
SynGEC: Syntax-Enhanced Grammatical Error Correction
with a Tailored GEC-Oriented Parser

Anonymous ACL submission

Abstract

Despite their tremendous success, current001
cutting-edge grammatical error correction002
(GEC) models make little use of syntactic003
knowledge, which plays an important role004
when humans try to understand and fix un-005
grammatical sentences. This work proposes006
a syntax-enhanced GEC approach (SynGEC),007
to incorporate syntactic information into the008
encoder part of GEC models. The key chal-009
lenge for this idea is that the performance of010
off-the-shelf parsers dramatically drops since011
they are usually trained on clean grammatical012
sentences. To confront this challenge, we pro-013
pose to build a tailored GEC-oriented parser014
(GOPar) using parallel GEC training data as015
a pivot. First, we present an extended anno-016
tation scheme that allows us to represent both017
grammatical errors and syntactic structure un-018
der a unified tree structure. Then, we obtain019
parse trees of the source incorrect sentences020
by projecting trees of the target correct sen-021
tences and using them for training GOPar. We022
employ graph convolution networks to encode023
tree structures produced by GOPar. Exper-024
iments on three English/Chinese benchmark025
datasets show that our proposed SynGEC ap-026
proach consistently and substantially outper-027
forms the strong baselines and achieves new028
single-model state-of-the-art performance on029
all datasets.030

1 Introduction031

Given a potentially ungrammatical sentence, the032

grammatical error correction (GEC) task aims to033

produce a grammatical target sentence (Grund-034

kiewicz et al., 2020; Wang et al., 2021). Recent035

mainstream approaches treat GEC as a monolin-036

gual machine translation (MT) task (Yuan and037

Briscoe, 2016; Junczys-Dowmunt et al., 2018).038

Standard encoder-decoder based MT models, e.g.,039

Transformer (Vaswani et al., 2017), have emerged040

as a dominant paradigm and achieved state-of-the-041

art (SOTA) results on various GEC datasets (Rothe042

et al., 2021; Stahlberg and Kumar, 2021; Sun et al., 043

2022; Zhang et al., 2022). Despite their impressive 044

achievements, most works take the input sentence 045

as a sequence of tokens, and totally ignore the in- 046

ternal syntactic or semantic structure. 047

Compared with MT, GEC has two peculiarities 048

that directly motivate this work. First, the train- 049

ing data for GEC models is much less abundant, 050

and the data sparseness problem may be allevi- 051

ated by incorporating linguistic structure knowl- 052

edge like syntax. As shown in Table 1 and Table 4, 053

the English and Chinese GEC tasks only have about 054

126K and 157K high-quality labeled source/target 055

sentence pairs for training, if not considering the 056

highly noisy crowd-annotated Lang8 data (Mita 057

et al., 2020). Second, many errors in ungrammati- 058

cal sentences are intrinsically correlated with syn- 059

tactic parsing. For example, some errors, such as 060

inconsistency in tense or singular-vs-plural forms, 061

can be better detected and corrected with the help 062

of long-range syntactic dependencies. 063

In this paper, we propose SynGEC, an approach 064

for injecting the syntactic structure of the input sen- 065

tence into the encoder part of GEC models. The 066

critical challenge for this idea is the unsatisfac- 067

tory parsing performance on ungrammatical sen- 068

tences. Typically, an off-the-shelf syntactic parser 069

is trained upon clean treebanks, while the input 070

sentences for GEC usually contain various gram- 071

matical errors. Such a big gap inevitably leads to 072

many ill-formed parse trees (Hashemi and Hwa, 073

2016). As far as we know, two recent works try 074

to incorporate syntactic knowledge into GEC, but 075

both fail to directly handle this challenge (Wan and 076

Wan, 2021; Li et al., 2022) (see Section 6 for more 077

detailed discussion). 078

Meanwhile, there has been a line of works that 079

try to adapt syntactic parsing for ungrammatical 080

texts by extending the annotation guidelines and 081

manually annotating data (Dickinson and Ragheb, 082

2009; Berzak et al., 2016; Nagata and Sakaguchi, 083

1

But there were no buyers .

Root

cc

expl

nsubj

punct

det

(a) The correct sentence.

But there was no buyers .

S

cc

expl

nsubj

punct

det

(b) Substituted errors.

But there were no any buyers .

Root

cc

expl

nsubj

punct

det
R

(c) Redundant errors.

But H were no buyers .

M

cc nsubj

punct

det

(d) Missing errors.

Figure 1: Illustration of our extended annotation scheme for all three kinds of grammatical errors.

