

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 VERIFICATION AND CO-ALIGNMENT VIA HETERO- GENEOUS CONSISTENCY FOR PREFERENCE-ALIGNED LLM ANNOTATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) are increasingly expected to be culturally customizable and personally aligned for natural language understanding (NLU). However, existing methods, from supervised fine-tuning (SFT) to personalized RLHF and prompting, either require costly large-scale annotations or remain constrained by pretraining distributions. Moreover, acquiring annotations that reflect subjective, diverse, and evolving user preferences is both expensive and labor-intensive. To address these limitations, we propose *Heterogeneous-Consistency Co-Alignment* (HCC) is a training-free annotation paradigm that leverages two heterogeneous models, which consists of an LLM, rich in knowledge yet often prone to overconfidence, is paired with a task-specialised lightweight model guided by a small user-preference set to verify and co-align misaligned outputs over unlabeled corpora. For verification, HCC introduces the reference-free *Consistent-And-Inconsistent (CAI)* Ratio, an uncertainty signal derived from inter-model agreements (consistent samples) and disagreements (inconsistent samples) to determine when refinement is needed. For co-alignment, HCC employs a non-parametric, embedding-based preference assignment scheme to recalibrate inconsistent samples according to user preferences. Across eight NLU datasets and both open- and closed-source LLMs, HCC consistently improves annotation alignment and, in several tasks, even enables *Llama-3-8B* to surpass *GPT-3.5/4o* after co-alignment. Moreover, CAI correlates strongly with accuracy and reliably tracks pre-/post-alignment gains, offering a reference-free signal for scaling preference-aligned annotation.

1 INTRODUCTION

Demand is burgeoning for culturally and personally aligned LLMs across diverse natural-language understanding (NLU) applications, including culturally aware language understanding (Nguyen et al., 2024), personalized recommendation (Li et al., 2023), household robotics (Han et al., 2024), and clinical guidance in healthcare (Kadariya et al., 2019). In Southeast Asia, for example, many regional languages feature unique slang, local expressions, and values; stakeholders therefore seek LLMs aligned with local norms and vernacular. In personalized recommendation (Li et al., 2023), users expect models to respect user-specific facts (e.g., names, titles, birthdays, preferences in music and film) that are not common knowledge. In preference-aware household robotics (Han et al., 2024) and clinical guidance (Kadariya et al., 2019), preferences are proprietary, diverse, and highly individualized (e.g., how dishes are organized, when and where laundry is handled, where cups are stored). Reinforcement Learning from Human Feedback (RLHF) optimizes a single global reward that collapses heterogeneous user preferences, under-representing individual tastes and limiting generalization to unseen, user-specific preferences (Chakraborty et al., 2024; Ouyang et al., 2022a). Supervised fine-tuning (SFT) can encode specific behaviors when sufficient labeled data are available, but assembling large, high-quality annotations is costly (Ouyang et al., 2022b; Wei et al., 2021; Taori et al., 2023; Tan et al., 2024a; Salemi et al., 2024; Zhang et al., 2023a). To address personalization with RLHF, Poddar et al. (2024) propose training a latent-conditioned reward model on pluralistic preference corpora and then adapting to new users with a few additional queries. Nonetheless, it still requires training on large, diverse preference corpora. In addition, when a new user’s preferences di-

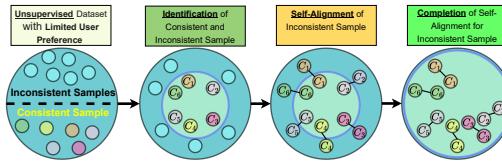


Figure 1: **Schematic depiction of Heterogeneous-Consistency Co-Alignment (HCC)**. The *inner circle* represents the consistent sample set \mathcal{C} , while the *outer circle* expands to include the inconsistent samples \mathcal{I} , whose labels are initially unavailable. Each category of samples is denoted by C_i . Our approach systematically performs **identification** and **co-alignment** to enhance annotation reliability. For co-alignment , it leverages the structural representation of data to operate effectively in semi-supervised settings.

verge substantially from that training distribution, reward-model generalization may degrade. Yet in practice, pretrained LLMs may hallucinate seemingly plausible but incorrect answers due to reliance on population-level statistics (Kalai et al., 2025). Lastly, conventional prompt-based approaches Wei et al. (2021; 2022); Huang et al. (2022); Yao et al. (2022); Diao et al. (2023); Liu et al. (2023); Wang et al. (2023); Yao et al. (2024); Long (2023); Huang et al. (2023); Madaan et al. (2024); Shinn et al. (2024) excel at producing factual responses to widely known questions, but they remain unreliable for queries involving personal or user-specific information and preferences.

Therefore, it is crucial to build an efficient and economical pipeline for generating preference-aligned annotations from a small, user-labeled preference set and propagating them across large unlabeled corpora which are typically more scalable and cheaper to obtain (van Engelen & Hoos, 2020; Zhu, 2020), so that LLMs move beyond population-level statistics toward user-specific expectations. In addition, conventional reference-based metrics (see Table 10 in the Appendix) fall short in reference-free settings, while naive self-evaluation methods within LLMs often exhibit overconfidence and inconsistencies (Xiong et al., 2023; Stureborg et al., 2024; Zhou et al., 2024), as well as vulnerabilities to prompt format. Moreover, relying solely on the LLM introduces reproducibility issues due to frequent updates of proprietary closed-source models Ito et al. (2025).

Collectively, these limitations highlight a critical need for robust, reference-free evaluation and co-alignment frameworks capable of effectively align with nuanced, personalized user preferences in semi-supervised settings.

In sum, to train user-preferred, competent LLMs for diverse individual users, especially when only a small number of user-preference exemplars are available, requires two key components: (i) an evaluation framework centered on an interpretable, personalization-aware, reference-free metric that explicitly accounts for the plurality of human preferences and ensures that generated annotations are accurate and useful. Because collecting large, personalized corpora is prohibitively expensive, training evaluators or reward models (e.g., regression models) from scratch is often infeasible (Ito et al., 2025), which underscores the importance of such a reference-free metric in the limited-sample regime. (ii) a model-agnostic, low-overhead annotation-alignment paradigm that effectively rectifies misaligned annotation.

- (i) **Reference-Free Uncertainty Evaluation in LLMs:** *How can we evaluate, in a reference-free setting, whether LLM-generated annotations align with user preferences in categorical NLU tasks ?*
- (ii) **Semi-Supervised Co-Alignment:** *How can we design co-alignment mechanisms that recalibrate LLM responses to user preferences using only a few preference examples ?*

To address these challenges, we propose the **Heterogeneous-Consistency Co-Alignment (HCC)**, a training-free framework consisting of (i) reference-free evaluation and (ii) co-alignment of LLM-generated annotations. **For evaluation**, we introduce the *Consistent-to-Inconsistent (CAI) Ratio*, a reference-free metric for assessing annotation alignment in preference-based labeling of unlabeled textual datasets. CAI measures the odds of agreement between two *heterogeneous annotators*: (1) an LLM that produces responses driven by next-token probabilities, and (2) a task-specific/lightweight model that operates in embedding space. By cross-checking their outputs, CAI identifies where token-likelihood-derived decisions and embedding-similarity judgments *agree* (consistent samples) versus *disagree* (inconsistent samples), providing a reliability signal that mitigates the overconfidence observed when relying on the LLM alone. **For co-alignment**, HCC applies *MV-VTES* (see §4.3.2): a nonparametric, embedding-based assignment that takes majority votes among the top- k

nearest neighbors within clusters seeded by user-preferred exemplars. This propagates preferences to initially unlabeled data. Next, HCC compares the specialized model’s assigned annotations with the LLM’s outputs and performs *divide-and-conquer co-alignment (DCCA)*, again using MV-VTES, to repair disagreements. Crucially, HCC avoids dependence on ad-hoc confidence thresholds derived from next-token probabilities, thereby reducing overconfidence errors. Our main contributions are as follows:

- We propose ***Heterogeneous-Consistency Co-Alignment (HCC)***, a novel framework for co-aligning LLMs in semi-supervised settings, enabling automatic inconsistency detection and co-alignment to enhance annotation alignment.
- We introduce the reference-free ***Consistent-And-Inconsistent (CAI) Ratio***, a metric that quantifies personalized user preferences and measures the consistency and quality of LLM-generated annotations in **categorical NLU tasks**, addressing the critical challenge of evaluation under limited user-labeled examples.
- We validate the effectiveness of HCC across eight domain-specific NLU datasets, demonstrating substantial improvements in annotation accuracy.

2 RELATED WORKS

2.1 LLMs FOR DATA ANNOTATION:

LLMs have exhibited exceptional competency in dealing with text or data annotation tasks for many open-domain tasks (Meng et al., 2022; Ye et al., 2022; Wang et al., 2024; Liu et al., 2024; Wu et al., 2024), such as open-domain spoken language understanding (Chen et al., 2023; 2024), and frequently outperform crowdsourcing and manual annotation without requiring training on specific data (Gilardi et al., 2023). LLM-generated annotations can be leveraged for various tasks, such as supervised fine-tuning, LLM alignment tuning, and inference Tan et al. (2024b). Few studies have addressed unsupervised data annotation, where no ground truth is available for optimization or fine-tuning (Van Engelen & Hoos, 2020). This remains a critical challenge, as obtaining ground-truth annotations or domain expertise is resource-intensive. Without high-quality supervision, existing methods struggle to generate reliable annotations at scale. While semi-supervised methods reduce reliance on labeled data, they still fall short of fully supervised performance (Van Engelen & Hoos, 2020). Moreover, unsupervised annotation without user-defined preferences lacks meaningful utility, as annotations must align with task-specific requirements to be useful.

2.2 USING SPECIALISED MODELS TO GUIDE LLMs:

Intuitively, exploiting Pretrained task-specific models can be a good alternative to annotate unsupervised data by learning from a small set of user-labeled examples. This is efficient in practice but often fails to generalize beyond seen examples, particularly when user preferences are under-represented. Then, can we deploy a specialised model as demonstrations to guide LLM outputs. This “naïve combination” provides LLMs with relevant context but assumes the specialised model’s outputs are reliable. In addition, (Zhang et al., 2023b) proposes to propagates labels using clustering or nearest-neighbour methods based on Specialised Models. These models typically use embedding-based similarity to assign labels in few-shot or unsupervised settings. While effective when class clusters are well-separated, such methods offer no mechanism for aligning with user-defined intent or correcting ambiguous assignments.

2.3 PROMPT-BASED APPROACHES

In prompt-based approaches, Liu et al. (2022) selects demonstrations by assigning the ones with the highest similarity as exemplars. **Self-Consistency** (Wang et al., 2022) seeks to improve the response accuracy of large language models (LLMs) by choosing outputs that are consistent across multiple diverse reasoning paths. However, this method assumes that the LLM is already strong enough and typically requires multiple rounds of sampling, making it computationally expensive. Furthermore, the generated responses often mirror the training data distribution rather than aligning with specific user preferences. **Chain-of-Thought (CoT)** prompting (Wei et al., 2022) enhances interpretability

162 and accuracy by explicitly demonstrating intermediate reasoning steps for a given query. **Few-
163 Shot Prompting** (Brown et al., 2020) incorporates a small number of illustrative examples into the
164 prompt, guiding the model toward outputs that better capture user intent. **KATE** (Liu et al., 2022)
165 **enhances prompting by selecting the top- k most semantically similar examples from user-labeled**
166 **data as demonstrations.** However, when the labeled dataset is small, these retrieved examples often
167 fail to capture the full diversity of user preferences. KATE also does not explicitly model preference
168 ambiguity, which limits its adaptability to fine-grained or user-specific annotation tasks. Finally,
169 **Self-Refine** (Madaan et al., 2024) iteratively improves initial outputs through self-correction. While
170 promising, its success depends heavily on both the capability of the LLM and the suitability of any
171 external tools used for the target task.

173 3 PROBLEM SETTING

174 Let the semi-supervised training and testing corpora be denoted as $\mathcal{D}_u = \{x_1, \dots, x_N\}$ and $\mathcal{D}_t =$
175 $\{x_1, \dots, x_L\}$, where $x \in \mathcal{X} \subseteq \mathbb{R}^d$. A small set of user-preference annotations (see Section §4.1)
176 serves as the alignment reference set, with the objective of propagating a preference label $\bar{y} \in$
177 $\mathcal{Y} = \{1, \dots, k\}$ to each $x \in \mathcal{D}_u$. We assume that the distribution \mathcal{D}_u can be partitioned into two
178 subsets: consistent samples \mathcal{C} and inconsistent samples \mathcal{I} , such that $\mathcal{C}, \mathcal{I} \subseteq \mathcal{D}_u$, $\mathcal{C} \cap \mathcal{I} = \emptyset$, and
179 $|\mathcal{C}| + |\mathcal{I}| = |\mathcal{D}_u|$. In practice, the subsets are unknown and must be estimated (see Section §4)
180 using a specialized embedding-based model \mathcal{S} and an LLM \mathcal{T} , given a small user-preference set
181 H . Formally, H is clustered into k disjoint subsets C_1, \dots, C_k , each representing a semantically
182 coherent region of the embedding space. Alongside the samples, a set of preference annotations
183 is also given, denoted as $\mathcal{Y} = \{\bar{y}_1, \bar{y}_2, \dots, \bar{y}_k\}$. Hence each cluster is formally denoted as $C_j =$
184 $\{(x_i, \bar{y}_j) | x_i \in H_j\}$, where $H_j \subseteq H$ and $H = \{(x_i, \bar{y}_i)\}_{i=1}^s$, with $s = 5\%$ of $|\mathcal{D}_u|$. The clusters
185 are disjoint, satisfying $(C_i \cap C_j = \emptyset, \forall i \neq j)$, and their union fully covers H . Our goals are: (i) to
186 assess LLM annotation alignment by identifying latent consistent and inconsistent subsets \mathcal{C}^* and
187 \mathcal{I}^* , and (ii) to improve annotation accuracy according to user preference.

189 4 CO-ALIGNING LLMS WITH *Heterogeneous-Consistency Co-Alignment*

190 HCC leverages agreements (consistent samples) and disagreements (inconsistent samples) between
191 two inter-models: an LLM annotator, which generates responses from token-level probabilities, and
192 a task-specific model, which captures fine-grained embedding similarities. Cross-checking both
193 models identifies samples where token probabilities and embeddings align, mitigating the overcon-
194 fidence of LLM-only predictions. For co-alignment, HCC employs MV-VTES, a nonparametric,
195 embedding-based preference assignment that uses majority voting over the top- k nearest neighbors
196 within clusters initialized by user-preferred samples, enabling annotation of unlabeled data. Finally,
197 HCC refines inconsistent samples via a divide-and-conquer co-alignment (DCCA) strategy, again
198 combined with MV-VTES.
199

200 4.1 SEMANTIC CLUSTERING-BASED ANNOTATION FOR UNLABELED DATA

201 We propose a semantic clustering approach that structures user-preference samples to enable anno-
202 tation propagation and refinement on unlabeled data. Using majority voting over top-nearest embed-
203 ding similarities (See Section 4.3.2), labels from a small reference set are extended to semantically
204 similar samples. This provides localized context for detecting and correcting misaligned annotations,
205 supporting co-alignment without ground-truth supervision.

206 4.1.1 TASK-SPECIFIC SPECIALISED MODEL:

207 Specifically, we adopt MINILM (Wang et al., 2020), a sentence-transformer model, as the task-
208 specialised model, denoted by \mathcal{S} . The task-specialised model encodes each instance x_i into its
209 corresponding sentence embedding, $\mathcal{S}(x_i) = e_i$.

$$210 \quad AS(e_i, C_j) = \frac{1}{k} \sum_{e \in \text{Top-}k(C_j, e_i)} \frac{e_i \cdot e}{\|e_i\| \|e\|} \quad (1)$$

216 where e_i denotes the embedding for x_i , and e represents
 217 the embedding of each sample in cluster C_j . The term
 218 $\text{Top-}k(C_j, e_i)$ refers to the subset of samples in C_j with the top
 219 k cosine similarity scores with e_i . Formally, $\text{Top-}k(C_j, e_i) =$
 220 $\{e \in C_j \mid \text{AS}(e_i, e) \text{ ranks among the top } k \text{ in } C_j\}$. Based on
 221 the computed similarity scores, the most similar examples to
 222 e_i are identified, and the average cosine similarity is computed
 223 for the top-selected samples in each cluster. In our experiments,
 224 we set k to five. Lastly, for the annotation assignment,
 225 we assign the label of the cluster C_j with the highest average
 226 cosine similarity score to the unlabelled sample $x_i \in D_u$. The
 227 cluster C_{j^*} , which has the highest average cosine similarity
 228 with the embedding e_i of a sample x_i , is defined as:
 229

$$C_{j^*} = \arg \max_{C_j} \text{AS}(e_i, C_j), \quad (2)$$

231 where $\text{AS}(e_i, C_j)$ is the average cosine similarity of e_i with the embeddings in C_j . The annotation
 232 \bar{y}_{j^*} associated with C_{j^*} is then assigned to x_i , i.e., $\bar{y}_i = \bar{y}_{j^*}$. This process is represented by
 233 the annotation assignment function $h(x_i)$. Subsequently, the annotation associated with C_{j^*} , as
 234 defined by the user, is assigned to x_i . The specialised model annotated dataset is constructed as
 235 $D_s = \{(x_i, \bar{y}_i)\}_{i=1}^N$, where each \bar{y}_i represents the task-specialised model assigned annotation for x_i .

236 4.1.2 GENERAL LLM ANNOTATION:

238 Given the acquired dataset $D_s = \{(x_i, \bar{y}_i)\}_{i=1}^N$ generated by the task-specialised model, we fur-
 239 ther leverage an LLM to generate annotations through a *group prompting* mechanism, each query
 240 included multiple requests belonging to the same annotation, applying both *zero-shot* and *single-
 241 shot* strategies. Specifically, in the zero-shot setting, the LLM generates annotations independently,
 242 defined as $\bar{y}_i^t = T(x_i)$. $\bar{y}_i^t = T(x_i)$ with $P(\bar{y}_i^t \mid x_i) = \prod_{t=1}^{T_i} P(\bar{y}_{i,t}^t \mid x_i, \bar{y}_{i,1}^t, \dots, \bar{y}_{i,t-1}^t)$. In
 243 contrast, the *single-shot* setting incorporates specialised model-generated annotations as additional
 244 context, yielding $\hat{y}_i^t = T(x_i, \bar{y}_i)$, where $(x_i, \bar{y}_i) \in D_s$. $\hat{y}_i^t = T(x_i, \bar{y}_i)$ with $P(\hat{y}_i^t \mid x_i, \bar{y}_i) =$
 245 $\prod_{t=1}^{T_i} P(\hat{y}_{i,t}^t \mid x_i, \bar{y}_i, \hat{y}_{i,1}^t, \dots, \hat{y}_{i,t-1}^t)$. Since the LLM follows an autoregressive generation frame-
 246 work, we query the LLM to provide the annotation for each instance x_i without including the
 247 specialised model labels \bar{y}_i for zero-shot prompting, producing the LLM annotated sample dis-
 248 tribution $D_t = \{(x_i, \bar{y}_i^t)\}_{i=1}^N$. For the single-shot setting, the task-specialised model’s annotations
 249 are incorporated, resulting in the specialised model and LLM annotated sample distribution
 250 $\hat{D}_t = \{(x_i, \hat{y}_i^t)\}_{i=1}^N$.

252 4.2 IDENTIFICATION OF CONSISTENT AND INCONSISTENT SAMPLES

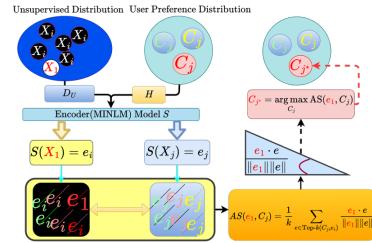
253 After obtaining the specialised model-generated dataset D_s , the LLM-generated dataset D_t , and the
 254 augmented dataset \hat{D}_t , we further propose the **Consistent-and-Inconsistent (CAI) Identification**
 255 ratio, agreement-based metric to assess annotation reliability without ground-truth labels. Specif-
 256 ically, CAI identifies consistent and inconsistent samples across annotation datasets D_s , D_t , and
 257 \hat{D}_t by comparing the agreement between the specialised model and LLMs. For each $x \in D_u$, the
 258 annotation label from the task-specialised model is denoted as \bar{y}_S , and that for LLM is denoted as
 259 \bar{y}_T (zero-shot) and \hat{y}_T (single-shot). A sample is considered *consistent* if:

$$\bar{y}_S = \bar{y}_T = \hat{y}_T \Rightarrow x \in \mathcal{C},$$

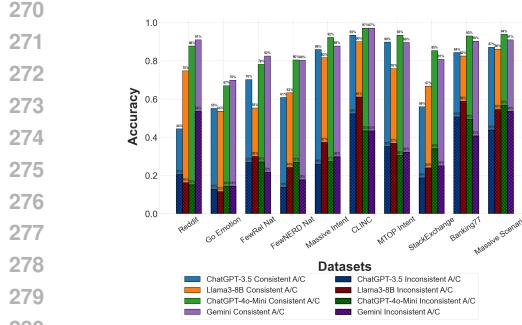
261 where \mathcal{C} represents the set of consistent samples, while conversely, a sample is considered *inconsis-
 262 tent* if at least one of the annotations differs:

$$\exists (y, y') \in \{\bar{y}_S, \bar{y}_T, \hat{y}_T\}, \quad y \neq y' \Rightarrow x \in \mathcal{I},$$

265 where \mathcal{I} represents the set of inconsistent samples. Identifying annotation inconsistencies and eval-
 266 uating the reliability of LLM annotators outputs without ground truth remains a central challenge
 267 in semi-supervised LLM annotation. Our HCC framework fills this gap by leveraging task spe-
 268 cialised Model and LLM disagreement to pinpoint unreliable annotations and trigger co-alignment.
 269 We introduce the *Consistent-and-Inconsistent (CAI) Ratio*, a novel HCC metric for assessing the
 trustworthiness of LLM-generated labels without access to ground truth.



