Deep Reinforcement Learning with Plasticity Injection

Evgenii Nikishin® Junhyuk Oh Georg Ostrovski Clare Lyle
Razvan Pascanu Will Dabney André Barreto
DeepMind

Abstract

A growing body of evidence suggests that neural networks employed in deep
reinforcement learning (RL) gradually lose their plasticity, the ability to learn from
new data; however, the analysis and mitigation of this phenomenon is hampered by
the complex relationship between plasticity, exploration, and performance in RL.
This paper introduces plasticity injection, a minimalistic intervention that increases
the network plasticity without changing the number of trainable parameters or
biasing the predictions. The applications of this intervention are two-fold: first,
as a diagnostic tool — if injection increases the performance, we may conclude
that an agent’s network was losing its plasticity. This tool allows us to identify
a subset of Atari environments where the lack of plasticity causes performance
plateaus, motivating future studies on understanding and combating plasticity loss.
Second, plasticity injection can be used to improve the computational efficiency of
RL training if the agent has to re-learn from scratch due to exhausted plasticity or
by growing the agent’s network dynamically without compromising performance.
The results on Atari show that plasticity injection attains stronger performance
compared to alternative methods while being computationally efficient.

1 Introduction

“You cannot teach an old dog new tricks” an old proverb says. While the common wisdom is not
necessarily a source of absolute truth, neuroscientists recognized a long time ago that biological agents
indeed gradually lose adaptability with age [Livingston, 1966]]. This phenomenon is referred to as loss
of plasticity in brains [Nelsonl [1999] Mateos-Aparicio and Rodriguez-Morenol 2019] and happens
for multiple reasons, including natural degradation of neurons and their connections [Mahncke et al.|
2006/ [Kolb and Gibbl [2011]].

Since the biological causes of loss of plasticity do not apply to artificial agents, in principle there is no
reason to expect that this phenomenon also happens in the context of machine learning. Surprisingly,
several recent works show that reinforcement learning (RL) agents that use neural networks may
gradually lose the ability to learn from new experiences [Dohare et al., 2021, [Lyle et al., [2022]
Nikishin et al., [2022]].

The precise mechanisms causing loss of plasticity in RL are not well understood. The problem is
particularly challenging to study in this context because performance in RL is influenced by many
factors. For example, an agent without plasticity issues may still struggle to learn if it fails to properly
explore the environment [Taiga et al.l 2019]. Past literature focused on using and controlling proxy
measures of plasticity such as the number of saturated rectified linear units [Nair and Hinton, [2010]]
and feature rank [Kumar et al.,|2021]], but it is unclear how well these measures manage to capture
the underlying phenomenon [Gulcehre et al., [2022].

This paper complements past evidence about the existence of plasticity loss in deep RL and introduces
plasticity injection, an intervention that augments plasticity of the agent’s neural network. The

*Work done during the internship; currently at Mila, Université de Montréal.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

conceptual idea is simple: at any point in training, one can freeze the current network and create a
new one that is going to be learning a change to the predictions, whilst ensuring that the change is
initially zero. Crucially, plasticity injection does not increase the number of trainable parameters
and does not affect the network’s predictions when it is applied. Because of these properties, the
intervention enables careful analysis of the plasticity loss phenomenon in RL while keeping other
confounding factors aside.

We suggest two uses of plasticity injection, one as an analytic tool and another as a practical
algorithmic technique. For analysis, we propose an experimental protocol that uses plasticity
injection for diagnosing the problem of plasticity loss: for example, if an agent that was struggling
to improve its behavior escapes a performance plateau after the intervention, we can conclude that
the agent had been experiencing problems with its network plasticity. Using this protocol in the
Arcade Learning Environment [Bellemare et al.,[2013]], we identify scenarios where loss of plasticity
hinders the learning process. Furthermore, based on the intervention-enabled analysis, we provide
recommendations for controlling the degree of plasticity loss.

We also propose to use plasticity injection as a way to improve computational efficiency of RL
training in the following scenarios. First, when the agent loses its plasticity because its network
turns out to be too small, plasticity injection can be dynamically used to increase the capacity of
the agent without having to re-train the agent with a larger network from scratch. We empirically
show that our method improves the aggregate score across 57 Atari games by 20% compared to
other methods for dynamically addressing plasticity loss. Second, plasticity injection can be used
to minimize computation by switching from a small network to a larger network in the middle of
training without compromising the performance compared to using the larger network from scratch;
we also empirically verify it on Atari games.

To summarize, our contributions include:

1. A minimalistic intervention called plasticity injection that increases plasticity of the agent
while preserving the number of trainable parameters and not affecting its predictions;

2. Complementary evidence about the existence of the plasticity loss phenomenon in deep RL;
3. An experimental protocol for diagnosing loss of plasticity using the intervention;

4. A way to improve computational efficiency of RL training by dynamically expanding a
neural network used by the agent.

2 Related Work

Plasticity in Continual Learning. Discussions about plasticity of neural networks date back (at
least) to a seminal paper by McCloskey and Cohen|[[1989] outlining the plasticity-stability dilemma,
a trade-off between preserving performance on previous tasks and maintaining adaptability to future
ones. The continual learning community historically put a higher emphasis on the stability aspect,
addressing catastrophic forgetting of past behaviors [Frenchl|[1999]]. Recently, several works raised
awareness of difficulties with learning on future tasks too. |Ash and Adams|[2020] demonstrated
an instance of loss of generalization, when pre-training a network might unrecoverably damage
generalization even if pre-training was done on a uniform subsample of the same dataset. [Berariu
et al.| [2021]] deepened the study and conjectured that the phenomenon might happen because of the
reduction of gradient noise when warm-starting the network. |Dohare et al.| [2021]] explicitly study the
network plasticity in continual learning and demonstrate the reduced ability to minimize even the
training error as the number of tasks increase. These works build an understanding of the problem by
studying simplified settings that isolate different aspects of learning capabilities in continual learning,
whereas our work aims at tackling the deep RL setting in its whole.

Loss of Plasticity in Deep RL. Issues with plasticity and related phenomena have been recently
highlighted in deep RL under a plethora of different names. [Lyle et al.| [2022]] show loss of capac-
ity for fitting targets in online RL and [Kumar et al.[[2021] demonstrate a related implicit under-
parameterization phenomenon caused by bootstrapping with more emphasis on the offline RL case.
Both of these works use the feature rank as a proxy measure for plasticity but later(Gulcehre et al.
[2022] question the reliance on such measure by demonstrating a weak correlation between the
rank and the agent’s performance, partially motivating our study that focuses directly on agent’s
performance to reason about plasticity. Works of |Sokar et al.[[2023]] and |Abbas et al.| [2023]] focus on

Up n Down

L
n
= 100
c
e
g
L
o
L 10
()
=
s
0 4000 8000 12000 16000 20000
Iterations
—— Reset Every Task —— Reset Never

Figure 1: Demonstration of plasticity loss in a sequence of policy evaluation tasks. The task (a policy
to evaluate) changes every 1000 iterations. The reset every task setting shows that newly-initialized
parameters are able to fit each task, whereas the reset never setting shows the diminishing capability
to fit the data when using the trained parameters from one task as the initialization for another task.

saturation of neurons over the course of training, but|Lyle et al.|[2023] demonstrate that the saturation
alone cannot fully characterize the plasticity loss phenomenon. Nikishin et al.|[2022] discuss the
primacy bias in deep RL, a tendency to excessively train on early data damaging further learning
progress, and propose to periodically reset a part of the network to address the issue while relying on
the replay buffer as a knowledge transfer mechanism. Earlier, [Igl et al.[[2021]] had observed that deep
RL agents can lose the ability to generalize due to non-stationarity and proposed to use distillation as
a mitigation mechanism. Plasticity injection closely relates to these approaches by leveraging newly
initialized weights, but does not require re-training and directly continues learning.