2016). However, manual annotation is extremely084

expensive, and thus existing annotated datasets are085

of a very small scale.086

To confront the challenge of unreliable perfor-087

mance of off-the-shelf parsers on ungrammatical088

sentences, we propose to train a tailored GEC-089

oriented parser (GOPar). The basic idea is uti-090

lizing parallel source/target sentence pairs in the091

GEC training data. First, we parse the target cor-092

rect sentences using a vanilla off-the-shelf parser.093

Then, we construct the tree for the incorrect sen-094

tences via tree projection. To accommodate gram-095

matical errors, we propose an extended annota-096

tion scheme based on several straightforward rules,097

which allows us to represent both grammatical er-098

rors and syntactic structure in a unified tree. Finally,099

we train GOPar directly on the automatically con-100

structed trees of the source sentences in the GEC101

training data.102

To incorporate syntactic information, we cas-103

cade several graph convolutional network (GCN)104

layers (Kipf and Welling, 2017) above the encoder105

of our baseline Transformer-based GEC model.106

We conduct experiments on two widely-used En-107

glish GEC evaluation datasets, i.e., CoNLL-14 (Ng108

et al., 2014) and BEA-19 (Bryant et al., 2019), and109

the recently proposed Chinese MuCGEC dataset110

(Zhang et al., 2022). Results show that our Syn-111

GEC approach achieves consistent and substantial112

improvement on all datasets, even when the base-113

line model is enhanced with BART (Lewis et al.,114

2020). SynGEC achieves new single-model SOTA115

results: 69.6 F0.5 score on CoNLL-14, 72.9 F0.5116

score on BEA-19, and 46.8 F0.5 score on MuCGEC,117

outperforming previous SOTA under comparable118

settings by large margins (+3.5/+0.5/+7.3). We will119

release our code at http://github.com.120

2 Our GEC-Oriented Parser121

This section describes our tailored GOPar, which122

is more competent in parsing ungrammatical sen-123

tences than off-the-shelf parsers.124

2.1 An Extended Annotation Scheme 125

The standard annotation scheme for representing 126

syntax is designed for grammatical sentences, and 127

thus does not cover many structures in grammati- 128

cally erroneous sentences. Therefore, to obtain a 129

tailored parser, our first task is to extend the annota- 130

tion scheme and, more specifically, to design a com- 131

plementary set of annotation guidelines to handle 132

different grammatical mistakes. With this scheme, 133

we can use unified tree structure to represent both 134

grammatical errors and syntactic information. 135

As shown in Figure 1, we propose a simple ex- 136

tended annotation scheme based on several straight- 137

forward rules, corresponding to the three types of 138

grammatical errors, i.e., substituted, redundant and 139

missing (Bryant et al., 2017). Correspondingly, we 140

add three labels into the original syntactic label set, 141

i.e., “S”, “R” and “M”, to capture three kinds of 142

errors. Since such categorization is also adopted in 143

the grammatical error detection (GED) task (Yuan 144

et al., 2021), we refer to them as GED labels. 145

Substituted errors (S) include spelling errors, 146

tense errors, singular/plural inconsistency errors, 147

etc. For simplicity, we do not consider such fine- 148

grained categories, and use a single “S” label to 149

indicate that the word should be replaced by an- 150

other one, as shown in Figure 1(b). 151

Redundant errors (R) mean that some words 152

should be deleted. For each redundant word, we 153

let it depend on its right-side adjacent word, with 154

a label “R”, even if the right-side adjacent word is 155

redundant also, as shown in Figure 1(c). 156

Missing errors (M) mean that some words 157

should be inserted. For each missing word, we 158

assign a label “M” to the incoming arc of its right- 159

side adjacent word, unless the missing word is at 160

the end of the sentence, as shown in Figure 1(d). 161

If several consecutive words are missing, the anno- 162

tation remains the same with when a single word 163

is missing. Moreover, since a missing word may 164

have children in the tree of the correct sentence, we 165

let them depend on the head word of the missing 166

2

http://github.com

Privacy belongs to human rights .

Privicy protection belongs
to human rights .

Parallel GEC data

Grammatical sentence yi

Ungrammatical sentence xi

Privacy belongs to human rights .

nsubj
root

prep
pobj

amod

punct

Dependency tree of yi

① Parsing

②Aligning
A 0 1|||S|||Privacy|||REQUIRED|||-NONE-|||1
A 1 2|||R|||||REQUIRED|||-NONE-|||1

Extracted errors

S root

prep
pobj

amod

punct

Dependency tree of xi

Privacy protection belongs to human rights .

③
Pr
oje
cti
ng

R

Off-the-shelf parser

Tailored GoPar

④ Training

Figure 2: The workflow for obtaining our tailored GOPar.

word, without changing their syntactic labels.167

Based on the above simple rules, we aim to per-168

form minimal adjustments and make the resulting169

tree as consistent as possible with the syntactic tree170

of the correct sentence. Meanwhile, please kindly171

notice that our annotation scheme may encounter172

problems when different types of errors occur in173

consecutive positions of a sentence. Taking “But174

was no buyers” as an example, we need to replace175

“was” with “were” and then insert “there” before176

“were” at the same time. Therefore, according to177

our rules, the label of the incoming arc of “was”178

can be either “S” or “M”, leading to a label con-179

flict. To decide a unique label, we simply define a180

priority order: “S”ą“R”ą“M’.181

2.2 Building GOPar182

Based on the above annotation scheme, we propose183

to train our tailored GOPar using the parallel GEC184

training data D “ tpxi, yiqu as a pivot. The ma-185

jor goal is to automatically generate high-quality186

parse trees for large-scale sentences with realistic187

grammatical errors, and use them to train a parser188

suitable for parsing ungrammatical sentences. Fig-189

ure 2 illustrates the workflow, consisting of the190

following four steps.191

First, we use an off-the-shelf parser to parse the192

target correct sentences (e.g., yi) of the GEC train-193

ing data. Since such sentences are free from gram-194

matical errors, the parser is more likely to produce195

reliable parse trees.196

Second, we use ERRANT (Bryant et al., 2017)1197

to extract all grammatical errors in the source incor-198

rect sentence (e.g., xi) according to the alignments199

between xi and yi.200

Third, we construct the parse tree of xi by pro-201

jecting the tree of yi. For words that are not related202

to any errors, dependencies (arcs) and labels are203

directly copied; for those related to errors, depen-204

1https://github.com/chrisjbryant/
errant

dencies and labels are assigned according to the 205

rules introduced in Section 2.1. 206

Fourth, with constructed parse trees for all 207

source-side sentences in D, we then use them as a 208

treebank to train our tailored GOPar. 209

An alternative way to build a tailored GOPar is 210

directly utilizing manually labeled treebanks. Since 211

existing treebanks only contain grammatical sen- 212

tences, we can inject synthetic errors based on rules 213

or back-translation models (Foster et al., 2008; 214

Cahill, 2015). Then, we can produce parse trees 215

for ungrammatical sentences analogously through 216

the above second and third steps. However, our 217

preliminary experiments show that GOPar built in 218

this way is much inferior and can only slightly im- 219

proves our baseline GEC model. We suspect that 220

the reasons are two-fold. On the one hand, there 221

is a considerable gap between synthetic and real 222

grammatical errors; on the other hand, the gener- 223

ated data is not enough to train GOPar adequately 224

due to the limited scale of existing treebanks. 225

3 The DepGCN-based GEC Model 226

In this section, we describe our DepGCN-based 227

GEC Model. Inspired by Wan and Wan (2021), we 228

first adopt GCN (Kipf and Welling, 2017) to encode 229

the dependency syntax trees of the source sentence. 230

Then, we feed the encoded syntactic information 231

into a Transformer-based GEC model. 232

3.1 Transformer Backbone 233

We model GEC as a sequence-to-sequence task and 234

employ the commonly used Transformer model 235

(Vaswani et al., 2017) as the backbone. The Trans- 236

former is composed of an encoder and a decoder. 237

The encoder utilizes the multi-head self-attention 238

mechanism to get the contextualized representa- 239

tions of each token in the source sentence. The 240

decoder has a similar architecture while addition- 241

ally containing a masked multi-head self-attention 242

module to model the generated token information. 243

3

https://github.com/chrisjbryant/errant
https://github.com/chrisjbryant/errant

Multi-Head
Self-Attention

Feed
Forward

Embedding Layer

Masked
Multi-Head
Self-Attention

Feed
Forward

Embedding Layer

Source Sentence
Parsed by GOPar

Multi-Head
Cross-Attention

Weighted Sum

Linear

Softmax

Output Probabilities

Arc
Probabilities GCN

✖N1

✖N2

✖N3

Feed
Forward

Relation
Labels

Embedding Layer

+

Target Sentence

Figure 3: Overview of our DepGCN-based GEC model.
The operation ‘ denotes vector concatenation. N1, N2

and N3 denote the number of identical Transformer en-
coder blocks, DepGCN blocks and Transformer decoder
blocks, respectively. We also employ a residual connec-
tion (He et al., 2016) followed by layer normalization
(Ba et al., 2016) around each sub-layer.

