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ABSTRACT

Large Language Models (LLMs) are increasingly expected to be culturally cus-
tomizable and personally aligned for natural language understanding (NLU).
However, existing methods, from supervised fine-tuning (SFT) to personalized
RLHF and prompting, either require costly large-scale annotations or remain con-
strained by pretraining distributions. Moreover, acquiring annotations that reflect
subjective, diverse, and evolving user preferences is both expensive and labor-
intensive. To address these limitations, we propose Heterogeneous-Consistency
Co-Alignment (HCC) is a training-free annotation paradigm that leverages two
heterogeneous models, which consists of an LLM, rich in knowledge yet of-
ten prone to overconfidence, is paired with a task-specialised lightweight model
guided by a small user-preference set to verify and co-align misaligned out-
puts over unlabeled corpora. For verification, HCC introduces the reference-
free Consistent-And-Inconsistent (CAI) Ratio, an uncertainty signal derived
from inter-model agreements (consistent samples) and disagreements (inconsis-
tent samples) to determine when refinement is needed. For co-alignment, HCC
employs a non-parametric, embedding-based preference assignment scheme to
recalibrate inconsistent samples according to user preferences. Across eight NLU
datasets and both open- and closed-source LLMs, HCC consistently improves
annotation alignment and, in several tasks, even enables Llama-3-8B to surpass
GPT-3.5/40 after co-alignment. Moreover, CAI correlates strongly with accuracy
and reliably tracks pre-/post-alignment gains, offering a reference-free signal for
scaling preference-aligned annotation.

1 INTRODUCTION

Demand is burgeoning for culturally and personally aligned LLMs across diverse natural-language
understanding (NLU) applications, including culturally aware language understanding (Nguyen
et al.} [2024), personalized recommendation (Li et al., 2023)), household robotics (Han et al.|, |2024),
and clinical guidance in healthcare (Kadariya et al., 2019). In Southeast Asia, for example, many
regional languages feature unique slang, local expressions, and values; stakeholders therefore seek
LLMs aligned with local norms and vernacular. In personalized recommendation (Li et al., |[2023),
users expect models to respect user-specific facts (e.g., names, titles, birthdays, preferences in mu-
sic and film) that are not common knowledge. In preference-aware household robotics (Han et al.,
2024) and clinical guidance (Kadariya et al.l 2019)), preferences are proprietary, diverse, and highly
individualized (e.g., how dishes are organized, when and where laundry is handled, where cups are
stored). Reinforcement Learning from Human Feedback (RLHF) optimizes a single global reward
that collapses heterogeneous user preferences, under-representing individual tastes and limiting gen-
eralization to unseen, user-specific preferences (Chakraborty et al.,[2024} |Ouyang et al.,2022a). Su-
pervised fine-tuning (SFT) can encode specific behaviors when sufficient labeled data are available,
but assembling large, high-quality annotations is costly (Ouyang et al.|[2022bj;|Wei et al.,|2021}; [Taor1
et al., 2023} [Tan et al., 2024a; Salemi et al., [2024} |Zhang et al., [2023a)). To address personalization
with RLHF, [Poddar et al.| (2024) propose training a latent-conditioned reward model on pluralistic
preference corpora and then adapting to new users with a few additional queries. Nonetheless, it still
requires training on large, diverse preference corpora. In addition, when a new user’s preferences di-
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Figure 1: Schematic depiction of Heterogeneous-Consistency Co-Alignment (HCC). The inner circle rep-
resents the consistent sample set C, while the outer circle expands to include the inconsistent samples Z, whose
labels are initially unavailable. Each category of samples is denoted by C;. Our approach systematically per-
forms identification and co-alignment to enhance annotation reliability. For co-alignment , it leverages the
structural representation of data to operate effectively in semi-supervised settings.

verge substantially from that training distribution, reward-model generalization may degrade. Yet in
practice, pretrained LLMs may hallucinate seemingly plausible but incorrect answers due to reliance
on population-level statistics (Kalai et al.,[2025). Lastly, conventional prompt-based approaches|Wei
et al.| (2021}2022); [Huang et al.|(2022));|Yao et al.[(2022); Diao et al.|(2023)); Liu et al.| (2023)); Wang
et al.| (2023); Yao et al.|(2024); [ILong| (2023); [Huang et al.| (2023)); IMadaan et al.|(2024); Shinn et al.
(2024) excel at producing factual responses to widely known questions, but they remain unreliable
for queries involving personal or user-specific information and preferences.

Therefore, it is crucial to build an efficient and economical pipeline for generating preference-
aligned annotations from a small, user-labeled preference set and propagating them across large
unlabeled corpora which are typically more scalable and cheaper to obtain (van Engelen & Hoos,
20205 Zhu, 2020), so that LLMs move beyond population-level statistics toward user-specific expec-
tations. In addition, conventional reference-based metrics (see Table [I0]in the Appendix) fall short
in reference-free settings, while naive self-evaluation methods within LLMs often exhibit overcon-
fidence and inconsistencies (Xiong et al., 2023} Stureborg et al., 2024} [Zhou et al., 2024), as well as
vulnerabilities to prompt format. Moreover, relying solely on the LLM introduces reproducibility
issues due to frequent updates of proprietary closed-source models [Ito et al.[(2025).

Collectively, these limitations highlight a critical need for robust, reference-free evaluation and co-
alignment frameworks capable of effectively align with nuanced, personalized user preferences in
semi-supervised settings.

In sum, to train user-preferred, competent LL.Ms for diverse individual users, especially when only
a small number of user-preference exemplars are available, requires two key components: (i) an
evaluation framework centered on an interpretable, personalization-aware, reference-free metric that
explicitly accounts for the plurality of human preferences and ensures that generated annotations
are accurate and useful. Because collecting large, personalized corpora is prohibitively expensive,
training evaluators or reward models (e.g., regression models) from scratch is often infeasible (Ito
et al.,|2025)), which underscores the importance of such a reference-free metric in the limited-sample
regime. (ii) a model-agnostic, low-overhead annotation-alignment paradigm that effectively rectifies
misaligned annotation.

¢ (i) Reference-Free Uncertainty Evaluation in LLMs: How can we evaluate, in a
reference-free setting, whether LLM-generated annotations align with user preferences in
categorical NLU tasks ?

¢ (ii) Semi-Supervised Co-Alignment: How can we design co-alignment mechanisms that
recalibrate LLM responses to user preferences using only a few preference examples ?

To address these challenges, we propose the Heterogeneous-Consistency Co-Alignment (HCC), a
training-free framework consisting of (i) reference-free evaluation and (ii) co-alignment of LLM-
generated annotations. For evaluation, we introduce the Consistent-to-Inconsistent (CAI) Ratio, a
reference-free metric for assessing annotation alignment in preference-based labeling of unlabeled
textual datasets. CAI measures the odds of agreement between two heterogeneous annotators: (1) an
LLM that produces responses driven by next-token probabilities, and (2) a task-specific/lightweight
model that operates in embedding space. By cross-checking their outputs, CAI identifies where
token-likelihood-derived decisions and embedding-similarity judgments agree (consistent samples)
versus disagree (inconsistent samples), providing a reliability signal that mitigates the overconfi-
dence observed when relying on the LLM alone. For co-alignment, HCC applies MV-VTES (see
§4.3.2): a nonparametric, embedding-based assignment that takes majority votes among the top-k
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nearest neighbors within clusters seeded by user-preferred exemplars. This propagates preferences
to initially unlabeled data. Next, HCC compares the specialized model’s assigned annotations with
the LLM’s outputs and performs divide-and-conquer co-alignment (DCCA ), again using MV-VTES,
to repair disagreements. Crucially, HCC avoids dependence on ad-hoc confidence thresholds derived
from next-token probabilities, thereby reducing overconfidence errors. Our main contributions are
as follows:

* We propose Heterogeneous-Consistency Co-Alignment (HCC), a novel framework for co-
aligning LLMs in semi-supervised settings, enabling automatic inconsistency detection and
co-alignment to enhance annotation alignment.

¢ We introduce the reference-free Consistent-And-Inconsistent (CAI) Ratio, a metric that
quantifies personalized user preferences and measures the consistency and quality of LLM-
generated annotations in categorical NLU tasks, addressing the critical challenge of evalu-
ation under limited user-labeled examples.

* We validate the effectiveness of HCC across eight domain-specific NLU datasets, demon-
strating substantial improvements in annotation accuracy.

2 RELATED WORKS

2.1 LLMS FOR DATA ANNOTATION:

LLMs have exhibited exceptional competency in dealing with text or data annotation tasks for many
open-domain tasks (Meng et al., |2022; Ye et al., 2022; [Wang et al., |2024; [Liu et al., [2024; Wu
et al., |2024), such as open-domain spoken language understanding (Chen et al.| [2023}; [2024), and
frequently outperform crowdsourcing and manual annotation without requiring training on specific
data (Gilardi et al., 2023). LLM-generated annotations can be leveraged for various tasks, such as
supervised fine-tuning, LLM alignment tuning, and inference |Tan et al.| (2024b). Few studies have
addressed unsupervised data annotation, where no ground truth is available for optimization or fine-
tuning (Van Engelen & Hoos, [2020). This remains a critical challenge, as obtaining ground-truth
annotations or domain expertise is resource-intensive. Without high-quality supervision, existing
methods struggle to generate reliable annotations at scale. While semi-supervised methods reduce
reliance on labeled data, they still fall short of fully supervised performance (Van Engelen & Hoos,
2020). Moreover, unsupervised annotation without user-defined preferences lacks meaningful util-
ity, as annotations must align with task-specific requirements to be useful.

2.2  USING SPECIALISED MODELS TO GUIDE LLMS:

Intuitively, exploiting Pretrained task-specific models can be a good alternative to annotate unsu-
pervised data by learning from a small set of user-labeled examples. This is efficient in practice
but often fails to generalize beyond seen examples, particularly when user preferences are under-
represented. Then, can we deploy a specialised model as demonstrations to guide LLM outputs.
This “naive combination” provides LLMs with relevant context but assumes the specialised model’s
outputs are reliable. In addition, (Zhang et al.,2023b)) proposes to propagates labels using clustering
or nearest-neighbour methods based on Specialised Models. These models typically use embedding-
based similarity to assign labels in few-shot or unsupervised settings. While effective when class
clusters are well-separated, such methods offer no mechanism for aligning with user-defined intent
or correcting ambiguous assignments.

2.3 PROMPT-BASED APPROACHES

In prompt-based approaches, [Liu et al.[(2022) selects demonstrations by assigning the ones with the
highest similarity as exemplars. Self-Consistency (Wang et al., 2022) seeks to improve the response
accuracy of large language models (LLMs) by choosing outputs that are consistent across multiple
diverse reasoning paths. However, this method assumes that the LLM is already strong enough and
typically requires multiple rounds of sampling, making it computationally expensive. Furthermore,
the generated responses often mirror the training data distribution rather than aligning with specific
user preferences. Chain-of-Thought (CoT) prompting (Wei et al., [2022) enhances interpretability
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and accuracy by explicitly demonstrating intermediate reasoning steps for a given query. Few-
Shot Prompting (Brown et al., 2020) incorporates a small number of illustrative examples into the
prompt, guiding the model toward outputs that better capture user intent. KATE (Liu et al.| 2022)
enhances prompting by selecting the top-k most semantically similar examples from user-labeled
data as demonstrations. However, when the labeled dataset is small, these retrieved examples often
fail to capture the full diversity of user preferences. KATE also does not explicitly model preference
ambiguity, which limits its adaptability to fine-grained or user-specific annotation tasks. Finally,
Self-Refine (Madaan et al., [2024) iteratively improves initial outputs through self-correction. While
promising, its success depends heavily on both the capability of the LLM and the suitability of any
external tools used for the target task.

3 PROBLEM SETTING

Let the semi-supervised training and testing corpora be denoted as D,, = {x1,...,zx} and Dy =
{x1,..., 21}, where € X C R?%. A small set of user-preference annotations (see Section
serves as the alignment reference set, with the objective of propagating a preference label § &€
Y ={1,...,k} to each z € D,. We assume that the distribution D,, can be partitioned into two
subsets: consistent samples C and inconsistent samples Z, such that C,Z C D,, CNZ = (, and
IC| 4+ |Z| = |Du|. In practice, the subsets are unknown and must be estimated (see Section §4)
using a specialized embedding-based model S and an LLM 7, given a small user-preference set
H. Formally, H is clustered into k disjoint subsets C1, ..., C}, each representing a semantically
coherent region of the embedding space. Alongside the samples, a set of preference annotations
is also given, denoted as ) = {1, %o, ..., Jx }.Hence each cluster is formally denoted as C; =
{(xs,9;)|xi € H;}, where H; C H and H = {(z;,%;)};_,, with s = 5% of |D,,|. The clusters
are disjoint, satisfying (C; N C; = (), Vi # j), and their union fully covers H. Our goals are: (i) to
assess LLM annotation alignment by identifying latent consistent and inconsistent subsets C* and
T*, and (ii) to improve annotation accuracy according to user preference.

4 CoO-ALIGNING LLMS WITH Heterogeneous-Consistency Co-Alignment

HCC leverages agreements (consistent samples) and disagreements (inconsistent samples) between
two inter-models: an LLM annotator, which generates responses from token-level probabilities, and
a task-specific model, which captures fine-grained embedding similarities. Cross-checking both
models identifies samples where token probabilities and embeddings align, mitigating the overcon-
fidence of LLM-only predictions. For co-alignment, HCC employs MV-VTES, a nonparametric,
embedding-based preference assignment that uses majority voting over the top-k nearest neighbors
within clusters initialized by user-preferred samples, enabling annotation of unlabeled data. Finally,
HCC refines inconsistent samples via a divide-and-conquer co-alignment (DCCA) strategy, again
combined with MV-VTES.

4.1 SEMANTIC CLUSTERING-BASED ANNOTATION FOR UNLABELED DATA

We propose a semantic clustering approach that structures user-preference samples to enable anno-
tation propagation and refinement on unlabeled data. Using majority voting over top-nearest embed-
ding similarities (See Section [d.3.2)), labels from a small reference set are extended to semantically
similar samples. This provides localized context for detecting and correcting misaligned annotations,
supporting co-alignment without ground-truth supervision.

4.1.1 TASK-SPECIFIC SPECIALISED MODEL:

Specifically, we adopt MINILM (Wang et al., [2020), a sentence-transformer model, as the task-
specialized model, denoted by S. The task-specialised model encodes each instance x; into its
corresponding sentence embedding, S(z;) = e;.

AS(ei,C’j):% Yoo e (1)

e€Top-k(Cj e:) leillllell
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where e; denotes the embedding for z;, and e represents
the embedding of each sample in cluster C;. The term / , \
Top-k(C}, e;) refers to the subset of samples in C'; with the top @ @ €t~
k cosine similarity scores with e;. Formally, Top-k(C},e;) = Do B o
{e € C; | AS(e;, e) ranks among the top k in C;}. Based on R s

the computed similarity scores, the most similar examples to X =) S —e;

e; are identified, and the average cosine similarity is computed E— —
for the top-selected samples in each cluster. In our experi-
ments, we set k to five. Lastly, for the annotation assignment,
we assign the label of the cluster C; with the highest average
cosine similarity score to the unlabelled sample ; € Dy. The Fjgyre 2: Semantic Clustering-
cluster Cj-, which has the highest average cosine similarity pased Annotation for Unlabeled
with the embedding e; of a sample z;, is defined as: Data for Task-Specific Specialised

Cj« = argmaxAS(e;, Cj), (2) Model.
C.

J

User Preference Distribution

1 €€
AS(e1,C) = =
w0 =% S Tellel

TRy

where AS(e;, C;) is the average cosine similarity of e; with the embeddings in C;. The annotation
y;+ associated with Cj- is then assigned to x;, i.e., ; = y;~. This process is represented by
the annotation assignment function h(z;). Subsequently, the annotation associated with Cj-, as
defined by the user, is assigned to x;. The specialised model annotated dataset is constructed as
Ds = {(,5;)} Y, where each y; represents the task-specialised model assigned annotation for z;.

4.1.2 GENERAL LLM ANNOTATION:

Given the acquired dataset D, = {(=;, %)}, generated by the task-specialised model, we fur-
ther leverage an LLM to generate annotations through a group prompting mechanism, each query
included multiple requests belonging to the same annotation, applying both zero-shot and single-
shot strategies. Specifically, in the zero-shot setting, the LLM generates annotations independently,
defined as ! = T(x;). yi = T(x;) with P(y! | x;) = HtTLlP@f,t | xi,gfyl,...,gf’t_l). In
contrast, the single-shot setting incorporates specialised model-generated annotations as additional
context, yielding §! = T'(z;,7;), where (z;,7;) € Ds. §¢ = T(x;,5;) with P(g! | i, %) =
HZ;I Pt | @i, 9isly, .-+, 0E,_ ). Since the LLM follows an autoregressive generation frame-
work, we query the LLM to provide the annotation for each instance z; without including the
specialised model labels ¢; for zero-shot prompting, producing the LLM annotated sample dis-
tribution D; = {(=;,y!)}},. For the single-shot setting, the task-specialised model’s annota-
tions are incorporated, resulting in the specialised model and LLM annotated sample distribution

[)t = {(xzagf)}fil

4.2 IDENTIFICATION OF CONSISTENT AND INCONSISTENT SAMPLES

After obtaining the specialised model-generated dataset Dy, the LLM-generated dataset D;, and the
augmented dataset D, we further propose the Consistent-and-Inconsistent (CAI) Identification
ratio, agreement-based metric to assess annotation reliability without ground-truth labels. Specif-
ically, CAI identifies consistent and inconsistent samples across annotation datasets D, D;, and
D, by comparing the agreement between the specialised model and LLMs. For each x € D,, the
annotation label from the task-specialised model is denoted as ys, and that for LLM is denoted as
Y1 (zero-shot) and 7 (single-shot). A sample is considered consistent if:

Yys =yr =yr = z€C,

where C represents the set of consistent samples, while conversely, a sample is considered inconsis-
tent if at least one of the annotations differs:

3w,y €{vs. 997} v#y = wxel,

where 7 represents the set of inconsistent samples. Identifying annotation inconsistencies and eval-
uating the reliability of LLM annotators outputs without ground truth remains a central challenge
in semi-supervised LLM annotation. Our HCC framework fills this gap by leveraging task spe-
cialised Model and LLM disagreement to pinpoint unreliable annotations and trigger co-alignment.
We introduce the Consistent-and-Inconsistent (CAI) Ratio, a novel HCC metric for assessing the
trustworthiness of LLM-generated labels without access to ground truth.
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Table 1: Correlation analysis between LLM annotation accuracy and the CAI ratio, evaluated across
four principled LLMs (also see statistical test results in Sec [6.I). The Pearson correlation coefficients and
corresponding p-values confirm the statistical significance of the positive correlation between the CAl ratio and
LLMs accuracy.

Definition 4.1 ( Consistent-and-Inconsistent ) (CAI) Ratio Let No and Nic denote the number
of consistent sampleﬂ |C| and the number of inconsistent samplesﬂ |Z|, respectively. The CAI Ratio

is defined as CAI Ratio = Ji,v—lcc

The CAI ratio leverages heterogenous consistency ( likelihood-derived and embedding) for evalu-
ating the reliability of LLM-generated annotations without labelled supervision. A noticeably high
CAI ratio (CAI Ratio > 1) may indicate annotation bias or overconfidence, while a low CAI ra-
tio (CAI Ratio < 1) suggests inconsistency and greater uncertainty in the model’s outputs. In these
cases, the ratio offers a meaningful indicator of annotation alignment, helping determine when LLM-
generated labels need to be refined using external human supervision or enriched prior knowledge.
Furthermore, we formalize a crucial insight into the connection between our proposed CAl ratio and
LLM annotation accuracy through the Consistency Principle, which characterizes the asymptotic
behavior under optimal task-specific specialised model and LLMs. This principle states that for a
given dataset D,,, if the specialised model (S*) and LLM (7) are both optimal hypotheses, the
number of consistent samples will asymptotically exceed that of inconsistent ones as the dataset size
approaches infinity.