Architectures. The works above mainly discuss algorithmic aspects with less focus on the network
architecture, although it is also an important component of the agent’s design [Mirzadeh et al.,[2022].
The closest work in this space is about progressive networks [Rusu et al.,2016] that considers a setting
with multiple environments and adds a new network with cross-connections to the layers of previous
networks. A network after plasticity injection can be viewed as a simplified version of the architecture
with a motivation of increasing plasticity within a single task without affecting agent’s predictions. A
line of work on the mixture of experts [[Shazeer et al.,|2017]] and modular networks [Andreas et al.,
2016] is also related, but the focus in these papers typically is compositionality or handling multiple
modalities. The idea of growing network layers or neurons has also been investigated [[Fahlman
and Lebierel [1989, [Chen et al., [2015]]; plasticity injection belongs to a family of these methods up
to the differences in the growing strategy and in explicitly controlling for the number of trainable
parameters. In the context of language modeling, [Hu et al.|[2022]] explored a similar idea of freezing
a pre-trained model and fine-tuning a low-rank addition to the weight matrices on a downstream task.
Lastly, plasticity injection can be conceptually viewed as an instance of residual learning [He et al.,
2016] and boosting [Schapirel, |1990].

3 An lllustration of Plasticity Loss

Plasticity of a neural network is broadly defined as the ability to learn from new experiences. To
provide intuition on how this ability can decrease over time, we present a didactic example before
investigating the case with deep RL. Figure[I]shows the mean-squared error (MSE) on a sequence
of supervised policy evaluation problems derived from the Up n Down Atari environment. We first
trained an agent on this environment for 200M frames and stored the policies occurring at every
10M frames. Then, for each stored policy, we sampled states from the corresponding stationary
distribution and computed Monte-Carlo estimates of the value function for each state, resulting a
training set composed of states and their values. We then trained a network to solve the resulting
sequence of prediction problems. This sequence of related prediction problems differing in the input
and target distribution aims to reproduce the scenario faced by an online RL agent [Dabney et al.|
2021]]. The curve labeled “reset never” corresponds to starting each prediction problem using the

final parameters from the previous one, while “reset every task” corresponds to randomly initializing
the network parameters at every prediction problem.

The conventional wisdom about transfer learning suggests that, if two tasks are related, pre-training
on the first might accelerate learning on the second [Pan and Yang| 2009]. Here we observe the
opposite trend: it takes longer and longer for the network to decrease training error on the subsequent
policy evaluation problems if its parameters are not re-initialized. This example gives a simple
demonstration of how plasticity loss can occur; we refer to the work by |Dohare et al.|[2021]] for an
in-depth study of the phenomenon in the continual setting.

After building intuition about loss of plasticity, we turn our attention to its analysis in deep RL. The
key distinctive feature of RL is the presence of an exploration confounder: in contrast to the continual
setting with a fixed sequence of datasets, an RL agent influences the future data it learns from. Thus,
a failure of an RL system can be attributed not only to loss of plasticity but also to inability to explore.
The next section presents a strategy to increase plasticity of an agent that addresses this difficulty
with the analysis.

4 Plasticity Injection

Before describing the experimental design in detail, we list the motivating desiderata:

» Unaffected predictions: the agent’s predictions should stay the same after the intervention
to avoid abrupt changes. This criterion allows isolating confounding factors related to
exploration;

* Preserving the trainable parameter count: the intervention should not affect the number
of trainable parameters to minimize confounding factors related to representational capacity.

We now present the proposed intervention to increase plasticity of an RL agent. First, let us denote the
neural network approximator employed by the agent (for example, used for action-value prediction)
as hg(z), where 0 indicates the parameters. At some point in training, where the network might have
started losing plasticity, we are going to freeze the parameters 6 and introduce a new set of parameters
0" sampled from random initialization. The key idea is to keep two copies of ¢, which we denote
by 6} and 0}; while] are free parameters used to learn a residual to the old network outputs, 65
remains frozen throughout. The agent’s predictions after plasticity injection will be calculated using
the following expression:

ho(x) + hg; () — hoy () . (1
—— ——
frozen trained frozen

Since initially 6] = 6, immediately after plasticity injection the predictions of the neural network
remain unaltered. As learning progresses, 0] deviates from 05 and hg(z) — hg, () serves as a bias
term for predictions.

Note that if we apply plasticity injection to all parameters of the network, the new network will
have to re-learn the representations encoded in hg(-) from scratch. Thus, we apply our intervention
to only a subset of the parameters and explain the idea further with a slight abuse of notation. We
schematically split the network into an encoder ¢(-), that denotes a mapping induced by first k layers
of the network, and a head hgy(-) where 6 now refers to parameters of the remaining layers of the
network. After this relabelling, we can apply the intervention to hg(-) as outlined above. Appendix
later presents an ablation of sharing the encoder.

Figure [2]illustrates the strategy to apply plasticity injection. Note that gradients from the frozen heads
affect the encoder too, i.e. we do not stop the gradient propagation from any of the components of the
output. It is worth noting that the proposed intervention increases the total number of parameters
of the network (but keeps the same number of trainable parameters), which in turn may result in an
increase of training time. However, we later discuss in Section [5.3]how plasticity injection can save
computational resources.

The idea of learning with newly-initialized last layers has been explored by [Nikishin et al.| [2022]],
who suggested resetting the corresponding parameters of the network at fixed intervals and used the
replay buffer [Lin, 1992 to re-learn after resets. Their experimental evidence supports the hypothesis
that resets mitigate plasticity loss. However, resetting parameters of the network abruptly changes

hy(x) hg(x) + hy (x) — hg (@)
*

O 000

t Plesticity Injection = § —T—""""
¢(x) wm——p ¢(x)

¥ ¥
x T

Figure 2: An illustration of the architecture before and after plasticity injection. Before the interven-
tion, the network is schematically separated into an encoder ¢(-) and a head hy(+), both parts are
learning. After plasticity injection, we freeze the parameters 6 of the head (we use red to indicate
parameters that are not updated in the illustration) and create two copies of a randomly initialized
parameters ¢’: one frozen and one unfrozen. The output of the agent is obtained by first passing the
input z to the encoder ¢(-), next passing ¢(z) to all three heads, and finally combining the heads’
outputs according to Expression ().

its predictions, which results in a temporary decrease in performance and induces an exploration
effect. From an analysis perspective, these abrupt changes make it more difficult to isolate the effect
of additional plasticity on the agent’s performance. From a practical perspective, plasticity injection
does not rely on the buffer; Section @] demonstrates how this difference can be critical.