During training, the objective function is mini-244

mizing the teacher forcing negative log-likelihood245

loss (Williams and Zipser, 1989), formally:246

Lpθq “ ´logpP py|x; θqq

“ ´log
n

ÿ

i“1

pP pyi|yăi;x; θqq
(1)247

where θ is trainable model parameters, x is the248

source sentence, y “ ty1, y2, ..., ynu is the ground-249

truth target sentence with n tokens, and yăi “250

ty1, y2, ..., yi´1u is the visible tokens in i-th train-251

ing time step.252

During inference, we utilize the beam search253

decoding (Wiseman and Rush, 2016) to find an254

optimal sequence o by maximizing the conditional255

probability P po|x; θq.256

Previous works show that PLMs, e.g., BART257

(Lewis et al., 2020) and T5 (Raffel et al., 2020),258

can improve GEC performance by a large margin259

(Rothe et al., 2021; Sun et al., 2022). We further260

use BART to build stronger baseline, since it shares261

the same model architecture with our Transformer262

backbone. Specifically, we use the BART param-263

eters to initialize our Transformer backbone and264

then continue training on GEC training data. More 265

details are discussed in Section 4.1 and Section 5. 266

3.2 Dependency GCN (DepGCN) 267

We employ GCN to encode the dependency syntax 268

information, named DepGCN. The DepGCN mod- 269

ule stacks several identical blocks, and each block 270

has a GCN sub-layer and a feed-forward sub-layer. 271

For the GCN sub-layer, we introduce the infor- 272

mation of the dependency arcs and dependency 273

labels simultaneously. We compute the output hplq
i 274

of l-th GCN at the i-th token as: 275

h
plq
i “ ReLUp

n
ÿ

j“1

AijW
plqphl´1

j ‘eijq`bplqq (2) 276

where A P Rnˆn denotes the adjacency matrix, 277

eij P Rd is the embedding of the dependency label 278

between word wi and word wj , W P Rdˆ2d and 279

b P Rd are model parameters. ReLU (Nair and 280

Hinton, 2010) is the activation function, and ‘ 281

refers to the vector concatenation. 282

To reduce error propagation of GOPar, follow 283

Zhang et al. (2020a), we use the arc probability 284

matrix derived from GOPar as the adjacency matrix 285

A, which can provide all latent syntactic structures. 286

We then feed the outputs of the GCN sub-layer to 287

the feed-forward (FF) layer that contains two linear 288

transformations with a ReLU activation function in 289

between, as shown below: 290

FFphq “ ReLUpW1h ` b1qW2 ` b2 (3) 291

3.3 Integrating Syntactic Information 292

We put DepGCN at the junction between Trans- 293

former encoder and decoder, and build a DepGCN- 294

based GEC model. As depicted in Figure 3, given 295

an input sentence x and corresponding syntactic 296

information xsyn (including dependency arcs and 297

labels) from GOPar, we first obtain the contextu- 298

alized representations Hc of x from Transformer 299

encoder. Then, we feed Hc and xsyn into DepGCN 300

and get the syntax-enhanced representations Hsyn. 301

Finally, we use the weighted-sum operation to de- 302

rive the fusion representations Hf as the input of 303

Transformer decoder: 304

Hf “ βHc ` p1 ´ βqHsyn (4) 305

where β P p0, 1q is a hyper-parameter. The train- 306

ing and inference processes are consistent with the 307

Transformer baseline. 308

4

Dataset #Sentences %Error Usage
CLang8 2,372,119 57.8 Pre-training
FCE 34,490 62.6 Fine-tuning I
NUCLE 57,151 38.2 Fine-tuning I
W&I+LOCNESS 34,308 66.3 Fine-tuning I&II
BEA-19-Dev 4,384 65.2 Validation
CoNLL-14-Test 1,312 72.3 Testing
BEA-19-Test 4,477 - Testing

Table 1: Statistics of English GEC datasets.

4 Experiments on English GEC309

4.1 Settings310

Datasets and evaluation. We first pre-train our311

model on the cleaned version of the Lang8 dataset312

(CLang8) 2 released by Rothe et al. (2021). Then,313

we use the FCE dataset (Yannakoudakis et al.,314

2011), the NUCLE dataset (Dahlmeier et al., 2013)315

and the W&I+LOCNESS train-set (Bryant et al.,316

2019) for model fine-tuning following previous317

studies. Like Omelianchuk et al. (2020), we de-318

compose the fine-tuning procedure into two stages:319

1) fine-tuning on FCE+NUCLE+W&I+LOCNESS;320

2) further fine-tuning only on the small-scale but321

high-quality W&I+LOCNESS. For evaluation, we322

report average results over three distinct runs on the323

CoNLL-14 test-set 3 (Ng et al., 2014) evaluated by324

M2Scorer (Dahlmeier and Ng, 2012) and BEA-19325

test-set (Bryant et al., 2019) evaluated by ERRANT326

(Bryant et al., 2017). The BEA-19 dev-set serves327

as validation data during the whole training. The328

statistics of above datasets are shown in Table 1.329

GEC model details. We adopt Fairseq4 (Ott330

et al., 2019) to build our Transformer baseline and331

DepGCN-based model. For the DepGCN-based332

model, we stack 3 DepGCN blocks and set aggre-333

gation factor β in Equation 4 to 0.5. We apply BPE334

(Sennrich et al., 2016) to generate a 32K shared sub-335

word vocabulary. We re-implement the Dropout-336

Src mechanism proposed by Junczys-Dowmunt337

et al. (2018) and perform it on the source word338

embedding matrix to alleviate over-fitting. More339

model details are discussed in Appendix A.340

GOPar details. We employ the biaffine parser341

(Dozat and Manning, 2017) as the model struc-342

ture of GOPar. For implementation, we adopt the343

parsing toolkit Supar5 (Zhang et al., 2020b) and344

2CLang8 can be downloaded from https://github.
com/google-research-datasets/clang8

3We use the official-2014.combined-withalt.m2 version of
CoNLL-14 following previous SOTA (Rothe et al., 2021).

4https://github.com/pytorch/fairseq
5https://github.com/yzhangcs/parser

set hyper-parameters following their paper. After 345

compare several popular PLMs, we use ELECTRA 346

(Clark et al., 2020) to provide the contextual to- 347

ken representations6. The GOPar training data is 348

generated from CLang8 GEC dataset (Rothe et al., 349

2021) by the data construction approach described 350

in detail in Section 2. For using GOPar in GEC, 351

since the inputs of GEC models are subword se- 352

quences while the basic token unit in syntax trees 353

is the word, we add arcs from all subwords of w to 354

all subwords of v if there exits an arc from word w 355

to word v in the word-level tree before feeding this 356

tree into GEC models. 357

Incorporating BART. To verify that the syntac- 358

tic knowledge is still useful after incorporating a 359

powerful PLM, we use BART (Lewis et al., 2020) 360

to initialize the Transformer backbone of our mod- 361

els. It is noteworthy that we adopt a two-stage train- 362

ing procedure to keep the training stable when in- 363

corporating BART into our DepGCN-based model. 364

Firstly, we fine-tune the BART-initialized Trans- 365

former backbone until it converges. Secondly, we 366

add an auxiliary DepGCN module into the con- 367

verged Transformer backbone and only tune the 368

DepGCN parameters on the same training data. 369

4.2 Main Results 370

The main results are listed in Table 2. In the top 371

group of results without PLMs, our SynGEC ap- 372

proach achieves 65.2/68.4 F0.5 scores on CoNLL- 373

14 and BEA-19 test-sets, respectively, outperform- 374

ing all other systems utilizing syntax. The perfor- 375

mance of SynGEC is only lower than Stahlberg 376

and Kumar (2021) on both test-sets as they use 377

extra huge synthetic corpus with 540M sentences 378

while we only use 2.4M. The incorporation of 379

syntactic information provided by GOPar leads to 380

3.5/4.2 F0.5 improvements over our baseline, which 381

demonstrates that the syntactic knowledge from 382

GOPar is quite helpful for GEC and our DepGCN- 383

based GEC model can effectively capture it. 384

In the bottom group, our SynGEC approach aug- 385

mented with BART achieves 69.6/72.9 F0.5 scores, 386

continuously outperforming other PLM-augmented 387

models under similar sizes7. After removing syn- 388

tax, the F0.5 scores decline by 0.9 on both datasets, 389

6The download links of all PLMs used in our experiments
can be found in Appendix B.