Proposition 4.2 (Consistency Principle) Let T* and S* be the optimal LLM (LLM) and task-
specialised model hypotheses for an semi-supervised dataset D,,. Define No and Nic as the num-
ber of consistent and inconsistent samples, respectively, identified by the CAI ratio. As the dataset

!Samples where the LLM and task-specialised model agree.
2Samples where the LLM and task-specialised model disagree.



Under review as a conference paper at ICLR 2026

size |Dy| — oo, the probability of consistent samples surpassing that of inconsistent samples ap-
proaches one: lim|p |0 P(Nc > Nic) = 1.

We empirically validate this principle in Section § [6.I} where we show that the CAI Ratio is a
robust reference-free indicator of LLM annotation alignment under semi-supervised settings with
user preferences.

4.3 HETEROGENEOUS-CONSISTENCY CO-ALIGNMENT

Given the consistent samples with high-quality annotations C = {(z;, ﬂf)}‘f:ll and the inconsistent

samples Z = {(z;, @j)}iﬂl identified via CALI, together with the user-preference set H, we perform
co-alignment of the annotations in Z using a divide-and-conquer strategy. Here, 3¢ and 4! denote
the annotations associated with consistent and inconsistent samples, respectively. As illustrated in
Fig. 3] the samples in C exhibit substantially higher accuracy than those in Z. We therefore leverage
the reliable annotations in C to guide the correction and realignment of the inconsistent samples in
7.

4.3.1 DIVIDE-AND-CONQUER CO-ALIGNMENT (DCCA)

Round 1. (Self-aligning T to obtain T™W).

For each (x,%") € Z, we apply the Majority Voting via Top-Nearest Embedding Scheme (MV-
VTES) (Section using the reference set C U H. Let ' denote the self-corrected annotation
produced by MV-VTES, and define Z") = {(z,9%) | (x,%") € Z}. Thus, Z") represents the orig-
inally inconsistent samples after their first-round reassignment. Next, for each sample, we compare
the original label 7/ in Z with its updated label ¢j* in Z(!) to perform CAI identification, yielding the
partition: Z = CZ U ZZ,CI NZII = @. Here, CZ contains those samples that become consistent
after the first alignment pass, while ZZ contains those that remain inconsistent.

Round 2. (Co-aligning I7 to obtain TZ"). For each (z,y") € IZ, we again apply MV-VTES,
this time with an expanded reference set C U CZ U H. Let ¢ denote the newly assigned annotation,
and define ZZM = {(z,§") | (x.7') € IZ}. After this second pass, the fully aligned version
of Z becomes Z?) = CZ U IT (1), indicating that all inconsistent cases have now been corrected.
Finally, the self-corrected dataset is D(i™) = C U CZ U IT () where C is the original consistent
set, CZ contains the samples corrected in Round 1, and Z7 (1) contains the hardest cases resolved in
Round 2. Overall, DCCA iteratively partitions Z into CZ and ZZ, resolves the easier inconsistencies
in the first pass and the more challenging ones in the second, and ultimately produces the fully
self-corrected dataset D(finah),

4.3.2 MAJORITY VOTING VIA TOP-NEAREST EMBEDDING SCHEME (MV-VTES)

Our divide-and-conquer co-alignment method relies on the MV-VTES method, which selects an-
notations from the most semantically similar samples in C U H to update each inconsistent sample
x € T or I7Z, leveraging their semantic similarity to refine annotations. Given a query x (an incon-
sistent sample), our reference set D4 1), = (C UH ) contains pairs {(a;, ;) } where a; is an input
and y; is its high-quality label. We retrieve the top- K most similar references to x as follows:

{(as 7)HEs = ang top-K (St 3)
a,)€Da, 1),

where S(+) is the embedding function. After selecting the top-K most similar samples, denoted
as {(a1,91),...,(ax,YK)}, we aggregate their labels g; to produce a final refined annotation ¢
for . Specifically, let A be the set of unique labels extracted from the top-K nearest neighbours:
A ={71, ..., Uk }. Foreach a € A, we define its frequency as n, = Zfil 1{y; = a}. The refined

annotation g is then assigned using majority voting:
7 = argmax Ng. 4)

acA

Hence, our method uses the identified consistent samples as anchors to guide the alignment of in-
consistent samples. Unlike conventional approaches that completely discard noisy or inconsistent
data, HCC co-align these inconsistencies to improve overall assigned annotation alignment.
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5 EXPERIMENTS

We conduct extensive comparisons against the following baselines: (1) Specialised Model (Reimers
& Gurevychl [2019); (2) LLM |Grattafiori et al| (2024); (3) Specialised Model+LLM; (4) Clus-
tering [Zhang et al.| (2023b); (5) CoT |Wei et al.| (2022); (6) FoT Brown et al.| (2020); (7) Self-
Consistency [Wang et al.| (2022); (8) Self-Refine Madaan et al.|(2024). Details on our baselines,
datasets, and evaluation metrics are shown in Appendix [D|and [E]

Table 2: Comparative Performance Across Large Language Models. Accuracy (%) across eight
benchmark datasets for GPT-3.5 Turbo, GPT-40 Mini, and Meta-Llama 3-8B Instruct. HCC con-
sistently outperforms all baselines, achieving top accuracy on 6-8 datasets per model. Values are
reported as mean * standard deviation over three runs.

(a) GPT-3.5 Turbo (Closed-source LLLM): HCC achieves the best accuracy on 6 datasets.

Dataset Spec. Model"!  LLM (Zero-shot)” ~ Spec+LLM  Clust.”! CoTH! FoT®  Self-Cons.®  Self-Ref.”) HCC wio Corr. HCC w/ Corr.  CAI (Before—After)
Clinc 79014105 66.58.15.90 78585041 45465055 46.661046  T6.56100s  64.39:014 81325040 85.49.0.19 1.55-5.50

Massive Scenario 60.890.62 60852133 520ls02s  56.06z035 63445015  47.70z026  69.25:0.08 76.43.15 47 1.39-+4.72
MTOP Intent 64.9550.21 : 37. 5841090 59641073 68.000026  39.994008  79.57-0.2 69.061.10 0.68-1.78
StackExchange 30.1020.10 30.92:21 9.71:031 13505010 37182070  21.21xo76  29.76x010 41454256 0.40-0.85
Banking77 65.1220.30 75.3920.32 27245005 32 56102005 36.74x0.07 7356020 82.45.10 48 1.36-54.03
Reddit 51125127 51.6420.15 22.69:0.51 41155026 26.885051 4390150 58.77.0.20 0.50-+1.40
FewRel-Nat 35.35.40.02 32.874172 37.372013 18.360.14 27521003 15.684052  49.2dx063 44.88.0.05 0.28-50.89
Massive Intent 61.80:1.01 71.52:0.05 64.540.02 52525133 55.89r0.36 74884036 55124026 T3.4liis T1.7250.10 1.62-2.81

(b) GPT-40 Mini (Closed-source LLLM): HCC achieves the best accuracy on 6 datasets.

Dataset Spec. Model LLM Spec.+LLM Clust. CoT Self-Cons.  Self-Ref. ~ HCC w/o Corr. HCC w/ Corr.  CAI (Before— After)
Clinc 79.0141.08 81.4410.44 78.5840.41  T4.9310.40 68.06+0.65 85.2310.08 87.9310.53 2.06—5.20
Massive Scenario 75.5541.76 66.8311.31 ] 62.96.40.25 50.27£0.95 79.60+0.85 80.1810.45 1.39—4.65
MTOP Intent 5249425 75.03+1.35 T4.4810.20 39.9810.22 80.16.10.55 67.10-£0.32 0.74—1.66
StackExchange 32.2710.65 51.90+0.75 39.4240.20 25.98+0.10 35.63+0.51 45.2240.15 0.31-0.66
Banking77 3.9340.81 65.1210.30 54.41+0.46 R 40.23£1.06 73.5640.20 82.4510.48 1.36—4.03
Reddit 51.731062 57401196 57.02:150  38.3410.41  41.01:0.66 24.66+0.00 44.4710.60 60.94.:0.1; 0.51-1.90
FewRel-Nat 35.3540.02 35.87+0.03 37. 51.2211.43 28471057 33, 85 23.49+0.13 49.5310.35 44.9440.02 0.26—0.90
Massive Intent 61.8041.04 76.93+1.05 66.0210.12 60.6940.02 60914014 65441057 53.3240.12 78.9310.50 72.4940.40 1.47-3.30

(c) Meta-Llama 3-8B Instruct (Open-source LLM): HCC achieves the best accuracy on 8 datasets.

Dataset Spec. Model LLM (Zero-shot) Spec.+LLM CoT FoT Self-Cons. Self-Ref. HCC w/o Corr. HCC w/ Corr.  CAI (Before— After)
Clinc 79.0141.08 32491673 69.4017.2s  31.071021 38.081090 52531027  48.02:1.07 63414510 82.43.0.20 0.56—4.43
Massive Scenario  T5.55+1.76 43.5221 55 66.7440.0s  44.294126 43104100  58.11xp1s  54.6541.29 70.06£1.12 78.1340.74 0.67—4.88
MTOP Intent 52494252 34.17+6.70 48.231025  53.6640.03 61.191007 68.184020 39.9310.26 66.39:0.70 63.3911.47 0.35—1.46
StackExchange 32.27+0.65 11.0212.78 26.2642.16 15.0541.58  16.0411.38 5.04+0.21 21.26. 16.03£0.13 38.88.10.27 0.23—0.53
Banking77 73.9340.81 33.06£1.92 69.6611.74  27.2440.05 32.531049  56.07x0.05 64.29+1.24 TT.T10.25 0.68—4.20
Reddit 51.7310.62 36.3140.97 46.0042.51 16.6540.20 26294145  40.3410.92 40.29+0.55 58.8110.28 0.33—1.58
FewRel-Nat 35.35.40.02 14.2510.36 30.074445 15132014  18.662026 19.841017 19412004 31.800.31 42.92.0.06 0.13-0.85
Massive Intent 61.8041.04 45.4110.06 56.0310.0s  35.02+076  43.05:040 74.631010 54.9310.36 67.4910.10 67.7510.43 0.73—2.87

Summary. Across all three model families (GPT-3.5 Turbo, GPT-40 Mini, Meta-Llama 3-8B In-
struct), HCC consistently yields the highest overall accuracy and largest CAI improvements,
demonstrating robust generalization across both open- and closed-source paradigms.

5.1 EVALUATION RESULTS

GPT-3.5 Turbo: We have two key findings based on the experimental results from Table [2| First,
our method (HCC) consistently outperforms baseline methods, achieving notable gainson Clinic
(+4.17%), Massive Scenario (+0.88%), and Bank77 (+2.99%). For the MTOP Intent
and StackExchange, HCC surpasses the non-collaborative baselines, i.e., Only Specialised
Model and Only LLMs (GPT 3.5), by +16%/+4.11% and +9.18%/+11.35%, respectively. This
underscores the effectiveness of HCC in improving annotation accuracy through the collaborative
refinement of a specialized model and an LLM. In particular, knowledge distillation between the spe-
cialized model (BERT) and the LLM using consistent samples (denoted as HCC w/o Corr) achieved
the highest annotation accuracy on the MTOP Intent dataset.

GPT-40 Mini: Based on the results from Table[2} there are two key findings. First, Heterogeneous-
Consistency Co-Alignment (HCC) consistently outperforms all baselines on Clinc (+2.7%),
Massive Scenario (+0.58%),Bank77 (+7.06%) and Reddit (+3.92%). Additionally, HCC
without alignment achieved the highest annotation accuracy on MTOP Intent. HCC (w/ Corr) and
HCC (w/o Corr) can be used interchangeably to enhance annotation accuracy.

Meta-Llama3-8B Instruct: [Touvron et al.[(2023)), our proposed HCC variants have outperformed
all baselines, demonstrating a significant improvement in accuracy and CAI scores. Notably, despite
the relatively poor accuracy of the LLM, our method shows remarkable robustness by consistently
outperforming both the Llama 8B and the specialised model. This highlights the adaptability and
reliability of our approach.
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5.2 HCC UNDER WEAKER (BERT-BASE-UNCASED) VS. STRONGER LANGUAGE MODEL
(LLAMA-3-8B INSTRUCT) REGIMES

To demonstrate that Heterogeneous Consistency Co-Alignment (HCC) remains effective across both
weaker and stronger language model regimes, we adopt BERT-Base-Uncased as a weak spe-
cialised model and L1ama-3-8B Instruct as a strong LLM. As shown in Tables [T5] and [T6]
HCC enables the open-source Llama-3-8B Instruct, even when paired with the weaker BERT back-
bone, to outperform GPT-40 Mini on five datasets and GPT-3.5 Turbo on seven datasets. This
highlights HCC’s ability to boost weaker specialised models while narrowing the performance gap
between open-source and proprietary LLMs.

Dataset HCC (BERT) GPT-40 Mini GPT-3.5 Turbo Outcome

CLINC 0.8240 0.8144 0.6658 Beats Both

Massive Scenario 0.7461 0.6683 0.6089 Beats Both
Banking77 0.7162 0.6512 0.6512 Beats Both

Reddit 0.5813 0.5740 05112 Beats Both
FewRel-Nat 0.4205 0.3587 0.3287 Beats Both

MTop Intent 0.6562 0.7503 0.6495 Beats GPT-3.5 Only
StackExchange 0.3941 0.5190 0.3010 Beats GPT-3.5 Only

Massive Intent 0.6261 0.7693 0.7152 Lower than both

Table 3: Performance Comparison: HCC (R2 with BERT-Base-Uncased) vs. Closed-Source
Models. HCC uses only a weak BERT encoder, yet still outperforms GPT models on most datasets.
(K=3)

5.2.1 EXPERIMENTAL ANALYSIS

HCC consistently outperforms prompt-based baselines such

as Self-Refine. Prompting fares poorly on NLU: language [ HCCTimasWicor | GPTomini | GPI35 Turbo
. . . . . 82.43 81.44 66.58

is subjective, so unlike reasoning benchmarks where Python [7sis o2s 66835, 1 | 005910 o8

. : : 633911 75.0841. 64.95 4 0.

can verify solutions, no external checker exists, and self- |gggs ' e I
1 77.71 65.12 65.12

generated feedback can degrade quality (Huang et al.| [2023)). Aoz teoan | 0Bl

Because prompt methods depend on very strong LLMs, ac- [42:92:0.06 358710.0s | 32874112

67.7510.43 76.93+1.05 71.5240.95

curacy drops on more complex tasks or weaker models (e.g.,
LLaMA 3-8B). HCC reverses this: a LLaMA model beats Table 4: Heterogeneous-Consistency
ChatGPT-3.5 on every task except massive intent and mtop in-  Co-Alignment (HCC) enable Llama 3-
tent, and tops ChatGPT-40-mini on Clinc, Banking77, and few 8 Instruct (Weak LLM) to outperform
rel nat. Hence, HCC can lift weaker open-source LLMs above 5 out of 8 datasets in comparison with
stronger closed-source ones, making it a more stable and ef- Closes-source LLMs (Strong LLM).
fective choice.

5.2.2 IMBALANCED USER-PREFERENCE SAMPLES

In real-world scenarios, the distribution of user-preferred samples is often imbalanced. To assess
the robustness of our method, we conduct a comprehensive evaluation of HCC under various anno-
tation budgets, 1%, 5%, and 10%, in the presence of imbalanced label distributions. We perform
ablation studies to examine the impact of user preference imbalance, as shown in Table [5] using
Llama 3-8B Instruct under an imbalance ratio of 60%. Specifically, after assigning one labeled
sample per class, 60% of the remaining samples are allocated to the majority classes. This setup
reflects a moderately skewed yet realistic user preference distribution. HCC assumes at least one
labeled instance per class to align annotations with user intent. Despite the imbalance, HCC con-
sistently outperforms strong baselines such as Self-Consistency (+29.58% on Clinc, +33.25% on
Stackexchange, +22.56% on Few_Rel _Nat), Self-Refine (+34.09% on Clinc, +37.63% on
Banking77), and Clustering (+10.03% on Banking77, +22.26% on Reddit), all under bal-
anced 5% label supervision. However, HCC does experience some performance degradation due
to the imbalanced setup, with accuracy drops observed on Clinc (-0.32), Massive_Scenario
(-0.46), Stackexchange (-0.59), Reddit (-0.11), and Few_Rel Nat (-0.52). Overall, the HCC
framework demonstrates strong robustness under moderately imbalanced conditions.

6 CORRELATION RESULTS BETWEEN CAI RATIO AND LLLM ACCURACY

We performed a Pearson correlation analysis to investigate the relationship between CAI Ratio and
LLM accuracy. The correlation analysis between the Consistent and Inconsistent (CAI) ratio and
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Table 5: Lama 3-8B Instruct: Accuracy Comparison Across Datasets with 1%, 5%, and 10% Label
Budgets (Mean =+ Std, in %) under Imbalanced User Preference Samples.

Accuracy Metrics

Dataset Label Budget
LLM (Zero-Shot) (%) Specialised + LLM (%) Specialised Model (%) HCC (Ours)(%)
1% 27.28 £ 0.06 54.39 £ 0.06 62.86 +0.94 6336 +1.91
Cline 5% 34.01 +243 68.28 + 1.34 78.98 + 0.24 8211+ 0.18
10% 36.54 £ 1.46 71.79 £ 1.48 83.98 + 1.49 85.61 = 0.72
1% 45.15 + 0.49 57.30 + 2.10 60.73 +2.76 65.59 + 1.03
Massive 5% 46.22 +0.29 66.80 £ 1.02 75.94 £ 1.16 77.67 + 1.04
10% 46.36 £ 0.86 70.10 £ 0.57 78.50 £ 0.08 75.03 £ 2.94
1% 2782+ 131 44.93 = 1.90 39.47 383 54.00 + 0.63
Mtop-Intent 5% 30.11 £0.50 51.64 £ 1.85 49.66 + 1.09 60.80 = 2.50
10% 32.03 £0.57 57.37+£0.83 55.97 +2.30 58.40 +3.59
1% 11.49 £ 0.70 2111 £ 0.96 21.03 £ 1.49 2938 + 0.36
StackExchange 5% 12.27 £037 29.86 £ 0.48 31.44 £ 0.06 38.29 £ 0.42
10% 13.16 £ 0.28 33.20 £ 0.67 35.73+£0.38 42.82 042
1% 3149 £0.19 58.72 £ 0.83 62.03 £ 0.41 63.99 £ 1.30
Banking77 5% 37.08 + 0.06 69.71 £ 1.43 74.17 £0.76 74.32+£529
10% 40.39 £ 1.07 77.55 £ 1.25 81.38 + 1.02 84.63 + 0.4
1% 2258 £0.22 3825 £0.89 38.67 £ 1.03 50.44 £ 0.20
Reddit Reddit 5% 28.88 £0.12 49.19 +0.84 50.23 + 0.81 58.70 = 0.30
10% 29.49 + 1.60 52.34 +0.36 5348 039 61.11 £ 0.16
1% 11.45 £027 2336 £0.12 2470 £023 31.67 £ 0.49
Few_Rel Nat 5% 12.46 £ 0.25 3146 +1.22 33.69 +0.84 4240 £0.28
10% 1291 4 0.46 33344035 36.10 +0.23 42.25 +2.17
1% 3161+ 1.01 4576 £ 039 4934+ 143 48.08 £ 8.41
MASSIVE.INTENT 5% 34.56 +0.44 54.14 £0.29 58.15 +0.22 61.40 + 0.4
10% 35.92 +0.08 59.18 + 0.49 63.23 +0.18 6332+5.14

accuracy across four different LLMs demonstrates a strong relationship between these two metrics.
GPT-3.5 shows the highest correlation (p = 0.93, p = 8.22 x 107°), indicating a very strong
positive relationship between CAI and accuracy, with high statistical significance. GPT-40 Mini
shows a strong correlation (p = 0.86, p = 1.61 x 1072), suggesting that CAI is a reliable LLM
of accuracy for this model. Llama-8B-Instruct (p = 0.81, p = 1.44 x 10~2) and Google Gemini
(p = 0.72, p = 1.80 x 10~2) exhibit moderate-to-strong correlations with significant statistical
confidence. (See Appendix Section [C))

6.1 CAI RATIO EVALUATION

As shown in Table [2] applying HCC learning to increasingly powerful LLMs significantly reduces
the number of inconsistent samples while substantially increasing the number of consistent sam-
ples. Such improvement is also reflected in the CAI ratio across Banking77 (1.45 = 4.99),
Clinic (1.44 = 5.74), Massive_Scenario (1.38 = 4.88), MTOP_INTENT (0.67 = 1.65),
and StackExchange (0.40 = 0.86). These results highlight the significant gains in the CAI ra-
tio, which directly correlate with improved annotation accuracy across datasets. Further details on
the improvements in the CAI ratio and accuracy after applying our proposed HCC approach can be
found in the Appendix. For Banking77, the CAI ratio improved from 1.35 to 4.03, with accuracy
increasing from 65.12% to 82.45%. Similarly, for C1inic, the CAI ratio rose from 1.99 to 5.20,
and accuracy increased from 81.44% to 87.93%. Massive Scenario saw its CAl ratio climb
from 1.38 to 4.65, with accuracy rising from 66.83% to 80.18%. However, in the MTOP Intent
dataset, while the CAl ratio improved from 0.72 to 1.66, accuracy dropped from 75.03% to 67.10%.
Similarly, for StackExchange, despite a CAl ratio increase from 0.30 to 0.66, HCC’s accuracy
(45.22%) lagged behind LLM-only (51.90%). These results highlight a key trend: a substantial
increase in the CAl ratio is necessary to guarantee meaningful performance gains.