267 **Figure 2: Semantic Clustering-based Annotation for Unlabeled Data for Task-Specific Specialised Model.**



297
298
299
300

Table 1: Correlation analysis between LLM annotation accuracy and the CAI ratio, evaluated across four principled LLMs (also see statistical test results in Sec 6.1). The Pearson correlation coefficients and corresponding p-values confirm the statistical significance of the positive correlation between the CAI ratio and LLMs accuracy.

301
302

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Definition 4.1 (Consistent-and-Inconsistent) (CAI) Ratio Let N_C and N_{IC} denote the number of consistent samples¹ $|\mathcal{C}|$ and the number of inconsistent samples² $|\mathcal{I}|$, respectively. The CAI Ratio is defined as CAI Ratio = $\frac{N_C}{N_{IC}}$.

The CAI ratio leverages heterogenous consistency (likelihood-derived and embedding) for evaluating the reliability of LLM-generated annotations without labelled supervision. A noticeably high CAI ratio (CAI Ratio $\gg 1$) may indicate annotation bias or overconfidence, while a low CAI ratio (CAI Ratio $\ll 1$) suggests inconsistency and greater uncertainty in the model’s outputs. In these cases, the ratio offers a meaningful indicator of annotation alignment, helping determine when LLM-generated labels need to be refined using external human supervision or enriched prior knowledge. Furthermore, we formalize a crucial insight into the connection between our proposed CAI ratio and LLM annotation accuracy through the *Consistency Principle*, which characterizes the asymptotic behavior under optimal task-specific specialised model and LLMs. This principle states that for a given dataset D_u , if the specialised model (S^*) and LLM (T^*) are both optimal hypotheses, the number of consistent samples will asymptotically exceed that of inconsistent ones as the dataset size approaches infinity.

Proposition 4.2 (Consistency Principle) Let T^* and S^* be the optimal LLM (LLM) and task-specialised model hypotheses for an semi-supervised dataset D_u . Define N_C and N_{IC} as the number of consistent and inconsistent samples, respectively, identified by the CAI ratio. As the dataset

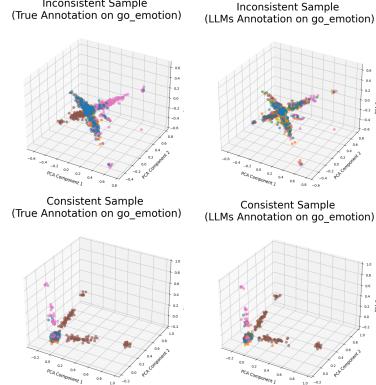


Figure 4: Visualization of t-SNE Clustering (better viewed in color, enlarged) comparing LLM vs Ground-Truth Annotations on *Go_Emotion* Dataset. LLM outputs exhibit **high similarity** with ground-truth labels on **consistent** samples, while showing **significant divergence** on **inconsistent** samples.

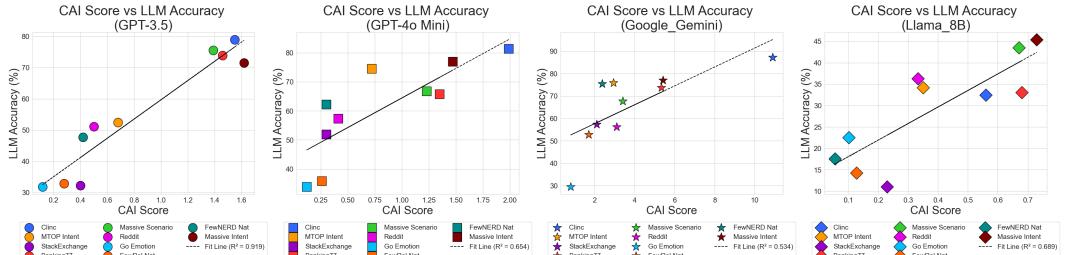


Table 1: Correlation analysis between LLM annotation accuracy and the CAI ratio, evaluated across four principled LLMs (also see statistical test results in Sec 6.1). The Pearson correlation coefficients and corresponding p-values confirm the statistical significance of the positive correlation between the CAI ratio and LLMs accuracy.

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Definition 4.1 (Consistent-and-Inconsistent) (CAI) Ratio Let N_C and N_{IC} denote the number of consistent samples¹ $|\mathcal{C}|$ and the number of inconsistent samples² $|\mathcal{I}|$, respectively. The CAI Ratio is defined as CAI Ratio = $\frac{N_C}{N_{IC}}$.

The CAI ratio leverages heterogenous consistency (likelihood-derived and embedding) for evaluating the reliability of LLM-generated annotations without labelled supervision. A noticeably high CAI ratio (CAI Ratio $\gg 1$) may indicate annotation bias or overconfidence, while a low CAI ratio (CAI Ratio $\ll 1$) suggests inconsistency and greater uncertainty in the model’s outputs. In these cases, the ratio offers a meaningful indicator of annotation alignment, helping determine when LLM-generated labels need to be refined using external human supervision or enriched prior knowledge. Furthermore, we formalize a crucial insight into the connection between our proposed CAI ratio and LLM annotation accuracy through the *Consistency Principle*, which characterizes the asymptotic behavior under optimal task-specific specialised model and LLMs. This principle states that for a given dataset D_u , if the specialised model (S^*) and LLM (T^*) are both optimal hypotheses, the number of consistent samples will asymptotically exceed that of inconsistent ones as the dataset size approaches infinity.

Proposition 4.2 (Consistency Principle) Let T^* and S^* be the optimal LLM (LLM) and task-specialised model hypotheses for an semi-supervised dataset D_u . Define N_C and N_{IC} as the number of consistent and inconsistent samples, respectively, identified by the CAI ratio. As the dataset

¹Samples where the LLM and task-specialised model agree.

²Samples where the LLM and task-specialised model disagree.

324 size $|D_u| \rightarrow \infty$, the probability of consistent samples surpassing that of inconsistent samples approaches one: $\lim_{|D_u| \rightarrow \infty} P(N_C > N_{IC}) = 1$.
 325
 326

327 We empirically validate this principle in Section § 6.1, where we show that the CAI Ratio is a
 328 robust reference-free indicator of LLM annotation alignment under semi-supervised settings with
 329 user preferences.
 330

331 4.3 HETEROGENEOUS-CONSISTENCY CO-ALIGNMENT

332 Given the consistent samples with high-quality annotations $\mathcal{C} = \{(x_i, \bar{y}_i^c)\}_{i=1}^{|\mathcal{C}|}$ and the inconsistent
 333 samples $\mathcal{I} = \{(x_i, \bar{y}_i^i)\}_{i=1}^{|\mathcal{I}|}$ identified via CAI, together with the user-preference set H , we perform
 334 co-alignment of the annotations in \mathcal{I} using a divide-and-conquer strategy. Here, \bar{y}_i^c and \bar{y}_i^i denote
 335 the annotations associated with consistent and inconsistent samples, respectively. As illustrated in
 336 Fig. 3, the samples in \mathcal{C} exhibit substantially higher accuracy than those in \mathcal{I} . We therefore leverage
 337 the reliable annotations in \mathcal{C} to guide the correction and realignment of the inconsistent samples in
 338 \mathcal{I} .
 339

340 4.3.1 DIVIDE-AND-CONQUER CO-ALIGNMENT (DCCA)

341 **Round 1.** (*Self-aligning \mathcal{I} to obtain $\mathcal{I}^{(1)}$*).
 342

343 For each $(x, \bar{y}^i) \in \mathcal{I}$, we apply the **Majority Voting via Top-Nearest Embedding Scheme (MV-
 344 VTES)** (Section 4.3.2) using the reference set $\mathcal{C} \cup H$. Let \hat{y}^i denote the self-corrected annotation
 345 produced by MV-VTES, and define $\mathcal{I}^{(1)} = \{(x, \hat{y}^i) \mid (x, \bar{y}^i) \in \mathcal{I}\}$. Thus, $\mathcal{I}^{(1)}$ represents the orig-
 346 inally inconsistent samples after their first-round reassignment. Next, for each sample, we compare
 347 the original label \bar{y}^i in \mathcal{I} with its updated label \hat{y}^i in $\mathcal{I}^{(1)}$ to perform CAI identification, yielding the
 348 partition: $\mathcal{I} = \mathcal{CI} \cup \mathcal{II}, \mathcal{CI} \cap \mathcal{II} = \emptyset$. Here, \mathcal{CI} contains those samples that become consistent
 349 after the first alignment pass, while \mathcal{II} contains those that remain inconsistent.
 350

351 **Round 2.** (*Co-aligning \mathcal{II} to obtain $\mathcal{II}^{(1)}$*). For each $(x, \bar{y}^i) \in \mathcal{II}$, we again apply MV-VTES,
 352 this time with an expanded reference set $\mathcal{C} \cup \mathcal{CI} \cup H$. Let $\hat{y}^{i'}$ denote the newly assigned annotation,
 353 and define $\mathcal{II}^{(1)} = \{(x, \hat{y}^{i'}) \mid (x, \bar{y}^i) \in \mathcal{II}\}$. After this second pass, the fully aligned version
 354 of \mathcal{I} becomes $\mathcal{I}^{(2)} = \mathcal{CI} \cup \mathcal{II}^{(1)}$, indicating that all inconsistent cases have now been corrected.
 355 Finally, the self-corrected dataset is $D^{(\text{final})} = \mathcal{C} \cup \mathcal{CI} \cup \mathcal{II}^{(1)}$, where \mathcal{C} is the original consistent
 356 set, \mathcal{CI} contains the samples corrected in Round 1, and $\mathcal{II}^{(1)}$ contains the hardest cases resolved in
 357 Round 2. Overall, DCCA iteratively partitions \mathcal{I} into \mathcal{CI} and \mathcal{II} , resolves the easier inconsistencies
 358 in the first pass and the more challenging ones in the second, and ultimately produces the fully
 359 self-corrected dataset $D^{(\text{final})}$.
 360

361 4.3.2 MAJORITY VOTING VIA TOP-NEAREST EMBEDDING SCHEME (MV-VTES)

362 Our divide-and-conquer co-alignment method relies on the MV-VTES method, which selects an-
 363 notations from the most semantically similar samples in $\mathcal{C} \cup H$ to update each inconsistent sample
 364 $x \in \mathcal{I}$ or \mathcal{II} , leveraging their semantic similarity to refine annotations. Given a query x (an incon-
 365 sistent sample), our reference set $D_{(A,L)_e} = (\mathcal{C} \cup H)$ contains pairs $\{(a_i, \bar{y}_i)\}$ where a_i is an input
 366 and \bar{y}_i is its high-quality label. We retrieve the top- K most similar references to x as follows:
 367

$$\{(a_i, \bar{y}_i)\}_{i=1}^K = \arg \operatorname{top-K}_{(a,l) \in D_{(A,L)_e}} \left(\frac{\mathcal{S}(a) \cdot \mathcal{S}(x)}{\|\mathcal{S}(a)\| \|\mathcal{S}(x)\|} \right), \quad (3)$$

368 where $\mathcal{S}(\cdot)$ is the embedding function. After selecting the top- K most similar samples, denoted
 369 as $\{(a_1, \bar{y}_1), \dots, (a_K, \bar{y}_K)\}$, we aggregate their labels \bar{y}_i to produce a final refined annotation \hat{y}
 370 for x . Specifically, let A be the set of unique labels extracted from the top- K nearest neighbours:
 371 $A = \{\bar{y}_1, \dots, \bar{y}_K\}$. For each $a \in A$, we define its frequency as $n_a = \sum_{i=1}^K \mathbf{1}\{\bar{y}_i = a\}$. The refined
 372 annotation \hat{y} is then assigned using majority voting:
 373

$$\hat{y} = \operatorname{argmax}_{a \in A} n_a. \quad (4)$$

374 Hence, our method uses the identified consistent samples as anchors to guide the alignment of in-
 375 consistent samples. Unlike conventional approaches that completely discard noisy or inconsistent
 376 data, HCC co-align these inconsistencies to improve overall assigned annotation alignment.
 377

378 5 EXPERIMENTS

380 We conduct extensive comparisons against the following baselines: (1) Specialised Model (Reimers
 381 & Gurevych, 2019); (2) LLM Grattafiori et al. (2024); (3) Specialised Model+LLM; (4) Clus-
 382 tering Zhang et al. (2023b); (5) CoT Wei et al. (2022); (6) FoT Brown et al. (2020); (7) Self-
 383 Consistency Wang et al. (2022); (8) Self-Refine Madaan et al. (2024). **Details on our baselines,**
 384 **datasets, and evaluation metrics are shown in Appendix D and E.**

385 **Table 2: Comparative Performance Across Large Language Models.** Accuracy (%) across eight
 386 benchmark datasets for GPT-3.5 Turbo, GPT-4o Mini, and Meta-Llama 3-8B Instruct. HCC
 387 consistently outperforms all baselines, achieving top accuracy on 6–8 datasets per model. Values are
 388 reported as mean \pm standard deviation over three runs.

389 (a) GPT-3.5 Turbo (Closed-source LLM): HCC achieves the best accuracy on 6 datasets.

Dataset	Spec. Model ^[1]	LLM (Zero-shot) ^[2]	Spec.+LLM	Clust. ^[3]	CoT ^[4]	FoT ^[5]	Self-Cons. ^[6]	Self-Ref. ^[7]	HCC w/o Corr.	HCC w/ Corr.	CAI (Before \rightarrow After)
<i>Cline</i>	79.01 \pm 1.08	66.58 \pm 3.36	76.82 \pm 1.51	78.58 \pm 0.41	45.46 \pm 0.55	46.66 \pm 0.46	76.56 \pm 0.03	64.39 \pm 0.14	81.32 \pm 0.46	85.49 \pm 0.19	1.55 \rightarrow 5.50
<i>Massive Scenario</i>	75.55 \pm 1.76	60.89 \pm 0.62	70.23 \pm 1.64	60.85 \pm 4.33	52.01 \pm 0.28	56.06 \pm 0.36	63.44 \pm 0.12	47.70 \pm 0.26	69.25 \pm 0.03	76.43 \pm 0.47	1.39 \rightarrow 4.72
<i>MTOP Intent</i>	52.49 \pm 2.52	64.14 \pm 0.21	55.12 \pm 1.18	56.00 \pm 0.90	59.04 \pm 0.73	58.00 \pm 0.26	39.99 \pm 0.08	78.57 \pm 0.42	69.06 \pm 0.10	68.38 \pm 1.78	0.68 \rightarrow 1.78
<i>StackExchange</i>	32.27 \pm 0.50	30.10 \pm 0.10	30.92 \pm 2.23	47.75 \pm 0.18	9.71 \pm 0.18	13.50 \pm 0.26	37.18 \pm 0.26	21.21 \pm 0.20	29.76 \pm 0.19	41.45 \pm 2.99	0.40 \rightarrow 0.85
<i>Banking77</i>	73.93 \pm 0.81	65.12 \pm 0.30	75.39 \pm 0.32	71.20 \pm 1.59	27.24 \pm 0.05	32.43 \pm 0.28	56.10 \pm 0.05	36.74 \pm 0.07	73.56 \pm 0.20	82.45 \pm 0.48	1.36 \rightarrow 4.03
<i>Reddit</i>	51.73 \pm 0.62	51.12 \pm 1.37	51.64 \pm 0.18	57.02 \pm 1.59	39.42 \pm 0.20	40.99 \pm 0.17	48.06 \pm 0.12	25.98 \pm 0.10	35.63 \pm 0.51	45.22 \pm 0.15	0.31 \rightarrow 0.66
<i>FewRel-Nat</i>	35.35 \pm 0.02	32.87 \pm 1.72	37.37 \pm 0.13	51.22 \pm 1.43	18.36 \pm 0.14	17.34 \pm 0.41	27.52 \pm 0.03	15.68 \pm 0.32	43.90 \pm 1.59	58.77 \pm 0.29	0.50 \rightarrow 1.40
<i>Massive Intent</i>	61.80 \pm 1.04	71.52 \pm 0.95	64.54 \pm 0.02	60.69 \pm 0.02	52.52 \pm 1.33	55.89 \pm 0.36	74.88 \pm 0.36	55.12 \pm 0.26	73.41 \pm 1.84	44.88 \pm 0.05	0.28 \rightarrow 0.89

395 (b) GPT-4o Mini (Closed-source LLM): HCC achieves the best accuracy on 6 datasets.

Dataset	Spec. Model	LLM	Spec.+LLM	Clust.	CoT	FoT	Self-Cons.	Self-Ref.	HCC w/o Corr.	HCC w/ Corr.	CAI (Before \rightarrow After)	
<i>Cline</i>	79.01 \pm 1.08	81.44 \pm 0.44	78.58 \pm 1.35	78.58 \pm 0.41	74.93 \pm 0.40	77.17 \pm 0.19	84.22 \pm 0.88	68.06 \pm 0.65	85.23 \pm 0.98	87.93 \pm 0.53	2.06 \rightarrow 5.20	
<i>Massive Scenario</i>	75.55 \pm 1.76	66.83 \pm 1.38	77.62 \pm 0.74	60.85 \pm 4.33	62.96 \pm 0.28	70.17 \pm 0.24	68.99 \pm 0.76	50.27 \pm 0.95	79.60 \pm 0.85	80.18 \pm 0.45	1.39 \rightarrow 4.65	
<i>MTOP Intent</i>	52.49 \pm 2.52	75.03 \pm 1.38	57.01 \pm 0.37	37.22 \pm 1.18	74.48 \pm 0.29	78.65 \pm 0.26	73.32 \pm 1.10	39.98 \pm 0.22	80.16 \pm 0.85	67.10 \pm 0.32	0.74 \rightarrow 1.66	
<i>StackExchange</i>	32.27 \pm 0.65	51.90 \pm 0.75	45.49 \pm 0.94	47.75 \pm 1.24	39.42 \pm 0.20	40.99 \pm 0.17	48.06 \pm 0.12	25.98 \pm 0.10	40.23 \pm 0.06	73.56 \pm 0.20	82.45 \pm 0.48	1.36 \rightarrow 4.03
<i>Banking77</i>	73.93 \pm 0.81	65.12 \pm 0.30	75.39 \pm 0.32	71.20 \pm 1.59	54.41 \pm 0.46	56.33 \pm 0.51	66.82 \pm 0.28	40.23 \pm 0.06	73.56 \pm 0.20	80.16 \pm 0.85	0.31 \rightarrow 0.66	
<i>Reddit</i>	51.73 \pm 0.62	57.40 \pm 1.96	53.25 \pm 0.35	57.02 \pm 1.59	38.34 \pm 0.44	41.01 \pm 0.66	44.60 \pm 1.28	24.66 \pm 0.09	44.47 \pm 0.69	60.94 \pm 0.11	0.51 \rightarrow 1.90	
<i>FewRel-Nat</i>	35.35 \pm 0.02	35.87 \pm 0.02	37.11 \pm 0.28	51.22 \pm 1.43	28.47 \pm 0.13	33.95 \pm 0.85	43.57 \pm 0.28	23.49 \pm 0.13	49.53 \pm 0.35	44.94 \pm 0.02	0.26 \rightarrow 0.90	
<i>Massive Intent</i>	61.80 \pm 1.04	76.93 \pm 1.05	66.02 \pm 0.12	60.69 \pm 0.02	60.91 \pm 0.14	65.44 \pm 0.57	74.43 \pm 0.10	53.32 \pm 0.12	78.93 \pm 0.50	72.49 \pm 0.40	1.47 \rightarrow 3.30	

401 (c) Meta-Llama 3-8B Instruct (Open-source LLM): HCC achieves the best accuracy on 8 datasets.

Dataset	Spec. Model	LLM (Zero-shot)	Spec.+LLM	CoT	FoT	Self-Cons.	Self-Ref.	HCC w/o Corr.	HCC w/ Corr.	CAI (Before \rightarrow After)
<i>Cline</i>	79.01 \pm 1.08	32.49 \pm 6.73	69.40 \pm 7.28	31.07 \pm 0.21	38.08 \pm 0.98	52.53 \pm 0.27	48.02 \pm 1.07	63.41 \pm 1.19	82.43 \pm 0.20	0.56 \rightarrow 4.43
<i>Massive Scenario</i>	75.55 \pm 1.76	43.52 \pm 1.85	66.74 \pm 0.98	44.29 \pm 1.26	43.10 \pm 1.10	58.11 \pm 0.15	54.65 \pm 1.29	70.06 \pm 1.12	78.13 \pm 0.74	0.67 \rightarrow 4.88
<i>MTOP Intent</i>	52.49 \pm 2.52	34.17 \pm 6.70	48.23 \pm 0.26	53.66 \pm 0.03	61.19 \pm 0.07	68.18 \pm 0.20	39.93 \pm 0.26	66.39 \pm 0.70	63.39 \pm 1.47	0.35 \rightarrow 1.46
<i>StackExchange</i>	32.27 \pm 0.65	11.02 \pm 2.78	26.26 \pm 2.16	15.05 \pm 1.58	16.04 \pm 1.38	5.04 \pm 0.21	21.26 \pm 0.76	16.03 \pm 0.13	38.88 \pm 0.27	0.23 \rightarrow 0.53
<i>Banking77</i>	73.93 \pm 0.81	33.06 \pm 1.92	69.66 \pm 1.74	27.24 \pm 0.05	32.53 \pm 0.49	56.07 \pm 0.05	36.69 \pm 0.07	64.29 \pm 1.24	77.71 \pm 0.25	0.68 \rightarrow 4.20
<i>Reddit</i>	51.73 \pm 0.62	36.31 \pm 0.97	46.00 \pm 2.51	16.65 \pm 2.99	27.29 \pm 1.45	40.34 \pm 0.92	40.30 \pm 2.09	40.29 \pm 0.55	58.81 \pm 0.28	0.33 \rightarrow 1.58
<i>FewRel-Nat</i>	35.35 \pm 0.02	14.25 \pm 0.97	30.07 \pm 4.45	15.13 \pm 0.14	18.66 \pm 0.26	19.84 \pm 0.17	19.41 \pm 0.24	31.80 \pm 0.34	42.92 \pm 0.06	0.13 \rightarrow 0.85
<i>Massive Intent</i>	61.80 \pm 1.04	45.41 \pm 0.06	56.03 \pm 0.08	35.02 \pm 0.76	43.05 \pm 0.40	74.63 \pm 0.19	54.93 \pm 0.36	67.49 \pm 0.10	67.75 \pm 0.43	0.73 \rightarrow 2.87

407 **Summary.** Across all three model families (GPT-3.5 Turbo, GPT-4o Mini, Meta-Llama 3-8B In-
 408 struct), HCC consistently yields the highest overall accuracy and largest CAI improvements,
 409 demonstrating robust generalization across both open- and closed-source paradigms.