7Rothe et al. (2021) also build a lager GEC model based
on the T5-11B (Raffel et al., 2020) and achieve 68.9/75.9 F0.5

scores. For a fair comparison, we do not list this result in
Table 2 as this model is about 24ˆ larger than ours.

5

https://github.com/google-research-datasets/clang8
https://github.com/google-research-datasets/clang8
https://github.com/pytorch/fairseq
https://github.com/yzhangcs/parser

Extra Transformer CoNLL-14-test BEA-19-test
System Data Size Layer, Hidden, FFN P R F0.5 P R F0.5

w/o PLM

w/o syntax
Kiyono et al. (2019)˝ 70M 12+12,1024,4096 67.9 44.1 61.3 65.5 59.4 64.2
Lichtarge et al. (2020)△▲ 340M 12+12,1024,4096 69.4 43.9 62.1 67.6 62.5 66.5
Stahlberg and Kumar (2021)△▲□ 540M 12+12,1024,4096 72.8 49.5 66.6 72.1 64.4 70.4
Our Baseline♡ 2.4M 6+6,512,2048 69.6 42.4 61.7 66.8 55.5 64.2
w/ syntax
Wan and Wan (2021)♦ 10M 6+6,512,2048 74.4 39.5 63.2 74.5 48.6 67.3
Li et al. (2022)♠ 30M 12+12,1024,4096 66.7 38.3 58.1 - - -
SynGEC♡ 2.4M 6+6,512,2048 71.6 47.9 65.2 70.9 59.9 68.4

GOParÑOff-the-shelf Parser 2.4M 6+6,512,2048 70.5 42.6 62.4 67.3 55.4 64.5

w/ PLM

w/o syntax
Kaneko et al. (2020)˝ 70M 12+12,1024,4096 69.2 45.6 62.6 67.1 60.1 65.6
Katsumata and Komachi (2020) - 12+12,1024,4096 69.3 45.0 62.6 68.3 57.1 65.6
Omelianchuk et al. (2020)♢ 9M 12+0,768,3072 77.5 40.1 65.3 79.2 53.9 72.4
Rothe et al. (2021)♡ 2.4M 12+12,1024,4096 - - 66.1 - - 72.1
Our Baseline♡ 2.4M 12+12,1024,4096 75.6 50.4 68.7 74.0 64.9 72.0
w/ syntax
Li et al. (2022)♠ 30M 12+12,1024,4096 68.1 44.1 61.4 - - -
SynGEC♡ 2.4M 12+12,1024,4096 76.6 51.1 69.6 75.1 65.5 72.9

GOParÑOff-the-shelf Parser 2.4M 12+12,1024,4096 76.1 50.0 68.9 74.6 64.1 72.3

Table 2: Single-model results on English GEC test-sets. Our results are averaged over three runs with different
random seeds. Layer, Hidden and FFN denote the depth, hidden size and feed-forward network size of Trans-
former. “w/ PLM” means using pre-trained language models. “w/ syntax” means using syntactic knowledge.
Besides the public human-annotated training data, current GEC systems variously use private and/or artificial
data, including: ˝artificial Gigaword (70M sentences), △Wikipedia revision histories (170M), ▲artificial Wikipedia
(170M), □artificial Colossal Clean Crawled Corpus (200M), :non-public CLC (2M), ♢artificial one-billion-word
(9M), ♦artificial one-billion-word (10M), ♠artificial one-billion-word (30M) , ♡cleaned version of Lang8 (2.4M).

which reveals that the contribution from adaptive390

syntax and PLMs does not fully overlap.391

4.3 Analysis and Discussion392

Effectiveness of GOPar. In Table 2, we present393

the results of using an off-the-shelf parser8 to pro-394

vide syntactic knowledge (GOPar Ñ Off-the-shelf395

Parser). After changing the parser, the impact of396

syntax becomes marginal under all settings. This397

observation implies that the performance gains con-398

tributed from syntax are highly contingent on the399

quality of parses. We look further into the parses400

and find that GOPar is more robust when facing401

grammatical errors and can further identify such er-402

rors, while the off-the-shelf parser is vulnerable and403

tends to provide incorrect parses. So we can draw404

a conclusion that the task adaptation of parsers is405

essential when applying syntax to the GEC task.406

Decomposition of syntactic information. To407

gain more insights on how adaptive syntactic in-408

formation works, we decompose it into three parts:409

1) the arc information, which means only using410

the topological structure of the syntax tree; 2) the411

GED label information, which refers to the special412

labels “S”, “R” and “M” for marking erroneous413

8We use biaffine-dep-roberta-en model provided by Supar.

tokens; and 3) the syntax label information, such as 414

“subj” and “iobj” for different syntactic relations. 415

We conduct an ablation study to explore the effect 416

of each kind of information for GEC9, as shown 417

in Table 3. First, removing GED labels or syn- 418

tax labels reduce the performance of the SynGEC 419

model to the similar extent, which indicates that 420

they are equally important to GEC. Second, when 421

we only use the arc information, i.e., removing all 422

labels, the recall drops sharply while the precision 423

increases notably compared with the baseline. We 424

speculate that the contribution from arc informa- 425

tion is mainly on preventing GEC models from 426

being misled by inappropriate context. Third, the 427

full SynGEC model utilizing all three information 428

achieves the best performance, which implies that 429

they have intrinsic complementary strengths. 430

Error type performance. Figure 4 shows more 431

fine-grained evaluation results on different error 432

types on BEA-19-dev. The results support that 433

syntactic information from GOPar is beneficial for 434

most error types. Specifically, syntactic knowledge 435

9For “w/o GED Labels”, we force the parser to skip GED
labels and select the syntax label with the highest probability
when predicting. For “w/o Syntax Labels”, we replace all
syntax labels with “O” in the results. For “w/o All Labels”, we
do not feed the label embeddings into the DepGCN module.

6

https://github.com/yzhangcs/parser/releases/download/v1.1.0/ptb.biaffine.dep.roberta.zip

27
.1

2 41
.4

4 52
.8

3

53
.1

2

18
.9

2

60
.2

8

65
.3

2

25
.7

7

50
.1

9

41
.0

4

59
.9

2 69
.0

5

31
.2

2

63
.4

1

61
.4

9

52
.4

9

55
.5

6

22
.2

2

42
.8

2

58
.3

3

52
.2

8

15
.1

4

63
.3 66

.4
8

29
.5

1

54
.0

4

53
.9

4 63
.9

7 70
.8

6

38
.8

68
.8

68
.3

3

55
.4

6

56
.8

2

37
.1

9

37

62
.2

6

60
.1

8

29
.5

4

67
.8 71

.6
5

33
.4

3

57
.4

3

52
.2

8 64
.4

8

79
.2

7

42
.2

6

73
.0

4

70
.3

56
.6

3

57
.4

34
.8

8

39
.9

5

63
.2

58
.2

29
.6

3

65
.0

4 72
.1

2

36
.9

9

59
.4

5

55
.4

8 65
.7

7 78
.6

2

45
.3

2

73
.4

4

72
.8

8

59
.2

5

58
.5

9

 10
 20
 30
 40
 50
 60
 70
 80
 90

AD
J

AD
V

DE
T

MO
RP
H

NO
UN

NO
UN
:N
UM

OR
TH

OT
HE
R

PR
EP

PR
ON

PU
NC
T

SP
EL
L

VE
RB

VE
RB
:F
OR
M

VE
RB
:SV
A

VE
RB
:T
EN
SE W

O

Baseline (w/o PLM) SynGEC (w/o PLM) Baseline (w/ PLM) SynGEC (w/ PLM)
F 0

.5

(1.
7%
)

(1.
9%
)

(10
.6%
)

(2.
5%
)

(5.
1%
)

(3.
3%
)

(4.
2%
)

(11
.2%
)

(10
.0%
)

(2.
5%
)

(19
.6%
)

(6.
2%
)

(6.
0%
)

(3.
2%
)

(1.
9%
)

(6.
3%
) (1.