Conversely, a marginal increase, such as the small gain of 0.36 in StackExchange, would suggest
potential limitations in the annotation alignment. HCC proves most effective for closed-source
models with strong initial CAI ratios (> 1) and weaker models when CAI starts above 0.5. Notably,
Clinic,Massive Scenario,Banking77,and Massive Intent exhibit the highest CAI
ratio improvements, reinforcing HCC’s effectiveness. HCC consistently outperforms open-source
models, even with modest CAI ratio gains, and dominates in 6 out of 8 datasets for closed-source
models.

7 CONCLUSION

This paper tackles evaluation and co-alignment in semi-supervised tasks with limited user prefer-
ence data. We introduce HCC, a collaborative framework that exploits agreement and disagree-
ment between an LLM (providing token-level annotations) and a task-specific specialised model
that captures semantic similarity. HCC uses the Consistent-and-Inconsistent (CAI) Ratio to gauge
annotation alignment and applies a divide-and-conquer co-alignment strategy to revise inconsistent
samples. Experiments show that HCC markedly improves annotation alignment, allowing weaker
open-source LLMs to surpass stronger closed-source LLMs. The CAI Ratio strongly correlates with
these gains. Future work will explore adaptive alignment mechanisms.

10
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A  NOTATION SUMMARY

Summary of main notation used throughout the paper.

Symbol Description
X CR¢ Input space of textual instances (utterances or sentences).
T; i-th input instance in the corpus.

Du :{xl,...,mN}
Dy ={x1,...,z1}

Unlabeled or semi-supervised corpus for annotation.

Test corpus used for evaluation.

User-preference seed set containing a small number of labeled examples.
Number of classes or preference categories, k = |)|.

Discrete label space for categorical NLU tasks.

Annotation assigned by the LLM or specialised model (generic notation).

H
k
y={1,...,k}
]

c

I

Set of consistent samples where the specialised model and LLM agree.
Set of inconsistent samples where at least one annotator disagrees.

C; User-preference cluster ¢ in embedding space, seeded from H.
s Annotation associated with a consistent sample (z;, 75) € C.
T Annotation associated with an inconsistent sample (z;,7!) € I.
Ui Refined annotation for an inconsistent sample after Round 1 (MV-VTES).
7 Refined annotation for a hard inconsistent sample after Round 2 (MV-VTES).
CZ Subset of I that becomes consistent after Round 1.
17 Subset of I that remains inconsistent after Round 1.
I Inconsistent set after Round 1 co-alignment.
I® Fully aligned inconsistent set after Round 2, I @ =czuzIW,
rAS) Hard inconsistent samples corrected in Round 2.
pfinal) Final self-corrected dataset, D™ = cuczuzZ®.
S Task-specialised embedding model (e.g., MiniLM, ES5, GTE, BGE).
T Large language model (LLM) annotator (e.g., Llama-3-8B).
S(z:) = e; Sentence embedding of z; produced by the specialised model S.
Top-K(Cj,e;) Top-K most similar embeddings to e; within cluster C; (cosine similarity).
AS(es, Cy) Average cosine similarity between e; and its top-K neighbors in C};.
D, ={(zi,5:)} Dataset annotated by the specialised model S.
Dy = {(z:,57)} Dataset annotated by LLM T in the zero-shot setting.
Dy = {(z4,57)} Dataset annotated by LLM T in the single-shot (specialised-guided) setting.
Ne = |C| Number of consistent samples.
Nic =|I| Number of inconsistent samples.
CAI Consistent-and-Inconsistent Ratio, CAI = ]]VVC .
ic
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B EXPERIMENTAL SETUP

We evaluate the CAI Ratio on multiple LLMs—GPT-3.5-Turbo, GPT-40-Mini, Google Gemini 1.5
Flash (Model Selection Task), and Llama-3-8B-Instruct—across ten textual datasets. These datasets
span a diverse range of domains and task types, including intent classification, topic modeling,
sentiment/emotion analysis, and semi-supervised intent discovery (Zhang et al} [2021; [2022). The
annotation practices follow [Zhang et al.| (2023b).

Intent Classification.

* Banking77 (Casanueva et al., |2020)

¢ CLINC150(Larson et al., [2019a))

* MTOP (Li et al.,[2020)

¢ Massive (Intent) (Larson et al.,[2019b; [FitzGerald et al.| [2022))
Topic and Question Classification.

» StackExchange(Geigle et al., [2021)

* Reddit (Geigle et al., [2021)

Emotion and Sentiment.

¢ GoEmotions (Model Selection Task)

Relation and Entity Classification.

¢ FewRel-Nat (Han et al., 2018)
¢ FewNerd-Nat (Model Selection Task)

C PEARSON CORRELATION TEST FOR CAI SCORES AND LLMS ACCURACY

C.1 STATISTICAL INFERENCE

We have performed a Pearson correlation, the correlation coefficient r is calculated as:

_ > (i = 7)(yi — )

Vi (@i = 2)2/ 3 (v — §)?
where x; symbolises the CAI ratios. y; denotes the LLM annotation accuracies. z and ¥ are the
average mean of z; and y;, accordingly. n is the number of samples we have used for evaluation. To

assess the statistical significance, we use a hypothesis test for the correlation coefficient, calculating
a t-statistic (Schober et al., [2018):

r

n—2
1—1r2

The P-value is then calculated from the t-distribution with n — 2 degrees of freedom.

t=r

C.2 BEFORE APPLYING THE METHOD

The Pearson correlation coefficient is 0.805, indicating a strong positive linear relationship between
CAI and Accuracy. The p-value is 0.005, which is statistically significant (below the typical thresh-
old of 0.05). This implies that the positive correlation between the CAI ratio and Accuracy before
and after applying our method is not a random event, and higher CAI scores are associated with
higher Accuracy. The p-value is 0.00093, which is statistically significant (below the typical thresh-
old of 0.05) for the additional datasets. The p-value is 0.014399, which is statistically significant
(below the typical threshold of 0.05) for Meta-Llama-3-8B-instruct on all datasets.
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Table 6: Pearson correlation results for CAI and accuracy, before and after our proposed method
on GPT-3.5-Turbo and GPT-4 Mini, before and after our proposed method.

Metric  Pearson Correlation  P-value

Before 0.805 0.005
After 0.903 0.00035

Table 7: Pearson correlation results for CAI and accuracy for additional datasets on GPT-3.5-Turbo
and GPT-4 Mini, before and after our proposed method.

Metric Pearson Correlation P-value

Before 0.874 0.000937
After 0.852 0.00175

Table 8: Pearson correlation results for CAI and accuracy on Meta-Llama-3-8B-instruct, before
and after our proposed method.

Metric Pearson Correlation P-value

Before 0.812 0.0144
After 0.918 0.00129

C.3 AFTER APPLYING THE METHOD

The Pearson correlation coefficient is 0.903, showing an even stronger positive correlation between
CAI and Accuracy after applying the method. A larger CAl ratio and higher annotation produced by
LLMs are extremely statistically significant, according to the p-value of 0.00035. This implies that
the relationship between CAI and Accuracy is even more evident after using the approach, show-
ing a more linear relationship where increases in CAI are more directly correlated with increases in
Accuracy. In both stages (Before and After applying the method), the results display statistically sig-
nificant correlations (p < 0.05), showing strong positive relationships between CAI scores and LLM
accuracy. Tables 8, 9, and 10 show that all the P-values of the Pearson correlation are statistically
significant.

D DATASET

Task Name # data (Testing) | # data (Training) | # classes
Bank77 3,080 10,003 77
Intent CLINC (I) 4,500 15,000 150
MTOP (I) 4,386 15,638 102
Massive (I) 2,974 11,510 59
Type FewRel 4,480 40,320 64
Topic StackEx 4,156 50,000 121
Reddit 3,217 50,000 50
Domain | Massive Scenario 2,974 11,514 18

Table 9: Summary of Benchmark Datasets.

D.1 BENCHMARK DATASETS

We evaluate our work on a series of open-source textual datasets spanning diverse domains, includ-
ing Bank77, CLINC (Intent), MTOP (Intent), Massive (Intent), StackExchange and Reddit (Topic)
(Geigle et al., 2021), and Few Rel Nat (Type). We also utilize the Massive Intent dataset, with
annotation practice following (Zhang et al.l [2023b). Bank77 (Casanueva et al., |2020) is a banking
dataset that focuses on fine-grained intent classification within a single domain. CLINC (1), Mas-
sive (I), and MTOP (I) are intent-based datasets (denoted as ”I"’) (Larson et al., [2019b; [FitzGerald
et al.,|2022; |Li et al.|[2020). Intent discovery (Zhang et al.|[2021;2022) explores unknown intents in
semi-supervised utterance datasets. Each dataset is available in small-scale (testing) and large-scale
(training) versions, and we use i.i.d. user preference samples from the training set. Since we are
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Figure 5: The above analysis shows the correlation between LLM annotation accuracy and the
Consistent-and-Inconsistent (CAI) ratio. We also conducted statistical tests to assess the significance
of this correlation. We collected the CAI ratios for (LLMs 3.5 Turbo and Specialised Model ) and
(LLMs 4.0 Mini and Specialised Model ) across the datasets Reddit, few rel nat and massive intent.
Using these data, we calculated the Pearson correlation coefficients between the LLM annotation
accuracies and CAI ratios and computed the associated P-values (P value for After: 0.036) and
(P value for Before: 0.014) to determine the statistical significance of the observed correlations.
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Figure 6: The above analysis shows the correlation between LLM annotation accuracy and the
Consistent-and-Inconsistent (CAI) ratio. We also conducted statistical tests to assess the significance
of this correlation. We collected the CAI ratios for (LLMs 3.5 Turbo and Specialised Model ) and
(LLMs 4.0 Mini and Specialised Model ) across the datasets CLINC, Massive Scenario, MTOP
Intent, Stack Exchange, and Banking77, Reddit, Few Rel Nat, Massive_Intent. Using these data,
we calculated the Pearson correlation coefficients between the LLM annotation accuracies and CAI
ratios and computed the associated P-values (P value for After: 0.014) and (P value for Before:
0.00129) to determine the statistical significance of the observed correlations.

working in an semi-supervised textual data setting, we directly use the small-scale set for testing.
Detailed statistics of the datasets are shown in Table [0l

E BASELINES

To rigorously assess our proposed framework, we compare against a diverse set of strong baselines
spanning specialized models, prompting methods, and clustering-based annotation strategies. Each
baseline represents a distinct family of annotation approaches relevant to the semi-supervised setting.

Specialised Model Only. A pre-trained task-specialised model assigns labels to unlabeled data us-
ing our preference-based annotation scheme and a small set of user-provided samples. This baseline
measures the standalone utility of the specialised model without assistance from LL.Ms or consis-
tency mechanisms.
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The specialised model relies on our proposed semantic clustering approach to organise examples
into coherent intent-level groups and to assign each unlabeled instance a label that reflects the user-
provided preference samples.

LLMs Only (Without Intent from Specialised). We evaluate GPT-3.5 and GPT-40 mini in a
zero-shot setting, prompting them directly to generate category labels. While LLMs offer a scalable
and cost-effective annotation mechanism, their outputs are prone to inconsistency, hallucination,
or drift from user preferences in the absence of supervision or demonstrations. In the LLMs Only
setting, the model is prompted using semantic batch clustering, where examples come from the same
latent category but no explicit label is provided. This offers structure but not supervision.

Specialised Model + LLMs (With Intent from Specialised). This variant employs our proposed
Majority Voting via Top-Nearest Embedding Similarity using the task-specialised model to gener-
ate pseudo-labels for unlabeled samples. These pseudo-labeled instances then serve as in-context
demonstrations for guiding LLM annotation. This hybrid setup improves alignment while retaining
annotation efficiency. In contrast, the Specialised Model + LLMs (Ours) setting augments the same
clustered batch with an explicit intent label. This converts the prompt from a purely unsupervised,
similarity-driven signal into a supervised alignment cue, enabling the LLM to ground its predictions
in both semantic consistency and explicit task semantics.

HCC w/o Co-Alignment. This ablation examines a simplified variant of our Heterogeneous Con-
sistency Co-Alignment (HCC) framework. We exclude inconsistent samples and distill knowledge
only from high-consistency examples into a pretrained BERT-based model. While this improves
annotation precision, it lacks the full co-alignment loop present in HCC, making it less robust to
preference drift.

Clustering Baseline. We compare against |Zhang et al.| (2023b), a state-of-the-art clustering ap-
proach for few-shot annotation, where labels are propagated by embedding similarity. Unlike our
method, it lacks preference modeling and relies heavily on embedding space separability. Our Top-
Nearest Majority Voting introduces a new clustering method tailored to the semi-supervised regime.

Prompt-Based Approaches. We evaluate several representative prompting methods, all using
KATE (Liu et al., 2022) to select top-k similar demonstrations from user-labeled data:

* Self-Consistency (Wang et al. 2022)) selects the most frequent response across multiple
sampled reasoning paths, assuming the LLM is sufficiently competent. However, it incurs
high compute cost and often reflects pretraining bias rather than user-specific intent.

* Chain-of-Thought (CoT) Prompting (Wei et al., 2022)) guides the model to reason step-
by-step via structured exemplars, improving interpretability and answer accuracy.

* Few-Shot In-Context Learning (Brown et al.,[2020) provides a handful of labeled exam-
ples in the prompt to elicit more accurate model behavior, yet its effectiveness is sensitive
to demonstration quality.

* Self-Refine (Madaan et al., 2024) iteratively improves model outputs through refinement
steps and feedback, though its performance relies on LLM strength and auxiliary tool sup-
port.

F EVALUATION METRICS

We evaluate our method and the baselines based on two metrics: (1) Annotation Accuracy; (2) our
proposed CAI ratio. Annotation Accuracy evaluates the correctness of LLM generated annotations,
while the CAI Ratio measures the model’s ability to correct inconsistencies. A higher CAI Ratio
after applying our method indicates improved annotation and effective co-alignment .

F.1 REFERENCE-FREE EVALUATION METRIC

Intuitively, inter-rater reliability (IRR) metrics such as Cohen’s kappa and Krippendorff’s alpha,
which are widely used for assessing the reliability of crowdsourced annotations, may seem suffi-
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cient. However, these metrics assume that annotators are equally competent and operate under a
fixed candidate label set, the condition that are hardly satisfied in reality. IRR becomes unstable
when the class distribution is skewed, when annotators systematically omit certain classes, under
marginal drift caused by heterogeneous annotator competence, or in open-set scenarios where no
shared label set exists[Wong et al.|(2021). Consequently, IRR is less reliable for personalized or sub-
jective tasks, where cultural or training differences amplify annotator variance and bias the results.
By contrast, the Consistent-and-Inconsistent (CAI) ratio is label-set agnostic and represents the first
reference-free metric designed to quantify annotation reliability by leveraging heterogeneous consis-
tency signals (likelihood-derived and embedding agreement) without relying on references or oracle
annotations.

F.2 COMPARISON WITH TRADITIONAL EVALUATION METRICS

In Table[T0] which shows a comparison with CAI ratio and Accuracy, Precision/Recall and F1-score
in term of ground-truth label, robustness to Data Drift, and tracking annotation alignment over time.

Metric Ground-Truth Labels? Data Drift? Tracks Annotation Alignment Over Time?
Accuracy v X X
Precision/Recall v X X
Fl-score v X X
CAI Ratio X v v

Table 10: Comparison of Traditional Metrics and CAI Ratio

G EXPERIMENTAL DETAILS

The top-k selection and proportions of consistent and user-preference samples are as follows. For
CLINC and Massive Scenario, ‘top-k° is set to 5, with ‘proportion‘ at 0.2. For MTOP Intent, ‘pro-
portion‘ is set to 0.8, and ‘top-k* is updated to 15 after printing the current value. In StackExchange,
‘top-k* is set to 5 and ‘proportion to 1, while in Banking77, ‘top-k‘ is set to 3 and ‘proportion*
is 0.2. In massive intent, ‘top-k‘ is 20 and ‘proportion‘ is 0.5), proportion=0.2, and few real nat
has top-k=30, and proportion is 1. In ’Reddit’, ‘top-k* is set to 7, and the proportion is 0.2. All
tests are done with two random seeds with temperature parameters (0.5 and 1) for user preference
samples, task-specialised model-assigned annotation, and LLMs with and without task-specialised
model annotations. We have ran our methods and baselines with two random seeds.

G.1 INVERSE CONSISTENT (IC) RATIO

The number of samples per class required for human annotation based on user preferences is de-
termined by our Inverse Consistent (IC) ratio equation [G.I] For user-preference samples. The n
denotes the total size of the the consistent sample where M = n, and k be the number of classes.
The parameter p represents the proportion of samples to be selected and is set to 5% (i.e., p = 0.05).
In our experiment, we do not use all the identified consistent samples. The proportion of consistent
samples used for co-alignment is determined by the IC ratio. Let n. be the number of consistent
samples, so M = n, represents the size of the consistent sample selection. If the CAI ratio is
greater than 0.5 (i.e., the number of consistent samples exceeds inconsistent ones), the value of
p will be reduced to use fewer consistent samples. If the CAI ratio is less than 0.4, p is set to
1 (i.e., 100%) since more consistent samples are needed for co-alignment . The formula for the

Inverse Consistent (IC) ratio is defined as IC = (MX” ) .

k
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H WHY GENERAL LLM AND TASK-SPECIFIC MODEL COLLABORATION IS
ESSENTIAL FOR HETEROGENEOUS-CONSISTENCY CO-ALIGNMENT

In semi-supervised learning tasks that rely on user preferences, the key challenge lies in evaluat-
ing LLM-generated annotations and enabling mechanisms for co-alignment—especially when the
competency of general LLMs is uncertain and no external knowledge is available. To address this,
we propose HCC, a co-alignment framework that facilitates both self-assessment and refinement of
LLM annotations through collaboration with a task-specialized model.

HCC introduces the Consistent-and-Inconsistent (CAI) Ratio, which quantifies agreements and dis-
agreements between models to identify consistent and inconsistent samples. This iterative refine-
ment process improves the performance of both the specialized model and the general LLM. To
validate our approach, we experiment with Meta-8B Instruct, a lightweight LLM representing a
low-competency model, and show that its collaboration with a task-specialized model enhances an-
notation robustness even under noisy conditions.

More broadly, given an semi-supervised learning task where LLM competency is unknown and
no external knowledge exists, HCC addresses the fundamental question: How can we evaluate and
enable co-alignment for such datasets? We answer this through HCC, a self-supervised strategy that
allows self-correction and self-evaluation of LLM-generated annotations. By combining the CAI
ratio with task-specialized model collaboration, HCC systematically improves annotation quality
across both models.

