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ABSTRACT

Negative sampling is an important yet challenging component in self-supervised
graph representation learning, particularly for recommendation systems where user-
item interactions are modeled as bipartite graphs. Existing methods often rely on
heuristics or human-specified principles to design negative sampling distributions.
This potentially overlooks the usage of an underlying “true” negative distribution,
which we might be able to access as an oracle despite not knowing its exact
form. In this work, we shift the focus from manually designing negative sampling
distributions to a method that approximates and leverages the underlying true
distribution. We expand this idea in the analysis of two scenarios: (1) when the
observed graph is an unbiased sample from the true distribution, and (2) when the
observed graph is biased with partially observable positive edges. The analysis
result is the derivation of a sampling strategy as the numerical approximation of a
well-established learning objective. Our theoretical findings are also empirically
validated, and our new sampling methods achieve state-of-the-art performance on
real-world datasets.

1 INTRODUCTION

Self-supervised graph representation learning has wide applications in modern recommendation
systems. To obtain high-quality embeddings for users and items, the typical method is to model past
user-item interactions as a bipartite graph. Node embeddings are often learned in such a way that the
distance between a user’s embedding and an interacted item’s embedding indicates the likelihood of
an edge between the two objects.

Negative sampling is an important step in this learning paradigm: for a given anchor node u, a
node v~ needs to be sampled from a certain distribution, so that node pair (u,v™) can be treated
as a “negative edge” in training, together with the observed positive edge (u,v™"), for training the
model via binary loss. Negative sampling is important because it generates all negative samples
in the training dataset by some human-specified rules, which can have much influence on learned
representations. This also applies to more general graphs arising outside recommendations, which is
also considered in our discussion hereafter.

Negative sampling is not only important but also challenging. Existing works have proposed many
heuristics, including random negative sampling (RNS) (Rendle et al., 2012)), popularity-based negative
sampling (PNS) (Mikolov et al.,|2013)), hard negative sampling (HNS) (Ying et al., 2018), GAN-based
negative sampling (GAN-based NS) (Chae et al.l2018), and in-batch negative sampling (in-batch
NS) (Wu et al.|, [2021), etc.. More recent theoretical studies (Yan et al.,|2024; Yang et al.| 2020b) have
proposed properties of node embeddings that a good negative distribution should ideally encourage
to learn, and then design the negative distributions accordingly.

Should we consider negative sampling to be primarily a matter of human design, or could there be
a more grounded and established objective which we can rely on so that negative sampling can be
more fundamentally viewed (and optimized) as a numerical process to approach that objective?

In particular, we want to start by formulating and highlighting the concept of the true distribution of
negative samples p~, whose objective existence is independent of human choices. As a motivating
example, consider that we are in an ideal world where we have enough resource and capability
to survey the true opinion of each user u’s potent to like each item v in the recommendation
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pool. This true opinion value can be technically formulated as P(y = 1lle = (u,v)), where y is
the true class label of the user’s like. By applying Bayes rule, we can quickly get distribution
p* = P(ely = 1) < P(y = 1|e) P(e) and distribution p~ = P(e|y = 1) o (1 - P(y = 1|e))P(e),
where P(e) is the edge prior. In the above formulation, p~ is the true negative distribution that to
emphasize: every graph from a well-defined domain in practice should have such a p~ that objectively
exists. We will provide more rigorous definitions in Section 3]

Of course, the exact form of p~ is mostly assumed unknown, otherwise the classification problem is
already algebraically solvable by reversely deriving P(y = 1|e) from p~, in which case there is no
need to do sampling and training. However, p~ being unknown does not necessarily preclude us from
being able to access (samples from) p~ as an oracle (though again in many cases there is distribution
shift in observation, which we will have a dedicated section to address). The reason that we may still
need to generate negative samples from a different distribution than p~ is primarily to reduce variance
of learning, i.e. to speed up convergence with fewer samples. Some existing analysis (Mukherjee
et al.| 2013) of classical boosting algorithms such as AdaBoost helps further illustrate this point.

Formulating p~ guides the derivation of a good proposal negative distribution q. A good ¢ should
be grounded and focused on leveraging the noted true (albeit unknown) negative distribution p~ —
including understanding how p~ factors into the expression of a well-established optimization goal,
as well as how it can be approximated or recovered if presumed distorted. In fact, an interesting
observation is that most existing negative sampling methods made this assumption implicitly without
fully exploiting its usage. See Appendix [A|for more discussion.

Our work. In this work, we analyze how to build towards an good sampling strategy, by shifting
the focus from proposing distributions into crafting sampling procedures based on the argument and
the leverage that a true p~ exists, which further expands into two cases. In the first case, we assume
that the observed graph is an unbiased sample from the true distribution. ¢~ can then be derived by
drawing its connection to a well-established objective that involves p~. It turns out that the resulted
sampling strategy can be interpreted as a form of adaptive hard negative sampling.

In the second case, we assume that the observed graph is a biased sample from the true distribution,
and that the positive edges may be only partially observable. This case is underexplored in graph
learning’s literature but has wide applications. For example, in recommendations a positive edge
represents a user’s manifested interest in an item logged by the platform; however, the absence of an
edge can either mean the user truly dislikes the item, or that the user just has not been offered the
chance to interact the item but would have liked it if so. In fact, due to the sparsity nature of many
complex systems only a small fraction of positive edges may be observable.