412 5.1 EVALUATION RESULTS

414 **GPT-3.5 Turbo:** We have two key findings based on the experimental results from Table 2. First,
 415 our method (HCC) consistently outperforms baseline methods, achieving notable gains on *Clinic*
 416 (**+4.17%**), *Massive Scenario* (**+0.88%**), and *Bank77* (**+2.99%**). For the *MTOP Intent*
 417 and *StackExchange*, HCC surpasses the non-collaborative baselines, i.e., Only Specialised
 418 Model and Only LLMs (GPT 3.5), by **+16%/**+4.11%** and **+9.18%/**+11.35%**, respectively. This
 419 underscores the effectiveness of HCC in improving annotation accuracy through the collaborative
 420 refinement of a specialized model and an LLM. In particular, knowledge distillation between the spe-
 421 cialized model (BERT) and the LLM using consistent samples (denoted as HCC w/o Corr) achieved
 422 the highest annotation accuracy on the *MTOP Intent* dataset.****

423 **GPT-4o Mini:** Based on the results from Table 2, there are two key findings. First, *Heterogeneous*
 424 *Consistency Co-Alignment* (HCC) consistently outperforms all baselines on *Cline* (**+2.7%**),
 425 *Massive Scenario* (**+0.58%**), *Bank77* (**+7.06%**) and *Reddit* (**+3.92%**). Additionally, HCC
 426 without alignment achieved the highest annotation accuracy on *MTOP Intent*. HCC (w/ Corr) and
 427 HCC (w/o Corr) can be used interchangeably to enhance annotation accuracy.

428 **Meta-Llama3-8B Instruct:** Touvron et al. (2023), our proposed HCC variants have outperformed
 429 all baselines, demonstrating a significant improvement in accuracy and CAI scores. Notably, despite
 430 the relatively poor accuracy of the LLM, our method shows remarkable robustness by consistently
 431 outperforming both the Llama 8B and the specialised model. This highlights the adaptability and
 432 reliability of our approach.

432 **5.2 HCC UNDER WEAKER (BERT-BASE-UNCASED) VS. STRONGER LANGUAGE MODEL**
 433 **(LLAMA-3-8B INSTRUCT) REGIMES**
 434

435 To demonstrate that Heterogeneous Consistency Co-Alignment (HCC) remains effective across both
 436 weaker and stronger language model regimes, we adopt BERT-Base-Uncased as a weak spe-
 437 cialised model and Llama-3-8B Instruct as a strong LLM. As shown in Tables 15 and 16,
 438 HCC enables the open-source **Llama-3-8B Instruct**, even when paired with the weaker BERT back-
 439 bone, to outperform **GPT-4o Mini** on five datasets and **GPT-3.5 Turbo** on seven datasets. This
 440 highlights HCC’s ability to boost weaker specialised models while narrowing the performance gap
 441 between open-source and proprietary LLMs.

Dataset	HCC (BERT)	GPT-4o Mini	GPT-3.5 Turbo	Outcome
CLINC	0.8240	0.8144	0.6658	Beats Both
Massive Scenario	0.7461	0.6683	0.6089	Beats Both
Banking77	0.7162	0.6512	0.6512	Beats Both
Reddit	0.5813	0.5740	0.5112	Beats Both
FewRel-Nat	0.4205	0.3587	0.3287	Beats Both
MTop Intent	0.6562	0.7503	0.6495	Beats GPT-3.5 Only
StackExchange	0.3941	0.5190	0.3010	Beats GPT-3.5 Only
Massive Intent	0.6261	0.7693	0.7152	Lower than both

442
 443 Table 3: **Performance Comparison: HCC (R2 with BERT-Base-Uncased) vs. Closed-Source**
 444 **Models.** HCC uses only a weak BERT encoder, yet still outperforms GPT models on most datasets.
 445 ($K=3$)

446 **5.2.1 EXPERIMENTAL ANALYSIS**

447 HCC consistently outperforms prompt-based baselines such
 448 as Self-Refine. Prompting fares poorly on NLU: language
 449 is subjective, so unlike reasoning benchmarks where Python
 450 can verify solutions, no external checker exists, and self-
 451 generated feedback can *degrade* quality (Huang et al., 2023).
 452 Because prompt methods depend on very strong LLMs, ac-
 453 curacy drops on more complex tasks or weaker models (e.g.,
 454 LLaMA 3-8B). HCC reverses this: a LLaMA model beats
 455 ChatGPT-3.5 on every task except massive intent and mtop in-
 456 tent, and tops ChatGPT-4o-mini on Clinc, Banking77, and few
 457 rel nat. Hence, HCC can lift weaker open-source LLMs above
 458 stronger closed-source ones, making it a more stable and ef-
 459 fective choice.

460 **5.2.2 IMBALANCED USER-PREFERENCE SAMPLES**

461 In real-world scenarios, the distribution of user-preferred samples is often imbalanced. To assess
 462 the robustness of our method, we conduct a comprehensive evaluation of HCC under various anno-
 463 tation budgets, **1%, 5%, and 10%**, in the presence of imbalanced label distributions. We perform
 464 ablation studies to examine the impact of user preference imbalance, as shown in Table 5, using
 465 Llama 3-8B Instruct under an imbalance ratio of 60%. Specifically, after assigning one labeled
 466 sample per class, 60% of the remaining samples are allocated to the majority classes. This setup
 467 reflects a moderately skewed yet realistic user preference distribution. HCC assumes at least one
 468 labeled instance per class to align annotations with user intent. Despite the imbalance, HCC
 469 consistently outperforms strong baselines such as Self-Consistency (+29.58% on Clinc, +33.25% on
 470 Stackexchange, +22.56% on Few_Rel_Nat), Self-Refine (+34.09% on Clinc, +37.63% on
 471 Banking77), and Clustering (+10.03% on Banking77, +22.26% on Reddit), all under bal-
 472 anced 5% label supervision. However, HCC does experience some performance degradation due
 473 to the imbalanced setup, with accuracy drops observed on Clinc (-0.32), Massive_Scenario
 474 (-0.46), Stackexchange (-0.59), Reddit (-0.11), and Few_Rel_Nat (-0.52). Overall, the HCC
 475 framework demonstrates strong robustness under moderately imbalanced conditions.

476 **6 CORRELATION RESULTS BETWEEN CAI RATIO AND LLM ACCURACY**

477 We performed a Pearson correlation analysis to investigate the relationship between CAI Ratio and
 478 LLM accuracy. The correlation analysis between the Consistent and Inconsistent (CAI) ratio and

HCC(Llama 3)W/Corr.	GPT-4o mini	GPT-3.5 Turbo
82.43\pm0.20	81.44 \pm 0.44	66.58 \pm 3.36
78.13\pm0.74	66.83 \pm 1.31	60.89 \pm 0.62
63.39 \pm 1.47	75.03\pm1.35	64.95 \pm 0.21
38.88\pm0.27	51.90 \pm 0.75	30.10 \pm 0.10
77.71\pm0.25	65.12 \pm 0.30	65.12 \pm 0.30
58.81\pm0.28	57.40 \pm 1.96	51.12 \pm 1.27
42.92\pm0.06	35.87 \pm 0.03	32.87 \pm 1.72
67.75 \pm 0.43	76.93\pm1.05	71.52 \pm 0.95

479 Table 4: **Heterogeneous-Consistency**
 480 **Co-Alignment (HCC) enable Llama 3-8 Instruct (Weak LLM) to outperform**
 481 **5 out of 8 datasets in comparison with**
 482 **Closes-source LLMs (Strong LLM).**

486 Table 5: **Lama 3-8B Instruct**: Accuracy Comparison Across Datasets with 1%, 5%, and 10% Label
 487 Budgets (Mean \pm Std, in %) under **Imbalanced User Preference Samples**.

Dataset	Label Budget	Accuracy Metrics				HCC (Ours) (%)
		LLM (Zero-Shot) (%)	Specialised + LLM (%)	Specialised Model (%)		
Clinic	1%	27.28 \pm 0.06	54.39 \pm 0.06	62.86 \pm 0.94	63.36 \pm 1.91	
	5%	34.01 \pm 2.43	68.28 \pm 1.34	78.98 \pm 0.24	82.11 \pm 0.18	
	10%	36.54 \pm 1.46	71.79 \pm 1.48	83.98 \pm 1.49	85.61 \pm 0.72	
Massive_Scenario	1%	45.15 \pm 0.49	57.30 \pm 2.10	60.73 \pm 2.76	65.59 \pm 1.03	
	5%	46.22 \pm 0.29	66.80 \pm 1.02	75.94 \pm 1.16	77.67 \pm 1.04	
	10%	46.36 \pm 0.86	70.10 \pm 0.57	78.50 \pm 0.08	75.03 \pm 2.94	
Mtop_Intent	1%	27.82 \pm 1.31	44.93 \pm 1.90	39.47 \pm 3.83	54.00 \pm 0.63	
	5%	30.11 \pm 0.50	51.64 \pm 1.85	49.66 \pm 1.09	60.80 \pm 2.50	
	10%	32.03 \pm 0.57	57.37 \pm 0.83	55.97 \pm 2.30	58.40 \pm 3.59	
StackExchange	1%	11.49 \pm 0.70	21.11 \pm 0.96	21.03 \pm 1.49	29.38 \pm 0.36	
	5%	12.27 \pm 0.37	29.86 \pm 0.48	31.44 \pm 0.06	38.29 \pm 0.42	
	10%	13.16 \pm 0.28	33.20 \pm 0.67	35.73 \pm 0.38	42.82 \pm 0.42	
Banking77	1%	31.49 \pm 0.19	58.72 \pm 0.83	62.03 \pm 0.41	63.99 \pm 1.30	
	5%	37.08 \pm 0.06	69.71 \pm 1.43	74.17 \pm 0.76	74.32 \pm 5.29	
	10%	40.39 \pm 1.07	77.55 \pm 1.25	81.38 \pm 1.02	84.63 \pm 0.44	
Reddit_Redit	1%	22.58 \pm 0.22	38.25 \pm 0.89	38.67 \pm 1.03	50.44 \pm 0.20	
	5%	28.88 \pm 0.12	49.19 \pm 0.84	50.23 \pm 0.81	58.70 \pm 0.30	
	10%	29.49 \pm 1.60	52.34 \pm 0.36	53.48 \pm 0.39	61.11 \pm 0.16	
Few_Rel_Nat	1%	11.45 \pm 0.27	23.36 \pm 0.12	24.70 \pm 0.23	31.67 \pm 0.49	
	5%	12.46 \pm 0.25	31.46 \pm 1.22	33.69 \pm 0.84	42.40 \pm 0.28	
	10%	12.91 \pm 0.46	33.34 \pm 0.35	36.10 \pm 0.23	42.25 \pm 2.17	
MASSIVE_INTENT	1%	31.61 \pm 1.01	45.76 \pm 0.39	49.34 \pm 1.43	48.08 \pm 8.41	
	5%	34.56 \pm 0.44	54.14 \pm 0.29	58.15 \pm 0.22	61.40 \pm 0.44	
	10%	35.92 \pm 0.08	59.18 \pm 0.49	63.23 \pm 0.18	63.32 \pm 5.14	

accuracy across four different LLMs demonstrates a strong relationship between these two metrics. GPT-3.5 shows the highest correlation ($\rho = 0.93$, $p = 8.22 \times 10^{-5}$), indicating a very strong positive relationship between CAI and accuracy, with high statistical significance. GPT-4o Mini shows a strong correlation ($\rho = 0.86$, $p = 1.61 \times 10^{-3}$), suggesting that CAI is a reliable LLM of accuracy for this model. Llama-8B-Instruct ($\rho = 0.81$, $p = 1.44 \times 10^{-2}$) and Google Gemini ($\rho = 0.72$, $p = 1.80 \times 10^{-2}$) exhibit moderate-to-strong correlations with significant statistical confidence. (See Appendix Section C)

6.1 CAI RATIO EVALUATION

As shown in Table 2, applying HCC learning to increasingly powerful LLMs significantly reduces the number of inconsistent samples while substantially increasing the number of consistent samples. Such improvement is also reflected in the CAI ratio across Banking77 (**1.45 \Rightarrow 4.99**), Clinic (**1.44 \Rightarrow 5.74**), Massive_Scenario (**1.38 \Rightarrow 4.88**), MTOP_INTENT (**0.67 \Rightarrow 1.65**), and StackExchange (**0.40 \Rightarrow 0.86**). These results highlight the significant gains in the CAI ratio, which directly correlate with improved annotation accuracy across datasets. Further details on the improvements in the CAI ratio and accuracy after applying our proposed HCC approach can be found in the Appendix. For Banking77, the CAI ratio improved from **1.35** to **4.03**, with accuracy increasing from **65.12%** to **82.45%**. Similarly, for Clinic, the CAI ratio rose from **1.99** to **5.20**, and accuracy increased from **81.44%** to **87.93%**. Massive Scenario saw its CAI ratio climb from **1.38** to **4.65**, with accuracy rising from **66.83%** to **80.18%**. However, in the MTOP Intent dataset, while the CAI ratio improved from **0.72** to **1.66**, accuracy dropped from **75.03%** to **67.10%**. Similarly, for StackExchange, despite a CAI ratio increase from **0.30** to **0.66**, HCC’s accuracy (**45.22%**) lagged behind LLM-only (**51.90%**). These results highlight a key trend: a substantial increase in the CAI ratio is necessary to guarantee meaningful performance gains.

Conversely, a marginal increase, such as the small gain of 0.36 in StackExchange, would suggest potential limitations in the annotation alignment. HCC proves most effective for closed-source models with strong initial CAI ratios (> 1) and weaker models when CAI starts above 0.5. Notably, Clinic, Massive Scenario, Banking77, and Massive Intent exhibit the highest CAI ratio improvements, reinforcing HCC’s effectiveness. HCC consistently outperforms open-source models, even with modest CAI ratio gains, and dominates in 6 out of 8 datasets for closed-source models.

7 CONCLUSION

This paper tackles evaluation and co-alignment in semi-supervised tasks with limited user preference data. We introduce HCC, a collaborative framework that exploits agreement and disagreement between an LLM (providing token-level annotations) and a task-specific specialised model that captures semantic similarity. HCC uses the Consistent-and-Inconsistent (CAI) Ratio to gauge annotation alignment and applies a divide-and-conquer co-alignment strategy to revise inconsistent samples. Experiments show that HCC markedly improves annotation alignment, allowing weaker open-source LLMs to surpass stronger closed-source LLMs. The CAI Ratio strongly correlates with these gains. Future work will explore adaptive alignment mechanisms.

540 REFERENCES
541

542 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
543 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
544 few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.

545 Iñigo Casanueva, Tadas Temčinas, Daniela Gerz, Matthew Henderson, and Ivan Vulić. Efficient
546 intent detection with dual sentence encoders. *arXiv preprint arXiv:2003.04807*, 2020.

547

548 Souradip Chakraborty, Jiahao Qiu, Hui Yuan, Alec Koppel, Dinesh Manocha, Furong Huang, Am-
549 rit Singh Bedi, and Mengdi Wang. Maxmin-rlhf: Alignment with diverse human preferences.
550 *arXiv preprint arXiv:2402.08925*, 2024. URL <https://arxiv.org/abs/2402.08925>.

551 Cheng Chen, Bowen Xing, and Ivor W Tsang. Low-hanging fruit: Knowledge distillation from
552 noisy teachers for open domain spoken language understanding. In *Joint European Conference
553 on Machine Learning and Knowledge Discovery in Databases*, pp. 107–125, 2024.

554

555 Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
556 to self-debug. *arXiv preprint arXiv:2304.05128*, 2023.

557 Shizhe Diao, Pengcheng Wang, Yong Lin, and Tong Zhang. Active prompting with chain-of-thought
558 for large language models, 2023.

559

560 Jack FitzGerald, Christopher Hench, Charith Peris, Scott Mackie, Kay Rottmann, Ana Sanchez,
561 Aaron Nash, Liam Urbach, Vishesh Kakarala, Richa Singh, Swetha Ranganath, Laurie Crist,
562 Misha Britan, Wouter Leeuwis, Gokhan Tur, and Prem Natarajan. Massive: A 1m-example mul-
563 tilingual natural language understanding dataset with 51 typologically-diverse languages, 2022.

564

565 Gregor Geigle, Nils Reimers, Andreas Rücklé, and Iryna Gurevych. Tweac: transformer with ex-
566 tendable qa agent classifiers. *arXiv preprint arXiv:2104.07081*, 2021.

567

568 Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli. Chatgpt outperforms crowd workers for text-
569 annotation tasks. *Proceedings of the National Academy of Sciences*, 120(30):e2305016120, 2023.

570

571 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
572 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
573 of models. *arXiv preprint arXiv:2407.21783*, 2024.

574

575 Dongge Han, Trevor McInroe, Adam Jelley, Stefano V. Albrecht, Peter Bell, and Amos Storkey.
Llm-personalize: Aligning llm planners with human preferences via reinforced self-training for
576 housekeeping robots, 2024. URL <https://arxiv.org/abs/2404.14285>.

577

578 Xu Han, Hao Zhu, Pengfei Yu, Ziyun Wang, Yuan Yao, Zhiyuan Liu, and Maosong Sun. Fewrel:
A large-scale supervised few-shot relation classification dataset with state-of-the-art evaluation.
579 *arXiv preprint arXiv:1810.10147*, 2018.

580

581 Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei
582 Han. Large language models can self-improve. *arXiv preprint arXiv:2210.11610*, 2022.

583

584 Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
585 and Denny Zhou. Large language models cannot self-correct reasoning yet. In *The Twelfth
International Conference on Learning Representations*, 2023.

586

587 Takumi Ito, Kees van Deemter, and Jun Suzuki. Reference-free evaluation metrics for text genera-
588 tion: A survey. *arXiv preprint arXiv:2501.12011*, 2025.

589

590 Dipesh Kadariya, Revathy Venkataramanan, Hong Yung Yip, Maninder Kalra, Krishnaprasad
591 Thirunarayanan, and Amit Sheth. kbot: knowledge-enabled personalized chatbot for asthma
592 self-management. In *2019 IEEE International Conference on Smart Computing (SMARTCOMP)*,
593 pp. 138–143. IEEE, 2019.

594

595 Adam Tauman Kalai, Ofir Nachum, Santosh S. Vempala, and Edwin Zhang. Why language models
596 hallucinate, 2025. URL <https://arxiv.org/abs/2509.04664>.

594 Stefan Larson, Anish Mahendran, Joseph J. Peper, Christopher Clarke, Andrew Lee, Parker Hill,
 595 Jonathan K. Kummerfeld, Kevin Leach, Michael A. Laurenzano, Lingjia Tang, and Jason Mars.
 596 An evaluation dataset for intent classification and out-of-scope prediction. In Kentaro Inui, Jing
 597 Jiang, Vincent Ng, and Xiaojun Wan (eds.), *Proceedings of the 2019 Conference on Empirical
 598 Methods in Natural Language Processing and the 9th International Joint Conference on
 599 Natural Language Processing (EMNLP-IJCNLP)*, pp. 1311–1316, Hong Kong, China, November
 600 2019a. Association for Computational Linguistics. doi: 10.18653/v1/D19-1131. URL
 601 <https://aclanthology.org/D19-1131/>.

602 Stefan Larson, Anish Mahendran, Joseph J Peper, Christopher Clarke, Andrew Lee, Parker Hill,
 603 Jonathan K Kummerfeld, Kevin Leach, Michael A Laurenzano, Lingjia Tang, et al. An evaluation
 604 dataset for intent classification and out-of-scope prediction. *arXiv preprint arXiv:1909.02027*,
 605 2019b.

606 Haoran Li, Abhinav Arora, Shuohui Chen, Anchit Gupta, Sonal Gupta, and Yashar Mehdad.
 607 Mtop: A comprehensive multilingual task-oriented semantic parsing benchmark. *arXiv preprint
 608 arXiv:2008.09335*, 2020.

609 Jiacheng Li, Ming Wang, Jin Li, Jinmiao Fu, Xin Shen, Jingbo Shang, and Julian McAuley. Text is
 610 all you need: Learning language representations for sequential recommendation. In *Proceedings
 611 of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, pp. 1258–
 612 1267, 2023.