H.0.1 THE ROLE OF SPECIALISED MODEL IN HETEROGENEOUS-CONSISTENCY
CO-ALIGNMENT

The inclusion of the specialised model is vital as it provides a safeguard against underperformance
by the LLM. Additionally, the task-specialised model serves as a reference point for ’course track-
ing,” meaning that it allows us to monitor and guide the annotation process by comparing the task-
specialised model’s output with the general LLM’s output. This approach is particularly evident in
our experiments where the Meta-8B Instruct model, acting as a low-competency “"LLM,” demon-
strated suboptimal performance on most of the eight datasets, as indicated by its low CAI scores.
The task-specialised model addresses this issue by collaborating with the general LLM to itera-
tively refine annotations. This process ensures the framework’s robustness, even when the general
LLM lacks competency in specific tasks. We justify the necessity of the task-specialised model
through experimental analysis (see Section § 4.3.1 and Table 4). These results show that our pro-
posed HCC framework consistently outperforms baseline methods, even when paired with low-
competency LLMs such as the Llama 8B Instruct model (Touvron et al., |2023). This demonstrates
the resilience of HCC and the critical role of the task-specialised model in enhancing performance
across diverse LLM configurations. Moreover, recent studies (Zhou et al.| [2024; Xiong et al., 2023)
highlight the inherent challenges of relying solely on LLMs, particularly their tendencies toward
overconfidence and reluctance to express uncertainty. These findings further validate the inclusion
of a task-specialised model to mitigate such limitations.

Table 11: Meta-Llama 3-8B Instruct (open-source lightweight LLM): Annotation accuracy com-
parison in percentages with standard deviations across different datasets for the specialised model
, LLMs without annotations from the task-specialised model, and LLMs with annotations from the
task-specialised model. The highest accuracy for each dataset is highlighted.

Datasets Only  Spe- [ Only LLMs | Specialised Specialised HCC (Ours) | CAI Ratio T
cialised (Llama-8B- Model (Ours) & | Model & (Before =
Model Instruct) LLM (Llama- | LLM KD After)
(Ours) 8B-Instruct) (Ours)
Clinc 79.0T +1.08 32.49 673 69.40 +7.28 63.41 +3.19 82.43 020 0.56=4.43
Massive_Scenario 75.55 +1.76 43.52 +185 606.74 +0.98 70.06 +1.12 78.13 +0.74 0.67=4.88
Mtop Intent 52.49 1252 34.17 x6.70 48.23 0.5 66.39 :0.70 63.39 +1.47 0.35=1.46
StackExchange 32.27 +0.65 11.02 2278 26.26 +2.16 16.03 :0.13 38.88 +0.27 0.23=-0.53
Banking77 73.93 +1.56 33.06 +1.92 69.66 +1.74 64.29 +1.24 77.71 025 0.68=4.20
Reddit 51.73 062 36.31 097 46.00 +2.51 40.29+0.55 58.81 028 0.33=1.58
Few Rel Nat 3535 x0.02 14.25 036 30.07 4.45 31.80 034 42.92 +0.06 0.13=0.85
Massive_Intent 61.80 +1.04 45.4T1 +0.06 56.03 +0.08 67.49 =0.10 67.75 +0.43 0.73=2.87
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Table 12: Performance Comparison of HCC: The table shows the performance of HCC compared
to ”Only Specialised Model” and ”Only LLMs,” with improvements highlighted.

Datasets Only  Specialised | Only LLMs | HCC (Ours) Improvement Over | Improvement Over
Model (Ours) (Llama-8B- Only  Specialised | Only LLMs (%)
Instruct) Model (%)
Clinc 79.01 =108 32.49 x6.73 82.43 +0.20 +3.42 +49.94
Massive_Scenario 75.55 +1.76 43.52 +1.85 78.13 z0.74 +2.58 +34.61
Mtop Intent 52.49 w252 34.17 =6.70 63.39 +1.47 +10.90 +29.22
StackExchange 32.27 +0.65 11.02 +2.78 38.88 +0.27 +6.61 +27.86
Banking77 73.93 +1.56 33.06 +1.92 77.71 025 +3.78 +44.65
Reddit 51.73 z0.62 36.31 +0.97 58.81 =0.28 +7.08 +22.50
Few Rel Nat 35.35 +0.02 14.25 1036 42.92 +0.06 +7.57 +28.67
Massive_Intent 61.80 <1.04 45.41 z0.06 67.75 x0.43 +5.95 +22.34

I SENSITIVITY ANALYSIS K ON SPECIALISED MODELS

To assess the robustness of HHC, we extend our ablations to three diverse sentence encoders (spe-
cialised models) and a small language model (serving as a weak model) collaborating with Llama-3-
8B-Instruct (serving as a strong model). We have also included the parameter sizes of all specialised
models in Table T3]

E5-base (Sentence Encoder)-ES

GTE-small (Sentence Encoder)-GTE
¢ BGE-small-en-v1.5 (Sentence Encoder)-BGE
* BERT-Base-uncased (Small Language Model)-BERT

Encoders and Language Model Parameters Role in Ablation
MiniLM-L6-v2 ~ 22.7M Params  Small, General-purpose SBERT
ES5-base ~110M Params Strong, Retrieval-focused
GTE-small ~33.4M Params Small, High-quality Encoder
BGE-small-en-v1.5 ~33.4M Params Small, Retrieval-optimized
BERT-Base-uncased ~110M Params Small, Language Model

Table 13: Embedding backbones and the weak language model used in the robustness ablation.

Specialized Model Accuracy Specialized Model Accuracy Specialized Model Accuracy Specialized Model Accuracy
vs K on Banking77 vs Kon CLINC vs K on FewRel-Nat vs K on MTOP Intent
e — A -
o ————————3 > B o] T T —
8 o 8o 8 ~——|T
3 3. U —— =
& g e
t—— 2 *\\-\, . - — s
I T - T N T - h
Specialized Model Accuracy Specialized Model Accuracy Specialized Model Accuracy Specialized Model Accuracy
vs K on Massive Intent vs K on Massive Scenario vs K on Reddit vs K on StackExchange
—— | S a— L — ot —— |
po ——— 5" > =
g ) g o g -
- g i
el T 1 i 3
e 3 ‘ 3 C B s

Figure 7: Accuracy of specialised models across datasets for different values of /K. Performance is
compared for five backbone encoders: , BGE, , E5, and GTE.

We have conducted K sensitivity analysis as shown on Table[T4]with Specialised Models (We added
ablations using E5-base, GTE-small, and BGE-small in addition to the standard BERT baseline.)
K Ablation. We implemented a full sensitivity study with K € {3,5,7,10} across 8 datasets.
Results show minimal deviation across K, with K = 3 or i = 5 consistently performing best for
fine-grained tasks.

23



Under review as a conference paper at ICLR 2026

Dataset Backbone K=3 K=5 K=7 K=10
BAAI-bge-small-en-v1.5 0.796 + 0.002  0.788 & 0.002  0.780 4+ 0.006  0.767 4+ 0.014
all-MiniLM-L6-v2 0.741 £0.006  0.727 £0.003  0.718 £ 0.004  0.702 + 0.004
Banking77 bert-base-uncased 0.394 £0.010 0372 £0.018 0.346 £ 0.025 0.329 + 0.020
intfloat-e5-base 0.715 £ 0.000  0.700 £ 0.000  0.702 £ 0.007  0.697 + 0.004
thenlper-gte-small 0.761 4+ 0.007  0.742 £ 0.000  0.732 4+ 0.006  0.726 4 0.011
BAAI-bge-small-en-v1.5  0.833 +0.002  0.830 & 0.005 0.825 +0.002  0.817 4 0.004
all-MiniLM-L6-v2 0.794 £ 0.002  0.787 £ 0.007 0.781 £ 0.002  0.782 + 0.001
CLINC bert-base-uncased 0.557 £0.005 0.533 £0.008 0.515+ 0.007 0.493 + 0.002
intfloat-e5-base 0.802 £ 0.007  0.792 £ 0.001  0.790 £ 0.010  0.788 £ 0.015
thenlper-gte-small 0.808 £ 0.007  0.803 £ 0.009  0.795 £ 0.007  0.792 + 0.002
BAAI-bge-small-en-v1.5  0.375 +0.003  0.372 & 0.001  0.370 4= 0.000  0.367 £ 0.003
all-MiniLM-L6-v2 0.350 £ 0.003  0.346 £ 0.002  0.342 £+ 0.003  0.341 & 0.000
FewRel-Nat bert-base-uncased 0.419 £0.009 0418 £0.012 0418 £0.011 0.418 + 0.009
intfloat-e5-base 0.408 £ 0.006  0.406 £ 0.009  0.405 £ 0.008  0.402 + 0.009
thenlper-gte-small 0.375 £0.012 0.375+£0.012 0373 £0.014 0.371 £ 0.015
BAAI-bge-small-en-v1.5 0.557 +0.012  0.536 & 0.011  0.511 +0.020  0.508 4 0.013
all-MiniLM-L6-v2 0.535 £0.017 0526 £0.016 0.520 £ 0.019 0.518 £ 0.025
MTOP Intent bert-base-uncased 0.503 £0.015  0.483 £0.025 0.451 £0.020 0.437 £ 0.031
intfloat-e5-base 0.509 £ 0.008  0.485 £ 0.006 0.480 £+ 0.005 0.490 + 0.012
thenlper-gte-small 0.500 £ 0.014 0.488 £0.015 0.473 £0.023 0.471 £ 0.036
BAAI-bge-small-en-v1.5 0.692 + 0.006 0.683 + 0.013  0.675 +0.019  0.657 4 0.035
all-MiniLM-L6-v2 0.606 + 0.014  0.587 £0.011 0.574 £0.015 0.566 £ 0.011
Massive Intent bert-base-uncased 0419 £0.013 0390 £0.025 0.370 £ 0.023  0.350 + 0.028
intfloat-e5-base 0.614 £0.002 0.606 £ 0.002 0.599 + 0.001  0.582 + 0.005
thenlper-gte-small 0.627 £ 0.007 0.616 £ 0.006 0.606 £ 0.002  0.604 + 0.001
BAAI-bge-small-en-v1.5 0.782 +0.025 0.779 +0.026  0.776 4+ 0.027  0.770 % 0.030
all-MiniLM-L6-v2 0.753 £0.014 0.752 £0.013 0.748 £ 0.010  0.741 £ 0.009
Massive Scenario  bert-base-uncased 0.601 0.023  0.591 £ 0.029  0.580 4 0.030  0.570 £ 0.032
intfloat-e5-base 0.718 £0.027 0.711 £0.033  0.707 £ 0.029  0.701 + 0.032
thenlper-gte-small 0.752 £0.022 0.750 £ 0.015 0.749 £ 0.016  0.747 £ 0.015
BAAI-bge-small-en-v1.5 0.512 +0.005 0.510 & 0.004 0.506 4+ 0.006  0.501 4 0.005
all-MiniLM-L6-v2 0.515£0.002 0.517 £0.001 0.515+£0.003 0.513 &+ 0.000
Reddit bert-base-uncased 0.316 & 0.006  0.313 £ 0.005  0.310 4= 0.009  0.304 £ 0.008
intfloat-e5-base 0.512 £0.006 0.512 £0.001  0.505 £ 0.002 0.503 &+ 0.001
thenlper-gte-small 0.531 £0.003 0.531 £0.004 0.527 £0.000 0.523 + 0.002
BAAI-bge-small-en-v1.5 0.376 & 0.006 0.367 & 0.011  0.359 4+ 0.009  0.351 4 0.007
all-MiniLM-L6-v2 0.322 £0.006 0314 £0.007 0.304 £ 0.009 0.297 £ 0.011
StackExchange bert-base-uncased 0.277 £0.005 0268 £ 0.003  0.263 £ 0.006  0.258 + 0.009
intfloat-e5-base 0.390 4 0.004  0.375 £ 0.006  0.361 4= 0.007  0.345 4 0.006
thenlper-gte-small 0.399 £0.013 0395 £0.020 0.388 £ 0.019  0.379 &+ 0.020

Table 14: Mean =+ standard deviation of specialised model accuracy for different values of K across
datasets and backbone models.

J ADDITIONAL ABLATION STUDIES BASED ON LLAMA-3-8B-INSTRUCT
LARGE LANGUAGE MODEL

J.1 HCC UNDER WEAKER (BERT-BASE-UNCASED) VS. STRONGER LANGUAGE MODEL
(LLAMA-3-8B INSTRUCT) REGIMES

To demonstrate that Heterogeneous Consistency Co-Alignment (HCC) remains effective across both
weaker and stronger language model regimes, we adopt BERT-Base-Uncased as a weak spe-
cialised model and L1ama-3-8B Instruct as astrong LLM. As shown in Appendix Tables T3]
and [T6] HCC enables the open-source Llama-3-8B Instruct—even when paired with the weaker
BERT backbone—to outperform GPT-40 Mini on five datasets and GPT-3.5 Turbo on seven
datasets. This highlights HCC’s ability to boost weaker specialised models while narrowing the per-
formance gap between open-source and proprietary LLMs. In this setting, bert -base—-uncased
is used solely for the initial annotation assignment. However, using BERT for the divide—conquer
co-alignment stage degrades performance due to its weaker semantic representations. To address
this, we adopt a hybrid encoder strategy: during the co-alignment phase, BERT is replaced with
all-MiniLM-L6-v2, a substantially stronger SBERT encoder.

This hybrid design produces more coherent semantic clusters and significantly improves HCC per-
formance (Tables [[5]and[I6), often surpassing both GPT-40 Mini and GPT-3.5 Turbo. Thus, BERT
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is used to initialise label assignments, while MiniLM provides the semantic granularity required for
reliable divide—conquer co-alignment.

Table 15: Performance Comparison: HCC (R2 with BERT-Base-Uncased) vs. Closed-Source
Models. HCC uses only a weak BERT encoder, yet still outperforms GPT models on most datasets.
(K=3)

Dataset HCC (BERT) GPT-40 Mini GPT-3.5 Turbo Outcome

CLINC 0.8240 0.8144 0.6658 Beats Both

Massive Scenario 0.7461 0.6683 0.6089 Beats Both
Banking77 0.7162 0.6512 0.6512 Beats Both

Reddit 0.5813 0.5740 0.5112 Beats Both
FewRel-Nat 0.4205 0.3587 0.3287 Beats Both

MTop Intent 0.6562 0.7503 0.6495 Beats GPT-3.5 Only
StackExchange 0.3941 0.5190 0.3010 Beats GPT-3.5 Only
Massive Intent 0.6261 0.7693 0.7152 Lower than both

Table 16: Performance Comparison: HCC (R2 with BERT-Base-Uncased) vs. Closed-Source
Models. HCC uses only a weak BERT encoder, yet outperforms GPT models on most datasets.
(K=10)

Dataset HCC (BERT) GPT-40 Mini GPT-3.5 Turbo Outcome

CLINC 0.7958 0.8144 0.6658 Beats GPT-3.5
Massive Scenario 0.7576 0.6683 0.6089 Beats Both
Banking77 0.7234 0.6512 0.6512 Beats Both

Reddit 0.4085 0.5740 0.5112 Lower than both
FewRel-Nat 0.4292 0.3587 0.3287 Beats Both

MTop Intent 0.5857 0.7503 0.6495 Beats GPT-3.5 Only
StackExchange 0.3898 0.5190 0.3010 Beats GPT-3.5 Only
Massive Intent 0.6187 0.7693 0.7152 Lower than both

KEY FINDINGS:

1. On CLINC, Banking77, Massive Scenario, Reddit, and FewRel, the HCC framework is
so effective that it endows a (standard BERT model + Llama-3-8B) to surpass the annota-
tion quality of GPT-3.5 and GPT-40 Mini.

J.2  HCC ACROSS EMBEDDING BACKBONES AND SMALL LANGUAGE MODEL

The comparison of HCC across the best embedding backbones with ChatGPT-40 Mini and
ChatGPT-3.5 Turbo is presented in Tables 20] and [I9] Tables [21] and 22] further illustrate the per-
formance of the HCC paradigm using different embedding backbones, where the best encoder is
selected for each dataset in conjunction with Llama-3-8B. We compare this configuration against
GPT-40 Mini and GPT-3.5 Turbo to highlight its robustness and competitiveness.

Our ablation studies in Section [J.1]and Section [J.2] show that HCC is moderately robust even
when the specialised model is weak. For instance, using BERT as the specialised encoder, HCC
still surpasses both standalone specialised models and standalone LL.Ms, regardless of whether
clustering is performed with or without intent information. This indicates that HCC can com-
pensate for imperfect cluster structures produced by weaker encoders. At the same time, the
results show that HCC benefits consistently from stronger embedding encoders. Models such
as ES, GTE, and BGE yield progressively higher accuracy, demonstrating that improvements
in representation quality translate directly into more reliable clustering and, consequently,
stronger co-alignment performance. Overall, under the standard K = 3 and k=10 settings,
HCC remains stable across both weak and strong specialised models, confirming that it is
broadly effective for categorical NLU annotation tasks while still offering additional gains
when higher-quality encoders are available.

J.3 CAI RATIO ACROSS EMBEDDING BACKBONES (BEFORE/AFTER HCC)

Table 21] and [22] shows how the CAI Ratio behaves when pairing Llama-3-8B with four special-
ized embedding backbones of varying capacities—BERT (weak), GTE-small (moderate), E5-base
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Figure 8: Accuracy of HCC (R2) across datasets for different values of K(3,10) on Llama3-8 In-
struct Model.Performance is compared for four backbone encoders: BERT, BGE, ES5, and GTE.

Table 17: Averaged performance over seeds {1,42} for K € {3}, reported as mean =+ standard
deviation for each Dataset—Backbone pair.