S Experiments

This section presents results for two main applications of plasticity injection: as a tool for diagnosing
plasticity loss and as a way to dynamically grow the network to efficiently use computations.

5.1 Experimental Setup

The baseline agent is Double DQN [[Van Hasselt et al.,[2016] learning for 200M interactions on a
standard set of 57 Atari games from the Arcade Learning Environment benchmark [Bellemare et al.,
2013]]. The choice of Double DQN is motivated by the relative robustness and stronger performance
with double Q-learning [[Van Hasselt, 2010]] compared to the vanilla DQN agent [Mnih et al., |[2015]
as well as simplicity compared to later DQN-based agents such as Rainbow [Hessel et al.| 2018]].

The majority of the experiments use a single plasticity injection after S0M frames; otherwise, we
explicitly specify the number and timesteps of injections. Appendix [B]discusses ablations on the
design choices when using plasticity injection. A convolutional neural network employed by the
Double DQN agent consists of 5 layers. The encoder corresponds to the first three of them (hence
k = 3), while the head refers to the last two. Since DQN-based agents employ a target copy of the
network parameters, we perform the same interventions on them.

For reliable evaluation of the performance across environments, we adopt the protocol of |Agarwal
et al.|[2021]] with a focus on the interquartile mean (IQM). All experiments use 3 random seeds.

5.2 Plasticity Injection as a Diagnostic Tool

Consider the task of improving a deep RL system when an agent performs suboptimally. Practitioners
know how non-trivial is the process of pinpointing exact reasons why an agent might be struggling
to improve the behavior. One of the reasons, as we discussed, can be loss of network plasticity
throughout training.

We view the proposed intervention as a tool that can provide insight when analyzing deep RL systems.
The procedure for using it is as follows: when an agent is on a performance plateau or has a slower

Space invaders Phoenix Assault Robotank

5000
60

50
40
30
20

25000

i

! 3000
g 4000 20000 :
15000

i

1

1 "

! {

1 !

! i 2000
10000 |

| 1000

i 5000 10
1 1

i 0 i 0 0

0 25 50 75 100125150175 200 0 25 50 75 100 125150175 200 0 25 50 75 100 125150 175 200 0 25 50 75 100125150175 200
Environment frames (millions) Environment frames (millions) Environment frames (millions) Environment frames (millions)

5
€ 3000

y
= i

N

o

§ 2000
- Baseline

— Injection @ 25

1 Injection @ 50

| — Injection @ 100

& 1000 1

|

Figure 3: A demonstration of diverse effects from plasticity injection applied to the Double DQN
agent after 25M, 50M, and 100M frames on a selection of Atari games comprising two examples
where the intervention improves the performance and two examples where it does not. The baseline
in Space invaders and Phoenix demonstrates the diminishing performance improvements and the
performance plateau respectively, whilst the agent after the injection is capable of achieving higher
returns. The stalled performance in Assault is due to exploration challenges (see Appendix [D]for
further details): adding plasticity could not alleviate them. If the agent does not show signs of the
diminishing ability to learn, like in Robotank, the injection would not lead to improved performance.
Varying the injection timestep allows identifying the moment when plasticity loss occurs. Results for
all 57 environments are available in Figure[7}

learning progress, take a saved copy of the agent, perform plasticity injection, and compare the
training curves with and without the intervention. This way we answer a counterfactual question:
what could have been the agent’s performance if the network had more plasticity?

Figure 3] gives a set of example behaviors after following the procedure. In Space invaders, the
baseline agent keeps learning but the post-injection agent improves at a faster rate towards the end of
learning; we might interpret the observation as an indication of decreasing network plasticity over
the course of training. In Phoenix, we see a completely stalled performance and the intervention
allows doubling the final returns; such an observation point at possible catastrophic loss of plasticity,
where additional interactions do not translate to improved behavior. In Assault, on the other hand,
the agent has plateaued but the injection does not make a difference. Further inspection revealed that
around a score of 2800, the environment transitions to a new regime where an agent needs to start
using an action that was not relevant before (see Appendix [D]for a visualization). This observation
suggests that performance stagnation is related to exploration. In Robotank, the learning progress
shows no signs of pathologies, giving evidence that the agent does not have problems with plasticity.

Plasticity injection can also demonstrate when loss of plasticity occurs. The post-intervention
performance in Space invaders does not differ for varying injection timestep, suggesting that the
agent might not start experiencing consequences of the lost plasticity until around 100M frames. On
the other hand, in Phoenizx, plasticity injection improves the performance earlier, implying that the
agent lost its plasticity around 25M frames. Varying the injection timestep in Assault and Robotank
does not change the performance significantly, supporting our previous conclusion about these games.

Figure [4] summarizes when and to which extent the Double DQN agent benefits from plasticity
injection across 57 Atari games. The observations about improvements from injection complement
evidence of the existence of plasticity loss in deep RL [Kumar et al.|[2021} [Lyle et al.| [2022} Nikishin
et al., 2022]. We note that the argument here is nuanced: since the notion of plasticity is defined
broadly and is challenging to measure, if is our best interpretation that the post-intervention agent
can learn further because it addressed plasticity issues. But because of an experimental design that
strived to be careful, we believe that it is the most likely explanation.

What should we do after using the tool and observing loss of plasticity? [Dohare et al.| [2021]], Nikishin
et al.|[2022],|Gogianu et al.|[2021]] provide evidence that plasticity loss is strongly affected by the
learning rate, the replay ratio (the number of gradient steps per an environment step), the network
sizeﬂ and normalizations (such as spectral norm [Miyato et al.,2018]]). We measure the sensitivity of
the aggregate improvements of the final score from plasticity injection at SOM with respect to these
choices of the agent specification. Results in Figure [5]are consistent with observations from previous

!To make a network two times larger, we multiply the width of all hidden layers by /2.

50
40
30
20
10
°|II'"
-10
EMYNMYVYOOOUXODO=0nL00-00 00 CE-VE cODEXSEES o >=0s2 oo cEXY-noc+T VX
e R o R R R oy Pt e e b b R
B3 r G305 ERCE TS EXRGaER3cS5ovET o020 ot 28X NE0553338
B088L 58 T8rEe325230 s 8ER R0 290¢ BV DB ESO5T8es BT BEGE
aoc ful I = © — Qo (G] [=4 C-=T = wv [T=y N
Q > — © = T c ouw -
SE9E o 55¥88 5 33 2 Fu E8 5 £8%088,%58% < 00y,
o Eo & = o = o - <o N2 =
a g% E “a g "2 2 - 2s T8 = L
o 7 5§ 92 = 58 =
] = o
5 &
s

Figure 4: Percentage improvement of the average performance after adding plasticity injection across
all 57 Atari games. We take the maximum score among the agents with plasticity injection after 25M,
50M, and 100M steps to roughly estimate the improvement as if plasticity injection was applied at
a proper timestep and to demonstrate what the performance could have been if plasticity loss was
mitigated. Table[T]later presents a categorization of environments into buckets where the agent does

and does not benefit from injection. Learning curves corresponding to each environment are available
in Appendix [A]

works and suggest a recipe for controlling the degree of plasticity loss by decreasing the learning rate
or the replay ratio, increasing the network size, or employing normalizationsﬂ

In addition to gaining scientific insight, we now discuss how the intervention can be useful in
large-scale RL.

