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ABSTRACT

Prompt tuning is a parameter-efficient fine-tuning method designed to address the challenge of adapt-
ing large pre-trained models to downstream tasks. However, existing prompt tuning methods exhibit
several limitations: (1) difficulties in knowledge transfer when significant domain gaps exist between
source and target domains; (2) tendency to forget general knowledge contained in the source model;
and (3) susceptibility to overfitting when target data is limited. To address these issues, we adopt
the concept of multi-source domain transfer and propose PCPrompt, a Progressive Confidence-
weighted Multi-source Prompt Distillation method for visual prompt tuning under multi-source
and few-shot learning setting. By leveraging a confidence-weighted mechanism with knowledge
distillation, our approach integrates teacher knowledge according to their respective contributions to
the target task. Furthermore, we design dynamic training and progressive decay strategies to provide
the student with coarse-to-fine guidance throughout the entire training process. Experimental results
demonstrate that our method achieves superior performance compared to existing approaches.

1 INTRODUCTION

The past few years have witnessed the rapid development of large-scale pretrained models (Koroteev, 2021; Radford
et al., 2019; Dosovitskiy et al., 2020), and fine-tuning these models on target tasks has become a prevailing practice for
performance optimization.As a mainstream parameter-efficient fine-tuning method (Houlsby et al., 2019; Zaken et al.,
2021; Hu et al., 2022; Karimi Mahabadi et al., 2021; Li & Liang, 2021), prompt tuning (Liu et al., 2024) only tunes the
soft prompt,i.e., a set of trainable parameters added to the pre-trained model,while keeping the backbone fixed.Recent
work further proposed prompt transfer (Vu et al., 2021),where prompts pre-trained on source-domains are used to ini-
tialize target-domain model before fine-tuning.However,existing approaches face certain limitations: (1) performance
drop in data-limited scenario: learning new prompts from scratch (Jia et al., 2022) requires abundant labeled target
data,while the initialize-then-finetune prompt transfer method overfits easily with limited training data,and (2) subop-
timal knowledge transfer efficacy: directly tuning target prompts initialized with source prompts tend to forget general
knowledge from source tasks,and transfer becomes difficult when domain gaps are large. Moreover,existing work
taking these problems into account mostly focus on NLP tasks (Vu et al., 2021; Zhong et al., 2024; Asai et al., 2022;
Peng et al., 2022),unimodal visual prompt transfer remains underexplored.

To address these challenges,we propose PCPrompt(Progressive Confidence-weighted Multi-source Prompt Distilla-
tion) for visual prompt tuning under multi-source,few-shot scenarios.Leveraging knowledge distillation,our approach
not only mitigates catastrophic forgetting in initialize-based prompt transfer,but also provides a feasible solution
for data-scarce settings.We use multi-teacher distillation mechanism to integrate knowledge from diverse task do-
mains,avoiding transfer failures when the domain gap between student and a single teacher is too large.Furthermore,we
propose a confidence-based weighting strategy that leverages knowledge from both teachers and the student to eval-
uate task similarity,thereby assigning proper weights to teacher supervision signals.We introduce a decay-controlled
phase training strategy that dynamically adjusts teachers’ weights while ensuring training stability.

We conduct few-shot transfer experiments on 19 datasets from the VTAB (Zhai et al., 2019) benchmark, where our
method achieves superior average performance over all baseline methods, with analysis experiments validating the
efficacy of each proposed module. To summarize, our contributions are as follows:
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• We propose a confidence-based weighting mechanism in prompt transfer with multi-source distillation, which
adaptively integrate teacher knowledge depending on their task-specific contributions.

• We develop a dynamic phased training scheme with progressive decay strategy,enabling the student model to
receive coarse-to-fine guidance throughout all training phases.

• We conduct comprehensive cross-domain benchmark experiments to demonstrate our method’s superior per-
formance over existing approaches,with extensive ablation studies to validate the effectiveness of each pro-
posed component.