Dataset Backbone Zero-Shot One-Shot Initial CAT Final CAI R1 R2 Specialized

banking77 BAAI-bge-small-en-v1.5  0.3365 £0.0039 0.6943 4 0.0103  0.4950 £ 0.0071  4.6200 +0.0283  0.8130 = 0.0005 0.8161 £ 0.0039  0.7964 & 0.0023
banking77 bert-base-uncased 0.1804 4 0.0034  0.3610 £0.0202  0.1700 +0.0283  0.6950 £ 0.0212  0.4373 +0.0101  0.4628 & 0.0057  0.3945 = 0.0096
banking77 intfloat-e5-base 0.3218 £0.0174  0.6273 £0.0051  0.4600 4 0.0424  2.9100 £ 0.1838  0.5235 4 0.0305 0.7544 £0.0158  0.7154 = 0.0002
banking77 thenlper-gte-small 0.3185 £0.0087  0.6619 4+ 0.0140  0.4700 £0.0141  3.8150 = 0.1768  0.7763 & 0.0046  0.7747 £ 0.0041  0.7614 4 0.0073
clinc BAAI-bge-small-en-v1.5 0.2823 £0.0184 0.7168 4+ 0.0055 0.3650 £ 0.0354  5.3350 +0.5020  0.8559 £ 0.0024 0.8511 £ 0.0013  0.8329 4 0.0022
clinc bert-base-uncased 0.2026 £0.0306  0.4829 4 0.0079  0.1700 £0.0141  1.1750 +0.0071  0.6264 & 0.0066  0.6454 + 0.0077  0.5572 4 0.0046
clinc intfloat-e5-base 0.3023 £0.0360  0.6870 4 0.0036  0.4000 £ 0.0990  4.3700 4 0.3253  0.8144 £0.0041  0.8211 4 0.0041  0.8021 £ 0.0071
clinc thenlper-gte-small 0.2761 £0.0071  0.7018 +0.0195  0.3350 £ 0.0071  4.1600 + 0.0566  0.8242 & 0.0031  0.8182+0.0091  0.8076 4 0.0066
few_rel_nat BAAI-bge-small-en-v1.5 0.1269 £ 0.0039  0.3522 £ 0.0060 0.1350 & 0.0071 0.8850 & 0.0212 0.4443 £+ 0.0106  0.4445 £ 0.0008 0.3748 £ 0.0028
few_rel_nat bert-base-uncased 0.1254 +0.0098  0.3922 +0.0047  0.1550 +0.0212  1.0150 + 0.0071  0.4589 + 0.0071  0.4590 + 0.0074  0.4185 + 0.0092
few_rel_nat intfloat-e5-base 0.1260 +0.0024  0.3879 +0.0022  0.1450 + 0.0071  0.9900 + 0.0141  0.4694 + 0.0161  0.4749 +0.0125  0.4079 + 0.0062
few_rel_nat thenlper-gte-small 0.1252 +0.0104  0.3499 +0.0118  0.1350 + 0.0071  0.8750 + 0.0212  0.4496 + 0.0025  0.4516 + 0.0003  0.3754 + 0.0117
massive_intent BAAI-bge-small-en-v1.5 0.3653 £ 0.0026  0.6685 & 0.0100  0.6200 £ 0.0000  3.5800 & 0.2970  0.6964 + 0.0005 0.6957 & 0.0124  0.6923 + 0.0057
massive_intent bert-base-uncased 0.2270 +0.0266  0.4080 + 0.0097  0.2400 +0.0424  1.0050 + 0.0495  0.5108 +0.0124  0.5047 +0.0052  0.4191 + 0.0126
massive_intent intfloat-e5-base 0.3245+0.0119  0.5876 + 0.0207  0.5150 +0.0212  2.4300 + 0.0566  0.6138 +0.0121  0.6323 +0.0155  0.6140 + 0.0019
massive_intent thenlper-gte-small 0.3265 +0.0223  0.6083 +0.0162  0.4950 + 0.0354  2.3450 + 0.1626  0.5752 + 0.0801  0.6226 + 0.0188  0.6271 + 0.0071

massive_scenario  BAAI-bge-small-en-v1.5  0.4469 - 0.0019  0.7076 + 0.0007  0.8050 & 0.0212  5.2000 + 0.6364  0.7932 4 0.0138  0.7634 £ 0.0140  0.7816 + 0.0250
massive_scenario  BAAI-bge-small-en-v1.5  0.4469 - 0.0019  0.7076 + 0.0007 ~ 0.8050 & 0.0212  5.2000 + 0.6364  0.7932 4 0.0138  0.7634 £ 0.0140  0.7816 + 0.0250

massive_scenario  bert-base-uncased 0.4144 +£0.0136  0.5521 +0.0266  0.5500 + 0.0424  1.6350 + 0.8556  0.6686 + 0.0017  0.5585 + 0.1393  0.6007 + 0.0231
massive_scenario  intfloat-e5-base 0.4412 +£0.0024  0.6500 + 0.0204  0.7600 + 0.0141  3.9500 + 0.7354  0.7406 + 0.0216  0.7280 + 0.0100  0.7184 + 0.0273
massive_scenario  thenlper-gte-small 0.4438 +0.0043  0.6765 + 0.0252  0.8000 + 0.0141  3.4350 + 1.6051  0.7618 + 0.0088  0.6750 + 0.0934  0.7518 + 0.0223
mtop_intent BAAI-bge-small-en-v1.5 0.2707 £ 0.0179  0.5618 £ 0.0100  0.2350 & 0.0071  1.6100 & 0.0990  0.6567 = 0.0221  0.6545 & 0.0318  0.5569 + 0.0124
mtop_intent bert-base-uncased 0.2441 +£0.0015  0.5008 + 0.0047  0.2100 + 0.0000  0.7050 + 0.5869  0.5878 + 0.0406  0.4235 + 0.2304  0.5030 + 0.0155
mtop_intent intfloat-e5-base 0.2513 £0.0123  0.5165 + 0.0095  0.1950 + 0.0071  1.2800 + 0.1414  0.6306 + 0.0300  0.6420 + 0.0345  0.5092 + 0.0079
mtop_intent thenlper-gte-small 0.2738 £ 0.0058  0.5131 +0.0005  0.2150 + 0.0354  1.2400 + 0.1697  0.6009 + 0.0166  0.6072 + 0.0048  0.5001 + 0.0137
reddit BAAI-bge-small-en-v1.5  0.3004 + 0.0002  0.4997 + 0.0007  0.3250 + 0.0071  1.5800 + 0.0990  0.4254 + 0.0015  0.5779 +0.0092  0.5115 + 0.0051
reddit bert-base-uncased 0.2016 +0.0033  0.3202 + 0.0084  0.1050 + 0.0071  0.6300 + 0.0000  0.2850 + 0.0141  0.4288 4+ 0.0125  0.3164 + 0.0057
reddit intfloat-e5-base 0.2955 + 0.0011  0.5009 + 0.0152  0.3000 + 0.0141  1.4800 + 0.0707  0.4304 + 0.0029  0.5985 4+ 0.0024  0.5121 + 0.0059
reddit thenlper-gte-small 0.3043 +£0.0233  0.5219 +0.0114  0.3300 + 0.0283  1.6600 + 0.0707 ~ 0.4405 + 0.0053  0.6048 + 0.0002  0.5311 + 0.0033

kexcl BAAI-bg 11 1.5 0.110940.0082  0.3307 £0.0111  0.1250 £ 0.0071  0.6650 + 0.0071  0.4430 £ 0.0051  0.4449 £ 0.0014  0.3745 + 0.0077

kexch bert-b: d 0.0929 4 0.0003  0.2489 +0.0090  0.0700 £ 0.0000  0.4150 +0.0212  0.3294 +0.0017  0.3314 £ 0.0097  0.2774 & 0.0048
stackexchange intfloat-e5-base 0.1193 £+ 0.0088  0.3405 4 0.0102  0.1400 £ 0.0141  0.6950 & 0.0071  0.4635 £ 0.0036  0.4706 = 0.0099  0.3898 =+ 0.0044

kexcl thenlper-gte-small 0.1263 +0.0054  0.3584 4+ 0.0083  0.1500 £ 0.0141  0.7500 & 0.0424  0.4669 + 0.0100  0.4723 +0.0034  0.3992 + 0.0133

(strong), and BGE-small-en-1.5 (strong). For each dataset-backbone configuration, we report the
Initial CAI (before HCC) and Final CAI (after HCC), along with accuracy under Zero-Shot, Single-
Shot, Specialized, and HCC (R2) settings. Two clear trends emerge from the results.

First, the Final CAI (after co-alignment) is consistently higher than the Initial CAI across all
datasets and all backbones, mirroring the performance improvements achieved by HCC. In par-
ticular, the weakest model—BERT—shows the largest CAI gains, with improvements substantially
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Table 18: Averaged performance over seeds {1, 42} for K = 10, reported as mean
deviation for each Dataset—Backbone pair.

+ standard

Dataset Backbone Zero-Shot One-Shot Initial CAI Final CAI R1 R2 Specialized

banking77 BAAI-bge-small-en-v1.5  0.3435 4 0.0078 0.6687 £ 0.0370  0.5250 £ 0.0495 4.3350 £ 0.2333  0.7976 = 0.0090  0.8016 +0.0005  0.7674 £ 0.0135
banking77 bert-base-uncased 0.1758 £0.0090  0.2977 +0.0248  0.1550 4 0.0495 250 +0.0495  0.4487+0.0005  0.4534 +0.0002  0.3286 =+ 0.0202
banking77 intfloat-e5-base 0.2919 £0.0138  0.6008 +0.0191  0.4000 £ 0.0141  2.5950 £ 0.0919  0.7404 £0.0044  0.7433 £0.0021  0.6974 £ 0.0041
banking77 thenlper-gte-small 0.3179 £0.0239  0.6407 £ 0.0090  0.4500 & 0.0283  3.1900 £ 0.1131  0.7677 £0.0099  0.7734 +£0.0179  0.7256 + 0.0106
cline BAAI-bge-small-en-v1.5  0.2747 4 0.0066  0.7048 £ 0.0036 ~ 0.3450 + 0.0212  4.3050 £ 0.1344  0.838140.0046  0.8490 + 0.0042  0.8166 + 0.0036
clinc bert-base-uncased 0.1586 £ 0.0156  0.4353 +0.0038  0.1250 0.0071  0.9250 £0.0212  0.6151 £0.0044  0.6221+£0.0112  0.4927 4 0.0019
clinc intfloat-e5-base 0.2430 £0.0014  0.6889 = 0.0189  0.2900 £ 0.0141  3.4700 £ 0.0000 0.8231 £0.0116  0.8083 & 0.0011 0.7883 £ 0.0146
cline thenlper-gte-small 0.2602 £ 0.0053  0.6838 +0.0094  0.3300 £ 0.0283  3.8250 £ 0.1061  0.8213 £0.0148  0.8214 +0.0002  0.7920 £ 0.0019
few rel_nat BAAI-bge-small-en-vl.5  0.1201 4 0.0057  0.3408 £0.0022  0.1250 £ 0.0071  0.8900 + 0.0566 ~ 0.4324 +0.0073  0.4467 £ 0.0095  0.3667 = 0.0028
few_rel_nat bert-base-uncased 0.1269 £0.0024  0.3919 +0.0077  0.1450 £ 0.0071  1.0550 £ 0.0071  0.4706 + 0.0046  0.4684 = 0.0065 0.4177 £ 0.0087
few_rel_nat intfloat-e5-base 0.1285 £ 0.0002  0.3732 £ 0.0003  0.1450 & 0.0212  0.9950 £ 0.0495 0.4763 + 0.0057  0.4761 & 0.0025 0.4022 + 0.0092
few_rel nat thenlper-gte-small 0.1251+£0.0046  0.3504 +0.0066 ~ 0.1350 4 0.0071  0.9100 £ 0.0283 0.4541 4 0.0014  0.4477 +£0.0043  0.3713 +0.0150
massive_intent BAAI-bge-small-en-vl.5 0.3741 40.0112  0.6180 £ 0.0457  0.6450 £ 0.0354  3.4400 +0.1273  0.6720+0.0121  0.6881 +0.0040  0.6574 = 0.0352
massive_intent bert-base-uncased 0.2095 £0.0152  0.3497 £ 0.0342  0.1950 £ 0.0495  0.7900 £ 0.1414  0.5089 £ 0.0021  0.4955 & 0.0292 0.3495 £ 0.0278
massive_intent intfloat-e5-base 0.2914 £ 0.0050  0.5496 £ 0.0140  0.4050 4 0.0212  1.8850 £ 0.4596 0.6374 £ 0.0078  0.5947 &+ 0.0411 0.5819 + 0.0045
massive_intent thenlper-gte-small 0.3267 £ 0.0050  0.5856 +0.0055  0.4950 4 0.0354  2.5100 £ 0.0141  0.6478 +0.0078  0.6370 +0.0017  0.6042 + 0.0014

massive_scenario BAAI-bge-small-en-v1.5
massive_scenario  bert-base-uncased

0.4509 + 0.0043
=+ 0.0036
0. +0.0078
0.4457 £ 0.0316

0.6843 + 0.0347
0.5311 + 0.0231
0.6316 + 0.0226
0.6675 + 0.0038

0.7900 + 0.0000
0.5650 =+ 0.0495
0.7950 + 0.0071
0.8200 £ 0.1131

5.0650 + 0.0778
1.7700 £ 0.4384
4.0550 + 0.7000
3.7700 + 0.7495

0.7860 + 0.0036
0.6407 4+ 0.0117
0.7416 4+ 0.0197
0.7461 £ 0.0014

0.7727 + 0.0043
0.6071 + 0.0621
0.7300 + 0.0138
0.7103 + 0.0178

0.7695 + 0.0302
0.5701 £ 0.0316
0.7014 £ 0.0319
0.7473 £+ 0.0150

0.2681 £ 0.0164
0.2329 + 0.0289
0.2749 £ 0.0015
0.2621 £ 0.0176

0.5136 = 0.0031
0.4477 £ 0.0324
0.4895 + 0.0081
0.4930 + 0.0392

0.2100 £ 0.0424
0.1600 + 0.0424
0.1950 £ 0.0212
0.2000 £ 0.0283

1.3250 = 0.2333
0.6000 + 0.4525
1.2050 + 0.0636
1.2050 = 0.1344

0.6317 £ 0.0330
0.5595 + 0.0409
0.6008 £ 0.0148
0.5920 £ 0.0263

0.6335 £ 0.0685
0.4424 4+ 0.2384
0.6037 £ 0.0245
0.5975 £ 0.0311

0.5082 £ 0.0129
0.4365 £ 0.0314
0.4897 £ 0.0123
0.4709 =+ 0.0360

0.2902 =+ 0.0090
0.1862 + 0.0075
0.2976 £ 0.0121
0.3129 £ 0.0112

0.4916 = 0.0037
0.3113 £ 0.0112
0.4969 =+ 0.0011
0.5151 + 0.0053

0.3100 = 0.0000
0.1050 £ 0.0071
0.3050 £ 0.0212
0.3500 £ 0.0141

1.6400 = 0.1273
0.6150 + 0.0212
1.4700 £ 0.0424
1.7150 £ 0.0354

0.4210 £ 0.0024
0.2824 +0.0143
0.4287 £ 0.0057
0.4399 + 0.0031

0.5712 £ 0.0081
0.4248 +0.0125
0.5962 £ 0.0013
0.6032 £ 0.0015

0.5008 £ 0.0048
0.3045 £ 0.0077
0.5033 £ 0.0013
0.5233 £ 0.0020

massive_scenario  intfloat-e5-base
massive_scenario  thenlper-gte-small
mtop_intent BAAI-bge-small-en-v1.5
mtop_intent bert-base-uncased
mtop_intent intfloat-e5-base
mtop_intent thenlper-gte-small
reddit BAAI-bge-small-en-v1.5
reddit bert-base-uncased
reddit intfloat-e5-base
reddit thenlper-gte-small

BAAI-bge-small 1.5

kexcl bert-bas: cased

stackexchange intfloat-e5-base

henl "

P

0.1079 +£ 0.0090
0.0929 + 0.0102
0.1079 £0.0124
0.1216 + 0.0032

0.3130 £ 0.0136
0.2336 + 0.0160
0.3021 + 0.0039
0.3328 + 0.0228

0.1100 + 0.0283
0.0600 £ 0.0141
0.1200 £ 0.0141
0.1300 + 0.0000

0.6100 + 0.0424
0.3800 + 0.0141
0.5850 + 0.0071
0.7050 + 0.0495

0.4397 £ 0.0012
0.3277 £ 0.0054
0.4706 £ 0.0065
0.4635 + 0.0053

0.4311 + 0.0049
0.3301 £ 0.0054
0.4590 + 0.0141
0.4647 £ 0.0053

0.3496 + 0.0088
0.2579 £ 0.0092
0.3450 =+ 0.0065
0.3795 £ 0.0197

Table 19: Performance Comparison: HCC (R2-Best Among All Specialised Model Based on
Table 21) vs. Closed-Source Models. We compare the best HCC configuration (using the
optimal backbone per dataset) against GPT-40 Mini and GPT-3.5 Turbo. HCC outperforms

both closed-source models on the majority of datasets. (K=3).

Dataset HCC (R2) 4o0Mini 3.5Turbo HCC >4omini HCC > 3.5 Turbo
CLINC 83.98 81.44 66.58 Yes Yes
Massive Scenario 79.49 66.83 60.89 Yes Yes

MTop Intent 67.76 75.03 64.95 No Slightly
StackExchange 47.74 51.90 30.10 No Yes
Banking77 80.68 65.12 65.12 Yes Yes
Reddit 60.62 57.40 51.12 Yes Yes
FewRel-Nat 47.46 35.87 32.87 Yes Yes
Massive Intent 66.88 76.93 71.52 No No

Table 20: Performance Comparison: HCC (R2-Best Among All Specialised Models Based on
Table 22) vs. Closed-Source Models. We compare the best HCC configuration (using the
optimal backbone per dataset) against GPT-40 Mini and GPT-3.5 Turbo. HCC outperforms

both closed-source models on the majority of datasets.(K=10).

Dataset HCC (R2) 40Mini 3.5Turbo HCC >4omini HCC > 3.5 Turbo
CLINC 85.02 81.44 66.58 Yes Yes
Massive Scenario 79.62 66.83 60.89 Yes Yes
MTop Intent 66.71 75.03 64.95 No Yes
StackExchange 47.28 51.90 30.10 No Yes
Banking77 82.18 65.12 65.12 Yes Yes
Reddit 43.43 57.40 51.12 No No
FewRel-Nat 47.86 35.87 32.87 Yes Yes
Massive Intent 69.33 76.93 71.52 No No

higher than those of the stronger backbones. This reflects that HCC is effective across both weak
and strong model settings, and that CAI accurately captures the improvement after co-alignment.

Second, after applying HCC, the Final CAI exhibits a strong and stable correlation with the re-
sulting co-aligned accuracy. This indicates that HCC not only improves the quality of the assigned
annotations, but also enhances the discriminative power of CAI. Consequently, CAI serves as a ro-
bust, backbone-agnostic reliability signal for assessing LLM annotation quality at scale. Likewise,
the Initial CAI accurately reflects baseline LLM performance across different backbone—dataset
combinations, demonstrating that CAI is sensitive to both model quality and task difficulty.
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Dataset Backbone Initial CAI Final CAI  Zero-Shot  Single-Shot  Specialized HCC (R2)
BERT 0.14 1.17 18.58 42.80 56.04 82.40
[ INC ES 030 431 26.18 61.51 79.71 83.11
CLINC GTE 0.28 410 2731 60.18 80.29 81.87
BGE 028 467 29.27 60.27 83.44 83.98
BERT 055 1.90 4331 53.67 61.70 74.61
Massive Scenario E3 0.64 4.08 45.16 57.73 73.77 75.66
S GTE 0.75 4.80 45.93 62.78 76.77 77.14
BGE 0.72 559 46.57 62.58 79.93 79.49
BERT 026 0.99 32.15 45.55 49.20 65.32
Mtop Intent E5 026 121 33.58 47.04 50.36 58.30
op nte! GTE 029 1.26 37.28 46.58 49.04 62.47
BGE 030 1.70 35.59 47.61 54.81 67.76
BERT 0.07 0.30 10.18 26.59 28.08 39.41
StackExchange B3 0.13 0.72 1121 36.93 39.29 47.74
8¢ GTE 0.15 0.77 1222 38.93 40.86 46.10
BGE 0.11 0.66 10.68 36.55 37.99 4331
BERT 0.16 0.70 17.99 34.68 38.77 71.62
Banking?7 ES 0.46 274 32.53 63.08 71.53 74.58
ing GTE 047 3.62 31.95 67.18 76.66 77.08
BGE 0.50 478 34.55 68.70 79.81 80.68
BERT 0.13 0.56 2117 32.36 31.24 58.13
Reddit ES 030 1.44 30.34 50.23 50.79 60.12
e GTE 032 1.64 29.87 52.60 52.88 60.62
BGE 033 151 30.15 50.73 50.79 56.79
BERT 0.12 0.77 12.21 34.96 4121 42,05
FewRel-Nat E5 0.13 0.99 12.77 3531 40.36 47.46
ewRel-Na GTE 0.12 0.85 11.99 31.23 36.72 4431
BGE 0.14 0.88 1333 32,99 37.28 44.84
BERT 021 0.86 20.07 40.85 41.02 62.61
Massive Intent ~ E 054 245 33.62 58.14 61.53 63.99
GTE 052 256 3241 60.05 6221 63.25
BGE 055 3.07 34.10 67.05 69.64 66.88

Table 21: Ablation Study across Embedding Backbones and a Small Language Model (Llama8-
3 Instruct). We compare the performance of HCC using three sentence encoders (ES, GTE, BGE)
and a small language model (BERT) across eight datasets. Initial CAI and Final CAI show how the
verification signal strengthens as model quality improves. HCC (R2) consistently outperforms the
Zero-Shot, Single-Shot, and Specialized baselines in most configurations, with the exception of the
BGE backbone on Massive Intent and Massive Scenario. (K=3)

Dataset Backbone Initial CAI  Final CAI  Zero-Shot Single-Shot Specialized HCC (R2)
BERT 0.19 0.97 24.73 37.22 49.13 79.58

CLINC ES 039 373 3531 56.78 77.80 81.91
- GTE 041 4.15 35.49 5831 79.07 82.24
BGE 047 4.67 38.96 60.20 81.40 85.02

BERT 0.53 1.82 4452 48.79 59.25 75.76

Massive Seenario S 0.69 4.02 4633 58.04 72.39 74.45
GTE 073 4.58 46.07 58.94 75.79 75.79

BGE 0.72 5.87 46.37 64.59 79.09 79.62

BERT 026 0.99 32.15 45.55 49.20 65.32

MTop Intent ES 026 121 33.58 47.04 50.36 58.30
P GTE 029 126 37.28 46.58 49.04 62.47
BGE 030 1.70 35.59 47.61 54.81 67.76

BERT 0.08 0.29 1027 25.77 26.44 38.98

StackExch ES 0.14 0.62 12.95 32.84 34.96 47.28
acklixchange  GTE 0.16 0.77 13.69 37.32 39.34 46.27
BGE 0.15 0.66 13.04 33.93 35.59 43.67

BERT 0.12 0.51 18.51 28.02 31.43 72.34

Banking?7 ES 0.46 2.68 31.27 61.43 70.03 72.44
anking GTE 051 298 33.96 63.44 71.82 76.98
BGE 0.67 4.68 39.90 69.48 77.69 82.18

BERT 0.12 0.52 19.40 3143 29.90 40.85

Reddit E5 032 1.53 29.59 50.45 50.42 42.99
GTE 036 171 32.95 51.85 5219 43.43

BGE 030 156 28.91 49.70 49.74 41.16

BERT 0.12 0.77 12.61 35.18 41.16 42.92

FewRel-Nat ES 0.15 1.00 13.68 34.24 39.58 47.86
witel- GTE 0.11 0.87 11.47 32.19 36.07 45.45
BGE 0.12 0.87 11.61 3243 36.47 4429

BERT 022 0.68 2391 32.92 32,99 61.87

Massive Intent  ES 0.63 239 38.40 53.73 57.87 63.35
asstve “nten GTE 0.67 143 39.04 57.83 60.32 4751
BGE 0.82 4.08 42.70 64.86 68.22 69.33

Table 22: Ablation Study across Embedding Backbones and a Small Language Model
(Llama3-8B Instruct). We compare the performance of HCC using three sentence encoders
(E5,GTE,BGE) and a small language model (BERT) across eight datasets. Initial CAI and
Final CAI show how the verification signal strengthens as model quality improves. HCC (R2)
consistently outperforms the Zero-Shot, Single-Shot, and Specialized baselines in most config-
urations, with the exception of the Reddit (K=10).