To address the second case, the idea is to first derive an unbiased empirical risk estimator depending
on true distributions, and then convert it into a form that depends only on observed distributions, up
to some calibration. The calibration, which was deemed a bottleneck in more general settings, can be
facilitated by graph topology in a learnable manner. We further validated this new sampling method
on real-world datasets and achieved state-of-the-art results.

Contributions. In summary, we make the following contributions.

* We propose to fundamentally shift the mode of thinking from proposing negative distributions to
approximating and utilizing the true distributions in sampling methods for graph representation
learning in both recommendations and beyond.

* We theoretically derive and analyze the forms that the optimal sampling strategy should follow,
under the assumption that the positive edges are sampled unbiasedly from the true distribution, or
that the positive edges are only partially observable.

* We further validate our theorems and new sampling method on real-world data and observe their
significant improvement over previous methods.

2 RELATED WORK

Graph Representation Learning. Graph representation learning (GRL) studies how to represent
relational information in low-dimensional vector spaces. Self-supervised GRL aims to train a
graph/node encoder using the graph data itself without extra labels, which further splits into two
categories: generative learning, whose supervision signals purely come from the data, and contrastive
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learning, whose supervision signals come from both the original data and some stochastically
augmented data. Graph contrastive learning has many applications including recommendations
(Shuai et al.| [2022)), drug discovery (Wang et al.| [2021]), anomaly detection (Wang et al.,|2024)), ezc..

For scalability and efficiency, fancy data augmentations are less often seen in graph contrastive
learning for industry-level recommendations (Yu et al., |2022). In recommendations, positive samples
are usually directly sampled from the edge set or random walks (Ying et al., 2018)), and negative
samples by fixing an anchor node then drawing the second node from a certain negative distribution
Yang et al.| (2020a)). Popular loss terms include cross entropy loss (Yang et al.,|2020b)), Bayesian
personalized ranking loss (Rendle et al.,|2012), and InfoNCE loss (Oord et al., [2018).

Negative Sampling. Negative sampling was originally proposed as a component in noise contrastive
estimation (Gutmann & Hyvérinen, 2010; [2012)), and was soon applied to language modeling
(Mikolov et al.,[2013; Mnih & Teh| [2012) for approximating softmax. It emerged in graph’s context
when node embedding methods (Perozzi et al.,[2014; |Grover & Leskovecl [2016)) took inspirations
from language modeling. Since then, it has been widely applied in self-supervised graph learning,
and in recommendations (Yang et al.,|2020a)), and soon became a standalone research topic due to its
importance.

Existing works on negative sampling have proposed many heuristics, including random negative
sampling (RNS) (Rendle et al.,|2012; Bordes et al., [2013)), popularity-based negative sampling (PNS)
(Mikolov et al.l 2013} [Perozzi et al.,[2014])), hard negative sampling (HNS) (Ying et al., [2018} Zhang
et al,2019; Huang et al.,[2021), GAN-based negative sampling (GAN-based NS) (Chae et al.,2018;
Wang et al.,|2018)), and in-batch negative sampling (in-batch NS) (Wu et al.| [2021}; |Chen et al., [2020j
Zhao et al.| [2021)), etc.. More recent theoretical studies (Yan et al.||2024;|Yang et al.|[2020bj; Robinson
et al.,[2021) proposed properties that a good negative distribution should satisfy, such as monotonicity
and accuracy, and then make designs accordingly. |Shi et al.|(2023) further analyzes the relationship
between hard negative sampling and BPR loss.

3 PROBLEM FORMULATION AND PROBABILISTIC SETUP

3.1 PROBLEM FORMULATION

We consider the standard task of self-supervised learning on a graph G = (V, E') where V is the node
set, I is the edge set. Denote by z,, € R"" the raw features of node u € V. The learning goal is to
obtain a graph encoder f defined as a mapping R” — R", so that f(z,,) can best represent node u
and be used in downstream tasks. f is usually parameterized by a neural network with parameters 6,
learned through minimizing the following objective:

J= > L+(u,v)+zzk:L_(u,v;) (1)
7(u,v)€7E',7 k i=1
Vq ey U ~q
where L (u,v) = g" (f(zu), f(z0)), L (u,v7) =g (f(xu), f(2,-)) ()

which intuitively traverses every edge (u,v) € E, picking k negative nodes from the proposal
negative distribution ¢~ for each edge, and collects the corresponding positive and negative losses.
g" and g~ are simple functions that measure dissimilarity and similarities between the f-encoded
node embeddings f(x,) and f(x,), respectively. 7 is a weighing constant for analysis purpose,
which we can assume to be equal to 1 by default.

The negative sampling problem asks:
(*) What is the best form of q~ to use in the above objective J?

This problem definition is consistent with the one in|Yang et al.| (2020b)); [Yan et al.|(2024)) though we
will take a distinct path towards its solution. Notice that

Proposition 1. J is the empirical estimation of the following expected risk term

Ri(f) = Bunpr [Bompe (uy [L7 (1, 0) ] + Bomg- [L7 (1, 07)]] ©)
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where p* : V xV — [0, 1] is the underlying positive distribution from which all edges in E are drawn.
As a notation convention in this paper, we use (u,v) ~ p* to mean that u, v are drawn from the joint
distribution of p* (u, v), while u ~ p* means that u is drawn from the marginal distribution p* (u).