613 Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
 614 makes good in-context examples for GPT-3? In Eneko Agirre, Marianna Apidianaki, and Ivan
 615 Vulić (eds.), *Proceedings of Deep Learning Inside Out (DeeLIO 2022): The 3rd Workshop on
 616 Knowledge Extraction and Integration for Deep Learning Architectures*, pp. 100–114, Dublin,
 617 Ireland and Online, May 2022. Association for Computational Linguistics. doi: 10.18653/v1/
 618 2022.deelio-1.10. URL <https://aclanthology.org/2022.deelio-1.10/>.

619 Ruibo Liu, Jerry Wei, Fangyu Liu, Chenglei Si, Yanzhe Zhang, Jinmeng Rao, Steven Zheng, Daiyi
 620 Peng, Diyi Yang, Denny Zhou, and Andrew M. Dai. Best practices and lessons learned on syn-
 621 thetic data. In *First Conference on Language Modeling*, 2024.

622 Zemin Liu, Xingtong Yu, Yuan Fang, and Xinming Zhang. Graphprompt: Unifying pre-training and
 623 downstream tasks for graph neural networks. In *Proceedings of the ACM Web Conference 2023*,
 624 2023.

625 Jieyi Long. Large language model guided tree-of-thought. *arXiv preprint arXiv:2305.08291*, 2023.

626 Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
 627 Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
 628 with self-feedback. *Advances in Neural Information Processing Systems*, 36, 2024.

629 Yu Meng, Jiaxin Huang, Yu Zhang, and Jiawei Han. Generating training data with language models:
 630 Towards zero-shot language understanding. *Advances in Neural Information Processing Systems*,
 631 35:462–477, 2022.

632 Xuan-Phi Nguyen, Wenxuan Zhang, Xin Li, Mahani Aljunied, Zhiqiang Hu, Chenhui Shen,
 633 Yew Ken Chia, Xingxuan Li, Jianyu Wang, Qingyu Tan, Liying Cheng, Guanzheng Chen, Yue
 634 Deng, Sen Yang, Chaoqun Liu, Hang Zhang, and Lidong Bing. Seallms – large language models
 635 for southeast asia, 2024. URL <https://arxiv.org/abs/2312.00738>.

636 Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L. Wainwright, Pamela Mishkin,
 637 Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
 638 Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul Christiano,
 639 Jan Leike, and Ryan Lowe. Training language models to follow instructions with human
 640 feedback. In *Advances in Neural Information Processing Systems (NeurIPS)*, 2022a. URL
 641 <https://arxiv.org/abs/2203.02155>.

642 Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong
 643 Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to fol-
 644 low instructions with human feedback. *Advances in neural information processing systems*, 35:
 27730–27744, 2022b.

648 Sriyash Poddar, Yanming Wan, Hamish Ivison, Abhishek Gupta, and Natasha Jaques. Personalizing
 649 reinforcement learning from human feedback with variational preference learning. *arXiv preprint*
 650 *arXiv:2408.10075*, 2024. URL <https://arxiv.org/abs/2408.10075>.

651

652 Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-
 653 networks. In Kentaro Inui, Jing Jiang, Vincent Ng, and Xiaojun Wan (eds.), *Proceedings of*
 654 *the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th Inter-*
 655 *national Joint Conference on Natural Language Processing (EMNLP-IJCNLP)*, pp. 3982–3992,
 656 Hong Kong, China, November 2019.

657

658 Alireza Salemi, Sheshera Mysore, Michael Bendersky, and Hamed Zamani. LaMP: When large
 659 language models meet personalization. In Lun-Wei Ku, Andre Martins, and Vivek Srikanth
 660 (eds.), *Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-*
 661 *guistics (Volume 1: Long Papers)*, pp. 7370–7392, Bangkok, Thailand, August 2024. Asso-
 662 ciation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.399. URL <https://aclanthology.org/2024.acl-long.399/>.

663

664 Patrick Schober, Christa Boer, and Lothar A Schwarte. Correlation coefficients: appropriate use and
 665 interpretation. *Anesthesia & analgesia*, 126(5):1763–1768, 2018.

666

667 Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
 668 Language agents with verbal reinforcement learning. *Advances in Neural Information Processing*
 669 *Systems*, 36, 2024.

670

671 Rickard Stureborg, Dimitris Alikaniotis, and Yoshi Suhara. Large language models are inconsistent
 672 and biased evaluators. *arXiv preprint arXiv:2405.01724*, 2024.

673

674 Zhaoxuan Tan, Qingkai Zeng, Yijun Tian, Zheyuan Liu, Bing Yin, and Meng Jiang. Democrati-
 675 zing large language models via personalized parameter-efficient fine-tuning. *arXiv preprint*
 676 *arXiv:2402.04401*, 2024a.

677

678 Zhen Tan, Dawei Li, Song Wang, Alimohammad Beigi, Bohan Jiang, Amrita Bhattacharjee, Man-
 679 sooreh Karami, Jundong Li, Lu Cheng, and Huan Liu. Large language models for data annotation:
 680 A survey. *arXiv preprint arXiv:2402.13446*, 2024b.

681

682 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
 683 Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
 684 https://github.com/tatsu-lab/stanford_alpaca, 2023.

685

686 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 687 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 688 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023.

689

690 Jesper E Van Engelen and Holger H Hoos. A survey on semi-supervised learning. *Machine learning*,
 691 109(2):373–440, 2020.

692

693 Jesper E. van Engelen and Holger H. Hoos. A survey on semi-supervised learning. *Machine*
 694 *Learning*, 109(2):373–440, 2020. doi: 10.1007/s10994-019-05855-6. URL <https://link.springer.com/article/10.1007/s10994-019-05855-6>.

695

696 Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, Nan Yang, and Ming Zhou. Minilm: Deep self-
 697 attention distillation for task-agnostic compression of pre-trained transformers. *Advances in Neu-*
 698 *ral Information Processing Systems*, 33:5776–5788, 2020.

699

700 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 701 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 702 *arXiv preprint arXiv:2203.11171*, 2022.

703

704 Xuezhi Wang, Jason Wei, Dale Schuurmans, and Quoc V Le. H. chi, sharan narang, aakanksha
 705 chowdhery, and denny zhou. self-consistency improves chain of thought reasoning in language
 706 models. In *The Eleventh International Conference on Learning Representations*, volume 1, 2023.

702 Zifeng Wang, Chun-Liang Li, Vincent Perot, Long T Le, Jin Miao, Zizhao Zhang, Chen-Yu Lee, and
 703 Tomas Pfister. Codeclm: Aligning language models with tailored synthetic data. *arXiv preprint*
 704 *arXiv:2404.05875*, 2024.

705 Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
 706 Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. *arXiv preprint*
 707 *arXiv:2109.01652*, 2021.

708 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 709 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 710 *Neural Information Processing Systems*, 35:24824–24837, 2022.

711 Ka Wong, Praveen Paritosh, and Lora Aroyo. Cross-replication reliability—an empirical approach to
 712 interpreting inter-rater reliability. *arXiv preprint arXiv:2106.07393*, 2021.

713 Siyuan Wu, Yue Huang, Chujie Gao, Dongping Chen, Qihui Zhang, Yao Wan, Tianyi Zhou, Xi-
 714 angliang Zhang, Jianfeng Gao, Chaowei Xiao, et al. Unigen: A unified framework for textual
 715 dataset generation using large language models. *arXiv preprint arXiv:2406.18966*, 2024.

716 Miao Xiong, Zhiyuan Hu, Xinyang Lu, Yifei Li, Jie Fu, Junxian He, and Bryan Hooi. Can llms
 717 express their uncertainty? an empirical evaluation of confidence elicitation in llms. *arXiv preprint*
 718 *arXiv:2306.13063*, 2023.

719 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
 720 React: Synergizing reasoning and acting in language models. *arXiv preprint arXiv:2210.03629*,
 721 2022.

722 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
 723 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. *Ad-*
 724 *vances in Neural Information Processing Systems*, 36, 2024.

725 Jiacheng Ye, Jiahui Gao, Qintong Li, Hang Xu, Jiangtao Feng, Zhiyong Wu, Tao Yu, and Ling-
 726 peng Kong. Zerogen: Efficient zero-shot learning via dataset generation. *arXiv preprint*
 727 *arXiv:2202.07922*, 2022.

728 Hanlei Zhang, Hua Xu, Ting-En Lin, and Rui Lyu. Discovering new intents with deep aligned
 729 clustering. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35, pp.
 730 14365–14373, 2021.

731 Xinlu Zhang, Chenxin Tian, Xianjun Yang, Lichang Chen, Zekun Li, and Linda Ruth Petzold.
 732 Alpacare:instruction-tuned large language models for medical application, 2023a.

733 Yuwei Zhang, Haode Zhang, Li-Ming Zhan, Xiao-Ming Wu, and Albert Lam. New intent discovery
 734 with pre-training and contrastive learning. *arXiv preprint arXiv:2205.12914*, 2022.

735 Yuwei Zhang, Zihan Wang, and Jingbo Shang. Clusterllm: Large language models as a guide for
 736 text clustering. In *The 2023 Conference on Empirical Methods in Natural Language Processing*,
 737 2023b.

738 Kaithlyn Zhou, Jena D Hwang, Xiang Ren, and Maarten Sap. Relying on the unreliable: The impact
 739 of language models’ reluctance to express uncertainty. *arXiv preprint arXiv:2401.06730*, 2024.

740 Jingge Zhu. Semi-supervised learning: the case when unlabeled data is equally useful. In *Proceed-
 741 ings of the 23rd International Conference on Artificial Intelligence and Statistics (AISTATS)*, vol-
 742 ume 124 of *PMLR*, 2020. URL <https://proceedings.mlr.press/v124/zhu20b.html>.

743

744

745

746

747

748

749

750

751

752

753

754

755

756
757

APPENDIX

758
759

Appendix Overview.

760
761

Section	Content Summary
A	Notation Summary (A)
B	Experimental Setup (B)
C	Pearson Correlation Test for CAI Scores and LLM Accuracy (C) <ul style="list-style-type: none"> C.1 Statistical Inference (C.1) C.2 Before Applying the Method (C.2) C.3 After Applying the Method (C.3)
D	Dataset Descriptions (D) <ul style="list-style-type: none"> D.1 Benchmark Datasets (D.1)
E	Baselines (E)
F	Evaluation Metrics (F) <ul style="list-style-type: none"> F.1 Reference-Free Evaluation Metric (CAI) (F.1) F.2 Comparison with Traditional Evaluation Metrics (F.2)
G	Additional Experimental Details (G) <ul style="list-style-type: none"> G.1 Inverse-Consistent Ratio (G.1)
H	Why LLM-Specialized Model Collaboration is Essential for HCC (H) <ul style="list-style-type: none"> H.1 Role of Specialized Model in HCC (H.0.1)
I	Sensitivity Analysis of K for Specialized Models (I)
J	Additional Ablation Studies (Llama-3-8B-Instruct) (J) <ul style="list-style-type: none"> J.1 HCC Under Weaker (BERT) vs. Stronger (Llama-3-8B) Models (J.1) J.2 HCC Across Embedding Backbones and Smaller Language Models (J.2) J.3 CAI Ratio Across Backbones (Before vs. After HCC) (J.3) J.4 Statistical Validation of CAI Across Encoders and LLMs (J.4) J.5 Running Time and Token Cost (J.5) J.6 HCC Runtime for Co-Alignment (J.6) J.7 Two-Round Correction and CAI Improvement (J.7)
K	Ablation Studies on ChatGPT-4o Mini (K) <ul style="list-style-type: none"> K.1 Failure Case of CAI (K.1) K.2 Running Time and Token Cost (K.2) K.3 HCC Runtime for Co-Alignment (K.3) K.4 Two-Round Correction and CAI Improvement (K.4)
L	Ablation Studies on ChatGPT-3.5 Turbo (L) <ul style="list-style-type: none"> L.1 Failure Case of CAI (L.1) L.2 Token Usage and Running Time (L.1) L.3 HCC Runtime for Co-Alignment (L.3) L.4 Two-Round Correction and CAI Improvement (L.4)
M	Imbalance Ablations (1%, 5%, 10% User Preference) (M)
N	Overall Reflection of CAI (N)
O	Cross-Domain Generalization (O)
P	Model Selection Studies (Q)
Q	Handling Conflicting User Preferences (P)
R	Algorithm Table (R)
S	Prompt Instructions (S) <ul style="list-style-type: none"> S.1 Prompt Instruction (Without Preference Context) (S.1) S.2 Prompt Instruction (With Preference Context) (S.2)
T	t-SNE Visualization for Clustering on All Datasets (ChatGPT-4o Mini) (T)

805

806
807
808
809

810
811
812
813
814
815
A NOTATION SUMMARY816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
Summary of main notation used throughout the paper.

Symbol	Description
$X \subset \mathbb{R}^d$	Input space of textual instances (utterances or sentences).
x_i	i -th input instance in the corpus.
$D_u = \{x_1, \dots, x_N\}$	Unlabeled or semi-supervised corpus for annotation.
$D_t = \{x_1, \dots, x_L\}$	Test corpus used for evaluation.
H	User-preference seed set containing a small number of labeled examples.
k	Number of classes or preference categories, $k = \mathcal{Y} $.
$\mathcal{Y} = \{1, \dots, k\}$	Discrete label space for categorical NLU tasks.
\bar{y}	Annotation assigned by the LLM or specialised model (generic notation).
C	Set of <i>consistent</i> samples where the specialised model and LLM agree.
I	Set of <i>inconsistent</i> samples where at least one annotator disagrees.
C_i	User-preference cluster i in embedding space, seeded from H .
\bar{y}_i^c	Annotation associated with a consistent sample $(x_i, \bar{y}_i^c) \in C$.
\bar{y}_i^i	Annotation associated with an inconsistent sample $(x_i, \bar{y}_i^i) \in I$.
\hat{y}_i	Refined annotation for an inconsistent sample after Round 1 (MV-VTES).
\hat{y}'_i	Refined annotation for a hard inconsistent sample after Round 2 (MV-VTES).
\mathcal{CI}	Subset of I that becomes consistent after Round 1.
\mathcal{II}	Subset of I that remains inconsistent after Round 1.
$I^{(1)}$	Inconsistent set after Round 1 co-alignment.
$I^{(2)}$	Fully aligned inconsistent set after Round 2, $I^{(2)} = \mathcal{CI} \cup \mathcal{II}^{(1)}$.
$\mathcal{II}^{(1)}$	Hard inconsistent samples corrected in Round 2.
$D^{(\text{final})}$	Final self-corrected dataset, $D^{(\text{final})} = C \cup \mathcal{CI} \cup \mathcal{II}^{(1)}$.
S	Task-specialised embedding model (e.g., MiniLM, E5, GTE, BGE).
T	Large language model (LLM) annotator (e.g., Llama-3-8B).
$S(x_i) = e_i$	Sentence embedding of x_i produced by the specialised model S .
$\text{Top-}K(C_j, e_i)$	Top- K most similar embeddings to e_i within cluster C_j (cosine similarity).
$\text{AS}(e_i, C_j)$	Average cosine similarity between e_i and its top- K neighbors in C_j .
$D_s = \{(x_i, \bar{y}_i)\}$	Dataset annotated by the specialised model S .
$D_t = \{(x_i, \bar{y}_i^T)\}$	Dataset annotated by LLM T in the zero-shot setting.
$\hat{D}_t = \{(x_i, \hat{y}_i^T)\}$	Dataset annotated by LLM T in the single-shot (specialised-guided) setting.
$N_C = C $	Number of consistent samples.
$N_{IC} = I $	Number of inconsistent samples.
CAI	Consistent-and-Inconsistent Ratio, $\text{CAI} = \frac{N_C}{N_{IC}}$.

864 **B EXPERIMENTAL SETUP**
865866 We evaluate the CAI Ratio on multiple LLMs—GPT-3.5-Turbo, GPT-4o-Mini, Google Gemini 1.5
867 Flash (Model Selection Task), and Llama-3-8B-Instruct—across ten textual datasets. These datasets
868 span a diverse range of domains and task types, including intent classification, topic modeling,
869 sentiment/emotion analysis, and semi-supervised intent discovery (Zhang et al., 2021; 2022). The
870 annotation practices follow Zhang et al. (2023b).871
872 **Intent Classification.**873
874 • **Banking77** (Casanueva et al., 2020)
875 • **CLINC150**(Larson et al., 2019a)
876 • **MTOP** (Li et al., 2020)
877 • **Massive (Intent)** (Larson et al., 2019b; FitzGerald et al., 2022)879
880 **Topic and Question Classification.**881 • **StackExchange**(Geigle et al., 2021)
882 • **Reddit** (Geigle et al., 2021)884
885 **Emotion and Sentiment.**886 • **GoEmotions** (Model Selection Task)888
889 **Relation and Entity Classification.**890 • **FewRel-Nat** (Han et al., 2018)
891 • **FewNerd-Nat** (Model Selection Task)894 **C PEARSON CORRELATION TEST FOR CAI SCORES AND LLMs ACCURACY**
895896 **C.1 STATISTICAL INFERENCE**897 We have performed a Pearson correlation, the correlation coefficient r is calculated as:

898
899
$$r = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^n (x_i - \bar{x})^2} \sqrt{\sum_{i=1}^n (y_i - \bar{y})^2}}$$

900

901 where x_i symbolises the CAI ratios. y_i denotes the LLM annotation accuracies. \bar{x} and \bar{y} are the
902 average mean of x_i and y_i , accordingly. n is the number of samples we have used for evaluation. To
903 assess the statistical significance, we use a hypothesis test for the correlation coefficient, calculating
904 a t-statistic (Schober et al., 2018):
905

906
$$t = r \sqrt{\frac{n-2}{1-r^2}}$$

907

908 The P-value is then calculated from the t-distribution with $n - 2$ degrees of freedom.
909910 **C.2 BEFORE APPLYING THE METHOD**
911912 The Pearson correlation coefficient is 0.805, indicating a strong positive linear relationship between
913 CAI and Accuracy. The p-value is 0.005, which is statistically significant (below the typical thresh-
914 old of 0.05). This implies that the positive correlation between the CAI ratio and Accuracy before
915 and after applying our method is not a random event, and higher CAI scores are associated with
916 higher Accuracy. The p-value is 0.00093, which is statistically significant (below the typical thresh-
917 old of 0.05) for the additional datasets. The p-value is 0.014399, which is statistically significant
918 (below the typical threshold of 0.05) for Meta-Llama-3-8B-instruct on all datasets.

918
919
920
921 Table 6: Pearson correlation results for **CAI** and **accuracy**, **before** and **after** our proposed method
922 on GPT-3.5-Turbo and GPT-4 Mini, **before** and **after** our proposed method.
923

Metric	Pearson Correlation	P-value
Before	0.805	0.005
After	0.903	0.00035

924
925 Table 7: Pearson correlation results for **CAI** and **accuracy** for additional datasets on GPT-3.5-Turbo
926 and GPT-4 Mini, **before** and **after** our proposed method.
927

Metric	Pearson Correlation	P-value
Before	0.874	0.000937
After	0.852	0.00175

928
929 Table 8: Pearson correlation results for **CAI** and **accuracy** on Meta-Llama-3-8B-instruct, **before**
930 and **after** our proposed method.
931

Metric	Pearson Correlation	P-value
Before	0.812	0.0144
After	0.918	0.00129

932 C.3 AFTER APPLYING THE METHOD

933
934
935
936
937 The Pearson correlation coefficient is 0.903, showing an even stronger positive correlation between
938
939 CAI and Accuracy after applying the method. A larger CAI ratio and higher annotation produced by
940 LLMs are extremely statistically significant, according to the p-value of 0.00035. This implies that
941 the relationship between CAI and Accuracy is even more evident after using the approach, showing
942 a more linear relationship where increases in CAI are more directly correlated with increases in
943 Accuracy. In both stages (Before and After applying the method), the results display statistically sig-
944 nificant correlations ($p < 0.05$), showing strong positive relationships between CAI scores and LLM
945 accuracy. Tables 8, 9, and 10 show that all the P-values of the Pearson correlation are statistically
946 significant.