2%
)

Figure 4: Performance on a selection of error types from ERRANT (Bryant et al., 2017) on BEA-19-dev. Numbers
in parentheses represent the percentages of error types. We exclude error types that account for less than 1%.

BEA-19-dev CoNLL-14-test
P/R/F0.5 P/R/F0.5

w/o PLM
SynGEC 60.84/39.76/55.01 71.62/47.92/65.17

w/o GED Labels 59.47/38.03/53.44 72.28/45.43/64.64
w/o Syntax Labels 59.31/39.02/53.72 71.61/46.65/64.69
w/o All Labels 61.62/34.21/53.11 73.16/41.64/63.54

Baseline 57.99/35.77/51.58 69.60/42.37/61.67
w/ PLM

SynGEC 64.51/45.73/59.62 76.59/51.09/69.64
w/o GED Labels 63.59/45.23/58.82 76.79/50.45/69.53
w/o Syntax Labels 64.20/45.51/59.33 76.32/50.91/69.39
w/o All Labels 64.90/42.57/58.74 77.01/48.82/69.04

Baseline 63.09/44.80/58.32 75.61/50.42/68.74

Table 3: Effect of different labels in our scheme.

significantly improves the GEC model’s ability to436

correct context-aware errors, such as DET, PREP,437

PUCNT, VERB:SVA, and VERB:TENSE. Correct-438

ing such errors requires long-distance information,439

which syntax can effectively provide. The syntax440

also helps solve word-ordering (WO) errors, which441

need structural information to correct. Besides, the442

performance on PRON, OTHER, VERB is also443

substantially improved. Meanwhile, we note that a444

small subset of types are negatively affected, like445

ADJ, MORPH, SPELL, and NOUN. After more446

careful observation, we find that their corrections447

mainly depend on local information, where syntac-448

tic knowledge may not help much.449

5 Experiments on Chinese GEC450

Datasets and evaluation. We directly follow the451

recent work of Zhang et al. (2022), who propose a452

multi-reference multi-source Chinese GEC evalua-453

tion dataset named MuCGEC. We report P/R/F0.5454

values on MuCGEC-test using the official char-455

based evaluation tool. MuCGEC-dev is used for456

hyper-parameter tuning. For training data, we use457

the Chinese Lang8 dataset (Zhao et al., 2018) and458

HSK dataset (Zhang, 2009). The statistics of above-459

Dataset #Sentences %Error Usage
Lang8 1,220,906 89.5 Training
HSK 15,6870 60.8 Training
MuCGEC-Dev 1,125 95.1 Validation
MuCGEC-Test 5,938 92.2 Testing

Table 4: Statistics of Chinese GEC datasets.

PLM Syntax P R F0.5

Zhang et al. (2022) ✓ ✗ 43.81 28.56 39.58
Baseline ✗ ✗ 43.79 25.93 38.49
SynGEC ✗ ✓ 46.88 27.68 40.58
Baseline ✓ ✗ 54.21 28.51 45.93
SynGEC ✓ ✓ 55.59 28.72 46.83

Table 5: Single-model results on MuCGEC-test.