5.3 Plasticity Injection for Computational Efficiency

Over the recent years, RL agents have been trained at increasingly larger scales. For example,
mastering particularly challenging environments required an equivalent of hundreds of years of
human gameplay [[Vinyals et al.,2019], or obtaining a diverse set of skills required a 1B+ parameter

networks [Reed et al.l [2022]. Given the trend, computational considerations become increasingly
relevant.

|5 g 5 2
£ 40 £ 40 g 30 3 20
o o 19} €
5 s 5 20 g
520 520 s 210
£ E Eo c
B ® X <

05 1 2 05 1 2 05 1 2)

RR Multiplier LR Multiplier Size Multiplier No SN SN

Figure 5: Percentage improvements of the IQM scores from plasticity injection in varying regimes
controlling the degree of plasticity loss. The intervention effect size monotonically increases with
the replay ratio (RR) and the learning rate (LR), monotonically decreases with the size of the neural
network, and is smaller yet positive for an agent employing spectral normalization (SN). These
observations can be seen as recommendations about how to address loss of plasticity.

>We follow the recommendation of |Gogianu et al.| [2021]] and apply SN to the penultimate layer; since we
apply injection to the last two layers, issues with their plasticity might be partially alleviated by SN. Given
that|Gogianu et al.| [2021]] notice that the spectral norm of other layers starts growing more and

[2023] observe that the first layers benefit from partial resets, we conjecture that first layers” plasticity is still
declining even with SN.

=
N

Width Scale I
SnP =
Resets
Injection I
Baseline =

1.04 1.12 1.20

fay
=

=
=}

—e— Larger Net
Injection

o
©

IQM Normalized Score

50 100 150 200

Human Normalized Score)
Wallclock Time (Hours)

Figure 6: Left: Comparison of plasticity injection to other methods that can be applied to dynamically
address loss of plasticity. The difference in performance between all methods and the baseline is
insignificant except for injection; an agent with injection is capable of improving without having to
re-train from scratch. Right: Performance over wallclock time for an agent with plasticity injection
and an agents that uses a network with increased width from the beginning. Because Injection
switches from a small network to a larger network through plasticity injection at SOM frames and
uses less trainable parameters than Larger Net, it achieves similar [QM while saving an equivalent of
20 hours of computational resources.

Plasticity injection can be used to improve the computational efficiency of RL in the following ways.

Reincarnating with Plasticity Injection. Recently, Agarwal et al.|[2022] proposed a workflow
called “Reincarnating RL” which reuses computations from previously trained agents during the
iterative process of agent design. For example, if we trained an agent for several days or weeks and
then decided to change its design (such as the network size), the workflow suggests to leverage the
spent computations instead of training again from scratch. Plasticity injection can be useful from
this perspective when the agent is unable to improve due to loss of plasticity and re-training from
scratch is expensive. To see the effectiveness of plasticity injection in such setting, we compared
plasticity injection with several alternatives that address loss of plasticity dynamically during training,
including Shrink-and-Perturb (SnP) Ash and Adams) 2020], resets [Nikishin et al.| |2022], and naive
width scaling (we describe the methods in detail in Appendix [C)). Figure [6] (left) shows that plasticity
injection achieves a higher aggregate score across 57 Atari games compared to the alternatives. The
results suggest that plasticity injection can be used to “reincarnate” agents more efficiently compared
to the alternatives, without re-training from scratch.

Minimizing Computations via Dynamic Growth. Although larger networks tend to maintain
plasticity longer, they require more computations or can be more challenging to train [Team et al.|
2023]]. We hypothesize that the full capacity of a large network may not always be necessary early
in training, even if it is useful to maintain plasticity later. If this hypothesis is true, we can save
computations by starting from a smaller network and injecting plasticity during training, without
compromising the final performance compared to using the large network from the beginning. To
verify this hypothesis, we took a network with larger layer width, matching the total number of
parameters in @(-), hg(-), and hg, (-) combined. The results in Figure[6 (right) show that an agent
with plasticity injection during training performs comparably to the alternative that uses a larger
network from the start. At the same time, it saves about 20 hours of wallclock time on an A100 GPU
since it uses a smaller network up to S0M frames and has fewer parameters that are updated after
plasticity injection. These results confirm the hypothesis and suggest that plasticity injection can be
used as a tool for minimizing computations when training RL systems at a large scale.

6 Limitations

The first and foremost limitation of plasticity injection is an increase in memory and training time
compared to the baseline agent with a standard-sized network. When using plasticity injection as
a diagnostic tool, we believe the overhead is largely justified since preserving the network output
makes it easier to isolate confounding factors like exploration. From the deployment viewpoint, a
practitioner should decide whether the increase in compute and memory is justified based on how
much plasticity injection improves performance. While the effect of the intervention was positive on
the aggregate performance on Atari, it varied considerably across individual games: in some cases, it
did not change scores much, in other cases, it had a significant positive effect.

Preserving the network outputs and keeping weights can be undesirable in case of parameter diver-
gence that often occurs in the deep RL experimentation [[Van Hasselt et al.,[2018]]. Such a scenario
also qualifies as loss of plasticity; addressing it without drastic tools can be challenging. Lastly, while
we propose a diagnostic and mitigation tool, we do not identify causal factors driving plasticity loss in
deep RL. More research is needed here: understanding these causes could lead to avoiding plasticity
loss in the first place.

7 Discussion and Conclusion

Results in this paper can serve as a clear study of the plasticity loss phenomenon in deep RL
and evidence that the optimization aspect in RL still leaves room for improvement. The version
of plasticity injection we propose may yet not be optimal: we strived for simplicity rather than
performance and view the intervention as a blueprint for future methods.

The experiments in this paper adopted the convolutional architecture from [Van Hasselt et al.|[2016]]
but modern deep RL practice not rarely involves ResNets [He et al., 2016, [Espeholt et al., 2018|]
and Transformers [Vaswani et al.l 2017} (Chen et al.| 2021} Reed et al.,[2022]; we did not investigate
settings with these advanced architectures. However, the idea of plasticity injection is agnostic to the
choice of the architecture. For example, it can be applied for residual blocks in ResNets or decoder
blocks in Transformers.

An exciting avenue for future research is understanding trade-offs between architectural design
decisions: RL agents typically employ networks that were originally proposed for stationary problems,
but perhaps dynamically growing networks would suit the non-stationary nature of RL better.

Applications of plasticity injection focus on diagnosing RL systems and their efficiency. We compli-
ment a recent opinion paper from Mannor and Tamar|[2023]] by arguing that if deep RL is to become
a technology that a non-expert can use, more research is needed on the process of iterating on the
agent design and computational efficiency.

Although this paper attempted to understand and mitigate loss of plasticity in RL, there are still
remaining open questions. Can we solve the problem of plasticity loss completely? Which properties
of newly initialized networks enable high plasticity? Answering these questions is a key challenge
for training truly intelligent agents.

Acknowledgments and Disclosure of Funding

EN thanks Tom Schaul, Greg Farquhar, John Quan, Dan Horgan, Mihaela Rosca, Angelos Filos,
Diana Borsa, Luisa Zintgraf, Yash Chandak, Robert Lange, Chris Lu, David Parkes, Blanca Huergo,
Rich Sutton, David Silver, Hado van Hasselt, Alexander Novikov, Julia Novikova, and especially
Turii Kemaev for their help and valuable discussions. EN also thanks many other interns and the
broader DeepMind team for the great internship experience. This work was funded by DeepMind.