947 D DATASET

Task	Name	# data (Testing)	# data (Training)	# classes
Intent	Bank77	3,080	10,003	77
	CLINC (I)	4,500	15,000	150
	MTOP (I)	4,386	15,638	102
	Massive (I)	2,974	11,510	59
Type	FewRel	4,480	40,320	64
Topic	StackEx	4,156	50,000	121
	Reddit	3,217	50,000	50
Domain	Massive Scenario	2,974	11,514	18

950
951 Table 9: Summary of Benchmark Datasets.
952
953
954
955
956
957
958

959 D.1 BENCHMARK DATASETS

960
961
962
963
964 We evaluate our work on a series of open-source textual datasets spanning diverse domains, includ-
965 ing *Bank77*, *CLINC* (Intent), *MTOP* (Intent), *Massive* (Intent), *StackExchange* and *Reddit* (Topic)
966 (Geigle et al., 2021), and Few Rel Nat (Type). We also utilize the *Massive Intent* dataset, with
967 annotation practice following (Zhang et al., 2023b). *Bank77* (Casanueva et al., 2020) is a banking
968 dataset that focuses on fine-grained intent classification within a single domain. *CLINC* (I), *Mas-
969 sive* (I), and *MTOP* (I) are intent-based datasets (denoted as “I”) (Larson et al., 2019b; FitzGerald
970 et al., 2022; Li et al., 2020). Intent discovery (Zhang et al., 2021; 2022) explores unknown intents in
971 semi-supervised utterance datasets. Each dataset is available in small-scale (testing) and large-scale
972 (training) versions, and we use i.i.d. user preference samples from the training set. Since we are

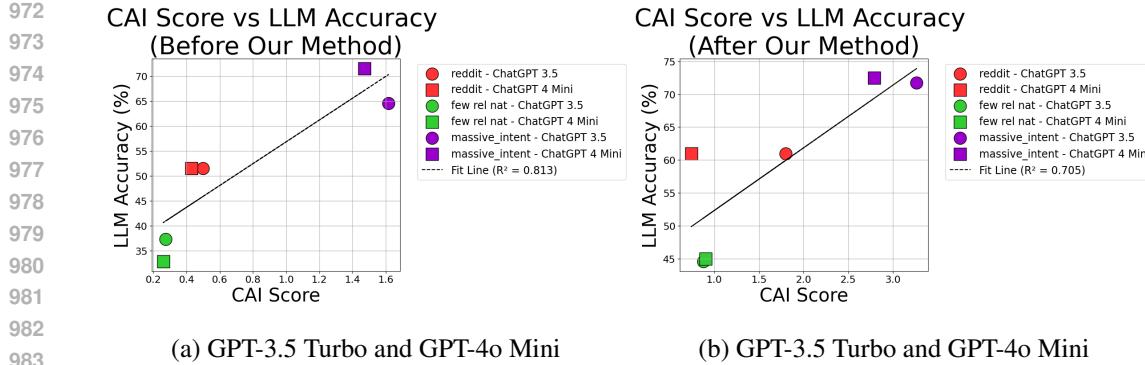


Figure 5: The above analysis shows the correlation between LLM annotation accuracy and the Consistent-and-Inconsistent (CAI) ratio. We also conducted statistical tests to assess the significance of this correlation. We collected the CAI ratios for (LLMs 3.5 Turbo and Specialised Model) and (LLMs 4.0 Mini and Specialised Model) across the datasets Reddit, few rel nat and massive intent. Using these data, we calculated the Pearson correlation coefficients between the LLM annotation accuracies and CAI ratios and computed the associated P-values (P value for After: 0.036) and (P value for Before: 0.014) to determine the statistical significance of the observed correlations.

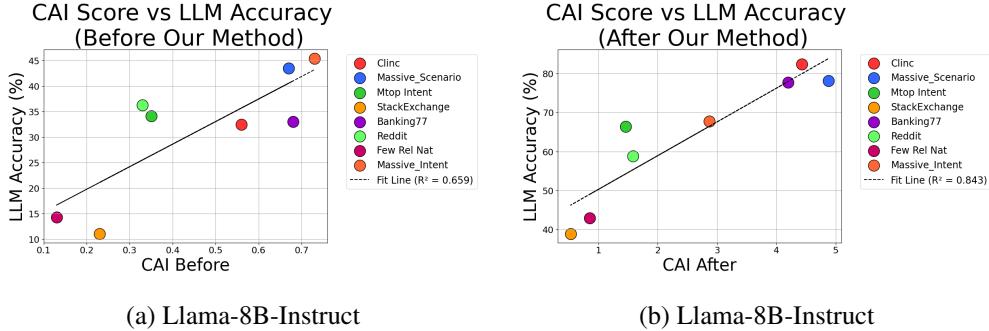


Figure 6: The above analysis shows the correlation between LLM annotation accuracy and the Consistent-and-Inconsistent (CAI) ratio. We also conducted statistical tests to assess the significance of this correlation. We collected the CAI ratios for (LLMs 3.5 Turbo and Specialised Model) and (LLMs 4.0 Mini and Specialised Model) across the datasets CLINC, Massive Scenario, MTOP Intent, Stack Exchange, and Banking77, Reddit, Few Rel Nat, Massive Intent. Using these data, we calculated the Pearson correlation coefficients between the LLM annotation accuracies and CAI ratios and computed the associated P-values (P value for After: 0.014) and (P value for Before: 0.00129) to determine the statistical significance of the observed correlations.

1012 working in an semi-supervised textual data setting, we directly use the small-scale set for testing.
1013 Detailed statistics of the datasets are shown in Table 9.

E BASELINES

1018 To rigorously assess our proposed framework, we compare against a diverse set of strong baselines
1019 spanning specialized models, prompting methods, and clustering-based annotation strategies. Each
1020 baseline represents a distinct family of annotation approaches relevant to the semi-supervised setting.
1021

1022 **Specialised Model Only.** A pre-trained task-specialised model assigns labels to unlabeled data us-
1023 ing our preference-based annotation scheme and a small set of user-provided samples. This baseline
1024 measures the standalone utility of the specialised model without assistance from LLMs or consis-
1025 tency mechanisms.

1026 The specialised model relies on our proposed semantic clustering approach to organise examples
 1027 into coherent intent-level groups and to assign each unlabeled instance a label that reflects the user-
 1028 provided preference samples.
 1029

1030 **LLMs Only (Without Intent from Specialised).** We evaluate *GPT-3.5* and *GPT-4o mini* in a
 1031 zero-shot setting, prompting them directly to generate category labels. While LLMs offer a scalable
 1032 and cost-effective annotation mechanism, their outputs are prone to inconsistency, hallucination,
 1033 or drift from user preferences in the absence of supervision or demonstrations. **In the LLMs Only**
 1034 **setting, the model is prompted using semantic batch clustering, where examples come from the same**
 1035 **latent category but no explicit label is provided. This offers structure but not supervision.**

1036 **Specialised Model + LLMs (With Intent from Specialised).** This variant employs our proposed
 1037 *Majority Voting via Top-Nearest Embedding Similarity* using the task-specialised model to gener-
 1038 ate pseudo-labels for unlabeled samples. These pseudo-labeled instances then serve as in-context
 1039 demonstrations for guiding LLM annotation. This hybrid setup improves alignment while retaining
 1040 annotation efficiency. **In contrast, the Specialised Model + LLMs (Ours) setting augments the same**
 1041 **clustered batch with an explicit intent label.** This converts the prompt from a purely unsupervised,
 1042 **similarity-driven signal into a supervised alignment cue, enabling the LLM to ground its predictions**
 1043 **in both semantic consistency and explicit task semantics.**

1044 **HCC w/o Co-Alignment.** This ablation examines a simplified variant of our Heterogeneous Con-
 1045 sistency Co-Alignment (HCC) framework. We exclude inconsistent samples and distill knowledge
 1046 only from high-consistency examples into a pretrained BERT-based model. While this improves
 1047 annotation precision, it lacks the full co-alignment loop present in HCC, making it less robust to
 1048 preference drift.
 1049

1050 **Clustering Baseline.** We compare against Zhang et al. (2023b), a state-of-the-art clustering ap-
 1051 proach for few-shot annotation, where labels are propagated by embedding similarity. Unlike our
 1052 method, it lacks preference modeling and relies heavily on embedding space separability. Our Top-
 1053 Nearest Majority Voting introduces a new clustering method tailored to the semi-supervised regime.
 1054

1055 **Prompt-Based Approaches.** We evaluate several representative prompting methods, all using
 1056 **KATE** (Liu et al., 2022) to select top-k similar demonstrations from user-labeled data:
 1057

- 1058 • **Self-Consistency** (Wang et al., 2022) selects the most frequent response across multiple
 1059 sampled reasoning paths, assuming the LLM is sufficiently competent. However, it incurs
 1060 high compute cost and often reflects pretraining bias rather than user-specific intent.
- 1061 • **Chain-of-Thought (CoT) Prompting** (Wei et al., 2022) guides the model to reason step-
 1062 by-step via structured exemplars, improving interpretability and answer accuracy.
- 1063 • **Few-Shot In-Context Learning** (Brown et al., 2020) provides a handful of labeled exam-
 1064 ples in the prompt to elicit more accurate model behavior, yet its effectiveness is sensitive
 1065 to demonstration quality.
- 1066 • **Self-Refine** (Madaan et al., 2024) iteratively improves model outputs through refine-
 1067 ment steps and feedback, though its performance relies on LLM strength and auxiliary tool sup-
 1068 port.

1070 F EVALUATION METRICS

1071
 1072 We evaluate our method and the baselines based on two metrics: (1) *Annotation Accuracy*; (2) our
 1073 proposed *CAI ratio*. Annotation Accuracy evaluates the correctness of LLM generated annotations,
 1074 while the CAI Ratio measures the model’s ability to correct inconsistencies. A higher CAI Ratio
 1075 after applying our method indicates improved annotation and effective co-alignment .
 1076

1077 F.1 REFERENCE-FREE EVALUATION METRIC

1078 Intuitively, inter-rater reliability (IRR) metrics such as Cohen’s kappa and Krippendorff’s alpha,
 1079 which are widely used for assessing the reliability of crowdsourced annotations, may seem suffi-

1080 client. However, these metrics assume that annotators are equally competent and operate under a
 1081 fixed candidate label set, the condition that are hardly satisfied in reality. IRR becomes unstable
 1082 when the class distribution is skewed, when annotators systematically omit certain classes, under
 1083 marginal drift caused by heterogeneous annotator competence, or in open-set scenarios where no
 1084 shared label set exists Wong et al. (2021). Consequently, IRR is less reliable for personalized or sub-
 1085 jective tasks, where cultural or training differences amplify annotator variance and bias the results.
 1086 By contrast, the Consistent-and-Inconsistent (CAI) ratio is label-set agnostic and represents the first
 1087 reference-free metric designed to quantify annotation reliability by leveraging heterogeneous consis-
 1088 tency signals (likelihood-derived and embedding agreement) without relying on references or oracle
 1089 annotations.

1090 F.2 COMPARISON WITH TRADITIONAL EVALUATION METRICS

1091 In Table 10 which shows a comparison with CAI ratio and Accuracy, Precision/Recall and F1-score
 1092 in term of ground-truth label, robustness to Data Drift, and tracking annotation alignment over time.
 1093

Metric	Ground-Truth Labels?	Data Drift?	Tracks Annotation Alignment Over Time?
Accuracy	✓	✗	✗
Precision/Recall	✓	✗	✗
F1-score	✓	✗	✗
CAI Ratio	✗	✓	✓

1094 Table 10: Comparison of Traditional Metrics and CAI Ratio
 1095

1096 1097 G EXPERIMENTAL DETAILS

1108 The top-k selection and proportions of consistent and user-preference samples are as follows. For
 1109 CLINC and Massive Scenario, ‘top-k’ is set to 5, with ‘proportion’ at 0.2. For MTOP Intent, ‘pro-
 1110 portion’ is set to 0.8, and ‘top-k’ is updated to 15 after printing the current value. In StackExchange,
 1111 ‘top-k’ is set to 5 and ‘proportion’ to 1, while in Banking77, ‘top-k’ is set to 3 and ‘proportion’
 1112 is 0.2. In massive intent, ‘top-k’ is 20 and ‘proportion’ is 0.5), proportion=0.2, and few real nat
 1113 has top-k=30, and proportion is 1. In ‘Reddit’, ‘top-k’ is set to 7, and the proportion is 0.2. All
 1114 tests are done with two random seeds with temperature parameters (0.5 and 1) for user preference
 1115 samples, task-specialised model-assigned annotation, and LLMs with and without task-specialised
 1116 model annotations. We have ran our methods and baselines with two random seeds.
 1117

1118 G.1 INVERSE CONSISTENT (IC) RATIO

1119 The number of samples per class required for human annotation based on user preferences is de-
 1120 termined by our Inverse Consistent (IC) ratio equation G.1. For user-preference samples. The n
 1121 denotes the total size of the the consistent sample where $M = n$, and k be the number of classes.
 1122 The parameter p represents the proportion of samples to be selected and is set to 5% (i.e., $p = 0.05$).
 1123 In our experiment, we do not use all the identified consistent samples. The proportion of consistent
 1124 samples used for co-alignment is determined by the IC ratio. Let n_c be the number of consistent
 1125 samples, so $M = n_c$ represents the size of the consistent sample selection. If the CAI ratio is
 1126 greater than 0.5 (i.e., the number of consistent samples exceeds inconsistent ones), the value of
 1127 p will be reduced to use fewer consistent samples. If the CAI ratio is less than 0.4, p is set to
 1128 1 (i.e., 100%) since more consistent samples are needed for co-alignment . The formula for the
 1129 **Inverse Consistent (IC) ratio** is defined as $IC = \left(\frac{M \times p}{k} \right)$.
 1130

1134 H WHY GENERAL LLM AND TASK-SPECIFIC MODEL COLLABORATION IS 1135 ESSENTIAL FOR HETEROGENEOUS-CONSISTENCY CO-ALIGNMENT 1136

1137 In semi-supervised learning tasks that rely on user preferences, the key challenge lies in evaluating
 1138 LLM-generated annotations and enabling mechanisms for co-alignment—especially when the
 1139 competency of general LLMs is uncertain and no external knowledge is available. To address this,
 1140 we propose **HCC**, a co-alignment framework that facilitates both self-assessment and refinement of
 1141 LLM annotations through collaboration with a task-specialized model.

1142 HCC introduces the *Consistent-and-Inconsistent (CAI) Ratio*, which quantifies agreements and dis-
 1143 agreements between models to identify consistent and inconsistent samples. This iterative refine-
 1144 ment process improves the performance of both the specialized model and the general LLM. To
 1145 validate our approach, we experiment with *Meta-8B Instruct*, a lightweight LLM representing a
 1146 low-competency model, and show that its collaboration with a task-specialized model enhances an-
 1147 notation robustness even under noisy conditions.

1148 More broadly, given a semi-supervised learning task where LLM competency is unknown and
 1149 no external knowledge exists, HCC addresses the fundamental question: *How can we evaluate and*
 1150 *enable co-alignment for such datasets?* We answer this through **HCC**, a self-supervised strategy that
 1151 allows self-correction and self-evaluation of LLM-generated annotations. By combining the CAI
 1152 ratio with task-specialized model collaboration, HCC systematically improves annotation quality
 1153 across both models.

1154 H.0.1 THE ROLE OF SPECIALISED MODEL IN HETEROGENEOUS-CONSISTENCY 1155 CO-ALIGNMENT

1156 The inclusion of the specialised model is vital as it provides a safeguard against underperformance
 1157 by the LLM. Additionally, the task-specialised model serves as a reference point for "course track-
 1158 ing," meaning that it allows us to monitor and guide the annotation process by comparing the task-
 1159 specialised model's output with the general LLM's output. This approach is particularly evident in
 1160 our experiments where the Meta-8B Instruct model, acting as a low-competency "LLM," demon-
 1161 strated suboptimal performance on most of the eight datasets, as indicated by its low CAI scores.
 1162 The task-specialised model addresses this issue by collaborating with the general LLM to itera-
 1163 tively refine annotations. This process ensures the framework's robustness, even when the general
 1164 LLM lacks competency in specific tasks. We justify the necessity of the task-specialised model
 1165 through experimental analysis (see Section § 4.3.1 and Table 4). These results show that our pro-
 1166 posed HCC framework consistently outperforms baseline methods, even when paired with low-
 1167 competency LLMs such as the Llama 8B Instruct model (Touvron et al., 2023). This demonstrates
 1168 the resilience of HCC and the critical role of the task-specialised model in enhancing performance
 1169 across diverse LLM configurations. Moreover, recent studies (Zhou et al., 2024; Xiong et al., 2023)
 1170 highlight the inherent challenges of relying solely on LLMs, particularly their tendencies toward
 1171 overconfidence and reluctance to express uncertainty. These findings further validate the inclusion
 1172 of a task-specialised model to mitigate such limitations.

1173
 1174 Table 11: **Meta-Llama 3-8B Instruct** (open-source lightweight LLM): Annotation accuracy com-
 1175 parison in percentages with standard deviations across different datasets for the specialised model
 1176 , LLMs without annotations from the task-specialised model, and LLMs with annotations from the
 1177 task-specialised model. The highest accuracy for each dataset is highlighted.

1178 Datasets	1179 Only Spe- 1180 cialised 1181 Model (Ours)	1182 Only LLMs (Llama-8B- 1183 Instruct)	1184 Specialised 1185 Model (Ours) & 1186 LLM (Llama- 1187 8B-Instruct)	1188 Specialised 1189 Model & 1190 LLM KD (Ours)	1191 HCC (Ours)	1192 CAI Ratio \uparrow (Before \Rightarrow 1193 After)
Cline	79.01 \pm 1.08	32.49 \pm 6.73	69.40 \pm 7.28	63.41 \pm 3.19	82.43 \pm 0.20	0.56 \Rightarrow 4.43
Massive_Scenario	75.55 \pm 1.76	43.52 \pm 1.85	66.74 \pm 0.98	70.06 \pm 1.12	78.13 \pm 0.74	0.67 \Rightarrow 4.88
Mtop Intent	52.49 \pm 2.52	34.17 \pm 6.70	48.23 \pm 0.25	66.39 \pm 0.70	63.39 \pm 1.47	0.35 \Rightarrow 1.46
StackExchange	32.27 \pm 0.65	11.02 \pm 2.78	26.26 \pm 2.16	16.03 \pm 0.13	38.88 \pm 0.27	0.23 \Rightarrow 0.53
Banking77	73.93 \pm 1.56	33.06 \pm 1.92	69.66 \pm 1.74	64.29 \pm 1.24	77.71 \pm 0.25	0.68 \Rightarrow 4.20
Reddit	51.73 \pm 0.62	36.31 \pm 0.97	46.00 \pm 2.51	40.29 \pm 0.55	58.81 \pm 0.28	0.33 \Rightarrow 1.58
Few Rel Nat	35.35 \pm 0.02	14.25 \pm 0.36	30.07 \pm 4.45	31.80 \pm 0.34	42.92 \pm 0.06	0.13 \Rightarrow 0.85
Massive_Intent	61.80 \pm 1.04	45.41 \pm 0.06	56.03 \pm 0.08	67.49 \pm 0.10	67.75 \pm 0.43	0.73 \Rightarrow 2.87

1188 Table 12: **Performance Comparison of HCC**: The table shows the performance of HCC compared
 1189 to "Only Specialised Model" and "Only LLMs," with improvements highlighted.
 1190

Datasets	Only Specialised Model (Ours)	Only LLMs (Llama-8B-Instruct)	HCC (Ours)	Improvement Over Only Specialised Model (%)	Improvement Over Only LLMs (%)
Clinic	79.01 \pm 1.08	32.49 \pm 6.73	82.43 \pm 0.20	+3.42	+49.94
Massive.Scenario	75.55 \pm 1.76	43.52 \pm 1.85	78.13 \pm 0.74	+2.58	+34.61
Mtop Intent	52.49 \pm 2.52	34.17 \pm 6.70	63.39 \pm 1.47	+10.90	+29.22
StackExchange	32.27 \pm 0.65	11.02 \pm 2.78	38.88 \pm 0.27	+6.61	+27.86
Banking77	73.93 \pm 1.56	33.06 \pm 1.92	77.71 \pm 0.25	+3.78	+44.65
Reddit	51.73 \pm 0.62	36.31 \pm 0.97	58.81 \pm 0.28	+7.08	+22.50
Few Rel Nat	35.35 \pm 0.02	14.25 \pm 0.36	42.92 \pm 0.06	+7.57	+28.67
Massive.Intent	61.80 \pm 1.04	45.41 \pm 0.06	67.75 \pm 0.43	+5.95	+22.34

I SENSITIVITY ANALYSIS K ON SPECIALISED MODELS

To assess the robustness of **HCC**, we extend our ablations to three diverse sentence encoders (specialised models) and a small language model (serving as a weak model) collaborating with Llama-3-8B-Instruct (serving as a strong model). We have also included the parameter sizes of all specialised models in Table 13.

- E5-base (Sentence Encoder)-E5
- GTE-small (Sentence Encoder)-GTE
- BGE-small-en-v1.5 (Sentence Encoder)-BGE
- BERT-Base-uncased (Small Language Model)-BERT

Encoders and Language Model	Parameters	Role in Ablation
MiniLM-L6-v2	\sim 22.7M Params	Small, General-purpose SBERT
E5-base	\sim 110M Params	Strong, Retrieval-focused
GTE-small	\sim 33.4M Params	Small, High-quality Encoder
BGE-small-en-v1.5	\sim 33.4M Params	Small, Retrieval-optimized
BERT-Base-uncased	\sim 110M Params	Small, Language Model

Table 13: Embedding backbones and the weak language model used in the robustness ablation.

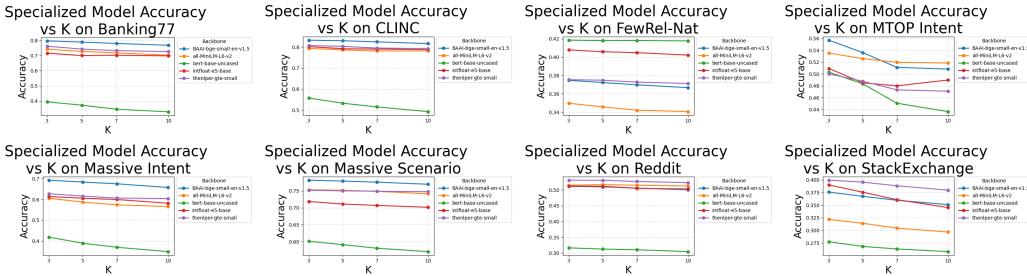


Figure 7: Accuracy of specialised models across datasets for different values of K . Performance is compared for five backbone encoders: **BERT**, **BGE**, **MiniLM**, **E5**, and **GTE**.

We have conducted K sensitivity analysis as shown on Table 14 with Specialised Models (We added ablations using **E5-base**, **GTE-small**, and **BGE-small** in addition to the standard BERT baseline.) **K Ablation.** We implemented a full sensitivity study with $K \in \{3, 5, 7, 10\}$ across 8 datasets. Results show **minimal deviation** across K , with $K = 3$ or $K = 5$ consistently performing best for fine-grained tasks.