mentioned datasets are shown in Table 4. 460

Char-based GOPar. Current Chinese GEC 461

models usually treat the input sentence as a char- 462

acter sequence and do not perform word segmen- 463

tation. In contrast, syntactic parsers typically treat 464

the input sentence as a word sequence. To handle 465

this mismatch, we follow Yan et al. (2020) and 466

build a char-based GOPar. The basic idea is to 467

convert a word-based tree into a char-based one 468

by letting each char depends on its right-hand one 469

inside multi-char words. 470

Use of BART. We employ the recently proposed 471

Chinese BART (Shao et al., 2021), which is orig- 472

inally implemented with the HuggingFace Trans- 473

formers toolkit10 (Wolf et al., 2020). We manage 474

to wrap their code and use it on our Fairseq im- 475

plementation, which is faster than the original im- 476

plementation. More importantly, we find many 477

common characters are missing in its vocabulary 478

and thus add 3,866 Chinese characters and punctua- 479

tion marks from Chinese Gigaword and Wikipedia 480

corpora, leading to a substantial performance boost 481

according to our preliminary experiments. 482

Results are presented in Table 5. When not 483

10https://huggingface.co/

7

https://huggingface.co/

using BART, our SynGEC outperforms the Trans-484

former baseline by 2.09 F0.5 score on MuCGEC-485

test. When using BART, our baseline already out-486

performs the previous SOTA system (Zhang et al.,487

2022), and SynGEC further improves the F0.5 score488

by 0.90. These results indicate that our proposed489

SynGEC approach can be steadily effective for dif-490

ferent languages.491

6 Related Works492

Grammatical error correction. Recent works493

mainly formulate GEC as a monolingual transla-494

tion task and handle it with encoder-decoder-based495

MT models (Yuan and Briscoe, 2016; Junczys-496

Dowmunt et al., 2018), among which Transformer497

(Vaswani et al., 2017) has become a dominant498

paradigm. With the help of synthetic training data499

(Lichtarge et al., 2019; Yasunaga et al., 2021) and500

large PLMs (Kaneko et al., 2020; Katsumata and501

Komachi, 2020), Transformer-based GEC mod-502

els have achieved SOTA performance on various503

benchmark datasets (Rothe et al., 2021; Stahlberg504

and Kumar, 2021).505

Meanwhile, the sequence-to-edit (Seq2Edit) ap-506

proach emerges as a competitive alternative, which507

predicts a sequence of edit operations to achieve508

correction (Gu et al., 2019; Awasthi et al., 2019;509

Omelianchuk et al., 2020). Although this work510

adopts the Transformer-based GEC models as the511

baseline, our SynGEC approach can also be applied512

to Seq2Edit models straightforwardly, which we513

leave to the future work.514

Parsing ungrammatical sentences. Despite515

the success of syntactic parsing on clean sentences516

(Dozat and Manning, 2017; Zhang et al., 2020b),517

the performance of off-the-shelf parsers dramati-518

cally degrades when confronting ungrammatical519

sentences (Hashemi and Hwa, 2016). Previous520

studies mainly tackle this problem by annotat-521

ing small-scale ungrammatical sentences and fine-522

tuning an off-the-shelf parser on them (Dickinson523

and Ragheb, 2009; Petrov and McDonald, 2012;524

Cahill, 2015; Berzak et al., 2016). In contrast, we525

propose to train a tailored parser on automatically526

generated syntax trees from parallel GEC data,527

which avoids the laborious manual annotation.528

Syntax-enhanced GEC. Many previous works529

have demonstrated the effectiveness of utilizing530

syntactic information for various NLP tasks, such531

as machine translation (Bastings et al., 2017; Zhang532

et al., 2019), opinion role labeling (Zhang et al.,533

2020a), and semantic role labeling (Xia et al., 2019; 534

Sachan et al., 2021). Meanwhile, we have found 535

two recent works on syntax-enhanced GEC (Wan 536

and Wan, 2021; Li et al., 2022). Both works di- 537

rectly produce the dependency tree of the input 538

sentence using an off-the-shelf parser, without tai- 539

loring parsers for ungrammatical sentences. They 540

both use graph attention networks (GAT) for tree 541

encoding (Velickovic et al., 2018). Besides the 542

dependency tree, Li et al. (2022) exploits the con- 543

stituent tree of the input sentence as well. 544

Compared with the above two works, the major 545

contribution of our work is directly dealing with 546

the severe performance drop issue via our tailored 547

GOPar. We adopt GCN for tree encoding because 548

our preliminary experiments show that it achieves 549

similar performance but is faster. Moreover, our 550

baseline GEC models achieve much higher perfor- 551

mance than theirs, as shown in Table 2. 552

7 Conclusions 553

This paper presents a SynGEC approach that ef- 554

fectively incorporates syntactic knowledge into 555

GEC models. The key idea is adjusting vanilla 556

parsers to accommodate ungrammatical sentences. 557

To achieve this goal, we first extend the standard 558

syntactic annotation scheme to use a unified tree 559

structure to encode both grammatical errors and 560

syntactic structure. Then we obtain high-quality 561

parse trees of ungrammatical sentences by project- 562

ing target-sentence trees into the source side in 563

GEC training data, which are used for training 564

our tailored GOPar. To incorporate parse trees 565

produced by GOPar, we present a DepGCN-based 566

GEC model based on Transformer. Experiments on 567

three English/Chinese datasets show that our pro- 568

posed SynGEC approach is effective and achieves 569

new SOTA results under comparable settings. 570

Limitations and future work. We observe two 571

possible limitations of our present work. First, off- 572

the-shelf parsers may still produce noisy parse trees 573

for the target correct sentences in the GEC train- 574

ing data, which further leads to noise in our pro- 575

jected trees for the source sentences. Second, so far, 576

we only use three coarse-grained labels to distin- 577

guish grammatical errors in our annotation scheme, 578

while fine-grained categories may further benefit 579

GEC. As discussed above, both limitations may 580

be strengthened by integrating ideas and resources 581

achieved by previous works on manually annotat- 582

ing syntactic trees for ungrammatical sentences. 583

8

References584

Abhijeet Awasthi, Sunita Sarawagi, Rasna Goyal,585
Sabyasachi Ghosh, and Vihari Piratla. 2019. Par-586
allel iterative edit models for local sequence trans-587
duction. In Proceedings of EMNLP-IJCNLP, pages588
4260–4270.589

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-590
ton. 2016. Layer normalization. arXiv preprint591
arXiv:1607.06450.592

Jasmijn Bastings, Ivan Titov, Wilker Aziz, Diego593
Marcheggiani, and Khalil Sima’an. 2017. Graph594
convolutional encoders for syntax-aware neural ma-595
chine translation. In Proceedings of EMNLP, pages596
1957–1967.597

Samuel Bell, Helen Yannakoudakis, and Marek Rei.598
2019. Context is key: Grammatical error detection599
with contextual word representations. In Proceedings600
of BEA@ACL, pages 103–115.601

Yevgeni Berzak, Jessica Kenney, Carolyn Spadine,602
Jing Xian Wang, Lucia Lam, Keiko Sophie Mori,603
Sebastian Garza, and Boris Katz. 2016. Universal604
dependencies for learner english. In Proceedings of605
ACL, pages 737–746.606

Christopher Bryant, Mariano Felice, Øistein E Ander-607
sen, and Ted Briscoe. 2019. The bea-2019 shared608
task on grammatical error correction. In Proceedings609
of BEA@ACL, pages 52–75.610

Christopher Bryant, Mariano Felice, and Ted Briscoe.611
2017. Automatic annotation and evaluation of error612
types for grammatical error correction. In Proceed-613
ings of ACL, pages 793–805.614

Aoife Cahill. 2015. Parsing learner text: to shoehorn615
or not to shoehorn. In Proceedings of Linguistic616
Annotation Workshop, pages 144–147.617

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and618
Christopher D. Manning. 2020. ELECTRA: pre-619
training text encoders as discriminators rather than620
generators. In Proceedings of ICLR.621

Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Shijin622
Wang, and Guoping Hu. 2020. Revisiting pre-trained623
models for chinese natural language processing. In624
Proceedings of EMNLP: findings, pages 657–668.625

Daniel Dahlmeier and Hwee Tou Ng. 2012. Better626
evaluation for grammatical error correction. In Pro-627
ceedings of NAACL-HLT, pages 568–572.628

Daniel Dahlmeier, Hwee Tou Ng, and Siew Mei Wu.629
2013. Building a large annotated corpus of learner630
english: The nus corpus of learner english. In Pro-631
ceedings of BEA@NAACL-HLT, pages 22–31.632

Markus Dickinson and Marwa Ragheb. 2009. Depen-633
dency annotation for learner corpora. In Proceedings634
of International Workshop on Treebanks and Linguis-635
tic Theories, page 59.636

Timothy Dozat and Christopher D. Manning. 2017. 637
Deep biaffine attention for neural dependency pars- 638
ing. In Proceedings of ICLR. 639

Jennifer Foster, Joachim Wagner, and Josef Van Gen- 640
abith. 2008. Adapting a wsj-trained parser to gram- 641
matically noisy text. In Proceedings of ACL (short), 642
pages 221–224. 643

Roman Grundkiewicz, Christopher Bryant, and Mariano 644
Felice. 2020. A crash course in automatic grammat- 645
ical error correction. In Proceedings of COLING: 646
Tutorial Abstracts, pages 33–38. 647

Jiatao Gu, Changhan Wang, and Jake Zhao Junbo. 2019. 648
Levenshtein transformer. In Proceedings of NIPS, 649
pages 11181–11191. 650

Homa B Hashemi and Rebecca Hwa. 2016. An eval- 651
uation of parser robustness for ungrammatical sen- 652
tences. In Proceedings of EMNLP, pages 1765–1774. 653

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian 654
Sun. 2016. Identity mappings in deep residual net- 655
works. In Proceedings of ECCV, pages 630–645. 656

Marcin Junczys-Dowmunt, Roman Grundkiewicz, 657
Shubha Guha, and Kenneth Heafield. 2018. Ap- 658
proaching neural grammatical error correction as a 659
low-resource machine translation task. In Proceed- 660
ings of NAACL-HLT, pages 595–606. 661

Masahiro Kaneko and Mamoru Komachi. 2019. Multi- 662
head multi-layer attention to deep language represen- 663
tations for grammatical error detection. Computing 664
Research Repository, pages 883–891. 665

Masahiro Kaneko, Masato Mita, Shun Kiyono, Jun 666
Suzuki, and Kentaro Inui. 2020. Encoder-decoder 667
models can benefit from pre-trained masked language 668
models in grammatical error correction. In Proceed- 669
ings of ACL, pages 4248–4254. 670

Satoru Katsumata and Mamoru Komachi. 2020. 671
Stronger baselines for grammatical error correction 672
using a pretrained encoder-decoder model. In Pro- 673
ceedings of AACL, pages 827–832. 674

