets
as our testing domains. For math, we use GSM8K and
the college mathematics subset from MMLU (denoted as
MMLU-Math). For computer science, we use the college
computer science subset from MMLU (denoted as MMLU-
CS) and Code-Alpaca (Chaudhary, 2023). We also include
the college physics (MMLU-Phys.), high school European

history (MMLU-Hist.), and international law (MMLU-Law)
subsets from MMLU. For general instructions, we use the
GPTeacher (Teknium et al., 2024) dataset that is not in-
cluded in our training data. The overlap rates for the first,
the last, and a middle layer (layer 16) of the pruned models
are visualized in Figure 3.

We highlight the following findings. First, in the lower lay-
ers, especially the first layer, the LLM tends to activate very
similar sub-networks for different inputs. As we move to
higher layers, the parameter selection becomes more diverse.
Second, as shown in the figure, IFPRUNING activates dis-
tinct sub-networks for different domains in higher layers.
For instance, models pruned for MMLU-CS have substan-
tial overlap with those for Code-Alpaca, significantly more
than with other domains. Similarly, models for MMLU-
Math, MMLU-Physics, and GSM8K share a high propor-
tion of activated parameters, which diverge notably from
the activation patterns for MMLU-History, MMLU-Law,
and GPTTeacher. Third, the overlap rate along the diagonal
of the heatmap is very high, reflecting the strong similarity
between models for inputs within the same domain. Finally,
as expected, GPTTeacher is an instruction-following dataset
that covers a wide range of domains, therefore it does not
exhibit significant domain-specific characteristics, resulting
in a self-overlap rate that is lower than in other domains.
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Table 2. Performance comparison between IFPRUNING with per-input masks and per-task masks. In the per-input setting, IFPRUNING

prunes the LLMs and activates different sub-networks for each input. In the per-task setting, IFPRUNING selects a single sub-network for
all inputs within the same dataset based on a human-written task instruction.

Category Dataset DENSE 3B 6B→3B 9B→3B 12B→3B
Per-Input Per-Task Per-Input Per-Task Per-Input Per-Task

Coding

HumanEval 35.2 41.0 39.0 42.4 40.9 43.3 45.3
MultiPL-E 39.0 37.6 38.5 41.8 42.8 43.0 44.2
MBPP 28.8 37.4 39.0 41.8 38.2 42.8 40.4
Average 34.3 38.7 38.8 42.0 40.6 43.0 43.3

Math MATH 31.8 36.2 36.6 36.7 36.8 37.1 37.8

MMLU

MMLU-physics 49.6 50.8 50.7 55.5 54.2 55.7 54.4
MMLU-math 43.7 42.8 41.8 44.0 45.8 44.2 45.5
MMLU-history 73.7 75.9 75.2 78.0 74.7 78.5 77.8
MMLU-health 59.7 61.9 62.0 64.4 63.4 65.1 63.7
MMLU-business 75.3 73.5 75.3 76.6 75.3 75.5 76.1
MMLU-economics 60.0 59.7 59.2 66.8 65.6 66.3 63.0

Translation

EN-DE 33.9 35.5 35.8 35.9 35.8 33.5 36.4
EN-ES 26.9 27.4 27.2 27.0 27.2 26.8 27.5
EN-FR 45.2 47.2 46.9 47.0 47.0 47.6 49.3
EN-IT 28.8 30.2 30.1 30.3 30.5 31.0 30.2
EN-PT 46.6 47.0 47.9 47.1 47.2 47.4 48.1
EN-ZH 35.0 41.7 39.1 41.5 40.4 42.5 40.9
Average 36.0 38.2 37.8 38.1 38.0 38.1 38.7

In summary, the activated parameters are interpretable and
reveal clear patterns in different domains. It aligns with the
high performance of our method, as the LLM dynamically
activates the parameters most suitable for each input.
Ablation study We also conduct an ablation study on the
impact of continued pre-training in Appendix A.4. Incorpo-
rating continued pre-training before SFT leads to consistent
and substantial improvements across all benchmarks.