In terms of effectiveness, HCC achieves the highest accuracy among all three settings, consistently
outperforming the Zero-Shot, Single-Shot, and Specialized baselines. Overall, this ablation demon-
strates that the CAI Ratio is both embedding-agnostic and model-agnostic: when Llama-3-8B
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serves as the primary annotator, HCC reliably improves both CAI and annotation accuracy across
most embedding backbones. This confirms the robustness of our verification (CAI) and refinement
(HCC) pipeline, and establishes CAI as a stable, reference-free reliability signal for large-scale an-
notation.

Comparison Stage (K=3) Correlation (r) P-value (p) Significance
Baseline State 0.5729 6.11 x 107*  Yes (p < 0.001)
(Initial CAI vs. Zero-Shot Acc.)

Prompted State 0.6605 3.80 x 107°  Yes (p < 0.001)
(Initial CAI vs. Single-Shot Acc.)

Refined State 0.7791 1.50x 1077  Yes(p < 1077)

(Final CAl vs. HCC Final Acc.)

Table 23: Statistical Validation of CAI Effectiveness (N=32). Pearson correlation tests across all
8 datasets and 4 backbones (3 Sentence Encoder and a Language Model) show that the CAI ratio
depicts as reliable metric of accuracy as the co-alignment process proceeds, culminating in a highly
significant correlation in the final co-alignment state.(K=3)

Comparison Stage (K=10) Correlation (1) P-value (p) Significance
Baseline State 0.5731 6.07 x 107*  Yes (p < 0.001)
(Initial CAI vs. Zero-Shot Acc.)

Prompted State 0.6614 3.75x 107°  Yes (p < 0.001)
(Initial CAI vs. Single-Shot Acc.)

Refined State 0.7789 1.47x1077  Yes(p < 1077)

(Final CAl vs. HCC Final Acc.)

Table 24: Statistical Validation of CAI Effectiveness (N=32). Pearson correlation tests across all
8 datasets and 4 backbones show that the CAI signal becomes increasingly predictive of accuracy as
co-alignment progresses, culminating in a highly significant correlation at the refined state.(K=10)

J.4 STATISTICAL VALIDATION OF CAI EFFECTIVENESS ON ACROSS SENTENCE ENCODER
AND LANGUAGE MODEL

To further validate the reliability of the CAI Ratio as a reference-free quality signal, we conducted
a Pearson correlation test between (1) Initial CAI and the LLM’s Zero-Shot and Single-Shot accu-
racies, and (2) Final CAI and the HCC Co-Aligned accuracy. As show in the Table 23] and Table
@ across all embedding backbones (BERT, GTE-small, E5-base, BGE-small-en-1.5) and all eight
datasets, Initial CAI shows a moderate positive correlation with both Zero-Shot and Single-Shot
Llama-3-8B accuracy, indicating that raw agreement between the encoders and the LLM reflects
the baseline reliability of the model. After applying HCC, Final CAI exhibits a strong and con-
sistently higher correlation with the resulting co-aligned accuracy, demonstrating that the HCC
refinement process both increases CAI and strengthens its alignment with true correctness. These
results confirm that CAI becomes a more discriminative and robust predictor of LLM output
quality after co-alignment, supporting its use as a backbone-agnostic reliability indicator for large-
scale annotation.

J.5 RUNNING TIME AND TOKEN COST
We measured the runtime and token cost of each configuration, as summarized in Table 23] which

reports the LLM running time and token usage per 10,000 examples under both zero-shot and
single-shot (group prompting) settings using Llama-3-8B Instruct.

J.6  HCC RUNTIME FOR CO-ALIGNMENT
To evaluate the efficiency of HCC, as shown in Table 26 we measured the end-to-end latency of the

Refinement Phase (DCCA) using Llama-3-8B Instruct. The reported runtime values are averaged
across four sentence encoders (E5-base, GTE-small, BGE-small, and BERT-base).
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Llama 3 8B Instruct (One-Shot) | Llama 3 8B Instruct(Zero-Shot)

Dataset Models Tok/I0k (M) | Time/I0K (min) | Tok/I0k (M) | Time/I0k (min)
bert-base-uncased 1.55 83.1 1.24 106.7

Banking77 intfloat-e5-base 1.54 854 1.26 116.8
g thenlper-gte-small 1.44 77.1 1.21 106.9
BAAI-bge-small-en-v1.5 1.52 83.8 1.22 106.1

bert-base-uncased 1.42 75.9 1.74 211.9

Clinc intfloat-e5-base 1.17 37.0 1.74 239.7
thenlper-gte-small 1.16 36.0 1.69 199.6
BAAI-bge-small-en-v1.5 1.16 36.2 1.68 197.4

bert-base-uncased 1.17 359 1.02 46.4

i |nat intfloat-e5-base 1.17 37.0 1.03 48.7
ew-rel-na thenlper-gte-small 1.16 36.0 1.03 478
BAAI-bge-small-en-v1.5 1.16 36.2 1.03 47.5

bert-base-uncased 0.98 67.7 0.92 104.6

massive_intent intfloat-e5-base 0.99 64.9 0.90 96.1
ssive-n thenlper-gte-small 0.99 632 0.93 102.6
BAAI-bge-small-en-v1.5 1.04 71.9 0.95 109.0

bert-base-uncased 0.58 320 0.47 475

massive_scenario intfloat-e5-base 0.58 34.4 0.48 48.8
o thenlper-gte-small 0.57 34.6 0.46 474
BAAI-bge-small-en-v1.5 0.56 335 0.48 50.4

bert-base-uncased 1.30 63.8 1.32 121.8

mtop_intent intfloat-e5-base 1.30 65.2 1.37 134.2
P- thenlper-gte-small 1.30 69.5 1.37 127.9
BAAI-bge-small-en-v1.5 1.33 68.9 1.40 140.3

bert-base-uncased 0.95 46.7 0.79 69.3

Reddit intfloat-e5-base 0.94 44.0 0.77 67.6
thenlper-gte-small 0.96 45.6 0.80 74.5
BAAI-bge-small-en-v1.5 0.95 44.9 0.79 70.5

bert-base-uncased 2.13 87.4 249 312.6

Stackexchang intfloat-e5-base 2.04 85.5 2.36 285.5
ACKEXCRANEE | thenlper-gte-small 2,09 86.7 241 296.1
BAAI-bge-small-en-v1.5 2.10 91.0 2.46 316.2

Table 25: Marginal Estimated Cost per 10k Examples: Comparison of Teacher Models (Llama
3 8B). M denotes millions and Min denotes minutes

It is important to note:

* These measurements exclude one-time preprocessing operations—namely, semantic clus-
tering performed by the task-specific specialized model and general LLM annotation (both
zero-shot and single-shot prompting)—which are lightweight and standard.

* The Refinement Phase constitutes the main active computational cost of HCC, represent-
ing the core alignment process where consistency-based correction and re-verification oc-
cur.

Table 26: Co-alignment Runtime (Llama-3-8B). We report the total runtime to process the full
experimental suite (4 sentence encoders) and the average runtime per individual encoder. The
per-model cost is extremely low, averaging less than a minute.

Dataset Total Runtime Specialised Models (3 Encoders+Language Model) Avg. Runtime per Specialised Model
Banking77 2 min 32.0 sec 38.0 sec

CLINC 3 min 45.3 sec 56.3 sec

Reddit 3 min 05.1 sec 46.3 sec

MTOP Intent 3 min 52.5 sec 58.1 sec

Massive Scenario 2 min 41.9 sec 40.5 sec

Massive Intent 2 min 13.7 sec 33.4 sec

FewRel-Nat 4 min 31.0 sec 1 min 7.8 sec
StackExchange 4 min 55.4 sec 1 min 13.9 sec

Average 2 3 min 27 sec ~ 51.8 sec
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Observation: Across nearly all datasets, single-shot prompting is substantially faster and more
token-efficient than zero-shot prompting. Thus, HCC does not introduce significant additional
inference cost; rather, it leverages the specialised model to perform semantic clustering and pro-
vide compact in-context examples for group-based annotation, followed by a lightweight refine-
ment stage. This design keeps the overall pipeline relatively efficient while improving annotation
quality. At the same time, the zero-shot predictions preserve output diversity by exposing the full
token-distribution behaviour of the LLM, which complements the specialised model and mitigates
the overconfidence commonly observed in LLM-only predictions.

J.7 MORE DETAILS ON TWO-ROUND CO-ALIGNMENT AND CAI IMPROVEMENT (LLAMA
3-8 INSTRUCT)

Table[27]and Table [2§|reports the accuracy changes from Round 1 to Round 2 across all embedding
backbones (E5-base, GTE-small, BGE-small-en-v1.5, and BERT-base-uncased) on the LLlama3-8
Instruct Model. The results show that two rounds consistently provide the best balance between
improvement and stability. Round 2 captures the remaining correctable cases, while additional
rounds would propagate noise and degrade annotation quality.

Round 1. The initial consistent set (C) resolves the easier or more obvious annotation errors, but
many harder cases in the inconsistent set (Z) remain incorrect. This is because Round 1 relies only
on C U H, so its coverage is limited.

Round 2. The samples corrected in Round 1 expand the reference base, enabling HCC to resolve
the remaining inconsistencies. This often yields further improvements (e.g., +17.7% on Reddit with
BERT).

Convergence and Signal Exhaustion (Why Stop at Round 2?). Our results (Table [27| and Ta-
ble [28)) show that performance reaches a plateau by Round 2. At this point, the reference set has
expanded to include all samples that can be reliably aligned (C U CZ). The remaining inconsis-
tent samples (Z7) are mostly “difficult” cases where the LLM and the embedding model genuinely
disagree and cannot be corrected further. Importantly, going beyond Round 2 risks performance
regression rather than simply yielding diminishing returns.

Across several tasks, Round 2 already reaches a performance plateau. Therefore, additional rounds
tend to yield diminishing returns or even reduce accuracy.For example, Banking77 (BERT) shows
a drop of -1.79% and StackExchange (BERT) drops by -0.56%. These patterns indicate that the
remaining inconsistencies correspond to difficult samples, making Round 2 the appropriate and
stable stopping point. Vote Weighting. Our voting procedure is already similarity-aware because
the top-K neighbors are selected using cosine similarity, ensuring that only the most semantically
similar examples contribute to the decision. Within this top-K set, however, the final vote is taken
using uniform weighting (simple majority). More specifically, for each inconsistent instance x € Z,
we compute its similarity with every intent group.
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Dataset (K=3) Backbone HCC (R1) HCC (R2) A Observation
BERT 73.41 71.62 -1.79 Saturation
Banking77 E5 75.42 74.58 -0.84 Saturation
anking GTE 76.85 77.08 +0.23 Convergence
BGE 81.36 80.68 0.68 Saturation
BERT 80.00 82.40 +2.40 Refinement
E5 81.40 83.11 +1.71 Refinement
CLINC GTE 80.44 81.87 +1.43 Refinement
BGE 84.38 83.98 -0.40 Saturation
BERT 40.41 58.13 +17.72 Correction
Reddit E5 43.39 60.12 +16.73 Correction
GTE 43.61 60.62 +17.01 Correction
BGE 42.65 56.79 +14.14 Correction
BERT 0.5819 0.6532 +0.0713 Refinement
MTop Intent ES5 0.6192 0.5830 -0.0362 Regression
P GTE 0.4466 0.6247 +0.1781  Refinement
BGE 0.6553 0.6776 +0.0223  Refinement
BERT 74.82 74.61 -0.21 Saturation
Massive Scenario E5 74.68 75.66 +0.98 Refinement
GTE 78.14 77.14 -1.00 Saturation
BGE 80.87 79.49 -1.38 Saturation
BERT 61.53 62.61 +1.08 Refinement
Massive Intent E5 59.78 63.99 +4.21 Refinement
assive tnte GTE 62.58 63.25 +0.67  Refinement
BGE 65.47 66.88 +1.41 Refinement
BERT 42.08 42.05 -0.03 Saturation
FewRel-Nat E5 46.56 47.46 +0.90 Refinement
ewRel-Na GTE 42.12 4431 +2.19  Refinement
BGE 44.73 44.84 +0.11 Convergence
BERT 39.97 39.41 -0.56 Saturation
ES5 46.90 47.74 +0.84 Refinement
StackExchange GTE 45.84 46.10 +026  Convergence
BGE 44.20 43.31 -0.89 Saturation

Table 27: Two-Round Correction Summary (Llama3-8 Instruct) Across Datasets and All Spe-
cialised Models. Comparing Round 1 and Round 2 accuracy across all backbones shows that
while Round 2 provides critical corrections for complex tasks (e.g., Reddit), it represents a
saturation point for simpler tasks (K=3).

Dataset (K=10) Backbone HCC (R1) HCC (R2) A Observation
BERT 0.7331 0.7234 -0.0097 Regression

Banking77 ES 0.7406 0.7244 -0.0162 Regression
2 GTE 0.7633 0.7698 +0.0065 Refinement

BGE 0.8185 0.8218 +0.0033 Refinement

BERT 0.7958 0.7958 0.0000 Convergence

ES 0.8258 0.8191 -0.0067 Regression

CLINC GTE 0.8162 0.8224 +0.0062 Refinement
BGE 0.8427 0.8502 +0.0075 Refinement

BERT 0.4016 0.4085 +0.0069 Refinement

Reddit ES 0.4308 0.4299 -0.0009 Regression
GTE 0.4302 0.4343 +0.0041 Refinement

BGE 0.4224 0.4116 -0.0108 Regression

BERT 0.5819 0.6532 +0.0713 Refinement

MTop Intent ES 0.6256 0.5830 -0.0426 Regression
P GTE 0.6211 0.6247 +0.0036 Refinement
BGE 0.6623 0.6776 +0.0153 Refinement

BERT 0.7515 0.7576 +0.0061 Refinement

Massive Scenario E5 0.7364 0.7445 +0.0081 Refinement
v : GTE 0.7720 0.7579 0.0141 Regression
BGE 0.8013 0.7962 -0.0051 Regression

BERT 0.4250 0.4292 +0.0042 Refinement

FewRel-Nat E5 0.4638 0.4786 +0.0148 Refinement
GTE 0.4580 0.4545 -0.0035 Regression

BGE 0.4453 0.4429 -0.0024 Regression

BERT 0.6110 0.6187 +0.0077 Refinement

Massive Intent E5 0.6533 0.6335 -0.0198 Regression
GTE 0.6261 0.4751 -0.1510 Regression

BGE 0.6944 0.6933 -0.0011 Regression

BERT 0.3891 0.3898 +0.0007 Refinement

StackExchange E5 0.4704 0.4728 +0.0024 Refinement
’ 8 GTE 0.4581 0.4627 +0.0046 Refinement

BGE 0.4389 0.4367 -0.0022 Regression

Table 28: Two-Round Correction Summary (Llama3-8 Instruct) Across Datasets and All Spe-
cialised Models (K=10).
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K ADDITIONAL ABLATION STUDIES BASED ON CHATGPT40 MINI LARGE
LANGUAGE MODEL

K.1 CASE ANALYSIS OF CAI ON CHATGPT 40 MINI

Failure Case: MASSIVE-Intent. While our co-alignment pipeline achieves consistent gains on
Banking77, CLINC, MTOP, and Reddit, MASSIVE-Intent emerges as a clear failure case, re-
vealing important limitations of our approach. MASSIVE-Intent is uniquely challenging due to
its dense, fine-grained intent space, where many labels differ only by minor slot variations (e.g.,
informcity, inform.city_other, inform.place._detail). As a result, semantically
similar queries receive nearly identical embeddings, causing nearest-neighbor voting to collapse
and producing unreliable correction candidates.

Furthermore, the dataset’s multilingual and translationese style produces short, syntactically uni-
form queries, which substantially reduces the discriminative power of English-centric embedding
models. In addition, ChatGPT-40-mini is primarily specialised for reasoning tasks and does
not exhibit equally strong multilingual capabilities, further limiting its ability to exploit subtle
cross-lingual intent distinctions. This is reflected in its low consistent-sample ratio (~0.40-0.45)
and a weak CALI signal (<1.0), indicating that disagreements between the LLM and the embed-
der are largely uninformative. When the consistent set is small and noisy, DCCA cannot provide
meaningful guidance and instead amplifies uncertainty, resulting in limited or negative correction
effects.

Overall, MASSIVE-Intent highlights a boundary condition of our method:

when intent spaces are extremely fine-grained and embedding separability is
low, consistency-driven repair becomes unreliable.

This failure case motivates future extensions, such as density-adaptive clustering, slot-aware repre-
sentations, and multilingual embedding backbones.

K.2 RUNNING TIME AND TOTAL TOKEN COST (CHATGPT 40-MINT)

We report the estimated token cost and runtime of Chat GPT-40-mini across all tasks in Table[29}
For each dataset and specialised encoder backbone, we provide the estimated token usage per 10k
examples and the corresponding estimated runtime under both single-shot (with intent) and zero-
shot (without intent) prompting.

K.3 RUNNING TIME OF HCC FOR CO-ALIGNMENT (CHATGPT 40-MINI)

To demonstrate the computational efficiency of Heterogeneous Consistency Co-alignment (HCC),
we report the actual wall-clock execution time for the complete two-round verification procedure
on all datasets in Table The results show that HCC completes co-alignment within 0.36-1.11
minutes per dataset, highlighting its extremely low computational overhead.