3.2 PROBABILISTIC SETUP

To provide a more rigorous definition for p* and various other distributions, we consider probabilities
in the sample space {(e,y,s)}: (1) Random variable e = (u,v) € V2 is a node pair in the graph. (2)
Random variable y € {0,1} is the class indicator variable for ground truth. y = 1 means that the
associated node pair e is a true positive edge, and y = 0 otherwise. (3) Random variable s € {0, 1} is
the observation indicator variable. s = 1 means the edge is observed, and s = 0 otherwise.

Based on the above definitions: p* = P(eJy = 1) and p~ = P(e|y = 0) are the true positive distribution
and true negative distribution respectively; p~ = P(e|s = 1) and p~ = P(e|s = 0) are the observable
positive distribution and the observable negative distribution respectively; 7+ = P(y = 1) and
7w~ = P(y = 0) are the class priors of the ground truth; p = P(e) is the edge prior, assumed to be
uniform by default; P(y = 1|e) is the value that we wish to obtain ultimately.

If the data is unbiasedly sampled then p* = p*, p~ = p~. We hold this assumption until Section@
when we address the case of biased observation. Also notice that G can either be viewed as containing
a set of edges E drawn from distribution p*, or equivalently as containing a set of negative edges,
V2\E, drawn from distribution p~.

Difference between ¢~, p~ (-|u), ™ (-|u). It is crucial to distinguish the three negative distributions
noted above: ¢~, p~ (-Ju), p~(-|u), which are all defined over node set V.. ¢~ is the proposal negative
distribution whose optimal form we seek to find, which may or may not depend on the anchor node
u though. That is why in the notation we suppress the dependence of ¢~ on any other entities for
the time being. p~(+|u) is the true negative distribution given anchor node u fixed, which we cannot
directly observe if the observations are biased; p~(-|u) is the observed negative distribution, the
distribution that our data (i.e. the observed negative edges) are directly sampled from. In fact, our
ultimate goal in this paper is to construct ¢~ from p~ (-|u), as introduced in Section

4 UNBIASED OBSERVATIONS

In this section, we show how ¢~ can be derived based on the idea that negative sampling is essentially
approximating an established risk term. The result in this section will also serve as the basis for
discussion of the biased observation case in Section

Given a graph G = (V, E') with distributions p* and p~ as defined in Section consider the following
theoretical risk term that we ultimately wish to minimize, associated with encoder f with parameters
0:
Ry (f) = Euv)~p+ [~ 10g py(v|u)] ©)
e9(f(zu),f(z0))
e!](f(-’l’?u,)7f($v)) + TEU’Np’('lu) eg(f(l'u,)af(mqr))

where pg(v|u) = (5)

where py(v|u) is the generalized softmax probability of node v given anchor node u, based on f’s
output. See more discussion in Appendix [B.2]for ensuring p; to be a proper distribution.

Crucially note that the negative distribution in the denominator of Eq[3]is p~, instead of ¢~. This
is because we desire the probability of each edge to be as large as possible — calibrated against
the probabilities of all other possible negative edges sampled from the frue negative distribution p~,
rather than against edges from an arbitrary proposal distribution ¢~. Using p~ for calibration reflects
the competition that positive edges face from the entire set (distribution) of negative edges, which
represents the general objective we seek to optimize.

Rs(f) can be further interpreted by writing down its empirical estimator:
. 1 1
Ry(f) = - >, [Flogpr(vl)] == > [-log ps(vlu)] (©6)

n {(ui,wi) Y, ~p* |E| (u,v)eE
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which has been widely used in graph learning’s literature. For example, when 7 = 1 this becomes the
InfoNCE loss (Oord et al.,|2018). Minimizing R (f) is equivalent to maximizing the probability of
the following random graph model, assuming uniform node prior P(u):

P(G) = TT Pluoy ™ = T [psGl)P@) =2 TT [pr(of)]' s @)

u,veV w,veV (u,v)eE

If our ultimate goal is to minimize Ro(f), what we tell about the sampling problem defined in
Section[3? The following proposition shows that there exists a unique choice of ¢~ which ensures
that optimizing the Ry (f) in Eq. []is identical to optimizing the R (f) in Eq.

Proposition 2. VyR1(f) = VeRa(f) if and only if both of the following conditions hold:
» Foreachu eV fixed, g~ (v) o< ps(vju)p~ (v|w)
o L =~g,L" = 2,9, where 2y, = B - (juy [Df (v |1)]

Proof. See Appendix O

Since Vo R1(f) = VgR2(f) = arg minyR; (f) = arg min, Ra(f), this proposition crucially shows
that for optimizing the risk term Ry ( f), the best proposal negative distribution ¢~ to be used in Eq.
should take the simple form of ¢~ o< ps(-|u)p~(:|u). To exactly approximate R, (f), g~ should be
further reweighed by the partition z,,, which however does not need to be explicitly approximated as
it cancels off with the z,, for normalizing ¢~. Also see Appendixfor details.