4.3. Evaluation with Task-Specific Masks

An additional noteworthy capability of IFPRUNING is task-
specific pruning. While IFPRUNING can effectively prune a
model on a per-input basis, the algorithm also demonstrates
the ability to select one sub-network that can be used for
different inputs within the same task or domain. We design
the following experiment to demonstrate the performance
of our method with task-specific pruning.

Specifically, we evaluate our models on math problems,
coding tasks, MMLU, and machine translation tasks from
Flores-101 (Goyal et al., 2022). For each dataset, we man-
ually design a concise instruction that describes the task.
For example, the instruction for the HumanEval dataset
can be: “You are an expert Python programmer. Write the
code which should pass the tests.” The sparsity predictor
takes this instruction as input and selects the correspond-
ing sub-network. This sub-network is then applied consis-
tently to process all testing examples from that dataset, and
the model performance on the dataset is evaluated based

on the predictions made by the sub-network. The task-
specific instructions used for each dataset are provided in
Table 6 in Appendix A.7. For the MMLU dataset, which
consist of multiple subsets representing diverse domains,
we group similar subsets into broader domains and assign a
single instruction to each domain. For example, the subsets
“astronomy,” “college physics,” “conceptual physics,” and
“high school physics” are grouped into the domain “MMLU-
physics,” and a single instruction is written for this domain.
A detailed list of the subsets included in each MMLU do-
main is provided in Appendix A.6.

The performance is shown in Table 2. We compare the
task-specific pruning capabilities of our algorithm with the
dense LLM with 3B parameters and the standard IFPRUN-
ING with per-input mask. Our key findings are as follows.
First, IFPRUNING can generate high-quality task-specific
masks without additional training. we observe substantial
performance improvements of the task-specific IFPRUNING
over the dense baseline across all datasets. When apply-
ing per-task masks, IFPRUNING still outperforms the dense
LLM by 5%-12% on coding tasks, 5%-6% on MATH, and
1% - 5% on MMLU subsets. For translation tasks, IFPRUN-
ING selects the appropriate sub-networks without additional
training, achieving an improvement of 4.8 points in BLEU
score on average. Note that these task-specific masks are
directly predicted by the sparsity predictor, requiring no
additional fine-tuning of either the sparsity predictor or the
LLM for each task. This highlights the “zero-shot” pruning
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capability of our method. Second, compared to the standard
input-specific IFPRUNING, the task-specific IFPRUNING
exhibit minimal performance degradation across math prob-
lems, coding tasks, and MMLU. The performance gaps are
mostly under 1%, indicating the robustness of our method.

4.4. Inference Latency Evaluation

Given the strong performance of IFPRUNING, we further
analyze and evaluate its efficiency improvement in this sec-
tion. The inference pipeline of our method consists of three
steps: ❶ Parameter selection: given an input, the sparsity
predictor selects a subset of parameters to activate. ❷ Pa-
rameter loading: the selected parameters are loaded, and the
corresponding sub-network is cached as a dense model. ❸
Generation: the pruned model will encode the input (pre-
fill) and generate a response (decode), following the same
procedure as standard dense or MoE models. Sub-network
selection only involves a forward pass through the sparsity
predictor, which is lightweight (300M parameters in our
experiments), so the time cost is minimal. For parameter
loading, we maintain a small base model and update its
weights with the selected parameters. The generation step
is identical to standard inference, allowing our method to
achieve the same latency as a smaller dense model.

To illustrate the inference speedup, we run the following
simulation. Specifically, we evaluate the inference latency
of the models used in our main experiments: DENSE-9B,
DENSE-3B, and IFPRUNING 9B→ 3B. Additionally, we
test our method on an open-source LLM, LLaMA-3.1-8B-
Instruct, where the FFN layers are pruned to reduce the
model from 8B to 3B parameters, while keeping other com-
ponents unchanged. Although the tests are done on GPUs,
we used batch size 1 and 4 generations per query, reflect-
ing on-device usage. The input length is set to 4,000 and
the generation length is set to 100. We report the time-to-
first-token (TTFT) and the decoding time, both measured in
seconds. For dense models (8B and 3B), the TTFT consists
of pre-filling only. For our method, we break down TTFT
into its components: parameter selection, parameter loading,
and pre-filling. The evaluation results are in Table 3.