Diederik P Kingma and Jimmy Ba. 2014. Adam: A 675
method for stochastic optimization. arXiv preprint 676
arXiv:1412.6980. 677

Thomas N. Kipf and Max Welling. 2017. Semi- 678
supervised classification with graph convolutional 679
networks. In Proceedings of ICLR. 680

Shun Kiyono, Jun Suzuki, Masato Mita, Tomoya Mizu- 681
moto, and Kentaro Inui. 2019. An empirical study of 682
incorporating pseudo data into grammatical error cor- 683
rection. In Proceedings of EMNLP-IJCNLP, pages 684
1236–1242. 685

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 686
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 687
Veselin Stoyanov, and Luke Zettlemoyer. 2020. Bart: 688
Denoising sequence-to-sequence pre-training for nat- 689
ural language generation, translation, and compre- 690
hension. In Proceedings of ACL, pages 7871–7880. 691

9

Zuchao Li, Kevin Parnow, and Hai Zhao. 2022. In-692
corporating rich syntax information in grammatical693
error correction. Information Processing and Man-694
agement.695

Jared Lichtarge, Chris Alberti, and Shankar Kumar.696
2020. Data weighted training strategies for gram-697
matical error correction. TACL, pages 634–646.698

Jared Lichtarge, Chris Alberti, Shankar Kumar, Noam699
Shazeer, Niki Parmar, and Simon Tong. 2019. Cor-700
pora generation for grammatical error correction. In701
Proceedings of NAACL-HLT, pages 3291–3301.702

Masato Mita, Shun Kiyono, Masahiro Kaneko, Jun703
Suzuki, and Kentaro Inui. 2020. A self-refinement704
strategy for noise reduction in grammatical error cor-705
rection. In Proceedings of EMNLP (Findings), pages706
267–280.707

Ryo Nagata and Keisuke Sakaguchi. 2016. Phrase struc-708
ture annotation and parsing for learner english. In709
Proceedings of ACL, pages 1837–1847.710

Vinod Nair and Geoffrey E Hinton. 2010. Rectified711
linear units improve restricted boltzmann machines.712
In Proceedings of ICML, pages 807–814.713

Courtney Napoles, Keisuke Sakaguchi, Matt Post, and714
Joel Tetreault. 2015. Ground truth for grammati-715
cal error correction metrics. In Proceedings of ACL716
(short), pages 588–593.717

Courtney Napoles, Keisuke Sakaguchi, and Joel718
Tetreault. 2017. Jfleg: A fluency corpus and bench-719
mark for grammatical error correction. In Proceed-720
ings of EACL, pages 229–234.721

Hwee Tou Ng, Siew Mei Wu, Ted Briscoe, Christian722
Hadiwinoto, Raymond Hendy Susanto, and Christo-723
pher Bryant. 2014. The conll-2014 shared task on724
grammatical error correction. In Proceedings of725
CoNLL: Shared Task, pages 1–14.726

Kostiantyn Omelianchuk, Vitaliy Atrasevych, Artem727
Chernodub, and Oleksandr Skurzhanskyi. 2020.728
Gector–grammatical error correction: Tag, not729
rewrite. In Proceedings of BEA@ACL, pages 163–730
170.731

Myle Ott, Sergey Edunov, Alexei Baevski, Angela732
Fan, Sam Gross, Nathan Ng, David Grangier, and733
Michael Auli. 2019. fairseq: A fast, extensible734
toolkit for sequence modeling. In Proceedings of735
NAACL-HLT(Demo), pages 48–53.736

Slav Petrov and Ryan McDonald. 2012. Overview of737
the 2012 shared task on parsing the web.738

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine739
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,740
Wei Li, and Peter J Liu. 2020. Exploring the lim-741
its of transfer learning with a unified text-to-text742
transformer. Journal of Machine Learning Research743
(JMLR), 21(140):1–67.744

Marek Rei and Helen Yannakoudakis. 2016. Composi- 745
tional sequence labeling models for error detection 746
in learner writing. In Proceedings of ACL, pages 747
1181–1191. 748

Sascha Rothe, Jonathan Mallinson, Eric Malmi, Sebas- 749
tian Krause, and Aliaksei Severyn. 2021. A simple 750
recipe for multilingual grammatical error correction. 751
In Proceedings of ACL-IJCNLP, pages 702–707. 752

Devendra Sachan, Yuhao Zhang, Peng Qi, and 753
William L Hamilton. 2021. Do syntax trees help 754
pre-trained transformers extract information? In Pro- 755
ceedings of EACL, pages 2647–2661. 756

Rico Sennrich, Barry Haddow, and Alexandra Birch. 757
2016. Neural machine translation of rare words with 758
subword units. In Proceedings of ACL, pages 1715– 759
1725. 760

Yunfan Shao, Zhichao Geng, Yitao Liu, Junqi Dai, 761
Fei Yang, Li Zhe, Hujun Bao, and Xipeng Qiu. 762
2021. Cpt: A pre-trained unbalanced transformer 763
for both chinese language understanding and genera- 764
tion. arXiv preprint arXiv:2109.05729. 765

Felix Stahlberg and Shankar Kumar. 2021. Synthetic 766
data generation for grammatical error correction 767
with tagged corruption models. In Proceedings of 768
BEA@EACL, pages 37–47. 769

Xin Sun, Tao Ge, Shuming Ma, Jingjing Li, Furu Wei, 770
and Houfeng Wang. 2022. A unified strategy for 771
multilingual grammatical error correction with pre- 772
trained cross-lingual language model. arXiv preprint 773
arXiv:2201.10707. 774

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, 775
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking 776
the inception architecture for computer vision. In 777
Proceedings of ICCV, pages 2818–2826. 778

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob 779
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz 780
Kaiser, and Illia Polosukhin. 2017. Attention is all 781
you need. In Proceedings of NIPS, pages 5998–6008. 782

Petar Velickovic, Guillem Cucurull, Arantxa Casanova, 783
Adriana Romero, Pietro Liò, and Yoshua Bengio. 784
2018. Graph attention networks. In Proceedings of 785
ICLR. 786

Zhaohong Wan and Xiaojun Wan. 2021. A syntax- 787
guided grammatical error correction model with 788
dependency tree correction. arXiv preprint 789
arXiv:2111.03294. 790

Yu Wang, Yuelin Wang, Kai Dang, Jie Liu, and Zhuo 791
Liu. 2021. A comprehensive survey of grammatical 792
error correction. ACM Transactions on Intelligent 793
Systems and Technology (TIST), pages 1–51. 794

Ronald J Williams and David Zipser. 1989. A learn- 795
ing algorithm for continually running fully recurrent 796
neural networks. Neural computation, 1(2):270–280. 797

10

Sam Wiseman and Alexander M. Rush. 2016. Sequence-798
to-sequence learning as beam-search optimization. In799
Proceedings of EMNLP, pages 1296–1306.800

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien801
Chaumond, Clement Delangue, Anthony Moi, Pier-802
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,803
Joe Davison, Sam Shleifer, Patrick von Platen, Clara804
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le805
Scao, Sylvain Gugger, Mariama Drame, Quentin806
Lhoest, and Alexander M. Rush. 2020. Transform-807
ers: State-of-the-art natural language processing. In808
Proceedings of EMNLP (Demo), pages 38–45.809