To analyze the implications of the reweight term ps(v|u), first notice that the equivalence above is
defined between the two gradients, meaning that the property holds throughout the training of f. In
other words, py(v|u) is a changing probability term in training — calculated based on the output of the
model f in the current training epoch. Also notice that a large ps(v|u) means that the current model
f leans towards classifying (u, v) as positive. Therefore, using ps(v|u) to reweigh the observed
(true) negative distribution p~ is a precise form of adaptive hard negative sampling. This theoretical
result also intriguingly relates in spirit to some of the previous heuristic-driven sampling methods for
adaptive hard negative sampling: (Zhang et al.| 2013 [Robinson et al., 2021} [Lai et al., [2024)).

To implement the sampling method based on Proposition we only need to approximate p~ and then
reweigh it by p; via importance sampling. To efficiently approximate p~, we resort to the relationship
p=p'nt+p < p =(p-ptrt)/n” = (p-p*r*)/x". This allows us to exploit the sparsity
of observed p in practice. Refer to Sectionfor more definitions. Here, the positive prior 77 is
a hyperparameter to tune, and 7~ = 1 — «#*. For approximating p*, it is typical to use the Monte
Carlo method (Robert,|1999), which averages the delta function over all observed neighboring edges:
P*(u) = m Y veN (u) Ou,w (), Where dy, ,, is the Dirac delta function, and AV (u) is the neighbors
of u. Finally, ps can be approximated by replacing the expectation operator in its definition by
samples average.

5 BIASED OBSERVATIONS WITH PARTIALLY OBSERVABLE POSITIVES

In this section, we present a sampling method for biased graph observations with only partially
observable positive edges. Section[5.T|motivates the bias setup. Section [5.2]introduces an empirical
estimator and its corresponding sampling method. Section [5.3|further describes a graph-learning-
based method for estimating a key term in the sampling method.

5.1 BIAS FORMULATION

Many of the real-world graphs have this interesting property of observation bias: while the observation
of an edge often signifies a reliably logged of interaction, the absence of an edge could either mean
that the edge does not exist in reality, or that the existence of the edge just has not been testified.

For example, in recommendations, the absence of an user-item edge can either mean the user truly
dislikes the item, or that the user just has not been offered the chance to interact the item but would
have liked it if so. This also applies to other types of interactions such as social interactions and
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protein interactions, and patient-disease diagnosis relations. This type of observation bias constitutes
a significant source of noise in negative sampling.

To formulate this bias, recall from Section [3] definitions of the random variables: we consider
probabilities in the sample space {(e,y,s)} where e € V2 is a random node pair, y € {0,1} is the
true class variable, and s € {0, 1} is the observation indicator variable.

It is important to distinguish the meaning between y and s. As an example in video recommendations,
e = (u,v) represents a user u and a video v that we consider. y = 1 means that u would have liked
v if u is offered the chance to view v. Also refer to the “ideal world” explanation in Section
s = 1 means the fact that u likes v is actually logged by the platform, usually by judging from some
predefined interaction metrics by the platform such as the actual action of clicking on the “like”
button, long video viewing time, positive comment below the video, etc.

The observation bias that we consider stipulates that s = 1 only when y = 1, or equivalently,
P(s=0ly =0) =1 by contrapositive. We further define ¢,,, = P(s = 1|y = 1,e = (u,v)), which
is the probability for edge e to be observed given itself being a true positive. ¢, ,, is also called
propensity score in some literature.

5.2 UNBIASED RISK ESTIMATOR USING BIASED OBSERVATIONS

In this case, dlrectly applymg the sampling method over the observable distributions is problematic,
because both the p* in the problem definition (Eq ,and the p~ in ¢~ o« p;(-|u)p~(-|u), are now
unobservable. If we directly replace them by p* and p~, further corrections are needed. In fact, we
will show that in this case not only p~ needs to be corrected, but so does p*. In other words, in
order to approximate Rs(f) under biased observation, we need to build two proposal distributions
on top of p* and p~: a proposal positive distribution ¢*, and a proposal negative distribution ¢~. The
following theorem elaborates this idea.

Theorem 1.
Ro(f) = Eunp [R2(f, u)] (®)
where - Ra(f,u) = Eupe (ju) [qf L*] + Eompm(u) [(1;)pf(v)L ]
+ Bt (fu) [ﬂ;_(;_C)Pf(U)(—L)] )

withc=P(s=1ly=1), ¢y = P(s =1y = 1,e = (u,v)), p*,p , 77,7 defined in Section
py(v) defined in Eq.