We acknowledge the Python community [Van Rossum and Drake Jr, |1995| Oliphant, 2007] for
developing the core tools that enabled this work, including JAX [Bradbury et al.,[2018} Babuschkin
et al.; 2020]], Jupyter [Kluyver et al.| 2016], NumPy [Oliphant, 2006} |Van Der Walt et al., [2011]],
SciPy [Jones et al., 2014], Matplotlib [Hunter, [2007]], and pandas [McKinney, [2012].

References

Zaheer Abbas, Rosie Zhao, Joseph Modayil, Adam White, and Marlos C Machado. Loss of plasticity
in continual deep reinforcement learning. arXiv preprint arXiv:2303.07507, 2023.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville, and Marc Bellemare.
Deep reinforcement learning at the edge of the statistical precipice. Advances in Neural Information
Processing Systems, 34, 2021.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and Marc G Bellemare.
Reincarnating reinforcement learning: Reusing prior computation to accelerate progress. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Advances in Neural
Information Processing Systems, 2022.

Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 39-48,

2016.

Jordan Ash and Ryan P Adams. On warm-starting neural network training. Advances in Neural
Information Processing Systems, 33:3884-3894, 2020.

Igor Babuschkin, Kate Baumli, Alison Bell, Surya Bhupatiraju, Jake Bruce, Peter Buchlovsky, David
Budden, Trevor Cai, Aidan Clark, Ivo Danihelka, Claudio Fantacci, Jonathan Godwin, Chris Jones,
Tom Hennigan, Matteo Hessel, Steven Kapturowski, Thomas Keck, Iurii Kemaev, Michael King,
Lena Martens, Vladimir Mikulik, Tamara Norman, John Quan, George Papamakarios, Roman Ring,
Francisco Ruiz, Alvaro Sanchez, Rosalia Schneider, Eren Sezener, Stephen Spencer, Srivatsan
Srinivasan, Wojciech Stokowiec, and Fabio Viola. The DeepMind JAX Ecosystem, 2020. URL
http://github.com/deepmind!

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning environ-
ment: An evaluation platform for general agents. Journal of Artificial Intelligence Research, 47:
253-279, 2013.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International conference on machine learning, pages 449-458. PMLR, 2017.

Tudor Berariu, Wojciech Czarnecki, Soham De, Jorg Bornschein, Samuel Smith, Razvan Pascanu, and
Claudia Clopath. A study on the plasticity of neural networks. arXiv preprint arXiv:2106.00042,
2021.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Anthony Brohan, Noah Brown, Justice Carbajal, Yevgen Chebotar, Joseph Dabis, Chelsea Finn,
Keerthana Gopalakrishnan, Karol Hausman, Alex Herzog, Jasmine Hsu, et al. Rt-1: Robotics
transformer for real-world control at scale. arXiv preprint arXiv:2212.06817, 2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084-15097, 2021.

Tianqi Chen, Ian Goodfellow, and Jonathon Shlens. Net2net: Accelerating learning via knowledge
transfer. arXiv preprint arXiv:1511.05641, 2015.

Will Dabney, André Barreto, Mark Rowland, Robert Dadashi, John Quan, Marc G Bellemare, and
David Silver. The value-improvement path: Towards better representations for reinforcement

learning. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 35, pages
7160-7168, 2021.

Shibhansh Dohare, Richard S Sutton, and A Rupam Mahmood. Continual backprop: Stochastic
gradient descent with persistent randomness. arXiv preprint arXiv:2108.06325, 2021.

Kefan Dong, Yuping Luo, Tianhe Yu, Chelsea Finn, and Tengyu Ma. On the expressivity of neural
networks for deep reinforcement learning. In Hal Daumé III and Aarti Singh, editors, Proceedings
of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 2627-2637. PMLR, 13-18 Jul 2020.

Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G. Bellemare, and
Aaron C. Courville. Sample-efficient reinforcement learning by breaking the replay ratio barrier.
In Eleventh International Conference on Learning Representations, 2023.

Lasse Espeholt, Hubert Soyer, Remi Munos, Karen Simonyan, Vlad Mnih, Tom Ward, Yotam Doron,
Vlad Firoiu, Tim Harley, Iain Dunning, et al. Impala: Scalable distributed deep-rl with importance
weighted actor-learner architectures. In International conference on machine learning, pages
1407-1416. PMLR, 2018.

10

http://github.com/deepmind
http://github.com/google/jax

Scott Fahlman and Christian Lebiere. The cascade-correlation learning architecture. Advances in
neural information processing systems, 2, 1989.

Amir Farahmand, Mohammad Ghavamzadeh, Shie Mannor, and Csaba Szepesvari. Regularized
policy iteration. Advances in Neural Information Processing Systems, 21, 2008.

Robert M French. Catastrophic forgetting in connectionist networks. Trends in cognitive sciences, 3
(4):128-135, 1999.

Florin Gogianu, Tudor Berariu, Mihaela C Rosca, Claudia Clopath, Lucian Busoniu, and Razvan
Pascanu. Spectral normalisation for deep reinforcement learning: an optimisation perspective. In
International Conference on Machine Learning, pages 3734-3744. PMLR, 2021.

Caglar Gulcehre, Srivatsan Srinivasan, Jakub Sygnowski, Georg Ostrovski, Mehrdad Farajtabar, Matt
Hoffman, Razvan Pascanu, and Arnaud Doucet. An empirical study of implicit regularization in
deep offline 1. arXiv preprint arXiv:2207.02099, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770-778, 2016.

Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David Silver. Rainbow: Combining improvements in
deep reinforcement learning. In Thirty-second AAAI conference on artificial intelligence, 2018.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022.

John D Hunter. Matplotlib: A 2d graphics environment. IEEE Annals of the History of Computing, 9
(03):90-95, 2007.

Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and Shimon Whiteson.
Transient non-stationarity and generalisation in deep reinforcement learning. In International
Conference on Learning Representations, 2021.

Eric Jones, Travis Oliphant, and Pearu Peterson. SciPy: Open source scientific tools for Python.
2014.

Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad
Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, et al. Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374, 2019.

Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger, Matthias Bussonnier,
Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Jason Grout, Sylvain Corlay, et al. Jupyter
Notebooks-a publishing format for reproducible computational workflows., volume 2016. 2016.

Bryan Kolb and Robbin Gibb. Brain plasticity and behaviour in the developing brain. Journal of the
Canadian Academy of Child and Adolescent Psychiatry, 20(4):265, 2011.

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. Implicit under-parameterization
inhibits data-efficient deep reinforcement learning. In International Conference on Learning
Representations, 2021.

Qiyang Li, Aviral Kumar, Ilya Kostrikov, and Sergey Levine. Efficient deep reinforcement learning
requires regulating overfitting. In The Eleventh International Conference on Learning Representa-
tions, 2023.

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and teaching.
Machine learning, 8(3):293-321, 1992.

11

Robert B Livingston. Brain mechanisms in conditioning and learning. Technical report, 1966.