2 METHOD

We follow the setting in Visual Prompt Tuning (VPT for short, Jia et al., 2022) to build teacher and student model.
We denote D = {xi, yi}Ns

i as the target dataset, Ns as the number of samples, C as the number of target classes
, K as the number of teachers. The input image x is firstly divided into a sequence of patches and embedded into
d-dimensional latent space with positional encoding, then a [CLS] token is added to the sequence to obtain x̃i. We use
e(x̃i)

k to represent the [CLS] token’s embedding after the last Transformer layer of the k-th teacher and e(x̃i)
s is that

of student. M is the pre-trained backbone model without classification head, pk and ps is the prompt vectors for the
k-th teacher and the student, heads is the student’s classification head. The overall framework is presented in Figure1.

Figure 1: An overview of our PCPrompt framework to calculate distillation loss, which is then combined with student
cross-entropy loss to form the final training loss.

2.1 CONFIDENCE-BASED TEACHER WEIGHTING

Recognizing that teacher models producing predictions closer to the ground-truth labels of the target task can provide
more reliable guidance, we follow Zhang et al., 2022’s work to use the cross-entropy loss of teacher predictions
on the target data as the weighting factor. However, since teacher and student models serves for different tasks,
directly applying the teacher model to obtain target task predictions is infeasible due to dimension mismatch in their
classification heads. To address this issue, we leverage features extracted from the teacher’s final transformer layer and
process them through the student’s classification head to generate target predictions.Then we evaluate the loss between
such predictions and the ground-truth target labels to calculate the weighting coefficients of each teacher:

Lk
CEconf

= −
∑
i∈Ns

logP (yi|e(x̃i)
k;M,pk, heads) (1)

wk
conf =

1

K − 1

(
1−

exp(Lk
CEconf

)∑
j exp(L

j
CEconf

)

)
(2)

Notably, in our method, the term confidence is not equivalent to the sharpness of the model’s output probability
distribution. In our approach, the features extracted by the teacher model are fed into the student’s classification head
to obtain predictions, and the cross-entropy loss is used to compute the teacher’s contribution weight, referred to as
confidence in our work. Consequently, regardless of the sharpness of the teacher’s output probability distribution,
teachers that produce more incorrect predictions on the target task will be assigned lower weights, thereby reducing
their contribution to the training of the target task.
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2.2 DECAY-CONTROLLED PHASE TRAINING

In early training stage, the student’s classification head is underdeveloped, which makes the confidence-based weight-
ing mechanism ineffective, reducing weight allocation discriminability. Therefore, we adopt a phased traing strategy:
initially using average weighting to avoid bias from poor confidence estimation while ensuring balanced knowledge
transfer from all teachers, then switching to confidence-based weighting after several epochs to emphasize more com-
petent teachers.

Considering that directly switching the training strategy at intermediate stage may compromise training stability,
we propose a gradual transition strategy to ensure stable training. Specifically, we introduce a decay factor α that
progressively decreases from 1 to 0 according to a decay function. We choose cosine as our decay function to ensure
greater importance assigned to the average weighting in early stages, and set the decay endpoint at end of the total
training epochs. We denote q as current epoch and n as total epochs:

α(q) = cosine

(
min(q, n)

n
× π

2

)
(3)

Furthermore, we allocate the decay coefficients to both weighting methods above. When α = 1 (initial state), the
average weighting strategy is fully applied; when α = 0 (end of the decay period), the confidence-based weighting
strategy is used exclusively. We obtain the final weight coefficient of each teacher as follows:

wtotal = α(q) · wavg + (1− α(q)) · wconf (4)

2.3 TRAINING STUDENT MODEL

The loss function during model training consists of two parts: student loss and distillation loss. Specifically, the student
loss is computed as the cross-entropy loss between the predicted values and the ground-truth labels:

LCE(p
s, heads) = −

∑
i∈Ns

logP (yi|e(x̃i)
s;M,ps, heads) (5)

For distillation loss, given multiple teacher models pre-trained on different source tasks, we first feed the target task
data into both teacher models and student model to obtain the output feature vectors of the last Transformer layer.
We then calculate the mean squared error (MSE) between teacher features and the student feature, which serves as
the distillation loss for individual teacher,where Lk

KD denotes the distillation loss between the student and the k-th
teacher:

Lk
KD(ps, heads) = −

∑
i∈Ns

(
M(x̃i|pk)−M(x̃i|ps)