Proof. See Appendix [B.4] O
Corollary 1. If L™ = -L", then
Ro(f) = Euepr [Bung [B1L7] + Eung-[B2L7]] (10)
with the following assignment of proposal distributions ¢*, q~, and constant loss weights 31, B2:
 For eachu € V fived, q* (v) o< 6,1, (py (vfu) + B1) p* (v]u)

* Foreachu €V fixed, ¢~ (v) o< ¢}, pr(vu) p~(v|u)

.Blzﬂ'c(lc)ﬁ (17‘!‘6)6

Proof. See Appendix O

Corollary [T] directly gives the desired form for the new sampling method that best approximates
Ry(f). Similar to the unbiased case, here we also see py show up as a reweight to the observed
distributions, which carries rich implications — see previous discussion under Proposition 2}
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To implement the sampling method, first notice that both ¢ and 7% do not depend on v, and

m*tc = P(s = 1) can be directly estimated from the data by N(2 1‘\?—‘1)' 7+ remains to be a sam-
pling hyperparameter to tune, and 7~ = 1 — w*. To efficiently approximate p~, we resort to the

relationship p = p*ntc+p (1 -7"c) < p~ = (p-p*n*e)/(1 - n*c), which allows us to exploit the
sparsity of p in practice. Refer to Section [3.2]for more definitions.

The only unknown that depends on v is the propensity score function ¢,, ,,. We elaborate its estimation
in the next subsection.

5.3 LEARNING-BASED ESTIMATION OF PROPENSITY SCORES USING GRAPH FEATURES

In this subsection, we present a learning-based method for approximating the propensity function
@u,v- We will first discuss its interpretation, the we will introduce how it can be approximated by a
graph encoder parameterized by a neural network.

Interpretation. ¢, , = P(s= 1|y =1,e = (u,v)) is essentially the observation bias of edge (u,v),
also known as exposure bias or labeling bias in different literature. Here, our key observation is
that the existing literature discussing these biases essentially establishes their strong correlation
with various graph-based features, such as (1) Popularity bias (Zhang et al.,[2021), which may be
quantified by node degree d,,, d,, (2) Position bias (Chen et al.|(2023), which may be quantified by the
output of distance function g on the node pair (u,v). In addition, we also conjecture that the general
structural information of the u, v may also be correlated factors.

Although these bias terms can be easy to identify, conceptualize, and quantify, their relationship with
the propensity score, as encapsulated by ¢, is very complex and varied from one domain to another.
Since both the input and the desired output has been clear, here we propose to use a neural network
as the universal function approximator for ¢.

Parameterization. We define the neural approximator for ¢ as

d(u,v) = o(MLP([dy; do; f(u); f(v); 9(u,v)])) (11)

where o is a non-linearity function such as sigmoid; the degree features and the embeddings of u, v
are concatenated as input to the MLP; g(u,v) = g* (f(u), f(v)), see Sec The output ¢(u, v) is
directly plugged into Eq. [27|so that gb? is co-trained with f in an end-to-end fashion. The role of ngS in
Eq. @]is very similar to that of the attention mechanism (Velickovic et al., [2018};|Vaswani, [2017):
both are a plugged-in module that learns to reweigh samples (tokens) alongside primary training; the
goal of both modules is also to approximate an underlying, physically motivated function.

Regulation. qAS can be further regulated to align its behavior with the desired properties of ¢. Besides
the unit-range output enforced by o, we also consider its first moment and consistency:

¢ First moment: E,, yp+[du,0] = C;

* Consistency: g(u,v1) > g(u,v2) < ¢(u,v1) > d(u,v2), Yu,vi,v9 € V.

The first-moment constraint essentially stipulates the rough numerical scale of ¢, i.e. to be centered
around ¢ by expectation. See its proof in Appendix [B.6] We softly enforce this by mean squared
loss (¢(u,v) — ¢)2. The consistency constraint is based on the probabilistic gap theory (He et al.,
2018 |Gerych et al., [2022), which states the general order-preserving property between the propen-
sity function and the decision function. We encourage it by list-wise ranking loss ListMLE (Xia
et al.,2008)), computed between the two length-(k + 1) lists, (g(u,v"), g(u,v7), ..., g(u, v} )) and

(gf)(u,f),qg(u, V) eeny czg(u,v;()).
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6 EXPERIMENT

We validate the performance of our new sampling methods derived in Proposition 2] and Theorem I]
on real-world datasets. We also investigate the neural approximator for propensity scores developed
in Section[5.2] via ablation studies.

6.1 EXPEARIMENTAL SETUP

Baselines. We compare with 8 representative negative sampling methods, including both classical and
state-of-the-art methods: random sampling (RNS) (Rendle et al.l 2012)), popularity-based sampling
(PNS) (Chen et al.} 2017), random-walk-based sampling (RWNS) (Ying et al., [2018)), DNS (Zhang
et al., 2013)), MCNS (Yang et al., 2020b)), SENSEI | Yan et al.| (2024), IRGAN Wang et al.| (2017),
NMNR [Wang et al.|(2018).

Dataset. We use three popular benchmarks for evaluating graph-based recommendations: MovieLens
(Ding et al.| [2020), Pinterest (Ding et al.,[2020; |Geng et al.,2015)), and LastFM Wang et al.| (2019).
See Appendix [C.I]for more details.

Data Split. Special care is needed when splitting the edge set into training, validation and testing. In
principle, we should have Eiin, Eva ~ p* and Eie ~ p*. However, in reality there is compromise
and so we may only strive to approach this principle as best as we can.

We use the LastFM dataset for the unbiased scenario. Since p* = p*, the split can be done completely
at random. Note that this underlyingly regards the entire given dataset as samples from the ground-
truth p*, even though this still may not hold in reality during data collection. The splits are 70% —
15% - 15% for training, validation, and testing.