Qingrong Xia, Zhenghua Li, Min Zhang, Meishan810
Zhang, Guohong Fu, Rui Wang, and Luo Si. 2019.811
Syntax-aware neural semantic role labeling. In Pro-812
ceedings of AAAI, pages 7305–7313.813

Hang Yan, Xipeng Qiu, and Xuanjing Huang. 2020. A814
graph-based model for joint chinese word segmenta-815
tion and dependency parsing. TACL, pages 78–92.816

Helen Yannakoudakis, Ted Briscoe, and Ben Medlock.817
2011. A new dataset and method for automatically818
grading esol texts. In Proceedings of ACL, pages819
180–189.820

Michihiro Yasunaga, Jure Leskovec, and Percy Liang.821
2021. Lm-critic: Language models for unsuper-822
vised grammatical error correction. In Proceedings823
of EMNLP, pages 7752–7763.824

Zheng Yuan and Ted Briscoe. 2016. Grammatical er-825
ror correction using neural machine translation. In826
Proceedings of NAACL-HLT, pages 380–386.827

Zheng Yuan, Shiva Taslimipoor, Christopher Davis, and828
Christopher Bryant. 2021. Multi-class grammatical829
error detection for correction: A tale of two systems.830
In Proceedings of EMNLP, pages 8722–8736.831

Baolin Zhang. 2009. Features and functions of the hsk832
dynamic composition corpus. International Chinese833
Language Education, 4:71–79.834

Bo Zhang, Yue Zhang, Rui Wang, Zhenghua Li, and835
Min Zhang. 2020a. Syntax-aware opinion role label-836
ing with dependency graph convolutional networks.837
In Proceedings of ACL, pages 3249–3258.838

Meishan Zhang, Zhenghua Li, Guohong Fu, and Min839
Zhang. 2019. Syntax-enhanced neural machine trans-840
lation with syntax-aware word representations. In841
Proceedings of NAACL-HLT, pages 1151–1161.842

Yu Zhang, Zhenghua Li, and Min Zhang. 2020b. Ef-843
ficient second-order treecrf for neural dependency844
parsing. In Proceedings of ACL, pages 3295–3305.845

Yue Zhang, Zhenghua Li, Zuyi Bao, Jiacheng Li,846
Bo Zhang, Chen Li, Fei Huang, and Min Zhang. 2022.847
MuCGEC: a multi-reference multi-source evaluation848
dataset for chinese grammatical error correction. In849
Proceedings of NAACL-HLT.850

Yuanyuan Zhao, Nan Jiang, Weiwei Sun, and Xiaojun 851
Wan. 2018. Overview of the nlpcc 2018 shared task: 852
Grammatical error correction. In CCF International 853
Conference on Natural Language Processing and 854
Chinese Computing (NLPCC), pages 439–445. 855

11

BEA-19-dev FCE-test
Train-set F0.5 F0.5

Bell et al. (2019) FCE-train 48.50 57.28
Kaneko and Komachi (2019) FCE-train – 61.65
Yuan et al. (2021) FCE-train 65.54 72.93
GOPar FCE-train 66.32 74.10
GOPar CLang8 72.13 71.53

Table 6: Binary GED performance.

A Hyper-parameters856

The main hyper-parameters used in our experi-857

ments are presented in Table 7. When not us-858

ing PLMs, the total training time is about 3 hours.859

When using PLMs, the training costs about 7 hours.860

861

B Download links of PLMs862

The download links of PLMs used in our exper-863

iments are listed below. We employ ELECTRA864

(Clark et al., 2020; Cui et al., 2020) to build GOPar865

and BART (Lewis et al., 2020; Shao et al., 2021)866

to enhance our GEC model.867

• ELECTRA-English-Large.868

• ELECTRA-Chinese-Large.869

• BART-English-Large.870

• BART-Chinese-Large.871

Configuration Value
Pre-training

Base architecture
Transformer-base (w/o PLM)
Transformer-large (w/ PLM)

Pretrained Language model BART-large (Lewis et al., 2020)
Number of epochs 60
Devices 8 Tesla V100 GPU (32GB)
Batch size per GPU 8096 tokens

Optimizer
Adam (Kingma and Ba, 2014)
(β1 “ 0.9, β2 “ 0.98, ϵ “ 1 ˆ 10´8)

Learning rate 5 ˆ 10´4

Warmup updates 4000
Max source length 64 (English); 128 (Chinese)
Number of DepGCN layers 3
Dual context aggregation β 0.5

Loss function
Label smoothed cross entropy

(label-smoothing=0.1)
(Szegedy et al., 2016)

Dropout 0.1 (w/o PLM); 0.3 (w/ PLM)
Dropout-src 0.2

Fine-tuning
Learning rate 5 ˆ 10´5

Warmup updates 1000
Generation

Beam size 12
Max input length 64 (English); 128 (Chinese)

Table 7: Hyper-parameter values used in our experi-
ments.

PLM Syntax GLUE ∆

Baseline ✗ ✗ 58.15 -
SynGEC ✗ ✓ 60.14 +1.99
Baseline ✓ ✗ 61.53 -
SynGEC ✓ ✓ 62.15 +0.62

Table 8: The GLUE scores of different models on JF-
LEG benchmark.

40
45
50
55
60
65
70
75

[0,10) [10,20) [20,30) [30,40) [40,50) >50

F 0
.5

Baseline (w/o PLM) SynGEC (w/o PLM)

Baseline (w/ PLM) SynGEC (w/ PLM)

Sentence Length

Figure 5: The effect of input sentence length.

C The GED ability of GOPar 872

We evaluate the binary Grammatical Error Detec- 873

tion (GED) performance of GOPar on two main- 874

stream GED dataset, i.e., BEA-19-dev (Bryant 875

et al., 2019) and FCE-test (Yannakoudakis et al., 876

2011). We follow Rei and Yannakoudakis (2016) 877

and report token-level P/R/F values for detecting 878

incorrect labels. Table 6 shows the performance of 879

GOPar and other leading GED models. When using 880

the same training data, GOPar has a superior ability 881

to detect grammatical errors. This phenomenon is 882

very interesting and worthy of more in-depth study. 883

D Experiments on JFLEG 884

JFLEG (Napoles et al., 2017) is an English GEC 885

evaluation dataset which focuses on fluency and 886

uses the GLUE score (Napoles et al., 2015) as the 887

evaluation metric. We evaluate the baseline and 888

the SynGEC approach in Table 2 on JFLEG. Since 889

JFLEG’s scale is relatively small (only 747 sen- 890

tences), we choose to present the results in the 891

appendix. From Table 8, we can see that the syntac- 892

tic knowledge still continuously improves the GEC 893

performance over baselines with/without PLMs. 894

E Performance Regarding the Input 895

Sentence Length 896

Figure 5 shows performance on CoNLL-14-test 897

in terms of input lengths. The baselines heavily 898

degenerate when encountered with long sentences. 899

12

https://huggingface.co/google/electra-large-discriminator
https://huggingface.co/hfl/chinese-electra-180g-large-discriminator
https://huggingface.co/facebook/bart-large
https://huggingface.co/fnlp/bart-large-chinese

After introducing syntactic knowledge, it is clear900

that larger improvements are obtained for longer901

sentences in both scenarios with or without the902

PLM, as syntax helps to solve errors related to903

remote information, which are common in long904

sentences.905

13