We highlight the following conclusions. First, similar to
standard structured pruning, our dynamic pruning scheme
introduced can also significantly reduces inference latency
for large-scale models. By pruning a 9B or 8B LLM to 3B,
the TTFT is decreased by up to 57% and decoding time is
decreased by up to 41%. In total, IFPRUNING can achieve
up to 1.8x speedup compared to the original dense LLMs.
Second, the overhead introduced by dynamic pruning and
parameter caching is negligible. For each input, the param-
eter selection and loading only take less than 0.1s in total
(1-2% of the total generation time). Finally, despite dynamic
masking, the runtime of IFPRUNING is on par with static

Table 3. Inference latency evaluation. The source models are re-
duced to 3B by pruning the FFN layers.

Model
Parameter
Selection

Parameter
Loading Prefill TTFT Decode

Our model

DENSE-9B - - 0.846 0.846 7.16
DENSE-3B - - 0.356 0.356 5.68

IFPRUNING 0.070 0.043 0.358 0.471 5.58

Llama-3.1-8b

DENSE-8B - - 0.702 0.702 5.47
DENSE-3B - - 0.317 0.317 3.52

IFPRUNING 0.070 0.016 0.315 0.402 3.53

pruning (DENSE-3B baseline), while offering input-specific
adaptivity and superior accuracy. The inference latency
evaluation has further verified that our method is suitable
for practical deployment on edge devices, as it accelerates
inference while achieving superior model performance.

Finally, we compare the inference latency of our method and
an MoE model with similar number of activated parameters
in Appendix A.5. We show that for the on-device inference
scenario with small inference batch size, the cost of MoE is
multiple times higher than a dense model and our method.

5. Conclusion
In this paper, we extend the structured pruning for LLMs
with a dynamic scheme, where the LLM is pruned into
different sub-networks given the prompts. With a simple ar-
chitecture and straightforward training process, our method
can significantly improve the model performance compared
to dense LLMs with the same number of activated param-
eters. In the future, we will test our method when pruning
other components of LLMs such as attention heads and
hidden dimensions.

This work also opens several promising directions for future
exploration. First, we focus on dynamically pruning LLMs
based on contextual information. While this approach is
well suited for models on consumer-facing devices such as
phones, additional challenges remain for server-side serving
when the input is a batch of user requests containing differ-
ent tasks. One possible solution is to cluster user requests so
that requests within the same batch share similar activated
sub-networks. Second, the current training method relies
on end-to-end optimization, which may not fully utilize the
training examples. The performance could be improved by
adopting more advanced training strategies. For instance,
using contrastive loss could encourage higher overlap rates
among sub-networks for similar inputs, making the model
more robust.
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A. Appendix
A.1. Implementation Details

LLM architecture The LLMs used in this paper follow standard LLM design (Meta AI, 2024; Team, 2024), such as
grouped-query attention and RMSNorm, with no custom components. We list the detailed model architecture of the
pre-trained models used in our experiments in Table 4. All models use the same model dimension, attention dimensions and
the number of Transformer layers. The only difference is the feed-forward dimension. Accordingly, our method learns to
select 6656 FFN dimensions from the 6B and 9B model.

Table 4. Detailed Architecture of the pre-trained models used in our experiments

3B 6B 9B

Model Dimension 2048 2048 2048
FFN Dimension 6656 16384 24576
Head Dimension 128 128 128
Num query heads 16 16 16
Num key/value heads 2 2 2
Num layers 56 56 56

Sparsity predictor The predictor is built upon a lightweight LLM with 302M parameters, built on a pre-trained LM
backbone. It consists of:

• A small pre-trained language model with 302M parameters as the feature extractor. Given an input, the last hidden state
of the final input token will be used as the features of the input.