We use the MovieLens and the Pinterest dataset for the biased scenario. Since we have no direct
access to p*. we split the edges in temporal order by following the classical “leave-one-out” strategy
in|He et al.|(2017); Rendle et al.|(2012): leaving the most recent and the second most recent edge for
each node as testing and validation set, respective.

Base Model. Note that the choice of the base model f is independent from the sampling method. We
use (1) a matrix-factorization based model (Rendle et al.|[2012), which is essentially the base model
of many classical node embedding methods such as deepwalk (Perozzi et al.,[2014)) and node2vec
(Grover & Leskovec, 2016) and (2) a GNN-based model, LightGCN (He et al., 2020), which is a
popular GNN model for recommendation.

Configurations. The configurations related to base models which are relatively simple and not
the main focus of comparison. In this paper, we use Adam optimizer, learning rate le — 4, L2
regularization le — 5, hidden embedding size 64, mini-batch size 1024 with early stopping, negative
sampling number k = 16, to tune the base models with different sampling methods. For our sampling
method, we set 7 = k = 8; we further tune the class prior 7, ranged from 5% to 30%; we set g~ as
the dot product and g* = —g~. For hyperparameters related to the baseline sampling methods, we
follow their reported setting for tuning.

6.2 RESULTS AND ANALYSIS

Performance under Biased Observations. As shown in Table [T} our method consistently out-
performs all baseline methods across both models and datasets in the biased observation scenario.
Remarkabley on the Pinterest dataset with the LightGCN model, our method attains a Recall@20 of
17.61%, very significantly surpassing the next best method. The results demonstrate the effectiveness
of our proposed sampling strategy in handling biased observations with partially observable positives.

Performance under Unbiased Observations. On the LastFM dataset, which simulates the unbiased
observation scenario, our method achieves competitive performance compared to the baselines. We
note that our method is extremely simple and that the competitive baseline DNS itself is also a highly
flexible form of adaptive hard negative sampling.
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MF (Rendle et al.,|2012)

LightGCN (He et al.| |2020)

Sampling
MovieLens Pinterest LastFM Movielens Pinterest LastFM

RNS 7.11 £0.16 7.50+£0.19 597+0.13 | 894 +0.11 798 £+0.25 6.39+0.10
DNS 1242 £0.09 856+0.06 7.37+0.21 | 11.89 +0.08 10.77 +0.13  7.26 + 0.12
PNS 8.41 +0.10 842 +0.05 6.64+0.11 | 7.58 +£0.05 8.67+0.05 7.10+0.09
IRGAN 1057 £0.12  9.11+0.09 6.86+0.09 | 1023 +£0.25 9.79+026 7.13+0.11
NMRN 8.76 + 0.19 7.67 £0.11 6.87 +0.11 | 1022 +£0.05 7.62+0.06 7.12+0.14
RWNS 9.27 + 0.06 793+005 6.59+0.18 | 11.12+0.08 8.00+0.06 6.68 +0.22
MCNS 8.53 + 0.08 8.68+0.17 6.65+0.20 | 7.22 +£0.05 8.85 +0.11 6.88 +0.12
SENSEI 10.19 £ 0.06 9.01 £0.10 5.13+0.25 | 8.10+0.11 10.78 £ 0.14 5.44 +0.21
Our Method | 12.77 £+ 0.13 12.59+0.12 7.38+£0.11 | 1741 +0.19 17.61 +0.20 7.39 + 0.12

Table 1: Performance comparison on real-world datasets (Recall@20, -%). We test 8 baselines over 2 base
models over 3 different datasets. MovieLens and Pinterest have data splits to simulate biased observation;
LastFM has data splits to simulate unbiased observation. In each case, only the corresponding version of our
sampling method is tested.

6.3 ABLATION STUDIES

To understand the contribution of each component in our proposed method, we conduct ablation
studies on the Pinterest dataset using the LightGCN model. We examine the impact of the following
factors: (1) Adaptive Reweighting (ps): We assess the effect of the adaptive reweighting term
derived from the current model’s output. (2) Propensity Score Estimation (¢, ,): We assess the
importance of accurately estimating the propensity scores. (3) Regularization on ¢,, ,: We assess
the effect of removing the regularization terms (first-moment and consistency constraints) on the
propensity score estimator. (4) Class Prior 7, : We assess the sensitivity of the method to different
values of the class prior 7.

Table 2] summarizes the results of the ablation studies.

Method Variant Recall@20
(A) Full method 17.61
(B) Without adaptive reweighting p 6.60
(C) Constant propensity score (¢(u,v) = ¢) 12.39
(D) Without regularization on ¢ (u, v) 12.08
(E) Varying class prior 7, (0.01) 13.33
(F) Varying class prior 7, (0.005) 17.05
(G) Varying class prior 7, (0.001) 4.92

Table 2: Ablation study on the components of our method on the Pinterest dataset using LightGCN (He et al.,
2020) (Recall@20)

Effect of Adaptive Reweighting. Comparing the full method (A) with the variant without adaptive
reweighting (B), we observe a significant drop in Recall@20 from 17.61% to 6.60%. This demon-
strates the importance of the adaptive hard negative sampling strategy derived from Proposition [2]

Impact of Propensity Score Estimation. When we assume a constant propensity score (C), the
performance decreases to 12.39% and 12.08%, respectively. This indicates that accurately estimating
the propensity scores ¢, ,, is crucial for correcting the observation bias in the data, as proved in
Section[5.3] Similar to the attention mechanism, this estimation allows the model to account for the
varying likelihood of positive edges being observed, leading to more reliable learning.