1242	Dataset	Backbone	K=3	K=5	K=7	K=10
1243	Banking77	BAAI-bge-small-en-v1.5	0.796 ± 0.002	0.788 ± 0.002	0.780 ± 0.006	0.767 ± 0.014
1244		all-MiniLM-L6-v2	0.741 ± 0.006	0.727 ± 0.003	0.718 ± 0.004	0.702 ± 0.004
1245		bert-base-uncased	0.394 ± 0.010	0.372 ± 0.018	0.346 ± 0.025	0.329 ± 0.020
1246		intfloat-e5-base	0.715 ± 0.000	0.700 ± 0.000	0.702 ± 0.007	0.697 ± 0.004
1247		thnlpert-gte-small	0.761 ± 0.007	0.742 ± 0.000	0.732 ± 0.006	0.726 ± 0.011
1248	CLINC	BAAI-bge-small-en-v1.5	0.833 ± 0.002	0.830 ± 0.005	0.825 ± 0.002	0.817 ± 0.004
1249		all-MiniLM-L6-v2	0.794 ± 0.002	0.787 ± 0.007	0.781 ± 0.002	0.782 ± 0.001
1250		bert-base-uncased	0.557 ± 0.005	0.533 ± 0.008	0.515 ± 0.007	0.493 ± 0.002
1251		intfloat-e5-base	0.802 ± 0.007	0.792 ± 0.001	0.790 ± 0.010	0.788 ± 0.015
1252		thnlpert-gte-small	0.808 ± 0.007	0.803 ± 0.009	0.795 ± 0.007	0.792 ± 0.002
1253	FewRel-Nat	BAAI-bge-small-en-v1.5	0.375 ± 0.003	0.372 ± 0.001	0.370 ± 0.000	0.367 ± 0.003
1254		all-MiniLM-L6-v2	0.350 ± 0.003	0.346 ± 0.002	0.342 ± 0.003	0.341 ± 0.000
1255		bert-base-uncased	0.419 ± 0.009	0.418 ± 0.012	0.418 ± 0.011	0.418 ± 0.009
1256		intfloat-e5-base	0.408 ± 0.006	0.406 ± 0.009	0.405 ± 0.008	0.402 ± 0.009
1257		thnlpert-gte-small	0.375 ± 0.012	0.375 ± 0.012	0.373 ± 0.014	0.371 ± 0.015
1258	MTOP Intent	BAAI-bge-small-en-v1.5	0.557 ± 0.012	0.536 ± 0.011	0.511 ± 0.020	0.508 ± 0.013
1259		all-MiniLM-L6-v2	0.535 ± 0.017	0.526 ± 0.016	0.520 ± 0.019	0.518 ± 0.025
1260		bert-base-uncased	0.503 ± 0.015	0.483 ± 0.025	0.451 ± 0.020	0.437 ± 0.031
1261		intfloat-e5-base	0.509 ± 0.008	0.485 ± 0.006	0.480 ± 0.005	0.490 ± 0.012
1262		thnlpert-gte-small	0.500 ± 0.014	0.488 ± 0.015	0.473 ± 0.023	0.471 ± 0.036
1263	Massive Intent	BAAI-bge-small-en-v1.5	0.692 ± 0.006	0.683 ± 0.013	0.675 ± 0.019	0.657 ± 0.035
1264		all-MiniLM-L6-v2	0.606 ± 0.014	0.587 ± 0.011	0.574 ± 0.015	0.566 ± 0.011
1265		bert-base-uncased	0.419 ± 0.013	0.390 ± 0.025	0.370 ± 0.023	0.350 ± 0.028
1266		intfloat-e5-base	0.614 ± 0.002	0.606 ± 0.002	0.599 ± 0.001	0.582 ± 0.005
1267		thnlpert-gte-small	0.627 ± 0.007	0.616 ± 0.006	0.606 ± 0.002	0.604 ± 0.001
1268	Massive Scenario	BAAI-bge-small-en-v1.5	0.782 ± 0.025	0.779 ± 0.026	0.776 ± 0.027	0.770 ± 0.030
1269		all-MiniLM-L6-v2	0.753 ± 0.014	0.752 ± 0.013	0.748 ± 0.010	0.741 ± 0.009
1270		bert-base-uncased	0.601 ± 0.023	0.591 ± 0.029	0.580 ± 0.030	0.570 ± 0.032
1271		intfloat-e5-base	0.718 ± 0.027	0.711 ± 0.033	0.707 ± 0.029	0.701 ± 0.032
1272		thnlpert-gte-small	0.752 ± 0.022	0.750 ± 0.015	0.749 ± 0.016	0.747 ± 0.015
1273	Reddit	BAAI-bge-small-en-v1.5	0.512 ± 0.005	0.510 ± 0.004	0.506 ± 0.006	0.501 ± 0.005
1274		all-MiniLM-L6-v2	0.515 ± 0.002	0.517 ± 0.001	0.515 ± 0.003	0.513 ± 0.000
1275		bert-base-uncased	0.316 ± 0.006	0.313 ± 0.005	0.310 ± 0.009	0.304 ± 0.008
1276		intfloat-e5-base	0.512 ± 0.006	0.512 ± 0.001	0.505 ± 0.002	0.503 ± 0.001
1277		thnlpert-gte-small	0.531 ± 0.003	0.531 ± 0.004	0.527 ± 0.000	0.523 ± 0.002
1278	StackExchange	BAAI-bge-small-en-v1.5	0.376 ± 0.006	0.367 ± 0.011	0.359 ± 0.009	0.351 ± 0.007
1279		all-MiniLM-L6-v2	0.322 ± 0.006	0.314 ± 0.007	0.304 ± 0.009	0.297 ± 0.011
1280		bert-base-uncased	0.277 ± 0.005	0.268 ± 0.003	0.263 ± 0.006	0.258 ± 0.009
1281		intfloat-e5-base	0.390 ± 0.004	0.375 ± 0.006	0.361 ± 0.007	0.345 ± 0.006
1282		thnlpert-gte-small	0.399 ± 0.013	0.395 ± 0.020	0.388 ± 0.019	0.379 ± 0.020

Table 14: Mean ± standard deviation of specialised model accuracy for different values of K across datasets and backbone models.

J ADDITIONAL ABLATION STUDIES BASED ON LLAMA-3-8B-INSTRUCT LARGE LANGUAGE MODEL

J.1 HCC UNDER WEAKER (BERT-BASE-UNCASED) VS. STRONGER LANGUAGE MODEL (LLAMA-3-8B INSTRUCT) REGIMES

To demonstrate that Heterogeneous Consistency Co-Alignment (HCC) remains effective across both weaker and stronger language model regimes, we adopt BERT-Base-Uncased as a weak specialised model and Llama-3-8B Instruct as a strong LLM. As shown in Appendix Tables 15 and 16, HCC enables the open-source **Llama-3-8B Instruct**—even when paired with the weaker BERT backbone—to outperform **GPT-4o Mini** on five datasets and **GPT-3.5 Turbo** on seven datasets. This highlights HCC’s ability to boost weaker specialised models while narrowing the performance gap between open-source and proprietary LLMs. In this setting, `bert-base-uncased` is used solely for the initial annotation assignment. However, using BERT for the divide-conquer co-alignment stage degrades performance due to its weaker semantic representations. To address this, we adopt a hybrid encoder strategy: during the co-alignment phase, BERT is replaced with **all-MiniLM-L6-v2**, a substantially stronger SBERT encoder.

This hybrid design produces more coherent semantic clusters and significantly improves HCC performance (Tables 15 and 16), often surpassing both GPT-4o Mini and GPT-3.5 Turbo. Thus, BERT

1296 is used to initialise label assignments, while MiniLM provides the semantic granularity required for
 1297 reliable divide-conquer co-alignment.
 1298

1299 **Table 15: Performance Comparison: HCC (R2 with BERT-Base-Uncased) vs. Closed-Source**
 1300 **Models.** HCC uses only a weak BERT encoder, yet still outperforms GPT models on most datasets.
 1301 (K=3)

Dataset	HCC (BERT)	GPT-4o Mini	GPT-3.5 Turbo	Outcome
CLINC	0.8240	0.8144	0.6658	Beats Both
Massive Scenario	0.7461	0.6683	0.6089	Beats Both
Banking77	0.7162	0.6512	0.6512	Beats Both
Reddit	0.5813	0.5740	0.5112	Beats Both
FewRel-Nat	0.4205	0.3587	0.3287	Beats Both
MTop Intent	0.6562	0.7503	0.6495	Beats GPT-3.5 Only
StackExchange	0.3941	0.5190	0.3010	Beats GPT-3.5 Only
Massive Intent	0.6261	0.7693	0.7152	Lower than both

1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
Table 16: Performance Comparison: HCC (R2 with BERT-Base-Uncased) vs. Closed-Source
Models. HCC uses only a weak BERT encoder, yet outperforms GPT models on most datasets.
 (K=10)

Dataset	HCC (BERT)	GPT-4o Mini	GPT-3.5 Turbo	Outcome
CLINC	0.7958	0.8144	0.6658	Beats GPT-3.5
Massive Scenario	0.7576	0.6683	0.6089	Beats Both
Banking77	0.7234	0.6512	0.6512	Beats Both
Reddit	0.4085	0.5740	0.5112	Lower than both
FewRel-Nat	0.4292	0.3587	0.3287	Beats Both
MTop Intent	0.5857	0.7503	0.6495	Beats GPT-3.5 Only
StackExchange	0.3898	0.5190	0.3010	Beats GPT-3.5 Only
Massive Intent	0.6187	0.7693	0.7152	Lower than both

1321 KEY FINDINGS:

1322
 1323 1. **On CLINC, Banking77, Massive Scenario, Reddit, and FewRel**, the HCC framework is
 1324 so effective that it endows a (standard BERT model + Llama-3-8B) to surpass the annota-
 1325 tion quality of GPT-3.5 and GPT-4o Mini.
 1326

1327 J.2 HCC ACROSS EMBEDDING BACKBONES AND SMALL LANGUAGE MODEL

1328 The comparison of HCC across the best embedding backbones with ChatGPT-4o Mini and
 1329 ChatGPT-3.5 Turbo is presented in Tables 20 and 19. Tables 21 and 22 further illustrate the
 1330 performance of the HCC paradigm using different embedding backbones, where the best encoder is
 1331 selected for each dataset in conjunction with Llama-3-8B. We compare this configuration against
 1332 GPT-4o Mini and GPT-3.5 Turbo to highlight its robustness and competitiveness.
 1333

1334 Our ablation studies in Section J.1 and Section J.2 show that HCC is moderately robust even
 1335 when the specialised model is weak. For instance, using BERT as the specialised encoder, HCC
 1336 still surpasses both standalone specialised models and standalone LLMs, regardless of whether
 1337 clustering is performed with or without intent information. This indicates that HCC can com-
 1338 pensate for imperfect cluster structures produced by weaker encoders. At the same time, the
 1339 results show that HCC benefits consistently from stronger embedding encoders. Models such
 1340 as E5, GTE, and BGE yield progressively higher accuracy, demonstrating that improvements
 1341 in representation quality translate directly into more reliable clustering and, consequently,
 1342 stronger co-alignment performance. Overall, under the standard K = 3 and k=10 settings,
 1343 HCC remains stable across both weak and strong specialised models, confirming that it is
 1344 broadly effective for categorical NLU annotation tasks while still offering additional gains
 1345 when higher-quality encoders are available.
 1346

1347 J.3 CAI RATIO ACROSS EMBEDDING BACKBONES (BEFORE/AFTER HCC)

1348 Table 21 and 22 shows how the **CAI Ratio** behaves when pairing **Llama-3-8B** with four special-
 1349 ized embedding backbones of varying capacities—**BERT** (weak), **GTE-small** (moderate), **E5-base**

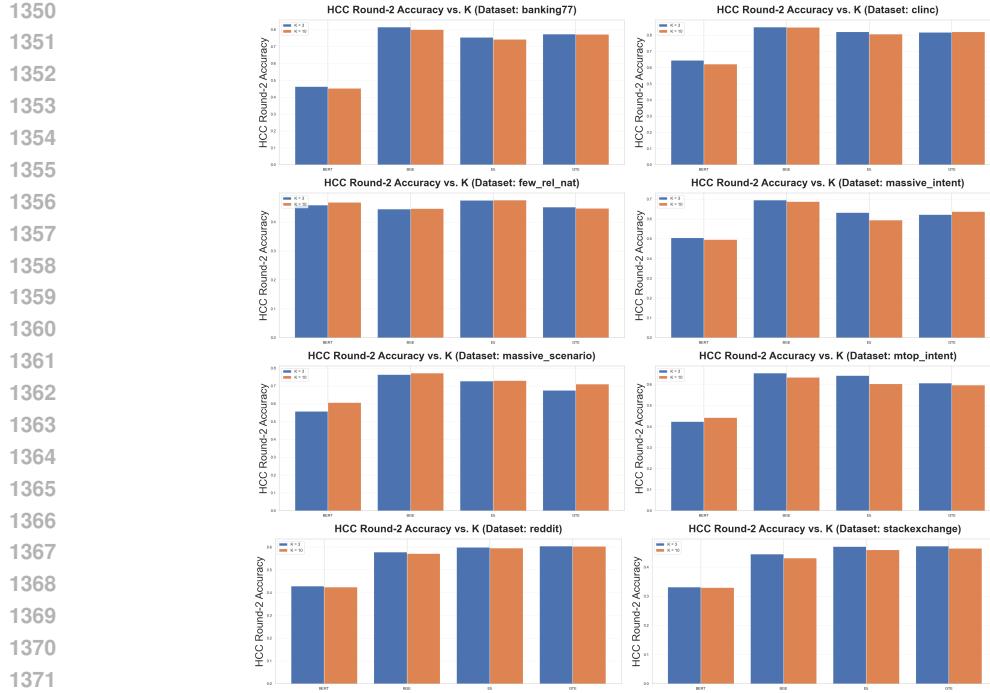


Figure 8: Accuracy of HCC (R2) across datasets for different values of $K(3,10)$ on Llama3-8 Instruct Model. Performance is compared for four backbone encoders: **BERT**, **BGE**, **E5**, and **GTE**.

Table 17: Averaged performance over seeds $\{1, 42\}$ for $K \in \{3\}$, reported as mean \pm standard deviation for each Dataset–Backbone pair.

Dataset	Backbone	Zero-Shot	One-Shot	Initial CAI	Final CAI	R1	R2	Specialized
banking77	BAAI-bge-small-en-v1.5	0.3365 \pm 0.0039	0.6943 \pm 0.0103	0.4950 \pm 0.0071	4.6200 \pm 0.0283	0.8130 \pm 0.0005	0.8161 \pm 0.0039	0.7964 \pm 0.0023
banking77	bert-base-uncased	0.1804 \pm 0.0034	0.3610 \pm 0.0202	0.1700 \pm 0.0283	0.6950 \pm 0.0212	0.4373 \pm 0.0101	0.4628 \pm 0.0057	0.3945 \pm 0.0096
banking77	intfloat-e5-base	0.3218 \pm 0.0174	0.6273 \pm 0.0051	0.4600 \pm 0.0242	2.9100 \pm 0.1838	0.5235 \pm 0.0305	0.7544 \pm 0.0158	0.7154 \pm 0.0002
banking77	thenlper-gte-small	0.3185 \pm 0.0087	0.6619 \pm 0.0140	0.4700 \pm 0.0141	3.8150 \pm 0.1768	0.7763 \pm 0.0046	0.7747 \pm 0.0041	0.7614 \pm 0.0073
cline	BAAI-bge-small-en-v1.5	0.2823 \pm 0.0184	0.7168 \pm 0.0055	0.3650 \pm 0.0354	5.3350 \pm 0.5020	0.8559 \pm 0.0024	0.8511 \pm 0.0013	0.8329 \pm 0.0022
cline	bert-base-uncased	0.2026 \pm 0.0306	0.4829 \pm 0.0079	0.1700 \pm 0.0141	1.1750 \pm 0.0071	0.6264 \pm 0.0066	0.6454 \pm 0.0077	0.5572 \pm 0.0046
cline	intfloat-e5-base	0.3023 \pm 0.0360	0.6870 \pm 0.0036	0.4000 \pm 0.0990	4.3700 \pm 0.3253	0.8144 \pm 0.0041	0.8211 \pm 0.0041	0.8021 \pm 0.0071
cline	thenlper-gte-small	0.2761 \pm 0.0071	0.7018 \pm 0.0195	0.3350 \pm 0.0071	4.1600 \pm 0.0566	0.8242 \pm 0.0031	0.8182 \pm 0.0091	0.8076 \pm 0.0066
few_rel_nat	BAAI-bge-small-en-v1.5	0.1269 \pm 0.0039	0.3522 \pm 0.0060	0.1350 \pm 0.0071	0.8850 \pm 0.0212	0.4443 \pm 0.0106	0.4445 \pm 0.0008	0.3748 \pm 0.0028
few_rel_nat	bert-base-uncased	0.1254 \pm 0.0098	0.3922 \pm 0.0047	0.1550 \pm 0.0212	1.0150 \pm 0.0071	0.4589 \pm 0.0071	0.4590 \pm 0.0074	0.4185 \pm 0.0092
few_rel_nat	intfloat-e5-base	0.1260 \pm 0.0024	0.3879 \pm 0.0022	0.1450 \pm 0.0071	0.9900 \pm 0.0141	0.4694 \pm 0.0161	0.4749 \pm 0.0125	0.4079 \pm 0.0062
few_rel_nat	thenlper-gte-small	0.1252 \pm 0.0104	0.3499 \pm 0.0118	0.1350 \pm 0.0071	0.8750 \pm 0.0212	0.4496 \pm 0.0025	0.4516 \pm 0.0003	0.3754 \pm 0.0117
massive_intent	BAAI-bge-small-en-v1.5	0.3653 \pm 0.0026	0.6685 \pm 0.0100	0.6200 \pm 0.0000	3.5800 \pm 0.2970	0.6964 \pm 0.0005	0.6957 \pm 0.0124	0.6923 \pm 0.0057
massive_intent	bert-base-uncased	0.2270 \pm 0.0266	0.4080 \pm 0.0097	0.2400 \pm 0.0424	1.0050 \pm 0.0495	0.5108 \pm 0.0124	0.5047 \pm 0.0052	0.4191 \pm 0.0126
massive_intent	intfloat-e5-base	0.3245 \pm 0.0119	0.5876 \pm 0.0207	0.5150 \pm 0.0212	2.4300 \pm 0.0566	0.6138 \pm 0.0121	0.6323 \pm 0.0155	0.6140 \pm 0.0019
massive_intent	thenlper-gte-small	0.3265 \pm 0.0223	0.6083 \pm 0.0162	0.4950 \pm 0.0354	2.3450 \pm 0.1626	0.5752 \pm 0.0801	0.6226 \pm 0.0188	0.6271 \pm 0.0071
massive_scenario	BAAI-bge-small-en-v1.5	0.4469 \pm 0.0019	0.7076 \pm 0.0007	0.8050 \pm 0.0212	5.2000 \pm 0.6364	0.7932 \pm 0.0138	0.7634 \pm 0.0140	0.7816 \pm 0.0250
massive_scenario	BAAI-bge-small-en-v1.5	0.4469 \pm 0.0019	0.7076 \pm 0.0007	0.8050 \pm 0.0212	5.2000 \pm 0.6364	0.7932 \pm 0.0138	0.7634 \pm 0.0140	0.7816 \pm 0.0250
massive_scenario	bert-base-uncased	0.4144 \pm 0.0136	0.5521 \pm 0.0266	0.5500 \pm 0.0424	1.6350 \pm 0.8556	0.6686 \pm 0.0017	0.5585 \pm 0.1393	0.6007 \pm 0.0231
massive_scenario	intfloat-e5-base	0.4412 \pm 0.0024	0.6500 \pm 0.0204	0.7600 \pm 0.0141	3.9500 \pm 0.7354	0.7406 \pm 0.0216	0.7280 \pm 0.0100	0.7184 \pm 0.0273
massive_scenario	thenlper-gte-small	0.4438 \pm 0.0043	0.6765 \pm 0.0252	0.8000 \pm 0.0141	3.4350 \pm 1.6051	0.7618 \pm 0.0088	0.6750 \pm 0.0934	0.7518 \pm 0.0223
reddit	BAAI-bge-small-en-v1.5	0.3004 \pm 0.0002	0.4997 \pm 0.0007	0.3250 \pm 0.0071	1.5800 \pm 0.0990	0.4254 \pm 0.0015	0.5779 \pm 0.0092	0.5115 \pm 0.0051
reddit	bert-base-uncased	0.2016 \pm 0.0033	0.3202 \pm 0.0084	0.1050 \pm 0.0071	0.6300 \pm 0.0000	0.2850 \pm 0.0141	0.4288 \pm 0.0125	0.3164 \pm 0.0057
reddit	intfloat-e5-base	0.2955 \pm 0.0011	0.5009 \pm 0.0152	0.3000 \pm 0.0141	1.4800 \pm 0.0707	0.4304 \pm 0.0029	0.5985 \pm 0.0024	0.5121 \pm 0.0059
reddit	thenlper-gte-small	0.3043 \pm 0.0233	0.5219 \pm 0.0114	0.3300 \pm 0.0283	1.6600 \pm 0.0707	0.4405 \pm 0.0053	0.6048 \pm 0.0002	0.5311 \pm 0.0033
stackexchange	BAAI-bge-small-en-v1.5	0.1109 \pm 0.0082	0.3307 \pm 0.0111	0.1250 \pm 0.0071	0.6650 \pm 0.0071	0.4430 \pm 0.0051	0.4449 \pm 0.0014	0.3745 \pm 0.0077
stackexchange	bert-base-uncased	0.0929 \pm 0.0003	0.2489 \pm 0.0090	0.0700 \pm 0.0000	0.4150 \pm 0.0212	0.3294 \pm 0.0017	0.3314 \pm 0.0097	0.2774 \pm 0.0048
stackexchange	intfloat-e5-base	0.1193 \pm 0.0088	0.3405 \pm 0.0102	0.1400 \pm 0.0141	0.6950 \pm 0.0071	0.4635 \pm 0.0036	0.4706 \pm 0.0099	0.3898 \pm 0.0044
stackexchange	thenlper-gte-small	0.1263 \pm 0.0054	0.3584 \pm 0.0083	0.1500 \pm 0.0141	0.7500 \pm 0.0424	0.4669 \pm 0.0100	0.4723 \pm 0.0034	0.3992 \pm 0.0133

(strong), and **BGE-small-en-1.5** (strong). For each dataset–backbone configuration, we report the *Initial CAI* (before HCC) and *Final CAI* (after HCC), along with accuracy under Zero-Shot, Single-Shot, Specialized, and HCC (R2) settings. Two clear trends emerge from the results.