• A Two-layer MLP as the prediction head. Given the extracted feature vector with dimension d, the first layer transform
the input from d to 128. The second layer transform the output of the first layer into L ∗ dffn, where L is the number
of layers of the source LLM being pruned and dffn is the intermediate dimension of the source LLM. Then we reshape
the output vector into a l-by-dffn matrix. Each row of the matrix will be processed by the SOFTTOPK (Lei et al., 2023)
operator independently to get the FFN mask for the corresponding layer.

A.2. Training of the Structured Pruning Baseline

Our pruning baseline, PRUNING+DISTILL, first prunes the given LLM into a dense 3B model then perform continuous
pre-training through knowledge distillation. For knowledge distillation. we apply KL divergence between the output
distributions of the student and the teacher model for each output token. The teacher distribution only keeps the highest-
scoring tokens, similar to Minitron (Muralidharan et al., 2024). We minimize a combined loss of the standard next-token
prediction and KL divergence loss.

A.3. Interpretability of Parameter Selection

We provide more details of the visualization of the parameter selection pattern in Figure 3. First, we sample 128 inputs per
dataset (MMLU, GSM8K, CodeAlpaca-20K, GPTTeacher). Inputs to the sparsity predictor are formatted with in-context
examples (MMLU: 5-shot, GSM8K: 8-shot) or raw prompts (CodeAlpaca, GPTTeacher). After that, each input is passed
through the sparsity predictor, which selects a fixed number of FFN units (a binary mask) at each layer, producing 128
sub-networks per dataset. To calculate the overlap, We compare every pair of sub-networks within the 128 examples. For
each pair, we compute the fraction of selected FFN units they share. The final overlap rate is the average of these pairwise
overlaps.

A.4. Ablation Study on the Continued Pre-training

In this section, we conduct a ablation study on the impact of the continued pre-training. We apply our method and activate
3B parameters of a DENSE-6B LLM. We train two variants of models: one with the SFT phase ony and one with both
continued pre-training and SFT phases. The experiment results are shown in Table 5. We observe consistent and notable
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Table 5. Ablation study on the impact of the continued pre-training. We apply IFPRUNING to a dense LLM with 6B parameters and
activate 3B parameters for each input.

HumanEval MBPP MultiPL-E GSM8K MATH MMLU

SFT Only 25.3 24.4 15.3 50.9 13.5 55.2
Continued pre-training + SFT 31.9 35.3 22.4 61.3 20.1 59.3

gains across all benchmarks, demonstrating the effectiveness of the continued pre-training phase.

A.5. Inference Latency Comparison with MoE

Figure 4. Inference latency evaluation. The source models are
reduced to 3B by pruning the FFN layers.

Model
Param.

selection
Param.
loading Prefill TTFT Decode

DENSE-9B - - 0.846 0.846 7.16
MOE-A2.7B - - 0.621 0.621 28.43
DENSE-3B - - 0.356 0.356 5.68
IFPRUNING 0.070 0.043 0.358 0.471 5.58

In this section, we compare the latency of our method with
the open-source model, Qwen1.5-MoE-A2.7B. It has 14.3B
parameters in total and activates 2.7B parameters per token. For
our method, we prune LLaMA-3-8B to 3B parameters. The
experiment configurations are exactly the same as the exper-
iment in Table 3. Specifically, we evaluate the latency on a
single NVIDIA RTX A6000 GPU and report time-to-first-token
(TTFT) and decoding time with input length = 4k, generation
length = 100, and sample 4 responses for each query. The
experiment results are shown in Table 4.

We can see the dense baseline and our method have significantly better latency and throughput than MoE. The main reason
is that MoE models are not efficient for on-device inference when generating responses given a single query, where the
decoding is bottlenecked by weight loading. Since MoE requires reading many expert weights (e.g., 2 for each token), the
cost of MoE is multiple times higher than a dense model and our method. This further demonstrates that our method is more
suited for on-device scenarios.