Role of Regularization on ¢,, ,. Removing the regularization terms on the propensity score esti-
mation (D) results in a noticeable performance drop to 12.08%. This suggests that the first-moment
constraint and consistency constraint introduced in Section help improve the estimation of ¢, ,
by enforcing desirable properties, thus enhancing the overall performance.
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Effect of Class Prior 7.. We also examine the impact of varying the class prior 7, (E-G). The best
7, is 0.006. Setting 7, to 0.005 yields a Recall@20 of 17.05%, which is close to the performance
of the full method. However, setting 7, too low (0.001) or too high (0.01) leads to suboptimal
performance, with Recall@20 scores of 4.92% and 13.33%, respectively. This indicates that while
our method is relatively robust to the choice of 7, within a certain range, tuning this hyperparameter
is important for achieving optimal performance. The class prior affects the weighting of positive and
negative samples in the unbiased risk estimator, and an appropriate value helps balance the learning
process.

Overall, the ablation studies confirm that each component of our method contributes to its effec-
tiveness. The adaptive reweighting mechanism and the accurate estimation of propensity scores are
particularly critical for achieving superior performance in graph-based recommendation tasks with
implicit feedback.

7 CONCLUSION

In conclusion, in this work we shifted the paradigm of negative sampling in graph representation
learning by focusing on approximating and leveraging the true negative distribution. We derived
optimal sampling strategies for both unbiased and biased observed graphs, connecting them to
maximum likelihood estimation and utilizing graph topology. Our methods showed significant
improvements over existing approaches on real-world datasets, validating our theoretical contributions
and offering a new direction for negative sampling strategies.

10
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Appendix

A IMPLICIT DATA ASSUMPTIONS OF EXISTING METHODS

Should we consider negative sampling strategies to be primarily a matter of human design, or does a
ground-truth distribution of negative samples p~ exist objectively and independently of our choices
(and further that its exact form in the real world cannot be easily articulated by “principles” due to
nature’s complexity)?

For this question, an interesting observation is that many of the existing methods have implicitly
taken taken an ambiguous or mixed stance.

To see this, notice that many previous works for negative sampling have left positive sampling
untouched. This essentially respects the existence a ground-truth positive distribution in nature,
from which the observed data (positive edges) get sampled unbiasedly. However, respecting the
observed ground-truth positive distribution is equivalent to respecting its corresponding ground-truth
negative distribution (by simply taking complement). This is because any graph in nature can be
simultaneously viewed as a collection of positive edges sampled from the positive distribution, or a
collection of negative edges sampled from the negative distribution. However, in the meantime those
existing methods are proposing new negative distributions.

This seeming self-contradiction can only be explained when we consider the existing methods to have
respected the existence of p~, but in meantime be proposing a negative distribution different from
their respected ground-truth for other good learning properties such as potentially faster empirical
convergence. However, this advantage is at the compromise of unbiased estimation, and often does
not have theoretical guarantee.

B PROOFS AND THEORETICAL DISCUSSION

B.1 PROOF OF PROPOSITION[I]

J= 2 L*(u,v)ﬁiﬁ(u,v;) (12)
(u,)eE, v,...,v3~q~ (v) i=1

= E(y,oympt (L7 (1, 0) + TE - g (o) L7 (u,07)] (13)

= Evpt [Epmpr () [ L7 (0, 0) + By (o) L7 (w,07)]] (14)

= Bt [Bvmpr (uy L7 (1, 0) + B () [Bo gy [ (1, 07)]] (15)

= Eunpt [Bompr (Juy LT (0, 0) + By gm0y L™ (1w, 07) ] (16)

B.2 GENERALIZED SOFTMAX
The full form of the generalized softmax is: for a selected edge (u, v),

ol - 9 @) f @) 4 7= (v[u)e9(F (@) F (@)

PRV = @a) f (@) +TEU_NP_(_‘u)eg(f(ru,)ﬁf(ru—))
W) - Tp—(Uf|u)€g(f(xu),f(wvf))

pr(viu) = e9(f(zu),f(zyr)) +TEU—NP—(.\u)eg(f(m“)’f(x“_))’

7)

forall v/ # v (18)

This ensures that the probability distribution under the generalized softmax term in Eq.[5]is proper,
because the denominator is not symmetric for all v € V, i.e. the selected edge (u,v) is treated
differently than all other edge (u,v") where v” # v. In practice since the support of p~(|u) usually
does not encompass the positive node v in the selected positive edge (u,v), i.e. p~(v|u) = 0, Eq.
degrades into Eq.[3}
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B.3 PROOF OF PROPOSITION

Denote g(f(xw), f(xv)) bY guv

eJuv

Ro(f) = Vo By yons [~ 1 19
Vo2 (f) = Vo Euoypr[-log —— +T]EU—NP—(.‘U)69'H’U’:| (19)