)2
(6)

Subsequently, the weighting coefficients for each teacher are calculated using Equation 4. The ultimate distillation
loss is obtained by multiplying these final weights with the individual teacher distillation losses computed in Equation
6. The overall training loss for the student model is formulated as follows,where λ is a factor to adjust the transfer
ratio:

Ltotal(p
s, heads) = LCE(p

s, heads) + λ · LKD(ps, heads) (7)

3 EXPERIMENT

3.1 COMPARISON WITH BASELINES

We use 19 tasks of the VTAB (Zhai et al., 2019) dataset to test the effect of our method selecting one task from the
VTAB dataset as the target task while using all remaining tasks as source tasks. We randomly selects 5 samples per
class to construct the few-shot training set. We compare our method with: VPT (Jia et al., 2022), SPoT (Vu et al.,
2021), ATTEMPT (Asai et al., 2022) and PanDa (Zhong et al., 2024). More details are shown in AppendixB.

Results and Analysis. We report the top-1 classification accuracy on these tasks in Table 1. Overall, our method per-
forms the best among all competitors. Compared to the second best method(ATTEMPT), our PCPrompt outperforms
it with 3.14% average improvement.

For further analysis, we conduct t-SNE (Van der Maaten & Hinton, 2008) feature visualization experiments to examine
the class-wise discrimination capacity of the model. We compute t-SNE projections using the [CLS] token obtained
from the final Transformer layer output, and compares our method with the second best method(ATTEMPT), shown
in Figure2. The figure demonstrates that PCPrompt has superior feature clustering ability with tighter intra-class
groupings and clearer inter-class separation.
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Table 1: Top-1 Accuracy Comparison on tasks of VTAB (5-shot).
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VPT 32.60 87.59 30.73 93.47 3.73 12.79 60.82 66.14 66.61 51.37 69.02 16.54 19.82 20.77 42.05 7.18 8.42 6.72 11.25 37.24
SPoT 53.59 86.39 44.84 95.22 63.07 14.46 60.28 63.03 26.93 52.17 73.25 15.20 15.47 20.83 41.77 6.26 8.63 5.82 12.75 39.99

ATTEMPT 59.61 86.28 49.26 95.84 73.13 13.86 60.00 63.59 55.78 37.57 73.60 27.05 24.85 22.09 38.96 6.24 7.59 6.67 12.69 42.87
PanDa 56.97 85.32 21.81 92.39 72.66 16.40 60.46 64.69 63.94 50.49 72.81 21.21 26.71 23.22 40.51 6.16 7.60 5.57 15.69 42.34

PCPrompt 63.32 86.87 46.70 97.51 78.99 18.15 61.09 69.05 66.48 57.41 73.60 27.58 23.17 24.04 45.01 7.37 7.69 6.30 13.90 46.01

Figure 2: t-SNE visualizations of the final [CLS] embedding of 4 VTAB tasks, PCPrompt has a more discriminative
feature extracting ability.

3.2 ABLATION STUDY

Through the progressive removal of confidence weighting and phased decay mechanisms, we construct the following
method variants:

• w/o confidence-based weighting: only use average teacher weighting strategy to combine teacher features.

• w/o phase training: only use confidence-based weighting to aggregate teacher features.

• w/o decay coefficient: employ only truncated phased distillation, with the first 50% of epochs using average
weighting and the remaining 50% using confidence-based weighting.

The results are shown in Table2 of AppendixB. The table shows that our confidence-based weighting trick contributes
+1.88% to the average accuracy, and the decay-controlled phase weighting contribures to +0.54% to the performance.

4 CONCLUSION

In this paper, we introduce a novel PCPrompt(Progressive Confidence-weighted Multi-source Prompt Distillation)
method to achieve stable and efficient knowledge transfer for unimodal image tasks. We calculate confidence-based
weights for teachers to balance their contributions while using distillation loss, alleviating general knowledge for-
getting in traditional initialize-based prompt transfer approaches. Moreover, we proposed a decay-controlled phase
training strategy to ensure training stability. Comprehensive experiments were conducted on standardized benchmarks
to validate the model efficacy, demonstrating the superior performance of our method, offering a new solution for
few-shot multi-source transfer learning.