Clare Lyle, Mark Rowland, and Will Dabney. Understanding and preventing capacity loss in
reinforcement learning. In International Conference on Learning Representations, 2022.

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney.
Understanding plasticity in neural networks. arXiv preprint arXiv:2303.01486, 2023.

Henry W Mahncke, Amy Bronstone, and Michael M Merzenich. Brain plasticity and functional
losses in the aged: scientific bases for a novel intervention. Progress in brain research, 157:81-1009,
2006.

Shie Mannor and Aviv Tamar. Towards deployable rl-what’s broken with rl research and a potential
fix. arXiv preprint arXiv:2301.01320, 2023.

Pedro Mateos-Aparicio and Antonio Rodriguez-Moreno. The impact of studying brain plasticity.
Frontiers in cellular neuroscience, 13:66, 2019.

Michael McCloskey and Neal J Cohen. Catastrophic interference in connectionist networks: The
sequential learning problem. In Psychology of learning and motivation, volume 24, pages 109-165.

Elsevier, 1989.

"

Wes McKinney. Python for data analysis: Data wrangling with Pandas, NumPy, and IPython.
O’Reilly Media, Inc.", 2012.

Seyed Iman Mirzadeh, Arslan Chaudhry, Dong Yin, Timothy Nguyen, Razvan Pascanu, Dilan
Gorur, and Mehrdad Farajtabar. Architecture matters in continual learning. arXiv preprint
arXiv:2202.00275, 2022.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In International Conference on Learning Representations, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529-533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pages 1928-1937. PMLR, 2016.

Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
Ieml, 2010.

Charles A Nelson. Neural plasticity and human development. Current directions in psychological
science, 8(2):42-45, 1999.

Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron Courville. The
primacy bias in deep reinforcement learning. In International Conference on Machine Learning,
pages 16828-16847. PMLR, 2022.

Travis E Oliphant. A guide to NumPy, volume 1. Trelgol Publishing USA, 2006.

Travis E Oliphant. Python for scientific computing. Computing in Science & Engineering, 9(3):
10-20, 2007.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345-1359, 2009.

Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, et al. A generalist
agent. arXiv preprint arXiv:2205.06175, 2022.

Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins, Hubert Soyer, James Kirkpatrick, Koray
Kavukcuoglu, Razvan Pascanu, and Raia Hadsell. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

12

Robert E Schapire. The strength of weak learnability. Machine learning, 5(2):197-227, 1990.

Julian Schrittwieser, loannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre, Simon
Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al. Mastering atari,
g0, chess and shogi by planning with a learned model. Nature, 2021.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pages 1889-1897. PMLR,
2015.

Noam Shazeer, *Azalia Mirhoseini, ¥*Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
In International Conference on Learning Representations, 2017.

Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The dormant neuron phe-
nomenon in deep reinforcement learning. arXiv preprint arXiv:2302.12902, 2023.

Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of initialization
and momentum in deep learning. In International conference on machine learning, pages 1139—
1147. PMLR, 2013.

Adrien Ali Taiga, William Fedus, Marlos C Machado, Aaron Courville, and Marc G Bellemare.
Benchmarking bonus-based exploration methods on the arcade learning environment. arXiv
preprint arXiv:1908.02388, 2019.

Adaptive Agent Team, Jakob Bauer, Kate Baumli, Satinder Baveja, Feryal Behbahani, Avishkar
Bhoopchand, Nathalie Bradley-Schmieg, Michael Chang, Natalie Clay, Adrian Collister, et al.
Human-timescale adaptation in an open-ended task space. arXiv preprint arXiv:2301.07608, 2023.

Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude. COURSERA: Neural networks for machine learning, 4(2):26-31,
2012.

Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a structure for efficient
numerical computation. Computing in science & engineering, 13(2):22-30, 2011.

Hado Van Hasselt. Double g-learning. Advances in neural information processing systems, 23, 2010.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double g-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Hado Van Hasselt, Yotam Doron, Florian Strub, Matteo Hessel, Nicolas Sonnerat, and Joseph
Modayil. Deep reinforcement learning and the deadly triad. arXiv preprint arXiv:1812.02648,
2018.

Guido Van Rossum and Fred L Drake Jr. Python tutorial, volume 620. Centrum voor Wiskunde en
Informatica Amsterdam, 1995.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L.ukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaél Mathieu, Andrew Dudzik, Junyoung
Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in
starcraft ii using multi-agent reinforcement learning. Nature, 575(7782):350-354, 2019.

13

5000

s000
£ a0
% 2000
“ 1000

1200

Episode return

Episode return

Episode return

Episode return

30000

20000

Episode return

g

Episode return
|

25000

20000

15000

10000

Episode return

5000

Episode return

50 100 150 200
Environment frames (millions)

Alien

Bank heist

Breakout
i

Double dunk

Gravitar

Seaquest

Tennis

Amidar

Assault

1500 3000

e

1000 2000

1000

Battle zone

Beam rider

30000 !

15000

20000 10000

10000 5000

Centipede Chopper command
a000| g1 i 5000 i
! PN T -
3000 1 H
3000 |
2000 20001

|
1
|
1000
|
1

Fishing derby

2000

Hero Ice hockey
20000
15000
10000
5000
0
006
3000
oot 1
1
0.02—y 2000
N L
]
002} 1000
1
0041
1 0
-0.06
150 Private eye
11 15000
500 |
250 & il 10000
o k. et
250 5000
-500
0
750
Skiing Solaris
10000 T A T
| [i
15000 | ! w00 1 "
| [|
~20000 1 1000 1|+
1
25000 500
30000 o
Time pilot Tutankham
200 T
8000 L !
150 \-
6000 H
100 [1
4000 1
1
so
1
1

[50 100 150 200 o 50 100 150 200
Environment frames (millions) Environment frames (millions)

15000

10000

5000

125000

100000

75000

50000

25000

1500

1000

15000

10000

5000

5000

4000

3000

2000

1000

15000

10000

5000

o 50 100 150 200
Environment frames (millions)

Asterix

Berzerk

Crazy climber

e

Freeway

Jamesbond

Name this game

Riverraid

Space invaders

Up n down

30000,
25000,
20000
15000
10000

5000

2000

1500

1000

15000
12500
10000
7500
5000
2500

25000
20000
15000
10000

5000

50000
40000
30000
20000

10000

60000,

40000,

20000

50 100 150 200
Environment frames (millions)

Asteroids

i
|
|
1
Defender
i
|
I
|
i
1
|
1
Frostbite
i
|
1
|
1
|
|
1
Kangaroo
|
1
1
|
1
|
1

Phoenix

Road runner

Star gunner

Venture

1e6 Atlantis

Boxing

100

Demon attack

60000 1
|
|

40000

20000

15000

10000

5000

8000

6000

4000

2000

Pitfall

Robotank

400000

300000

200000

100000

|
1
|
o1

50 100 150 200
Environment frames (millions)

Wizard of wor Yars revenge Zaxxon

o PR 15000 ¢ ¢4
0000 [[
5 00| : : 20000 : : 10000 : I —— Baseline
H 5000 1 I — Injection @ 25
3 | 10000 T } s000 11 — Injection @ 50
& 2500 [[y — Injection @ 100
¢ 1 [| Z

e R ol 0 1
50 100 150 200 0 100 150 200 0 50 100 150 200

0
Environment frames (millions) Environment frames (millions) Environment frames (millions)

Figure 7: Performance of the Double DQN with and without plasticity injection after 25M, 50M,
and 100M frames on the full Atari 57 benchmark. The potential discontinuities in the plots such as
in Road runner are caused by the evaluation each 1M frames, i.e. the first moment the agent with
injection contributes to the plot is after learning for 1M frames.