= E(u,v)~p+ [_veguv + Vo log(eguv + TE1)‘~p‘(-|u)eguv_ )] (20)
eJuv VoGuv + TEv‘~p‘(~|u)eg“m_ VoGuv-

=E w.v)~pt —VoGuy + 21
(w)p* [~ Vo9 e9uv + TEqy- - (Ju) €ue™ ] ey
eg'“'"V wv T]Ev*rv = (+|lu eduv- V@.guv‘
_ E(u7v)~p+ [_veguv n 09 - + ’4 ( | ) - (22)
eJuv + T]Ev"vp‘(-|u)eg“” eJuv + TEU‘~p‘(-|u) eJuv
= Equ,0)vp [=V09uv + Eomnpm (fuy [P4 (v [1) Vo guo-]] (23)
= Eurvp+ [Ev~p+(-|u) [VG(_guv)] + IEu*r«p*(-|u) [pf(v_|u)v9.gu'u‘:|] (24)

Notice that the first summation term is exactly positive sampling, and the second summation term

is exactly negative sampling. Substitute g* = =gy, = —g(f(z4), f(20)), 9~ = 2u9(f(2a), f(24))
into the equation above:

Vo Ro(f) = Bunpt [Bppr (uy [V LT (4, 0) ] + By () [ipf(v_luwef(% vl (29

Zu
where the partition z,, = E,,.p,- () [Ps (v|u)]. Meanwhile, from the definition of R; (f) in Eq.
Vo Rl(f) = Eu~p+ []Ev~p+(4|u)[V9L+(u, U)] + EU—Nq— [V@L_(’u,, U_)]] (26)
Therefore,
VoR1(f) = VoRo(f) ifand only if Yu,v eV, ¢q=71ps(v|u)p™ (v|u)/z, < ps(v|u)p™(v]w).
B.4 PROOF OF THEOREMI[I]

Define p = P(e) to be the edge prior. We first have the following propositions.

c_a~t

= %ul

Proposition 3. p*

Proof. p*=P(e|ls=1)=P(ely=1)P(s=1ly=1,e)/P(s=1ly=1) :p*@.

O
Proposition 4. p~ = ﬁ(p —7tph).
Proof. p=P(e) = P(ely=1)P(y=1) + P(ely = 0)P(y = 0) = 7*p" + 7 p". .
Proposition 5. p=7*cp™ + (1 -7*c)p™.
Proof. P(s=1)=P(s=1y=1)=P(s=1y=1)P(y =1) =7*c,s0p = P(e) = P(e|s =
1)P(s=1)+P(e|]s=0)P(s=0)=7ep* + (1 -7"c)p . -
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Based on the above propositions, we have

R(f,u) =Eyupt [LY] + Eypep-[pr(v)L7] (27)
= ]Ev~p+ [L+] + E?w(ﬂ%(p—ﬂ'*p*)) [pf(’U)Li] (28)
* 1
= Eoopr [L" = =y (0) L]+ Eueg[—p(0) L] (29)
* 1

= ]EUN ¢ucm pt [(L+ - %pf(’l})L_)] + E1}~(7r*cﬁ*+(1—7r+c)ﬁ’) [;pf(U)L_] (30)
+ + .2 1-7"

=B [ L] = B [ (o)L ]+ B [y ()L ]+ Emﬁ-[ﬂrgc)("pf(v)m
: : : a1y

CE -S4 E . mte(l-c) (0)(=L)]+Ey (1-7*c)c (W)L ] (32

=Eyp+ [ . ]+ Euepe[ o pr()(=L7)] + Epp-[ T e pr(v)L7] (32)

B.5 PROOF OF COROLLARY I

Substitute definitions of 31, 82, q", ¢ into Eq. [I} we will see it exactly equals Ro(f) in Theorem

B.6 PROOF OF THE FIRST-MOMENT CONSTRAINT IN SECTION[3.3]

Eu,vmpt [¢uv] = Euﬂwp*[P(s = 1|y =1l,e= (u,v)] = Zu,veV[P(e = (u,U)|y =1)P(s = 1|y =
1’)6 = (w,v)] = Zuwev[P(s=1,e=(u,0)ly=1)] = X [P(s=1,e = (u,v)ly=1)] = P(s = 1|y =
lx=c

B.7 PROOF OF THE CONSISTENCY CONSTRAINT IN SECTION[3.3]

The probabilistic gap theory (He et al., [2018; |Gerych et al., 2022) essentially states that ¢(e) =
h(P(y =1le)—P(y =0[e)), h'(t) > 0. Therefore, ¢(e) = h(2g(e)-1) and %‘t:e =2h'(g(e)) > 0.
Equivalently, ¢(e1) > ¢(e1) < g(e1) > g(eq).

C EXPERIMENT

C.1 DATASET
The sources for the datasets used in this paper are:

* MovieLens (Harper & Konstan, 2015):
https://grouplens.org/datasets/movielens/100k/.

* Pinterest (Geng et al.,2015)):
https://github.com/edervishaj/pinterest—-recsys—dataset?tab=
readme-ov-file

* LastFM: (Wang et al.,[2019):
https://github.com/xiangwangl223/knowledge_graph_attention_
network

All datasets have been stated by their publishers to be freely available for research purpose.
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