K.4 Two0-ROUND CO-ALIGNMENT AND CAI IMPROVEMENT (CHATGPT 40-MINI)

Table summarises the two-round HCC correction results for ChatGPT-4o0—-mini across all
datasets. We report (1) the initial and final CAI ratios, (2) Round-1 and Round-2 correction accu-
racies, and (3) the accuracy gain from R1 to R2. These results explicitly show how HCC improves
annotation alignment.
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. . L Est. Tokens/10k (Millions) | Est. Time/10k (Minutes)
Dataset/ChatGFT 4o mini | Model Single-Shot Zero-Shot | Single-Shot | Zero-Shot
bert-base-uncased 1.02 0.92 16.1 182

Banking77 intfloat-e5-base 0.99 0.90 159 17.7
thenlper-gte-small 1.01 0.88 16.2 17.2

BAAI-bge-small-en-v1.5 1.02 0.86 16.3 16.9

bert-base-uncased 111 0.98 13.9 14.9

Cline intfloat-e5-base 112 0.97 14.1 14.3
thenlper-gte-small 1.13 0.98 14.0 14.5

BAAI-bge-small-en-v1.5 111 0.98 14.3 15.0

bert-base-uncased 115 1.06 14.7 15.7

few rel_nat intfloat-e5-base 1.13 1.07 14.5 158
thenlper-gte-small 1.13 1.10 14.7 16.1

BAAI-bge-small-en-v1.5 1.15 1.12 14.3 16.2

bert-base-uncased 0.78 0.75 14.7 19.1

massive_intent intfloat-e5-base 0.77 0.71 15.0 17.7
thenlper-gte-small 0.78 0.70 14.9 17.2

BAAI-bge-small-en-v1.5 0.77 0.72 14.9 17.3

bert-base-uncased 0.52 0.37 12.6 13.6

massive_scenario intfloat-e5-base 0.51 0.38 12.5 12.6
thenlper-gte-small 0.52 0.37 12.7 13.1

BAAI-bge-small-en-v1.5 0.52 0.38 124 12.8

bert-base-uncased 1.07 1.63 15.7 30.3

miop_intent intfloat-e5-base 1.06 1.62 16.3 29.0
- thenlper-gte-small 1.05 1.69 16.1 30.8
BAAI-bge-small-en-v1.5 1.05 1.71 15.7 31.0

bert-base-uncased 0.83 0.67 15.0 15.6

Reddit intfloat-e5-base 0.82 0.66 14.9 15.0
thenlper-gte-small 0.83 0.67 14.9 15.6

BAAI-bge-small-en-v1.5 0.83 0.67 14.9 15.2

bert-base-uncased 1.61 1.45 19.8 21.2

Stackexchange intfloat-e5-base 1.61 1.43 19.7 21.1
thenlper-gte-small 1.61 1.43 19.9 20.2

BAAI-bge-small-en-v1.5 1.61 1.44 20.1 20.3

Table 29: Marginal Estimated Cost per 10k Examples (GPT-40-mini): Single-Shot (With Intent) vs
Zero-Shot (Without Intent)

Dataset / ChatGPT-40-mini | Specialised Model Time (s) | Time (min)
bert-base-uncased 33.46 0.56

Clinc intfloat-e5-base 37.76 0.63
thenlper-gte-small 35.63 0.59

BAAI-bge-small-en-v1.5 35.42 0.59

bert-base-uncased 21.79 0.36

massive._scenario intfloat-e5-base 28.95 0.48
) - thenlper-gte-small 26.01 0.43
BAAI-bge-small-en-v1.5 26.44 0.44

bert-base-uncased 47.42 0.79

Stackexchange intfloat-e5-base 63.09 1.05
g thenlper-gte-small 60.33 1.01
BAAI-bge-small-en-v1.5 59.43 0.99

bert-base-uncased 26.25 0.44

Bankine77 intfloat-e5-base 27.75 0.46
g thenlper-gte-small 26.54 0.44
BAAI-bge-small-en-v1.5 24.31 0.41

bert-base-uncased 24.72 0.41

massive_intent intfloat-e5-base 27.49 0.46
T thenlper-gte-small 24.92 0.42
BAAI-bge-small-en-v1.5 22.18 0.37

bert-base-uncased 4591 0.77

few rel_nat intfloat-e5-base 66.86 1.11
- thenlper-gte-small 63.53 1.06
BAAI-bge-small-en-v1.5 63.22 1.05

bert-base-uncased 35.48 0.59

Reddit intfloat-e5-base 48.39 0.81
thenlper-gte-small 43.38 0.72

BAAI-bge-small-en-v1.5 42.57 0.71

bert-base-uncased 31.22 0.52

mtop_intent intfloat-e5-base 47.50 0.79
P thenlper-gte-small 44.53 0.74
BAAI-bge-small-en-v1.5 41.39 0.69

Table 30: Actual Execution Time per Dataset for HCC Co-Alignment (ChatGPT 40 mini).

L  ADDITIONAL ABLATION STUDIES BASED ON CHATGPT3.5 TURBO
LARGE LANGUAGE MODEL

L.1 FAILURE CASE OF CAI oN CHATGPT 3.5 TURBO

No Failure Case: Our experiments show that CAI is extremely effective on ChatGPT-3.5 Turbo
compared to other LLMs such as GPT-40-Mini and open-source LLM Llama3-8 Instruct. CAI im-
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Dataset Backbone Initial CAI  Final CAI ‘ Zero-Shot  Single-Shot  Specialized HCC (R2)
BERT 0.70 1.34 76.82 56.89 55.40 85.91
E5 142 523 77.33 71.87 80.71 87.67
CLINC GTE 1.34 551 77.16 70.93 81.22 88.04
BGE 1.59 6.51 78.38 72.64 83.13 88.02
BERT 0.73 151 64.29 55.78 58.44 77.91
Massive Scenario E3 1.02 332 6321 63.52 69.91 76.06
GTE 1.20 463 64.36 67.72 73.60 7821
BGE 1.10 327 61.87 69.87 76.40 73.67
BERT 0.74 1.30 71.82 54.77 51.39 74.76
E5 0.68 1.29 70.75 55.77 51.48 67.74
MTOP Intent 0.65 159 71.32 54.65 50.98 71.45
BGE 0.82 220 7177 58.50 56.57 74.94
BERT 0.22 0.42 35.90 39.03 38.67 44.18
StackExchan ES 0.41 0.87 41.34 41.03 38.67 5115
acklixchange  Grg 0.40 0.89 41.46 211 38.98 51.79
BGE 0.38 0.83 40.59 41.24 37.13 49.15
BERT 0.47 0.78 58.44 47.76 40.13 79.09
Banking77 E5 1.41 3.74 62.60 71.66 71.56 80.19
e GTE 151 5.02 62.89 75.29 75.62 82.14
BGE 1.82 523 64.68 79.42 79.48 81.59
BERT 0.19 0.54 45.63 3842 32.05 59.56
Reddit E5 0.44 147 48.80 5244 51.63 61.36
¢ GTE 0.50 1.66 49.95 53.93 53.34 63.38
BGE 0.47 1.58 50.20 51.76 51.51 60.24
BERT 033 0.93 35.40 4129 42.50 45.67
FewRel-Nat E5 033 1.03 34.84 4049 4123 49.01
GTE 0.31 1.01 36.29 38.13 38.37 4768
BGE 0.30 0.98 35.58 36.99 37.68 45.96
BERT 0.69 0.95 7276 48.45 42.80 70.14
Massive Intent ES 1.58 2.86 74.01 62.51 61.26 69.77
GTE 2.86 298 74.54 64.22 6321 68.99
BGE 213 452 75.45 69.10 68.83 75.22

Table 31: Aggregated Backbone Comparison across 8 datasets. Initial CAI = Final CAI =
model’s Consistent—Inconsistent Ratio Count. Zero-Shot = without showing intent, Single-Shot
= with showing intent, Specialized = correction rate, HCC (R2) = two-round majority voting accu-
racy.

Table 32: Two-Round Correction / GPT-40 mini & CAI Score Summary.

Dataset Backbone Initial CAI Final CAI ‘ HCC (R1) Acc  HCC (R2) Acc A Gain Observation
BERT 0.70 1.34 85.93 85.91 -0.02  Convergence
CLINC ES 1.42 523 87.33 87.67 +0.34  Convergence
GTE 1.34 551 86.87 87.04 +0.17  Convergence
BGE 1.59 6.51 89.24 88.02 -122  Convergence
BERT 0.73 1.51 78.41 7191 -0.50  Saturation
Massive Scenario E5 1.02 3.32 72.73 76.06 +3.33  Convergence
GTE 1.20 4.63 71.71 78.21 +0.50  Saturation
BGE 1.10 3.27 71.12 73.67 +2.55  Convergence
BERT 0.74 1.30 73.26 74.76 +1.50  Refinement
MTop Intent ES 0.68 1.29 67.83 67.74 -0.09  Saturation
P GTE 0.65 1.59 69.81 71.45 +1.64  Refinement
BGE 0.82 2.20 73.00 74.94 +1.94  Refinement
BERT 0.22 0.42 43.53 44.18 +0.65  Convergence
StackExcha E5 0.87 0.87 50.94 5115 +0.21  Convergence
AckExchange G 0.40 0.89 5132 51.49 +0.17  Saturation
BGE 0.38 0.83 49.83 49.16 -0.67  Convergence
BERT 0.47 0.78 7597 79.09 +3.12  Refinement
Banking77 E5 1.41 3.74 71.66 80.19 +8.53  Correction
GTE 1.51 5.02 75.29 82.14 +6.85  Refinement
BGE 1.82 523 81.62 81.59 -0.03  Convergence
BERT 0.33 0.93 26.90 45.67 +18.77  Correction
FewRel-Nat ES 0.33 1.03 50.29 49.00 -1.29  Convergence
GTE 0.31 1.01 47.88 47.70 -0.18  Saturation
BGE 0.30 0.98 46.96 45.96 -1.00  Convergence
BERT 0.19 0.54 42.40 59.56 +17.16  Correction
Reddit E5 0.44 1.47 44.82 61.36 +16.54  Correction
GTE 0.50 1.66 45.79 63.38 +17.59  Correction
BGE 0.47 1.58 4333 60.24 +16.91  Correction
BERT 0.69 0.95 70.40 70.14 -0.26  Saturation
Massive Intent E5 1.58 2.86 69.83 69.77 -0.06  Convergence
GTE 1.62 2.98 69.24 69.00 -0.24  Convergence
BGE 2.13 4.52 74.45 75.22 +0.77  Refinement

provements correlate reliably with downstream gains, showing that ChatGPT-3.5 aligns well with
embedding-driven cluster structure. Even in extremely fine-grained settings such as MASSIVE-
Intent, where cluster separability is weak, CAI correctly identifies that only marginal improve-
ments are possible. The small CAI gain (0.69—0.95) aligns proportionally with the small accu-
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racy gain from Zero-Shot to HCC(R2) (+0.47 %), demonstrating that CAI remains a reliable

indicator even under challenging semantic conditions.

L.2 ToTAL TOKEN USAGE AND LLM RUNNING TIME (CHATGPT-3.5 TURBO)

We report the total token usage and LLM (ChatGPT-3.5 Turbo) running time across all tasks in
Table[33] For each dataset and specialised encoder backbone, we provide the estimated token con-
sumption per 10k examples and the corresponding estimated runtime for single-shot (with intent)
and zero-shot (without intent) prompting. These results show that HCC does not introduce signifi-

cant additional token usage or latency beyond the baseline prompting scheme.

Est. Tokens/10k (Millions)

Est. Time/10k (Minutes)

Dataset/ChatGPT 3.5 Turbo | Model Single-Shot | Zero-Shot | Single-Shot | Zero-Shot
bert-base-uncased 1.02 0.92 16.1 18.2

Banking77 intfloat-e5-base 0.99 0.90 15.9 17.7
thenlper-gte-small 1.01 0.88 16.2 17.2

BAAI-bge-small-en-v1.5 1.02 0.86 16.3 16.9

bert-base-uncased L.11 0.98 139 149

Cline intfloat-e5-base 112 0.97 14.1 14.3
thenlper-gte-small 1.13 0.98 14.0 14.5

BAAI-bge-small-en-v1.5 1.11 0.98 14.3 15.0

bert-base-uncased 115 1.06 14.7 15.7

few_relnat intfloat-e5-base 1.14 1.07 14.5 15.8
- thenlper-gte-small 1.13 1.10 14.7 16.1
BAAI-bge-small-en-v1.5 1.15 1.12 14.3 16.2

bert-base-uncased 0.78 0.75 14.7 19.1

massive_intent intfloat-e5-base 0.78 0.71 15.0 17.7
A thenlper-gte-small 0.77 0.70 14.9 17.2
BAAI-bge-small-en-v1.5 0.77 0.72 14.9 17.3

bert-base-uncased 0.52 0.37 12.6 13.6

massive_scenario intfloat-e5-base 0.52 0.37 12.5 12.6
- thenlper-gte-small 0.52 0.37 12.7 13.1
BAAI-bge-small-en-v1.5 0.52 0.37 12.4 12.8

bert-base-uncased 1.07 1.63 15.7 30.3

miop_intent intfloat-e5-base 1.06 1.62 16.3 29.0
thenlper-gte-small 1.05 1.69 16.1 30.8

BAAI-bge-small-en-v1.5 1.04 1.71 15.7 31.0

bert-base-uncased 0.83 0.67 15.0 15.6

Reddit intfloat-e5-base 0.83 0.67 14.9 15.0
thenlper-gte-small 0.83 0.67 14.9 15.6

BAAI-bge-small-en-v1.5 0.83 0.67 14.9 15.2

bert-base-uncased 1.60 1.45 19.8 21.2

Stackexchange intfloat-e5-base 1.59 1.43 19.7 21.1
thenlper-gte-small 1.60 1.44 19.9 20.2

BAAI-bge-small-en-v1.5 1.59 1.43 20.1 20.3

Table 33: Marginal estimated cost per 10k examples (ChatGPT-3.5 Turbo): single-shot (with intent)

vs. zero-shot (without intent).
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L.3 RUNNING TIME OF HCC FOR CO-ALIGNMENT (CHATGPT-3.5 TURBO)

We further report the wall-clock running time of HCC for co-alignment on all tasks in Table[34} For
each dataset and embedding model, we list the per-dataset execution time in seconds and minutes.
These measurements confirm that HCC operates within 0.36-1.15 minutes per dataset, demon-
strating that the verification and correction procedure is highly efficient in practice.

Dataset Embedding Model Time (s) Time (min)
bert-base-uncased 32.53 0.54
Cline intfloat-e5-base 33.55 0.56
thenlper-gte-small 32.38 0.54
BAAI-bge-small-en-v1.5 32.06 0.53
bert-base-uncased 22.32 0.37
Massive Scenario intfloat-e5-base 29.06 0.48
i ' thenlper-gte-small 24.82 0.41
BAAI-bge-small-en-v1.5 24.98 0.42
bert-base-uncased 47.76 0.80
intfloat-e5-base 58.51 0.98
StackExchange thenlper-gte-small 53.74 0.90
BAAI-bge-small-en-v1.5 55.59 0.93
bert-base-uncased 25.88 0.43
Banking77 intfloat-e5-base 24.55 0.41
e thenlper-gte-small 21.65 0.36
BAAI-bge-small-en-v1.5 21.61 0.36
bert-base-uncased 23.93 0.40
Massive Intent intfloat-e5-base 25.66 0.43
b thenlper-gte-small 25.12 0.42
BAAI-bge-small-en-v1.5 22.20 0.37
bert-base-uncased 46.35 0.77
intfloat-e5-base 67.00 1.12
FewRel-Nat thenlper-gte-small 65.12 1.09
BAAI-bge-small-en-v1.5 68.96 1.15
bert-base-uncased 35.28 0.59
Reddit intfloat-e5-base 44.34 0.74
thenlper-gte-small 38.55 0.64
BAAI-bge-small-en-v1.5 39.20 0.65
bert-base-uncased 33.70 0.56
Mtop Intent intfloat-e5-base 51.86 0.86
P thenlper-gte-small 48.40 0.81
BAAI-bge-small-en-v1.5 45.46 0.76

Table 34: Execution Time per Dataset for HCC Co-alignment (ChatGPT-3.5 Turbo).
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L.4 Co-ALIGNMENT AND CAI IMPROVEMENT (CHATGPT-3.5 TURBO)

Finally, Table[L.4]reports the two-round HCC correction results for ChatGPT-3.5 Turbo across
all datasets. We list the initial and final CAI ratios, the Round-1 (R1) and Round-2 (R2) accuracies,
and the resulting accuracy change A = R2 — R1. This comparison highlights where HCC leads to
refinement, convergence, saturation, or regression when applied on top of ChatGPT-3.5 Turbo.

Dataset Backbone Initial CAI  Final CAI ‘ Zero-Shot  Single-Shot  Specialized HCC (R2)
BERT 0.89 1.49 67.78 56.22 55.40 82.76
CLINC ES 1.93 6.29 68.89 80.04 80.71 86.80
GTE 1.84 6.50 67.71 80.49 81.22 85.84
BGE 1.94 6.51 68.80 82.00 83.13 87.67
BERT 0.88 1.62 58.81 60.52 58.44 74.98
Massive Scenario E> 131 321 59.65 67.25 69.91 70.28
GTE 1.60 453 60.86 71.32 73.60 73.71
BGE 1.56 573 60.66 73.97 76.40 77.30
BERT 0.59 1.28 56.79 53.67 51.39 71.71
E5 0.59 1.28 57.84 5249 51.48 7171
MTOP Intent 0.55 170 58.96 53.90 50.98 68.40
BGE 0.67 211 60.37 57.73 56.57 69.81
BERT 0.39 0.58 31.47 27.45 27.41 41.58
StackExchan E5 0.74 1.25 36.33 38.57 38.67 48.44
acklixchange g1 0.74 1.26 35.68 38.76 38.98 47.16
BGE 0.61 111 34.53 37.05 37.13 4543
BERT 0.58 0.91 51.46 42.08 40.13 74.81
Banking?7 ES 203 4.88 6231 71.56 71.56 7744
anking GTE 2.59 5.15 64.81 75.49 75.62 73.96
BGE 262 4.08 66.72 79.41 79.48 72.63
BERT 0.24 0.59 42.56 34.19 32.05 58.38
Reddit E5 0.70 1.88 51.48 51.91 51.63 60.58
GTE 0.84 224 5275 53.93 53.34 60.71
BGE 0.82 2.19 52.10 51.79 51.51 58.19
BERT 0.33 0.95 31.14 43.46 4250 4491
FewRel-Nat ES 0.36 1.10 31.00 40.49 4123 48.59
GTE 0.32 1.01 31.65 38.77 3837 4732
BGE 0.29 0.98 30.76 38.68 37.68 45.85
BERT 0.69 0.95 67.22 48.15 42.80 67.69
Massive Intent ~ E> 1.89 325 71.08 63.25 61.26 68.86
GTE 171 321 68.59 64.93 63.21 68.66
BGE 243 4.90 69.94 69.33 68.83 7273

Table 35: Aggregated Backbone Comparison across 8 datasets. Initial CAI and Final CAI rep-
resent Consistent—Inconsistent ratios. Zero-Shot = accuracy without showing intent, Single-Shot =
accuracy with showing intent, Specialized = correction rate, HCC (R2) = two-round majority vote
accuracy.
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Table 36: Two-Round Correction / ChatGPT-3.5 Turbo & CAI Score Summary.