14

Injection Environments
Effect

Consistent Alien, Asteroids, Breakout, Chopper command, Enduro, Frostbite, Gopher,
Improvement Phoenix, Space invaders, Surround, Wizard of wor, Yars revenge (12 total)

Minor Amidar, Asterix, Atlantis, Bank heist, Beam rider, Berzerk, Boxing,
Improvement Defender, Fishing derby, Jamesbond, Krull, Ms pacman, Road runner,
Seaquest, Time pilot,Up n down, Video pinball, Zaxxon (18 total)

Negligible Battle zone, Bowling, Centipede, Crazy climber, Double dunk, Freeway,
Gravitar, Hero, Ice hockey, Kangaroo, Kung fu master, Montezuma revenge,
Name this game, Pitfall, Pong, Private eye, Qbert, Riverraid, Skiing,
Solaris, Star gunner, Tennis, Tutankham, Venture (24 total)

Negative Assault, Demon attack, Robotank (3 total)

Table 1: Summary of effects from applying plasticity injection to Double DQN on 57 Atari games.

A Complete Learning Curves

Figure [/| presents the return plots over the course of Double DQN training for 200M frames on
the whole set of 57 Atari games. We informally categorized environments into four buckets upon
visual inspection of effects from plasticity injection in Table|l| The most notable negative example
is Demon attack, while on Assault and Robotank the effect is negative but minor. In the rest of
the 54 games, plasticity injection either improves performance or has a negligible effect, possibly
depending on the injection timestep.

B Ablations

This appendix presents an ablation analysis of the various design choices made during the study of
plasticity injection. The purpose of such ablations is to build intuition on the behavior of plasticity
injection under different conditions so that an RL practitioner can use it in their application.

Injection Variants. The proposed modification of the network architecture is not the only one
possible. In Section 4] we initially described a version of plasticity injection without encoder sharing,
that is, when the intervention is applied to the entire network (referred to as Injection, Whole Net
in Figure[§). Another alternative is to create a whole new set of parameters and copy the encoder
parameters of the old network without sharing it (denoted as Injection, Whole Net, Copy Enc). Lastly,
for all three versions, there is the possibility of not freezing the old set of parameters (weights
corresponding to the third, output correction term are always going to be frozen).

Figure[§] (left) summarizes the findings:

1. Creating a completely new encoder-head pair is the alternative with the lowest IQM scores;

2. Variants with encoder sharing or copying have comparable performance; the Injection,
Whole Net, Copy Enc version has a slightly lower performance than the rest. We conjecture
that it might be due to the larger number of frozen parameters;

3. Unfrozen variants generally perform not worse than their frozen counterparts. The unfrozen
variants introduce more trainable parameters compared to the baseline, which require
more computations during learning and increase the network expressivity. Since we were
interested in a careful diagnosis of plasticity loss and extra expressivity may be a confounding
factor, we decided to stick to the frozen version by default.

Multiple Injections. Given the improved performance from plasticity injection in the previous
experiments, a natural question is whether applying plasticity injection multiple times would improve
performance even further. To investigate this question, we applied plasticity injection at 100M and
150M frames, in addition to SOM frames, and plotted the IQM improvements with respect to a single
injection at SOM frames. As shown in Figure [8| (right), additional injections do not improve the
performance over a single injection in a setup with a standard network. We hypothesize that in our
particular experimental setting, loss of plasticity can be largely mitigated with a single plasticity

15

QM €
Unfrozen Injection, Whole Net, Copy Enc I E 10
Unfrozen Injection, Whole Net I g
o Unfrozen Injection = °
Injection, Whole Net, Copy Enc == S g
Injection, Whole Net = £
Injection == ©
1.0 1.1 1.2 1.3 0.25 0.5 1
Human Normalized Score Size Multiplier

Figure 8: Left: Comparison between variations of plasticity injection. Whole Net denotes injection
of both the encoder ¢(-) and the head hy(z); Copy Enc denotes copying the ¢(-) at the moment of
injection without further sharing; Unfrozen denotes keeping parameters of the first term unfrozen.
Relying on a new encoder leads to a lower performance; the rest of the alternatives have comparable
scores. Right: Percentage improvements of the IQM score from multiple injections over a single
injection for varying network sizes. Multiple injections are beneficial for smaller networks. Note
that previous plots in Figure 5] show improvements when comparing one injection over no injections
while this plot compares multiple injections over one.

injection. To verify this hypothesis, we applied multiple injections while varying the network size
(similarly to Section[5.2] to make the network 2x smaller, we divide the width of the hidden layers by
V2). Figure (right) confirms that the level of improvement grows monotonically as the agent uses
smaller networks. Since the results in Figure[5|suggests that the degree of plasticity loss increases with
smaller networks, this result indicates that multiple rounds of plasticity injection can be beneficial in
situations where the agent network is too small to maintain plasticity.

No Output Correction. In the majority of the games, subtracting the initial copy of the newly intro-
duced head hy, (-) resulted in mostly similar learning curves as without the subtraction, although not
always. In particular, the impact of the injection on Yars Revenge is smaller without compensating
for the bias. Also, we observed a significant difference in high variance games (such as Berzerk
and Hero). Note that removing effects on the predictions from introducing the new head would
be possible by modifying the initialization [Brohan et al.|[2022]]. From the analysis viewpoint, we
strove to have as clean experimental design as possible and wanted to remove initialization-specific
confounders since initialization would affect network plasticity as well [Sutskever et al.,[2013]]. From
the saving memory and computations viewpoint, it might be preferrable to do plasticity injection
without introducing the third network.

Optimizer. One might hypothesize that benefits from injection can be attributed to manipulations with
the optimizer state. To test this hypothesis, we perform two ablations: the first resets statistics of the
RMSProp optimizer [Tieleman et al.;[2012|] used by Double DQN after S0M steps, the second copies
the optimizer state of the original head to the newly initialized head after the injection. Figure 9] (left)
demonstrates that most of the effects from injection come from having additional weights rather than
from interventions on the optimizer.

Injection Timestep. In Section we presented the results for a selection of environments while
varying injection timestep. Figure [9)(right) suggests that across all games, changing the timestep by a

IQM QM
Reset Opt mwm= Injection @ 100 —
Injection + Copy Opt —— Injection @ 50 ===
Injection I Injection @ 25 I
Baseline == Baseline =
1.04 1.12 1.20 1.04 1.12 1.20 1.28
Human Normalized Score Human Normalized Score

Figure 9: Left: Comparison of an agent with injection, an agent with injection but copied optimizer
state for the newly initialized head (Injection + Copy Opt), and an agent that resets the optimizer
statistics of the last two layers (Reset Opt). The results suggest that effects from interventions on the
optimizer state are marginal compared to having new weights. Right: Aggregate performance for
agents with varying injection timesteps. Whilst Figures[7]and [I0] suggest that loss of plasticity might
be happening at different paces across environments, the final IQM score is relatively robust with
respect to the injection moment.