A.6. Subsets included in MMLU domains

We list the subsets in each MMLU domain for the experiment in Table 2.

MMLU-physics: astronomy, college physics, conceptual physics, and high school physics.

MMLU-math: abstract algebra, college mathematics, elementary mathematic, high school mathematics, and high school
statistics.

MMLU-history: high school european history, high school us history, high school world history, and prehistory.

MMLU-health: anatomy, clinical knowledge, college medicine, human aging, medical genetics , nutrition, professional
medicine, and virology.

MMLU-business: business ethics, management, and marketing.

MMLU-economics: econometrics, high school macroeconomics, and high school microeconomics.

A.7. Detailed Per-task Prompts

In this section, we list the full prompts for the task-specific pruning in Section 4.3 in Table 6.

A.8. License of Datasets and Use of Generative AI

We include a diverse set of datasets for evaluation, and their licenses are detailed below. The IFEval dataset is released under
the Apache License 2.0. AlpacaEval 2.0 and Arena Hard are also under the Apache-2.0 License. HumanEval, GSM8K,
MATH, HellaSwag, WinoGrande, and LM-Evaluation-Harness are under the MIT License. The mbpp dataset is distributed
under the Creative Commons Attribution 4.0 license, while MultiPL-E is under the BSD 3-Clause License with Machine
Learning Restriction. The ARC dataset is provided under the Creative Commons Attribution Share Alike 4.0 license, and
SciQ is under the Creative Commons Attribution Non-Commercial 3.0 license. PiQA is licensed under the Academic Free
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Table 6. Task prompt for task-specific pruning experiments.

MATH
You are a Math expert. You will be given a math problem in domains such as algebra, probability,
geometry and number theory. Reason and give a final answer to the problem. Your response
should end with “The answer is [answer]“ where [answer] is the response to the problem.

MMLU-Physics You are an expert in physics. You will be given multiple choice questions in subjects such as
astronomy, conceptual physics, and college physics. Select the correct answer to each question.

MMLU-History You are an expert in history. You will be given multiple choice questions in subjects such as
european history, us history and prehistory. Select the correct answer to each question.

MMLU-Economics You are an expert in economics. You will be given multiple choice questions in subjects such as
econometrics, macroeconomics and microeconomics. Select the correct answer to each question.

Translation (EN-DE) You are a skilled translator who specializes in English to German translations. Your task is to
accurately translate the provided English text into German while preserving the meaning and context.

Translation (others) Same as above. Replace the language names with the language pair being tested.

Multiple-E Swift

You are an expert Swift programmer. You will be given a Swift function definition in documentation
comments after ///. Write the code to complete the function.
Here is an example input:
```swift
/// Write a swift function to count inversions in an array.
func get Inv Count(arr: [Int]) → Int

HumanEval-Python

You are an expert Python programmer. You will be given a Python function definition and some test
examples in triple quotes """. Write the code which should pass the tests.
Here is an example input:
```python
def greatest common divisor(a: int, b: int) -¿ int:
"""Return a greatest common divisor of two integers a and b
>>> greatest common divisor(3, 5)
1
>>> greatest common divisor(25, 15)
5
"""

Mbpp

You are an expert Python programmer. You will be given a Python function definition and some test
examples in triple quotes """. Write the code which should pass the tests.
Here is an example input:
```python
"""
Write a function to find the similar elements from the given two tuple lists.
assert similar elements((3, 4, 5, 6),(5, 7, 4, 10)) == (4, 5)
"""

License v. 3.0. Additionally, MMLU is under the MIT License, and MMAU is distributed under the Creative Commons
Attribution 4.0 license.

The usage of all datasets and packages in this work aligns with their intended purposes, specifically the evaluation of LLMs.

We utilized GPT-4 to assist in checking and refining grammar and clarity across all sections. The core ideas, analyses, and
textual composition remain entirely the work of the authors.

16