Future Work. Our future research will further explore the application of multi-source prompt distillation to a broader
range of challenges. For instance, when addressing tasks with varying levels of difficulty, the optimal prompt length
may differ significantly. A promising direction involves leveraging the advantage of knowledge distillation to facil-
itate knowledge transfer across prompt sequences of different lengths. Additionally, we will further investigate the
application of prompt distillation methods in scenarios where the source and target tasks differ in model architectures
or even modalities.
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A MODEL FRAMEWORK

An overview of our PCPrompt framewok is shown in Figure1, where the blue part of the model is kept frozen and
the red part is learnable. Given an input image, we firstly divide it into a sequence of image patches before embedded
into d-dimensional latent space with positional encoding. Then we insert a [CLS] token into the sequence to form
the embedding sequence E0. Given a set of pre-trained teacher models, we keep all the components of the model
fixed, and obtain the teacher features of the last Transformer layer using E0. Then we pass the [CLS] embeddings of
teacher features through the head of student to compute cross-entropy loss with ground-truth labels, which is further
calculated as confidence weight of each teacher. The decay producer outputs decay coefficients according to current
training epoch. After that, we multiply the weight coefficient with decay coefficient of both confidence-based weights
and average weights, then calculate the element-wise addition to obtain the final weights. We compute the MSE loss
of student feature and each teacher feature, followed by calculating the Hadamard product of losses and weights to get
the final distillation loss. Finally, distillation loss together with the student CE loss forms the overall training loss to
update the prompt and head parameters of student.

B EXPERIMENT DETAILS

Datasets. We use 19 tasks of the VTAB (Zhai et al., 2019) dataset to test the effect of our method. VTAB comprises
19 distinct visual classification tasks, categorized into three groups: Natural, Specialized, and Structured tasks. Each
task provides 1,000 training samples. We use the 800-200 split of training set to tune model parameters and compute
the classification accuracy on test set.

Task Setting. We adopt a multi-source few-shot learning setting. Specifically, we select one task from the VTAB
dataset as the target task while using all remaining tasks as source tasks, with a uniform model architecture applied
throughout. Teacher models are trained on complete source datasets. For target task fine-tuning, we employ a k-shot
sampling strategy (where k=5 in our experiments), randomly selecting k samples per class to construct the few-shot
training set. For tasks with faster convergence characteristics (e.g., CIFAR-100), we employ a shorter training schedule
of 30 epochs, while other tasks training 100 epochs.

Baselines. We compare our method with: VPT (Jia et al., 2022), a baseline approach that directly tunes prompts on
the target task with visual prompt; SPoT (Vu et al., 2021), a prompt transfer method that initializes target prompts
using source prompts before fine-tuning; ATTEMPT (Asai et al., 2022), an attention-based approach that aggregates
source prompts for target task initialization; and PanDa (Zhong et al., 2024), the first work to incorporate knowledge
distillation into prompt tuning framework.Although SPoT, ATTEMPT, and PanDa were originally developed for NLP
tasks, they share most significant similarities with our task setting. To adapt them for visual tasks, we implement them
using a pre-trained ViT-B/16 backbone while strictly preserving their original design specifications for prompt

Table 2: Top-1 Accuracy Comparison (5-shot) for Ablation Study.
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PCPrompt 63.32 86.87 46.70 97.51 78.99 18.15 61.09 69.05 66.48 57.41 73.60 27.58 23.17 24.04 45.01 7.37 7.69 6.30 13.90 46.01

w/o conf. 61.73 86.65 45.48 96.16 74.33 13.80 60.67 65.03 64.2 52.22 70.32 24.23 23.63 21.05 45.85 6.39 5.38 6.69 14.72 44.13
w/o phase 57.33 86.31 44.84 95.97 75.58 11.83 60.62 65.42 64.46 51.67 69.40 18.65 19.37 20.66 42.62 5.85 5.04 6.16 14.39 42.95
w/o decay 61.73 86.64 45.48 96.16 74.33 13.78 60.43 65.03 64.20 52.16 70.32 24.21 23.65 21.05 33.33 6.38 6.20 6.62 14.72 43.49
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