16

14

12

10

N B
I
1
[
.
I

) = pa L= = =
N I M N N R O R T I E
2525 c2E 06660 S00R=-3CESH0C0G52Cc30mc050058Y500E0REEERCCORD
R SRS R R M L e e
2090FCos 8sva ogomBuosEcS 2 o4 SO0 ® 8o x=-"LgVp c k=
[oo olcc _EmNE I5€E< EL2COc oI >0 4 WET oy wg-O ¢
o> om% ols5Ts 56 o o EL2ce 29 @ o c a Tegg

2 xEBoy =5 02 S Q=5 O G >S0 cx]
g & 8327 32 FE G o 859eg 2 =@§g 2 RS ©

[a] = c o © O S A <
8 = 3 2 28~ > S £
n

] o z
5 g
=

Figure 10: Per-game ratios of weight magnitude after learning for 200M frames and before experi-
encing any data. The ratios can vary up to 10 times between games.

factor of two yields comparable aggregate performance. Note though that we measure the IQM score
after 200M frames, so the transient performance would differ depending on the timestep.

Adaptive Criterion for Injection. As a step towards getting rid of the need to specify the injection
timestep, we also explored the option of having a criterion for triggering the intervention. If the agent
has the initial weight magnitude ||w|| (w denotes here both encoder and head weights), we inject
plasticity after the weight norm surpasses the 3||wy|| threshold. The IQM scores of the agent with
injection after 5S0M steps and with this heuristic coincide, although the frame when the agent reaches
the threshold differs per game significantly: for some environments, it can be as small as 20M (such
as Enduro), for other environments, it can be beyond 200M (such as Robotank) implying that the
agent will learn without injection. Figure[I0]gives an overview of how much the weight norm grows
over the course of training (suggesting how fast the agent reaches the 3||wyp|| threshold on each game).
We view devising an even more powerful criterion as a promising avenue for future work.

L2 Regularization. The observations about the norm increase made us try adding L2 regularization
to the Double DQN agent. A grid search over [10~7,3 - 1077,1076,3 - 1076,107°,3 - 107?]
coefficients resulted in the best coefficient of 3 - 10~° but leaving the aggregate score mostly the
same; higher values resulted in significant performance deterioration. The result gives evidence that
controlling the weight norm itself does not address plasticity loss but allows multiple interpretations.
We speculate that L2 might be prematurely encouraging weights to have zero magnitude before
obtaining high rewards (the effect would be especially profound in sparse reward settings) or that L2
might have undesirable side effects of smoothing approximate value functions while the true value
functions might be non-smooth [Dong et al.,[2020]. We are puzzled about the inefficacy of L.2 in
our experiments and mixed results from applying it in RL in past works: the majority of deep RL
algorithms do not use it [Mnih et al} 2015], [Schulman et al.| 2015}, [Cillicrap et al., Mnih et al,
[2016} [Bellemare et al [2017], although not without exceptions [Schrittwieser et al., [2021]]. Some

works have explicitly reported negative effects from controlling the weight norm in deep RL [Nikishin

2022]], while others highlighted its benefits [Farahmand et al., 2008| [Li et al., 2023]]; more

research in needed to understand its effect in RL.

C Details about the Baselines

In Section[5.3] we considered three alternative ways of dynamically addressing plasticity loss during
training: resets, Shrink-and-Perturb (SnP), and naive width scaling. Resets re-initialize parameters of
the last layers (using our notation, it corresponds to replacing hg(-) with hg; (+))) and rely on a replay
buffer to transfer knowledge before and after the intervention. Resets require the specification of the
number of last layers and the application timestep. We ran a sweep over [1, 2] layers and two choices
of timesteps: either once at S0M frames or trice at S0M, 100M, and 150M. Afterwards, we reported
the results that attain the highest IQM score.

17

002301

Figure 11: A demonstration of the Assault game evolution when a high-performing agent found on
the Internet reaches a score of around 2800: before, the agent had to shoot only upwards; afterwards,
it has to shoot up, left, and right. We interpret that the failure to improve upon the 2800 score is
explained by exploration.

Shrink-and-Perturb modify all network weights w as w <— Aw + oe at the given application timesteps,
where € is a random vector with the same dimensionality as w sampled from the standard Gaussian
distribution. SnP has three hyperparameters: the shrink coefficient A, the noise scale o, and the
application timesteps. We performed a grid search over A in [0.1, 0.3, 1], ¢ in [0.01, 0.1, 1], and the
same choices of timesteps as for resets.

The best hyperparameters ended up being the ones that somewhat minimized the effect of both resets
(1 layer, 1 application time) and SnP (A = 1, o = 0.01, 3 application times); other hyperparameters
resulted in even worse performance. The paper on resets [Nikishin et al.| 2022] demonstrates results
on the Atari 100k benchmark [Kaiser et al., 2019] that focuses on a data-efficient regime with 10°
interactions only and contains a subset of 26 (out of 57) games. In this setting, the replay buffer has
all experiences encountered during the agent’s lifetime; this data can be sufficient for recovering the
performance after a reset. In the Atari 200M setting though, the replay buffer has only 4M frames
which might not be enough to recover fast after a reset. We speculate that similar reasoning applies to
SnP since it can be seen as a soft version of resets [[D’Oro et al., 2023]].

For the width scaling method, we modify the last two layers by doubling their width. In detail,
suppose the weight matrices are W; € RV*K and W, € REXIAI where |A| is the action space
dimensionality. We create two new matrices W, € RV*2K and W} € R2X*IAl and fill the first K
columns of W7 with values of W; and the first K rows of W7 with values of W5. The remaining
entries are sampled from the random initializer. We perform a modification to the bias term b} € R2%
by copying values from b; € RX and setting the rest to zero. The width is scaled once at 50M.

Such a naive approach increases plasticity but its inability to improve over the standard Double DQN
might be caused by adverse effects on the predictions after the intervention without output correction.

D The Assault Game Analysis

We searched for a high-scoring behavior demonstration in the Assault environment on YouTubeﬂ
The screenshots in Figure [[T|demonstrate the change of the environment around the score of 2800:
before, the enemies were appearing only above the controlled starship, while afterwards, they start
to appear from the left and from the right. Before the transition, the algorithm learned that actions
“shoot left” and “shoot right” were irrelevant, while afterwards, it has to start using these actions,
suggesting that the performance plateau can be attributed to exploration challenges.

We highlight that it was the suggested protocol for diagnosis that led to the insight: after seeing that
the post-injection agent has the same performance plateau as the baseline, we decided to investigate
the behavior in the game and realized that previously irrelevant actions became critical.

*https://youtu.be/HwWIrb2PQQO

18

https://youtu.be/HwWJrb2PQQ0

	Introduction
	Related Work
	An Illustration of Plasticity Loss
	Plasticity Injection
	Experiments
	Experimental Setup
	Plasticity Injection as a Diagnostic Tool
	Plasticity Injection for Computational Efficiency

	Limitations
	Discussion and Conclusion
	Complete Learning Curves
	Ablations
	Details about the Baselines
	The Assault Game Analysis