First, the **Final CAI** (after co-alignment) is consistently higher than the **Initial CAI** across all datasets and all backbones, mirroring the performance improvements achieved by HCC. In particular, the weakest model—**BERT**—shows the largest CAI gains, with improvements substantially

1404
 1405 Table 18: Averaged performance over seeds $\{1, 42\}$ for $K = 10$, reported as mean \pm standard
 1406 deviation for each Dataset–Backbone pair.

Dataset	Backbone	Zero-Shot	One-Shot	Initial CAI	Final CAI	R1	R2	Specialized
banking77	BAAI-bge-small-en-v1.5	0.3435 \pm 0.0078	0.6687 \pm 0.0370	0.5250 \pm 0.0495	4.3350 \pm 0.2333	0.7976 \pm 0.0090	0.8016 \pm 0.0005	0.7674 \pm 0.0135
banking77	bert-base-uncased	0.1758 \pm 0.0090	0.2977 \pm 0.0248	0.1550 \pm 0.0495	0.5250 \pm 0.0495	0.4487 \pm 0.0005	0.4534 \pm 0.0002	0.3286 \pm 0.0202
banking77	inffloat-c5-base	0.2919 \pm 0.0138	0.6008 \pm 0.0191	0.4000 \pm 0.0141	2.5950 \pm 0.0919	0.7404 \pm 0.0044	0.7433 \pm 0.0021	0.6974 \pm 0.0041
banking77	thenper-gte-small	0.3179 \pm 0.0239	0.6407 \pm 0.0090	0.4500 \pm 0.0283	3.1900 \pm 0.1131	0.7677 \pm 0.0099	0.7734 \pm 0.0179	0.7256 \pm 0.0106
clinc	BAAI-bge-small-en-v1.5	0.2747 \pm 0.0066	0.7048 \pm 0.0036	0.3450 \pm 0.0212	4.3050 \pm 0.1344	0.8381 \pm 0.0046	0.8490 \pm 0.0042	0.8166 \pm 0.0036
clinc	bert-base-uncased	0.1586 \pm 0.0156	0.4353 \pm 0.0038	0.1250 \pm 0.0071	0.9250 \pm 0.0212	0.6151 \pm 0.0044	0.6221 \pm 0.0112	0.4927 \pm 0.0019
clinc	inffloat-c5-base	0.2430 \pm 0.0014	0.6889 \pm 0.0189	0.2900 \pm 0.0141	3.4700 \pm 0.0000	0.8231 \pm 0.0116	0.8083 \pm 0.0011	0.7883 \pm 0.0146
clinc	thenper-gte-small	0.2602 \pm 0.0053	0.6838 \pm 0.0094	0.3300 \pm 0.0283	3.8213 \pm 0.1061	0.8213 \pm 0.0148	0.8214 \pm 0.0002	0.7920 \pm 0.0019
few_rel_nat	BAAI-bge-small-en-v1.5	0.1201 \pm 0.0057	0.3408 \pm 0.0022	0.1250 \pm 0.0071	0.8900 \pm 0.0566	0.4324 \pm 0.0073	0.4467 \pm 0.0095	0.3667 \pm 0.0028
few_rel_nat	bert-base-uncased	0.1269 \pm 0.0024	0.3919 \pm 0.0077	0.1450 \pm 0.0071	1.0550 \pm 0.0071	0.4706 \pm 0.0046	0.4684 \pm 0.0065	0.4177 \pm 0.0087
few_rel_nat	inffloat-c5-base	0.1285 \pm 0.0009	0.3732 \pm 0.0003	0.1450 \pm 0.0212	0.9950 \pm 0.0495	0.4763 \pm 0.0057	0.4761 \pm 0.0025	0.4022 \pm 0.0092
few_rel_nat	thenper-gte-small	0.1251 \pm 0.0046	0.3504 \pm 0.0066	0.1350 \pm 0.0071	0.9100 \pm 0.0283	0.4541 \pm 0.0014	0.4477 \pm 0.0043	0.3713 \pm 0.0150
massive_intent	BAAI-bge-small-en-v1.5	0.3741 \pm 0.0112	0.6180 \pm 0.0457	0.6450 \pm 0.0354	3.4400 \pm 0.1273	0.6720 \pm 0.0121	0.6881 \pm 0.0040	0.6574 \pm 0.0352
massive_intent	bert-base-uncased	0.2095 \pm 0.0152	0.3497 \pm 0.0342	0.1950 \pm 0.0495	0.7900 \pm 0.1414	0.5089 \pm 0.0021	0.4955 \pm 0.0292	0.3495 \pm 0.0278
massive_intent	inffloat-c5-base	0.2914 \pm 0.0050	0.5496 \pm 0.0140	0.4060 \pm 0.0212	1.8850 \pm 0.4596	0.6374 \pm 0.0078	0.5947 \pm 0.0411	0.5819 \pm 0.0045
massive_intent	thenper-gte-small	0.3267 \pm 0.0050	0.5856 \pm 0.0055	0.4950 \pm 0.0354	2.5100 \pm 0.0141	0.6478 \pm 0.0078	0.6370 \pm 0.0017	0.6042 \pm 0.0014
massive_scenario	BAAI-bge-small-en-v1.5	0.4509 \pm 0.0043	0.6843 \pm 0.0347	0.7900 \pm 0.0000	5.0650 \pm 0.0778	0.7860 \pm 0.0036	0.7727 \pm 0.0043	0.7695 \pm 0.0302
massive_scenario	bert-base-uncased	0.4333 \pm 0.0036	0.5311 \pm 0.0231	0.5650 \pm 0.0495	1.7700 \pm 0.4384	0.6407 \pm 0.0117	0.6071 \pm 0.0621	0.5701 \pm 0.0316
massive_scenario	inffloat-c5-base	0.4544 \pm 0.0078	0.6316 \pm 0.0226	0.7950 \pm 0.0071	4.0550 \pm 0.7000	0.7416 \pm 0.0197	0.7300 \pm 0.0138	0.7014 \pm 0.0319
massive_scenario	thenper-gte-small	0.4457 \pm 0.0316	0.6675 \pm 0.0038	0.8200 \pm 0.1131	3.7700 \pm 0.7495	0.7461 \pm 0.0014	0.7103 \pm 0.0178	0.7473 \pm 0.0150
mtop_intent	BAAI-bge-small-en-v1.5	0.2681 \pm 0.0164	0.5136 \pm 0.0031	0.2100 \pm 0.0244	3.2500 \pm 0.2333	0.6317 \pm 0.0330	0.6335 \pm 0.0688	0.5082 \pm 0.0048
mtop_intent	bert-base-uncased	0.2329 \pm 0.0289	0.4477 \pm 0.0324	0.1600 \pm 0.0424	0.6000 \pm 0.4525	0.5595 \pm 0.0409	0.4424 \pm 0.2384	0.4365 \pm 0.0314
mtop_intent	inffloat-c5-base	0.2749 \pm 0.0015	0.4895 \pm 0.0081	0.1950 \pm 0.0212	1.2050 \pm 0.0636	0.6008 \pm 0.0148	0.6037 \pm 0.0245	0.4897 \pm 0.0123
mtop_intent	thenper-gte-small	0.2621 \pm 0.0176	0.4930 \pm 0.0392	0.2000 \pm 0.0283	1.2050 \pm 0.1344	0.5920 \pm 0.0263	0.5975 \pm 0.0311	0.4709 \pm 0.0360
reddit	BAAI-bge-small-en-v1.5	0.2902 \pm 0.0090	0.4916 \pm 0.0037	0.3100 \pm 0.0000	1.6400 \pm 0.1273	0.4210 \pm 0.0024	0.5712 \pm 0.0081	0.5008 \pm 0.0048
reddit	bert-base-uncased	0.1862 \pm 0.0075	0.3113 \pm 0.0112	0.1050 \pm 0.0071	0.6150 \pm 0.0212	0.2824 \pm 0.0143	0.4248 \pm 0.0125	0.3045 \pm 0.0077
reddit	inffloat-c5-base	0.2976 \pm 0.0121	0.4969 \pm 0.0111	0.3050 \pm 0.0212	1.4700 \pm 0.0424	0.4287 \pm 0.0057	0.5962 \pm 0.0013	0.5033 \pm 0.0013
reddit	thenper-gte-small	0.3129 \pm 0.0112	0.5151 \pm 0.0053	0.3500 \pm 0.0141	1.7150 \pm 0.0354	0.4399 \pm 0.0031	0.6032 \pm 0.0015	0.5233 \pm 0.0020
stackexchange	BAAI-bge-small-en-v1.5	0.1079 \pm 0.0090	0.3130 \pm 0.0136	0.1100 \pm 0.0283	0.6100 \pm 0.0424	0.4397 \pm 0.0012	0.4311 \pm 0.0049	0.3496 \pm 0.0088
stackexchange	bert-base-uncased	0.0929 \pm 0.0102	0.2336 \pm 0.0160	0.0600 \pm 0.0141	0.3800 \pm 0.0141	0.3277 \pm 0.0054	0.3301 \pm 0.0054	0.2579 \pm 0.0092
stackexchange	inffloat-c5-base	0.1079 \pm 0.0124	0.3021 \pm 0.0039	0.1200 \pm 0.0141	0.5850 \pm 0.0071	0.4706 \pm 0.0065	0.4590 \pm 0.0141	0.3450 \pm 0.0065
stackexchange	thenper-gte-small	0.1216 \pm 0.0032	0.3328 \pm 0.0228	0.1300 \pm 0.0000	0.7050 \pm 0.0495	0.4635 \pm 0.0053	0.4647 \pm 0.0053	0.3795 \pm 0.0197

1425
 1426 Table 19: **Performance Comparison: HCC (R2-Best Among All Specialised Model Based on**
 1427 **Table 21) vs. Closed-Source Models. We compare the best HCC configuration (using the**
 1428 **optimal backbone per dataset) against GPT-4o Mini and GPT-3.5 Turbo. HCC outperforms**
 1429 **both closed-source models on the majority of datasets. (K=3).**

Dataset	HCC (R2)	4o Mini	3.5 Turbo	HCC > 4o mini	HCC > 3.5 Turbo
CLINC	83.98	81.44	66.58	Yes	Yes
Massive Scenario	79.49	66.83	60.89	Yes	Yes
MTop Intent	67.76	75.03	64.95	No	Slightly
StackExchange	47.74	51.90	30.10	No	Yes
Banking77	80.68	65.12	65.12	Yes	Yes
Reddit	60.62	57.40	51.12	Yes	Yes
FewRel-Nat	47.46	35.87	32.87	Yes	Yes
Massive Intent	66.88	76.93	71.52	No	No

1438 Table 20: **Performance Comparison: HCC (R2-Best Among All Specialised Models Based on**
 1439 **Table 22) vs. Closed-Source Models. We compare the best HCC configuration (using the**
 1440 **optimal backbone per dataset) against GPT-4o Mini and GPT-3.5 Turbo. HCC outperforms**
 1441 **both closed-source models on the majority of datasets.(K=10).**

Dataset	HCC (R2)	4o Mini	3.5 Turbo	HCC > 4o mini	HCC > 3.5 Turbo
CLINC	85.02	81.44	66.58	Yes	Yes
Massive Scenario	79.62	66.83	60.89	Yes	Yes
MTop Intent	66.71	75.03	64.95	No	Yes
StackExchange	47.28	51.90	30.10	No	Yes
Banking77	82.18	65.12	65.12	Yes	Yes
Reddit	43.43	57.40	51.12	No	No
FewRel-Nat	47.86	35.87	32.87	Yes	Yes
Massive Intent	69.33	76.93	71.52	No	No

1451 higher than those of the stronger backbones. This reflects that HCC is effective across both weak
 1452 and strong model settings, and that CAI accurately captures the improvement after co-alignment.

1453 Second, after applying HCC, the **Final CAI exhibits a strong and stable correlation** with the re-
 1454 sulting co-aligned accuracy. This indicates that HCC not only improves the quality of the assigned
 1455 annotations, but also enhances the discriminative power of CAI. Consequently, CAI serves as a **ro-
 1456 bust, backbone-agnostic reliability signal** for assessing LLM annotation quality at scale. Likewise,
 1457 the **Initial CAI** accurately reflects baseline LLM performance across different backbone–dataset
 1458 combinations, demonstrating that CAI is sensitive to both model quality and task difficulty.

1458	Dataset	Backbone	Initial CAI	Final CAI	Zero-Shot	Single-Shot	Specialized	HCC (R2)
1459	CLINC	BERT	0.14	1.17	18.58	42.80	56.04	82.40
1460		E5	0.30	4.31	26.18	61.51	79.71	83.11
1461		GTE	0.28	4.10	27.31	60.18	80.29	81.87
1462		BGE	0.28	4.67	29.27	60.27	83.44	83.98
1463	Massive Scenario	BERT	0.55	1.90	43.31	53.67	61.70	74.61
1464		E5	0.64	4.08	45.16	57.73	73.77	75.66
1465		GTE	0.75	4.80	45.93	62.78	76.77	77.14
1466		BGE	0.72	5.59	46.57	62.58	79.93	79.49
1467	Mtop Intent	BERT	0.26	0.99	32.15	45.55	49.20	65.32
1468		E5	0.26	1.21	33.58	47.04	50.36	58.30
1469		GTE	0.29	1.26	37.28	46.58	49.04	62.47
1470		BGE	0.30	1.70	35.59	47.61	54.81	67.76
1471	StackExchange	BERT	0.07	0.30	10.18	26.59	28.08	39.41
1472		E5	0.13	0.72	11.21	36.93	39.29	47.74
1473		GTE	0.15	0.77	12.22	38.93	40.86	46.10
1474		BGE	0.11	0.66	10.68	36.55	37.99	43.31
1475	Banking77	BERT	0.16	0.70	17.99	34.68	38.77	71.62
1476		E5	0.46	2.74	32.53	63.08	71.53	74.58
1477		GTE	0.47	3.62	31.95	67.18	76.66	77.08
1478		BGE	0.50	4.78	34.55	68.70	79.81	80.68
1479	Reddit	BERT	0.13	0.56	21.17	32.36	31.24	58.13
1480		E5	0.30	1.44	30.34	50.23	50.79	60.12
1481		GTE	0.32	1.64	29.87	52.60	52.88	60.62
1482		BGE	0.33	1.51	30.15	50.73	50.79	56.79
1483	FewRel-Nat	BERT	0.12	0.77	12.21	34.96	41.21	42.05
1484		E5	0.13	0.99	12.77	35.31	40.36	47.46
1485		GTE	0.12	0.85	11.99	31.23	36.72	44.31
1486		BGE	0.14	0.88	13.33	32.99	37.28	44.84
1487	Massive Intent	BERT	0.21	0.86	20.07	40.85	41.02	62.61
1488		E5	0.54	2.45	33.62	58.14	61.53	63.99
1489		GTE	0.52	2.56	32.41	60.05	62.21	63.25
1490		BGE	0.55	3.07	34.10	67.05	69.64	66.88

Table 21: **Ablation Study across Embedding Backbones and a Small Language Model (Llama8-3 Instruct).** We compare the performance of HCC using three sentence encoders (E5, GTE, BGE) and a small language model (BERT) across eight datasets. *Initial CAI* and *Final CAI* show how the verification signal strengthens as model quality improves. *HCC (R2)* consistently outperforms the Zero-Shot, Single-Shot, and Specialized baselines in most configurations, with the exception of the BGE backbone on Massive Intent and Massive Scenario. (K=3)

1483	Dataset	Backbone	Initial CAI	Final CAI	Zero-Shot	Single-Shot	Specialized	HCC (R2)
1484	CLINC	BERT	0.19	0.97	24.73	37.22	49.13	79.58
1485		E5	0.39	3.73	35.31	56.78	77.80	81.91
1486		GTE	0.41	4.15	35.49	58.31	79.07	82.24
1487		BGE	0.47	4.67	38.96	60.20	81.40	85.02
1488	Massive Scenario	BERT	0.53	1.82	44.52	48.79	59.25	75.76
1489		E5	0.69	4.02	46.33	58.04	72.39	74.45
1490		GTE	0.73	4.58	46.07	58.94	75.79	75.79
1491		BGE	0.72	5.87	46.37	64.59	79.09	79.62
1492	MTop Intent	BERT	0.26	0.99	32.15	45.55	49.20	65.32
1493		E5	0.26	1.21	33.58	47.04	50.36	58.30
1494		GTE	0.29	1.26	37.28	46.58	49.04	62.47
1495		BGE	0.30	1.70	35.59	47.61	54.81	67.76
1496	StackExchange	BERT	0.08	0.29	10.27	25.77	26.44	38.98
1497		E5	0.14	0.62	12.95	32.84	34.96	47.28
1498		GTE	0.16	0.77	13.69	37.32	39.34	46.27
1499		BGE	0.15	0.66	13.04	33.93	35.59	43.67
1500	Banking77	BERT	0.12	0.51	18.51	28.02	31.43	72.34
1501		E5	0.46	2.68	31.27	61.43	70.03	72.44
1502		GTE	0.51	2.98	33.96	63.44	71.82	76.98
1503		BGE	0.67	4.68	39.90	69.48	77.69	82.18
1504	Reddit	BERT	0.12	0.52	19.40	31.43	29.90	40.85
1505		E5	0.32	1.53	29.59	50.45	50.42	42.99
1506		GTE	0.36	1.71	32.95	51.85	52.19	43.43
1507		BGE	0.30	1.56	28.91	49.70	49.74	41.16
1508	FewRel-Nat	BERT	0.12	0.77	12.61	35.18	41.16	42.92
1509		E5	0.15	1.00	13.68	34.24	39.58	47.86
1510		GTE	0.11	0.87	11.47	32.19	36.07	45.45
1511		BGE	0.12	0.87	11.61	32.43	36.47	44.29
1512	Massive Intent	BERT	0.22	0.68	23.91	32.92	32.99	61.87
1513		E5	0.63	2.39	38.40	53.73	57.87	63.35
1514		GTE	0.67	1.43	39.04	57.83	60.32	47.51
1515		BGE	0.82	4.08	42.70	64.86	68.22	69.33

Table 22: **Ablation Study across Embedding Backbones and a Small Language Model (Llama3-8B Instruct).** We compare the performance of HCC using three sentence encoders (E5, GTE, BGE) and a small language model (BERT) across eight datasets. *Initial CAI* and *Final CAI* show how the verification signal strengthens as model quality improves. *HCC (R2)* consistently outperforms the Zero-Shot, Single-Shot, and Specialized baselines in most configurations, with the exception of the Reddit (K=10).

In terms of effectiveness, HCC achieves the highest accuracy among all three settings, consistently outperforming the Zero-Shot, Single-Shot, and Specialized baselines. Overall, this ablation demonstrates that the **CAI Ratio is both embedding-agnostic and model-agnostic**: when Llama-3-8B

1512 serves as the primary annotator, HCC reliably improves both CAI and annotation accuracy across
 1513 most embedding backbones. This confirms the robustness of our verification (CAI) and refinement
 1514 (HCC) pipeline, and establishes CAI as a stable, reference-free reliability signal for large-scale an-
 1515 notation.