Dataset Backbone Initial CAI Final CAI ‘ HCC (R1) Acc  HCC (R2) Acc A Gain Observation
BERT 0.88 1.62 71.15 74.98 +3.83  Correction
Massive Scenario E5 1.31 321 68.22 70.28 +2.06  Correction
v GTE 1.60 4.53 75.55 73.71 -1.84  Saturation
BGE 1.56 5.73 80.36 7730 -3.06  Saturation
BERT 0.33 0.95 4551 4491 -0.60  Saturation
FewRel-Nat E5 0.36 1.10 49.96 48.59 -1.37  Saturation
GTE 0.32 1.01 47.30 47.32 +0.02  Convergence
BGE 0.29 0.98 46.41 45.85 -0.56  Saturation
BERT 0.24 0.59 41.19 58.38 +17.19  Correction
Reddit ES 0.70 1.88 43.36 60.58 +17.22  Correction
GTE 0.84 2.24 43.99 60.71 +16.72  Correction
BGE 0.82 2.19 42.24 58.19 +15.95  Correction
BERT 0.89 1.49 82.33 82.76 +0.43  Convergence
CLINC E5 1.93 6.29 86.69 86.80 +0.11  Convergence
GTE 1.84 6.50 85.64 85.84 +0.20  Convergence
BGE 1.94 6.51 87.89 87.67 -0.22  Saturation
BERT 0.59 1.28 70.73 7171 +0.98  Refinement
MTop Intent E5 0.59 1.28 71.48 7171 +0.23  Minor Gain
P GTE 0.55 1.70 65.32 68.40 +3.08  Correction
BGE 0.67 2.11 69.40 69.81 +0.41  Refinement
BERT 0.72 1.02 66.64 67.69 +1.05  Correction
Massive Intent E5 1.89 325 69.97 68.86 -1.11  Saturation
GTE 1.71 321 68.90 68.66 -0.24  Saturation
BGE 243 4.90 68.80 7273 +3.93  Correction
BERT 0.39 0.58 42.16 41.58 -0.58  Saturation
StackExchange E5 0.74 125 48.32 48.44 +0.12  Convergence
: 8 GTE 0.74 1.26 47.88 47.16 -0.72  Saturation
BGE 0.61 1.11 45.28 4543 +0.15  Convergence
BERT 0.58 0.91 72.40 74.81 +2.41  Refinement
Banking77 E5 2.03 4.88 75.88 77.44 +1.56  Refinement
anking GTE 2.59 5.15 72.05 73.96 +1.91  Refinement
BGE 2.62 4.08 82.11 72.63 -9.48  Overshoot

Table 37: HCC Correction Summary: Initial vs Final CAI, R1/R2 Accuracy (in %), and Gain.

Dataset Backbone Initial CAI  Final CAI HCC(R1) Acc. HCC(R2) Acc. A Gain  Observation
BERT 0.89 1.49 82.33 82.76 +0.43  Convergence
Cline ES 1.93 6.29 86.69 86.80 +0.11  Convergence
: GTE 1.84 6.50 85.64 85.84 +0.20  Convergence
BGE 1.94 6.51 87.89 87.67 -0.22  Saturation
BERT 0.88 1.62 71.15 74.98 +3.83  Correction
Massive Scenario E: 1.31 3.21 68.22 70.28 +2.06  Correction
SV ' GTE 1.60 453 75.55 7371 -1.84  Saturation
BGE 1.56 5.73 80.36 77.30 -3.06  Saturation
BERT 0.39 0.58 42.16 41.58 -0.58  Saturation
StackExchange E5 0.74 1.25 48.32 48.44 +0.12  Convergence
ckbxchange - GTE 0.74 1.26 47.88 47.16 20.72  Saturation
BGE 0.61 1.11 45.28 45.43 +0.15  Convergence
BERT 0.58 0.91 72.40 74.81 +2.41 Refinement
Bankine?77 E5 2.03 4.88 75.88 77.44 +1.56  Refinement
2 GTE 2.59 5.15 72.05 73.96 +191  Refinement
BGE 2.62 4.08 82.11 72.63 -9.48  Overshoot
BERT 0.72 1.02 66.64 67.69 +1.05  Correction
Massive Intent E5 1.89 3.25 69.97 68.86 -1.11  Saturation
> GTE 1.71 3.21 68.90 68.66 -0.24  Saturation
BGE 243 4.90 68.80 72.73 +3.93  Correction
BERT 0.33 0.95 4551 4491 -0.60  Saturation
FewRel-Nat E5 0.36 1.10 49.96 48.59 -1.37  Saturation
GTE 0.32 1.01 47.30 47.32 +0.02  Convergence
BGE 0.29 0.98 46.41 45.85 -0.56  Saturation
BERT 0.24 0.59 41.19 58.38 +17.19  Strong Correction
Reddit ES 0.70 1.88 43.36 60.58 +17.22  Strong Correction
GTE 0.84 224 43.99 60.71 +16.72  Strong Correction
BGE 0.82 2.19 42.24 58.19 +15.95  Strong Correction
BERT 0.59 1.28 70.73 71.71 +0.98  Refinement
MTOP Intent E5 0.59 1.28 71.48 71.71 +0.23  Minor Gain
© GTE 0.55 1.70 65.32 68.40 +3.08  Correction
BGE 0.67 2.11 69.40 69.81 +0.41 Refinement

M ABLATION STUDIES ON LAMA 3-7B INSTRUCT MODEL WITH 1%, 5%
AND 10% USER PREFERENCE

With less instantiated user preference sample size that HCC would be more susceptible to imbalance
issue. We first used the specialised model generated annotations to cluster the samples. Then, we
applied group prompting, where each query included 10 requests belonging to the same annotation.

39



Under review as a conference paper at ICLR 2026

As a result, higher-quality annotations from the specialised model led to better clustering, meaning
that more similar samples were provided to the LLMs. This, in turn, improved response accu-
racy—similar to how better intermediate steps in chain-of-thought prompting enhance final output
quality. Consequently, the response accuracy of the top 10% of LLM outputs (LLaMA-8B-Instruct)
was significantly higher than that of the bottom 1%, highlighting the strong impact of annotation
alignment on model performance. All the results are shown in Table[38]

Table 38: Lama 3-8B Instruct Performance Across Datasets with 1%, 5% and 10% User Preference
Sample (Mean £ Standard Deviation %)

Accuracy Metrics

Dataset Prop.
LLM (%) specialised model + LLM (%) Specialised Model (%) ~ HCC (Ours)(%)
1% 29.26 £ 1.04 54.68 £1.24 64.85 £0.13 71.18 £0.13
CLINC 5% 31.51 +1.82 65.08 £ 1.72 79.31 £0.47 81.36 & 0.60
10% 36.87 &+ 1.00 70.80 & 0.02 84.38 £ 0.40 86.84 £ 0.06
1% 43.99 £0.37 55.56 £ 1.06 60.42 £ 0.67 66.21 £0.24
MASSIVE_SCENARIO 5% 46.48 £ 1.14 67.33 +0.52 72.83 +£0.27 74.45 £0.74
10% 46.92 £ 0.50 71.33 +0.63 78.53 £0.22 79.22 +0.90
1% 11.39 +0.36 20.96 £0.17 21,15+ 0.14 29.36 £ 0.51
STACKEXCHANGE 5% 12.15 £ 0.25 30.48 £0.43 31.61 £ 0.20 38.85 £ 0.66
10% 14.26 & 1.09 34.16 £ 0.23 36.92 + 0.59 44.74 £+ 0.05
1% 29.23 £ 1.09 50.18 £ 3.39 5373 £3.71 60.28 £ 1.49
BANKING77 5% 38.07 & 1.09 69.79 £ 1.57 73.71 £ 1.86 78.08 £1.23
10% 39.75 +£0.38 76.38 £ 0.02 81.50 &+ 0.16 84.38 £ 0.60
1% 29.66 £ 1.98 44.57 £0.05 46.42 £0.59 54.37 £0.33
MASSIVE_INTENT 5% 35.13 +£1.37 55.83 +£0.76 61.72 £ 1.06 60.15 £5.35
10% 35.86 +1.23 58.56 £ 0.92 65.03 £0.77 66.85 + 0.67
1% 19.61 £ 0.40 12.52 4+ 0.68 12.50 £ 0.55 18.80 & 0.92
GO_EMOTION 5% 20.15 4+ 0.20 14.34 £ 0.58 14.31 £ 0.67 21.11 £ 0.02
10% 19.68 & 0.10 18.05 + 0.29 17.90 + 0.27 26.10 £ 1.15
1% 11.59 +£0.22 23.68 £1.07 2552+£0.73 34.58 £0.92
FEW_REL_NAT 5% 12.81 £ 0.64 31.68 £ 0.02 34.02 £ 0.34 4275 +0.09
10% 13.20 +0.24 33.84 4+ 0.18 36.68 4 0.78 45.61 £ 1.37
1% 22.70 £ 0.47 37.17 £ 0.02 37.88 £ 0.27 51.06 £ 0.51
REDDIT 5% 2831 +0.94 4927 £ 0.12 50.99 £ 0.26 58.80 £ 0.33
10% 31.84 £ 043 52.08 £ 0.20 54.18 £ 0.41 60.79 + 0.02
1% 36.05 £ 0.10 2548 £1.07 20.76 £ 0.81 29.53 £0.19
FEW_NERD_NAT 5% 36.41 &+ 0.07 29.66 & 0.24 27.62 £ 0.01 3131 +0.12
10% 35.82 £ 1.65 31.68 £ 0.93 29.89 4 0.91 29.97 £0.95
1% 28.10 +0.22 45.30 + 0.57 41.14 £ 0.90 44.95 £ 1.79
MTOP_INTENT 5% 31224+ 0.74 56.68 & 0.87 53.44 £ 0.50 61.87 +0.70
10% 32.08 £0.77 59.32 £ 1.56 56.48 £0.25 61.67 + 4.87
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N OVERALL REFLECTION OF CAI

Interpretation. A low CAI value indicates that the Consistent subset (LLM—encoder agreement)
remains small relative to the Inconsistent subset. Importantly, this does not mean that HCC has
failed; rather, CAl is correctly signalling low semantic confidence due to weak embedding sepa-
ration. In such cases, the encoder struggles to form meaningful clusters, and the consistency signal
becomes naturally noisier.

To improve the robustness of CAI in these low-CAI scenarios, we recommend:

* (i) increasing the proportion of human-in-the-loop or user-preference samples to stabilise
cluster boundaries, and

* (ii) adopting a stronger encoder backbone (e.g., ES or BGE) to enhance representation
separability.

Crucially, even when CAl is small (e.g., StackExchange), HCC often still yields substantial accuracy
improvements. In such cases, CAI serves its intended role—warning that improvements will
be moderate and that predictions should be interpreted with caution. This observation aligns
consistently with the broader CAI analyses presented in Section 5.2 and Table 2T} where smaller
CALI deltas correspond to weaker post-alignment gains.

O CROSS-DOMAIN GENERALIZATION.

Our evaluation already spans four distinct domain families, demonstrating that HCC generalizes
across radically different linguistic styles, noise levels, and task structures without any modification
to the method. The domains included are:

¢ Technical and Specialized:

— Banking77 — fine-grained financial queries (HCC (R2): 71-80%)

— StackExchange — programming and troubleshooting (HCC (R2): 39-47%)
* Social Media (Noisy, Informal):

— Reddit — subjective, noisy user discussions (HCC (R2): 58-60%)
¢ Fact-Based / Structured:

— FewRel-Nat — relation classification with structured logical semantics (HCC (R2):
42-47%)

* General Assistant and Everyday Queries:

— CLINC, Massive Intent, Massive Scenario, MTOP — broad user-assistant intent
spaces (HCC (R2): 62-83%)

Across all domains, HCC achieves moderate improvement over baselines. These consistent gains
demonstrate strong cross-domain generalization.

P CAN HCC HANDLE CONFLICTING USER PREFERENCES?

Conflicting Preferences. HCC naturally accommodates conflicting user preferences because the
propagation step is conditioned on each user’s seed examples (H). Our method assumes that each
user provides a small labeled set per class, which captures that user’s individual labeling preferences.
These seed examples act as the personalized anchors that guide consistency propagation and align-
ment. Thus, HCC generates per-user, preference-aligned annotations for large unlabeled corpora,
rather than learning a global reward model shared across users.

The goal of HCC is therefore not general RLHF-style preference modeling, but Personalized
Natural Language Understanding, reflecting each user’s subjective preferences to unlabeled data
in a reliable, scalable, and training-free manner.

Pairwise Data. Our framework addresses categorical annotation rather than pairwise preference
ranking. While CAI could, in principle, be extended to pairwise comparisons for RLHF-style data,
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this falls outside the scope of our cold-start classification setting. Nevertheless, we view this as a
promising direction for future work.

42



Under review as a conference paper at ICLR 2026

Q MODEL SELECTION STUDIES

Model Selection with CAI Ratio Model selection based solely on the CAI Ratio correctly iden-
tifies the best-performing LLMs in 60% of cases. Among the mismatched cases, the accuracy dif-
ferences are not significant. Although CAI Ratio alone is not a perfect indicator of LLMs accuracy,
it serves as a reliable heuristic for selecting well-performing LL.Ms in semi-supervised settings. We
have chosen the Best CAI Model and the Best Accuracy Model from the candidate LLM set, which
includes GPT-3.5 Turbo, GPT-40 Mini, Google Gemini 1.5 Flash, and Llama-8B Instruct.

Dataset \ Best CAI Model | Best Accuracy Model | Match | Accuracy Difference
[ Model [ Accuracy (%) | Model [ Accuracy (%) | (%)
CLINC Google Gemini 87.24 Google Gemini 87.24 v 0.00
MTOP Intent Google Gemini 75.85 Google Gemini 75.85 v 0.00
StackExchange Google Gemini 57.31 Google Gemini 57.31 v 0.00
Banking77 Google Gemini 73.76 GPT-3.5 73.93 X -0.17
Massive Scenario | Google Gemini 67.72 GPT-3.5 75.55 X -7.83
Reddit Google Gemini 56.23 ChatGPT-40 Mini 57.39 X -1.16
Go Emotion Google Gemini 29.44 ChatGPT-40 Mini 33.82 X -4.38
FewRel Nat Google Gemini 52.74 Google Gemini 52.74 v 0.00
FewNERD Nat Google Gemini 75.48 Google Gemini 75.48 v 0.00
Massive Intent Google Gemini 77.03 Google Gemini 77.03 v 0.00

Table 39: Model Selection Using CAI Ratio as a Metric: The model selected based on CAI ratio exhibits a
strong correlation with the model achieving the highest accuracy.
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R ALGORITHM TABLE

We present the algorithmic tables for Divide-and-Conquer Co-Alignment (DCCA) with MV-VTES
(Algorithm [T)) and for Majority Voting via the Top-Nearest Embedding Scheme (MV-VTES) (Algo-
rithm [2)) below.

Algorithm 1: Divide-and-Conquer Co-Alignment (DCCA) with MV-VTES
Input: Consistent set C = {(z;, §¢)}, inconsistent set Z = {(x;,%!)}, user-preference set H,
number of neighbours K.

Output: Self-corrected dataset D (i),

Round 1: Self-aligning Z to obtain Z(")

AN

foreach (z, ') € Z do
T MV—VTES(m, CUH, K) // Eq. equation , equation
I = IW U {(,9")}

¢ CAl-based partition of 7
1 CL+ 0, ZZ « 0

®

11

12
13

14

15

1

=)

17

1

o

20

2

=

—

s W

foreach (z, ') € Z do

// Find updated label of z in I
ij* < label of z in (1)

if §' = 7 then

| CZ +CTU{(x,9")} // Now consistent
else _
| IZ «+ ITU{(z, ")} // Still inconsistent

Round 2: Co-aligning 77 to obtain 77 M

770 ¢

foreach (z, ") € ZZ do
§" < MV-VTES(z, CUCIUH, K)
7Y « 77O U {(x, ")}

Final self-corrected dataset

ptina) o ¢y ¢z u 7MW

return D(fin)

Algorithm 2: Majority Voting via Top-Nearest Embedding Scheme (MV-VTES)

Input: Query z (inconsistent sample), reference set D(4,1), = {(a;,5;)} (e.g.,CU H or
CUCZ U H), neighbours K, embedding function S(-).
Output: Refined annotation g for x.

foreach (a;,7;) € D4 1), do

S(ai) - S(x)
[S(aq)l[ IS (@)
Select the top-K pairs {(a;, §;)} X, with largest s; as in Eq. equation 3]

Let A < {71, ..., 7K} be the set of unique labels from the top- K neighbours

Compute similarity s; // Cosine similarity

5 foreach a € A do

£

® 2

o

L Ng Zf; g = a} // Label frequency

Assign the refined label by majority voting (Eq. equation E]):

U ¢ argmax ng
acA
return g
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S PROMPT INSTRUCTION
S.1  PROMPT INSTRUCTION (WITHOUT INTENT)

Listing 1: Prompt construction for batched intent labelling

def Prompt (prompts, specialised_model_labels, intention_set,
temperature) :
nmnn
Build the LLM prompt for batched intent labelling.
prompts: list of input sentences
specialised_model_labels: labels from the specialised model
intention_set: candidate intent set

temperature: decoding temperature for the LLM
nmnn

combination = []
for prompt, label in zip (prompts, specialised_model_labels):
promptl = f’For the sentence: "{prompt}"’

combination.append (promptl)

respon = ""
respon += f"Please return exactly {len (prompts)} responses.\n"
respon += (
f"Identify the intention for each sentence "
f"using the set: {intention_set}.\n"
)
respon += "Follow the specified output format strictly.\n"
respon += "Make sure the number of outputs matches the number of
inputs.\n"

output = openai.ChatCompletion.create(
model="gpt-40-mini",
messages=[{"role": "user", "content": respon}],

temperature=temperature,
max_tokens=2048,

return output
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S.2  PROMPT INSTRUCTION (WITH INTENT)

Listing 2: Prompt construction for batched intent labelling

16

def Prompt (prompts, specialised_model_labels, intention_set,

temperature) :

nmnn

Build the LLM prompt for batched intent labelling.

prompts: list of input sentences

specialised_model_labels: labels from the specialised model
intention_set: candidate intent set

temperature: decoding temperature for the LLM
nmmwn

# 1. Build sentence-prefixed inputs
combination = []
for prompt, label in zip(prompts, specialised_model_labels):
promptl = f’For the sentence: "{prompt}" and its predicted
intent: "{specialised_model_labels}". Use this predicted
intent as guidance.’
combination.append (promptl)

# 2. Assemble instruction block
respon "
respon += f"Please return exactly {len(prompts)} responses.\n"
respon += (
f"Identify the intention for each sentence "
f"using the set: {intention_set}.\n"

)

respon += "Follow the specified output format strictly.\n"

respon += "Make sure the number of outputs matches the number of
inputs.\n"

# 3. Query the LLM

output = openai.ChatCompletion.create (
model="gpt-4o0-mini",
messages=[{"role": "user", "content": respon}],

temperature=temperature,
max_tokens=2048,

return output
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T T-SNE VISUALIZATION FOR CLUSTERING ON ALL DATASETS FOR
CHATGPT-40 MINI

In the following t-SNE visualization, the LLM-generated annotations of the identified inconsistent
samples exhibit substantial deviation from their true annotations. Conversely, for the identified
consistent samples, the LLM-generated annotations show strong agreement with the corresponding
ground-truth labels.

Inconsistent Sample Inconsistent Sample
(True Annotation on few_nerd_nat) (LLMs Annotation on few_nerd_nat)

Consistent Sample Consistent Sample
(True Annotation on few_nerd_nat) (LLMs Annotation on few_nerd_nat)

Figure 9: Visualization of t-SNE Clustering for LLM vs True Annota-
tions on Few_Nerd_Nat Dataset. LLM outputs exhibit high similarity with
ground-truth labels on consistent samples, while showing significant di-
vergence on inconsistent samples.

Inconsistent Sample Inconsistent Sample
(True Annotation on few_rel_nat) (LLMs Annotation on few_rel_nat)
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Figure 10: Visualization of t-SNE Clustering for LLM vs True Annotations on
Few_Rel_Nat Dataset. LLM outputs exhibit high similarity with ground-truth la-
bels on consistent samples, while showing significant divergence on inconsistent
samples.
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Inconsistent Sample Inconsistent Sample
(True Annotation on massive_intent) (LLMs Annotation on massive_intent)

Consistent Sample Consistent Sample
(True Annotation on massive_intent) (LLMs Annotation on massive_intent)

Figure 11: Visualization of t-SNE Clustering for LLM vs True Annota-
tions on Massive_Intent Dataset. LLM outputs exhibit high similarity with

ground-truth labels on consistent samples, while showing significant di-
vergence on inconsistent samples.
Inconsistent Sample

Inconsistent Sample
(True Annotation on reddit) (LLMs Annotation on reddit)

Consistent Sample Consistent Sample
(True Annotation on reddit) (LLMs Annotation on reddit)

Figure 12: Visualization of t-SNE Clustering for LLM vs True Annotations on
Reddit Dataset. LLM outputs exhibit high similarity with ground-truth labels on
consistent samples, while showing significant divergence on inconsistent samples.
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