1516

Comparison Stage (K=3)	Correlation (r)	P-value (p)	Significance
Baseline State (Initial CAI vs. Zero-Shot Acc.)	0.5729	6.11×10^{-4}	Yes ($p < 0.001$)
Prompted State (Initial CAI vs. Single-Shot Acc.)	0.6605	3.89×10^{-5}	Yes ($p < 0.001$)
Refined State (Final CAI vs. HCC Final Acc.)	0.7791	1.50×10^{-7}	Yes ($p < 10^{-7}$)

1524

1525 Table 23: **Statistical Validation of CAI Effectiveness (N=32).** Pearson correlation tests across all
 1526 8 datasets and 4 backbones (3 Sentence Encoder and a Language Model) show that the CAI ratio
 1527 depicts as reliable metric of accuracy as the co-alignment process proceeds, culminating in a highly
 1528 significant correlation in the final co-alignment state.(K=3)

1529

Comparison Stage (K=10)	Correlation (r)	P-value (p)	Significance
Baseline State (Initial CAI vs. Zero-Shot Acc.)	0.5731	6.07×10^{-4}	Yes ($p < 0.001$)
Prompted State (Initial CAI vs. Single-Shot Acc.)	0.6614	3.75×10^{-5}	Yes ($p < 0.001$)
Refined State (Final CAI vs. HCC Final Acc.)	0.7789	1.47×10^{-7}	Yes ($p < 10^{-7}$)

1536

1537 Table 24: **Statistical Validation of CAI Effectiveness (N=32).** Pearson correlation tests across all
 1538 8 datasets and 4 backbones show that the CAI signal becomes increasingly predictive of accuracy as
 1539 co-alignment progresses, culminating in a highly significant correlation at the refined state.(K=10)

1540

1541

1542 J.4 STATISTICAL VALIDATION OF CAI EFFECTIVENESS ON ACROSS SENTENCE ENCODER 1543 AND LANGUAGE MODEL

1544

1545 To further validate the reliability of the CAI Ratio as a reference-free quality signal, we conducted
 1546 a Pearson correlation test between (1) *Initial CAI* and the LLM’s *Zero-Shot* and *Single-Shot* accu-
 1547 racies, and (2) *Final CAI* and the *HCC Co-Aligned* accuracy. As show in the Table 23 and Table
 1548 24 across all embedding backbones (BERT, GTE-small, E5-base, BGE-small-en-1.5) and all eight
 1549 datasets, **Initial CAI shows a moderate positive correlation** with both Zero-Shot and Single-Shot
 1550 Llama-3-8B accuracy, indicating that raw agreement between the encoders and the LLM reflects
 1551 the baseline reliability of the model. After applying HCC, **Final CAI exhibits a strong and con-
 1552 sistently higher correlation** with the resulting co-aligned accuracy, demonstrating that the HCC
 1553 refinement process both increases CAI and strengthens its alignment with true correctness. These
 1554 results confirm that CAI becomes a **more discriminative and robust predictor of LLM output
 1555 quality** after co-alignment, supporting its use as a backbone-agnostic reliability indicator for large-
 1556 scale annotation.

1557

1558 J.5 RUNNING TIME AND TOKEN COST

1559

1560 We measured the runtime and token cost of each configuration, as summarized in Table 25, which
 1561 reports the LLM running time and token usage per 10,000 examples under both **zero-shot** and
 1562 **single-shot (group prompting)** settings using Llama-3-8B Instruct.

1563

1564 J.6 HCC RUNTIME FOR CO-ALIGNMENT

1565

1566 To evaluate the efficiency of HCC, as shown in Table 26, we measured the end-to-end latency of the
 1567 **Refinement Phase** (DCCA) using **Llama-3-8B Instruct**. The reported runtime values are averaged
 1568 across **four sentence encoders** (E5-base, GTE-small, BGE-small, and BERT-base).

1566	Dataset	Specialised Models	Llama 3 8B Instruct (One-Shot)		Llama 3 8B Instruct(Zero-Shot)	
			Tok/10k (M)	Time/10k (min)	Tok/10k (M)	Time/10k (min)
1567	Banking77	bert-base-uncased	1.55	83.1	1.24	106.7
		intfloat-e5-base	1.54	85.4	1.26	116.8
		thnlpert-gte-small	1.44	77.1	1.21	106.9
		BAAI-bge-small-en-v1.5	1.52	83.8	1.22	106.1
1568	Cline	bert-base-uncased	1.42	75.9	1.74	211.9
		intfloat-e5-base	1.17	37.0	1.74	239.7
		thnlpert-gte-small	1.16	36.0	1.69	199.6
		BAAI-bge-small-en-v1.5	1.16	36.2	1.68	197.4
1569	few_rel.nat	bert-base-uncased	1.17	35.9	1.02	46.4
		intfloat-e5-base	1.17	37.0	1.03	48.7
		thnlpert-gte-small	1.16	36.0	1.03	47.8
		BAAI-bge-small-en-v1.5	1.16	36.2	1.03	47.5
1570	massive_intent	bert-base-uncased	0.98	67.7	0.92	104.6
		intfloat-e5-base	0.99	64.9	0.90	96.1
		thnlpert-gte-small	0.99	63.2	0.93	102.6
		BAAI-bge-small-en-v1.5	1.04	71.9	0.95	109.0
1571	massive_scenario	bert-base-uncased	0.58	32.0	0.47	47.5
		intfloat-e5-base	0.58	34.4	0.48	48.8
		thnlpert-gte-small	0.57	34.6	0.46	47.4
		BAAI-bge-small-en-v1.5	0.56	33.5	0.48	50.4
1572	mtop_intent	bert-base-uncased	1.30	63.8	1.32	121.8
		intfloat-e5-base	1.30	65.2	1.37	134.2
		thnlpert-gte-small	1.30	69.5	1.37	127.9
		BAAI-bge-small-en-v1.5	1.33	68.9	1.40	140.3
1573	Reddit	bert-base-uncased	0.95	46.7	0.79	69.3
		intfloat-e5-base	0.94	44.0	0.77	67.6
		thnlpert-gte-small	0.96	45.6	0.80	74.5
		BAAI-bge-small-en-v1.5	0.95	44.9	0.79	70.5
1574	Stackexchange	bert-base-uncased	2.13	87.4	2.49	312.6
		intfloat-e5-base	2.04	85.5	2.36	285.5
		thnlpert-gte-small	2.09	86.7	2.41	296.1
		BAAI-bge-small-en-v1.5	2.10	91.0	2.46	316.2

Table 25: **Marginal Estimated Cost per 10k Examples: Comparison of Teacher Models (Llama 3 8B). M denotes millions and Min denotes minutes**

It is important to note:

- These measurements **exclude** one-time preprocessing operations—namely, semantic clustering performed by the task-specific specialized model and general LLM annotation (both zero-shot and single-shot prompting)—which are lightweight and standard.
- The **Refinement Phase** constitutes the main active computational cost of HCC, representing the core alignment process where consistency-based correction and re-verification occur.

Table 26: **Co-alignment Runtime (Llama-3-8B). We report the total runtime to process the full experimental suite (4 sentence encoders) and the average runtime per individual encoder. The per-model cost is extremely low, averaging less than a minute.**

1600	Dataset	Total Runtime Specialised Models (3 Encoders+Language Model)	Avg. Runtime per Specialised Model
1601	Banking77	2 min 32.0 sec	38.0 sec
1602	CLINC	3 min 45.3 sec	56.3 sec
1603	Reddit	3 min 05.1 sec	46.3 sec
1604	MTOP Intent	3 min 52.5 sec	58.1 sec
1605	Massive Scenario	2 min 41.9 sec	40.5 sec
1606	Massive Intent	2 min 13.7 sec	33.4 sec
1607	FewRel-Nat	4 min 31.0 sec	1 min 7.8 sec
1608	StackExchange	4 min 55.4 sec	1 min 13.9 sec
1609	Average	≈ 3 min 27 sec	≈ 51.8 sec

1620
 1621 **Observation:** Across nearly all datasets, **single-shot prompting is substantially faster and more**
 1622 **token-efficient** than zero-shot prompting. Thus, HCC does not introduce **significant additional**
 1623 **inference cost**; rather, it leverages the specialised model to perform semantic clustering and pro-
 1624 **vide compact in-context examples for *group-based* annotation, followed by a lightweight refine-
 1625 **ment stage.** This design keeps the overall pipeline relatively efficient while improving annotation
 1626 **quality.** At the same time, the *zero-shot* predictions preserve output diversity by exposing the full
 1627 **token-distribution behaviour of the LLM, which complements the specialised model and mitigates**
 1628 **the overconfidence commonly observed in LLM-only predictions.****

1628
 1629 **J.7 MORE DETAILS ON TWO-ROUND CO-ALIGNMENT AND CAI IMPROVEMENT (LLAMA**
 1630 **3-8 INSTRUCT)**

1631 Table 27 and Table 28 reports the accuracy changes from Round 1 to Round 2 across all embedding
 1632 backbones (E5-base, GTE-small, BGE-small-en-v1.5, and BERT-base-uncased) on the Llama3-8
 1633 Instruct Model. The results show that two rounds consistently provide the best balance between
 1634 improvement and stability. Round 2 captures the remaining correctable cases, while additional
 1635 rounds would propagate noise and degrade annotation quality.

1636 **Round 1.** The initial consistent set (\mathcal{C}) resolves the easier or more obvious annotation errors, but
 1637 many harder cases in the inconsistent set (\mathcal{I}) remain incorrect. This is because Round 1 relies only
 1638 on $\mathcal{C} \cup H$, so its coverage is limited.

1640 **Round 2.** The samples corrected in Round 1 expand the reference base, enabling HCC to resolve
 1641 the remaining inconsistencies. This often yields further improvements (e.g., **+17.7%** on Reddit with
 1642 BERT).

1643 **Convergence and Signal Exhaustion (Why Stop at Round 2?).** Our results (Table 27 and Ta-
 1644 ble 28) show that performance reaches a plateau by Round 2. At this point, the reference set has
 1645 expanded to include all samples that can be reliably aligned ($\mathcal{C} \cup \mathcal{CI}$). The remaining inconsis-
 1646 tent samples (\mathcal{II}) are mostly “difficult” cases where the LLM and the embedding model genuinely
 1647 disagree and cannot be corrected further. Importantly, going beyond Round 2 risks performance
 1648 regression rather than simply yielding diminishing returns.

1649 Across several tasks, Round 2 already reaches a performance plateau. Therefore, additional rounds
 1650 tend to yield diminishing returns or even reduce accuracy. For example, Banking77 (BERT) shows
 1651 a drop of -1.79% and StackExchange (BERT) drops by -0.56%. These patterns indicate that the
 1652 remaining inconsistencies correspond to difficult samples, making Round 2 the appropriate and
 1653 stable stopping point. **Vote Weighting.** Our voting procedure is already similarity-aware because
 1654 the top- K neighbors are selected using cosine similarity, ensuring that only the most semantically
 1655 similar examples contribute to the decision. Within this top- K set, however, the final vote is taken
 1656 using uniform weighting (simple majority). More specifically, for each inconsistent instance $x \in \mathcal{I}$,
 1657 we compute its similarity with every intent group.

1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

1674	Dataset (K=3)	Backbone	HCC (R1)	HCC (R2)	Δ	Observation
1675	Banking77	BERT	73.41	71.62	-1.79	Saturation
		E5	75.42	74.58	-0.84	Saturation
		GTE	76.85	77.08	+0.23	Convergence
		BGE	81.36	80.68	-0.68	Saturation
1676	CLINC	BERT	80.00	82.40	+2.40	Refinement
		E5	81.40	83.11	+1.71	Refinement
		GTE	80.44	81.87	+1.43	Refinement
		BGE	84.38	83.98	-0.40	Saturation
1677	Reddit	BERT	40.41	58.13	+17.72	Correction
		E5	43.39	60.12	+16.73	Correction
		GTE	43.61	60.62	+17.01	Correction
		BGE	42.65	56.79	+14.14	Correction
1678	MTop Intent	BERT	0.5819	0.6532	+0.0713	Refinement
		E5	0.6192	0.5830	-0.0362	Regression
		GTE	0.4466	0.6247	+0.1781	Refinement
		BGE	0.6553	0.6776	+0.0223	Refinement
1679	Massive Scenario	BERT	74.82	74.61	-0.21	Saturation
		E5	74.68	75.66	+0.98	Refinement
		GTE	78.14	77.14	-1.00	Saturation
		BGE	80.87	79.49	-1.38	Saturation
1680	Massive Intent	BERT	61.53	62.61	+1.08	Refinement
		E5	59.78	63.99	+4.21	Refinement
		GTE	62.58	63.25	+0.67	Refinement
		BGE	65.47	66.88	+1.41	Refinement
1681	FewRel-Nat	BERT	42.08	42.05	-0.03	Saturation
		E5	46.56	47.46	+0.90	Refinement
		GTE	42.12	44.31	+2.19	Refinement
		BGE	44.73	44.84	+0.11	Convergence
1682	StackExchange	BERT	39.97	39.41	-0.56	Saturation
		E5	46.90	47.74	+0.84	Refinement
		GTE	45.84	46.10	+0.26	Convergence
		BGE	44.20	43.31	-0.89	Saturation

Table 27: **Two-Round Correction Summary (Llama3-8 Instruct) Across Datasets and All Specialised Models. Comparing Round 1 and Round 2 accuracy across all backbones shows that while Round 2 provides critical corrections for complex tasks (e.g., Reddit), it represents a saturation point for simpler tasks (K=3).**

1701	Dataset (K=10)	Backbone	HCC (R1)	HCC (R2)	Δ	Observation
1702	Banking77	BERT	0.7331	0.7234	-0.0097	Regression
		E5	0.7406	0.7244	-0.0162	Regression
		GTE	0.7633	0.7698	+0.0065	Refinement
		BGE	0.8185	0.8218	+0.0033	Refinement
1703	CLINC	BERT	0.7958	0.7958	0.0000	Convergence
		E5	0.8258	0.8191	-0.0067	Regression
		GTE	0.8162	0.8224	+0.0062	Refinement
		BGE	0.8427	0.8502	+0.0075	Refinement
1704	Reddit	BERT	0.4016	0.4085	+0.0069	Refinement
		E5	0.4308	0.4299	-0.0009	Regression
		GTE	0.4302	0.4343	+0.0041	Refinement
		BGE	0.4224	0.4116	-0.0108	Regression
1705	MTop Intent	BERT	0.5819	0.6532	+0.0713	Refinement
		E5	0.6256	0.5830	-0.0426	Regression
		GTE	0.6211	0.6247	+0.0036	Refinement
		BGE	0.6623	0.6776	+0.0153	Refinement
1706	Massive Scenario	BERT	0.7515	0.7576	+0.0061	Refinement
		E5	0.7364	0.7445	+0.0081	Refinement
		GTE	0.7720	0.7579	-0.0141	Regression
		BGE	0.8013	0.7962	-0.0051	Regression
1707	FewRel-Nat	BERT	0.4250	0.4292	+0.0042	Refinement
		E5	0.4638	0.4786	+0.0148	Refinement
		GTE	0.4580	0.4545	-0.0035	Regression
		BGE	0.4453	0.4429	-0.0024	Regression
1708	Massive Intent	BERT	0.6110	0.6187	+0.0077	Refinement
		E5	0.6533	0.6335	-0.0198	Regression
		GTE	0.6261	0.4751	-0.1510	Regression
		BGE	0.6944	0.6933	-0.0011	Regression
1709	StackExchange	BERT	0.3891	0.3898	+0.0007	Refinement
		E5	0.4704	0.4728	+0.0024	Refinement
		GTE	0.4581	0.4627	+0.0046	Refinement
		BGE	0.4389	0.4367	-0.0022	Regression

Table 28: **Two-Round Correction Summary (Llama3-8 Instruct) Across Datasets and All Specialised Models (K=10).**

1728 **K ADDITIONAL ABLATION STUDIES BASED ON CHATGPT4O MINI LARGE**
 1729 **LANGUAGE MODEL**
 1730

1731 **K.1 CASE ANALYSIS OF CAI ON CHATGPT 4O MINI**
 1732

1733 **Failure Case: MASSIVE-Intent.** While our co-alignment pipeline achieves consistent gains on
 1734 Banking77, CLINC, MTOP, and Reddit, **MASSIVE-Intent emerges as a clear failure case**, re-
 1735 vealing important limitations of our approach. MASSIVE-Intent is uniquely challenging due to
 1736 its **dense, fine-grained intent space**, where many labels differ only by minor slot variations (e.g.,
 1737 `inform_city`, `inform_city_other`, `inform_place_detail`). As a result, semantically
 1738 similar queries receive nearly identical embeddings, causing **nearest-neighbor voting to collapse**
 1739 and producing unreliable correction candidates.

1740 Furthermore, the dataset’s **multilingual and translationese style** produces short, syntactically uni-
 1741 form queries, which substantially reduces the discriminative power of English-centric embedding
 1742 models. **In addition, ChatGPT-4o-mini is primarily specialised for reasoning tasks and does**
 1743 **not exhibit equally strong multilingual capabilities**, further limiting its ability to exploit subtle
 1744 cross-lingual intent distinctions. This is reflected in its **low consistent-sample ratio** ($\sim 0.40\text{--}0.45$)
 1745 and a **weak CAI signal** (<1.0), indicating that disagreements between the LLM and the embed-
 1746 der are largely uninformative. When the consistent set is small and noisy, DCCA cannot provide
 1747 meaningful guidance and instead amplifies uncertainty, resulting in limited or negative correction
 1748 effects.

1749 Overall, MASSIVE-Intent highlights a boundary condition of our method:

1750 **when intent spaces are extremely fine-grained and embedding separability is**
 1751 **low, consistency-driven repair becomes unreliable.**

1753 This failure case motivates future extensions, such as density-adaptive clustering, slot-aware repre-
 1754 sentations, and multilingual embedding backbones.

1756 **K.2 RUNNING TIME AND TOTAL TOKEN COST (CHATGPT 4O-MINI)**
 1757

1758 We report the estimated token cost and runtime of ChatGPT-4o-mini across all tasks in Table 29.
 1759 For each dataset and specialised encoder backbone, we provide the estimated token usage per 10k
 1760 examples and the corresponding estimated runtime under both **single-shot** (with intent) and **zero-
 1761 shot** (without intent) prompting.

1763 **K.3 RUNNING TIME OF HCC FOR CO-ALIGNMENT (CHATGPT 4O-MINI)**

1764 To demonstrate the computational efficiency of Heterogeneous Consistency Co-alignment (HCC),
 1765 we report the actual wall-clock execution time for the complete two-round verification procedure
 1766 on all datasets in Table 30. The results show that HCC completes co-alignment within **0.36\text{--}1.11**
 1767 **minutes per dataset**, highlighting its extremely low computational overhead.

1769 **K.4 TWO-ROUND CO-ALIGNMENT AND CAI IMPROVEMENT (CHATGPT 4O-MINI)**
 1770

1771 Table 32 summarises the two-round HCC correction results for ChatGPT-4o-mini across all
 1772 datasets. We report (1) the initial and final CAI ratios, (2) Round-1 and Round-2 correction accu-
 1773 racies, and (3) the accuracy gain from R1 to R2. These results explicitly show how HCC improves
 1774 annotation alignment.

1775
 1776
 1777
 1778
 1779
 1780
 1781

Dataset/ChatGPT 4o mini	Model	Est. Tokens/10k (Millions)		Est. Time/10k (Minutes)	
		Single-Shot	Zero-Shot	Single-Shot	Zero-Shot
Banking77	bert-base-uncased	1.02	0.92	16.1	18.2
	intfloat-e5-base	0.99	0.90	15.9	17.7
	thenlper-gte-small	1.01	0.88	16.2	17.2
	BAAI-bge-small-en-v1.5	1.02	0.86	16.3	16.9
Cline	bert-base-uncased	1.11	0.98	13.9	14.9
	intfloat-e5-base	1.12	0.97	14.1	14.3
	thenlper-gte-small	1.13	0.98	14.0	14.5
	BAAI-bge-small-en-v1.5	1.11	0.98	14.3	15.0
few_rel_nat	bert-base-uncased	1.15	1.06	14.7	15.7
	intfloat-e5-base	1.13	1.07	14.5	15.8
	thenlper-gte-small	1.13	1.10	14.7	16.1
	BAAI-bge-small-en-v1.5	1.15	1.12	14.3	16.2
massive_intent	bert-base-uncased	0.78	0.75	14.7	19.1
	intfloat-e5-base	0.77	0.71	15.0	17.7
	thenlper-gte-small	0.78	0.70	14.9	17.2
	BAAI-bge-small-en-v1.5	0.77	0.72	14.9	17.3
massive_scenario	bert-base-uncased	0.52	0.37	12.6	13.6
	intfloat-e5-base	0.51	0.38	12.5	12.6
	thenlper-gte-small	0.52	0.37	12.7	13.1
	BAAI-bge-small-en-v1.5	0.52	0.38	12.4	12.8
mtop_intent	bert-base-uncased	1.07	1.63	15.7	30.3
	intfloat-e5-base	1.06	1.62	16.3	29.0
	thenlper-gte-small	1.05	1.69	16.1	30.8
	BAAI-bge-small-en-v1.5	1.05	1.71	15.7	31.0
Reddit	bert-base-uncased	0.83	0.67	15.0	15.6
	intfloat-e5-base	0.82	0.66	14.9	15.0
	thenlper-gte-small	0.83	0.67	14.9	15.6
	BAAI-bge-small-en-v1.5	0.83	0.67	14.9	15.2
Stackexchange	bert-base-uncased	1.61	1.45	19.8	21.2
	intfloat-e5-base	1.61	1.43	19.7	21.1
	thenlper-gte-small	1.61	1.43	19.9	20.2
	BAAI-bge-small-en-v1.5	1.61	1.44	20.1	20.3

Table 29: Marginal Estimated Cost per 10k Examples (GPT-4o-mini): Single-Shot (With Intent) vs Zero-Shot (Without Intent)

Dataset / ChatGPT-4o-mini	Specialised Model	Time (s)	Time (min)
Cline	bert-base-uncased	33.46	0.56
	intfloat-e5-base	37.76	0.63
	thenlper-gte-small	35.63	0.59
	BAAI-bge-small-en-v1.5	35.42	0.59
massive_scenario	bert-base-uncased	21.79	0.36
	intfloat-e5-base	28.95	0.48
	thenlper-gte-small	26.01	0.43
	BAAI-bge-small-en-v1.5	26.44	0.44
Stackexchange	bert-base-uncased	47.42	0.79
	intfloat-e5-base	63.09	1.05
	thenlper-gte-small	60.33	1.01
	BAAI-bge-small-en-v1.5	59.43	0.99
Banking77	bert-base-uncased	26.25	0.44
	intfloat-e5-base	27.75	0.46
	thenlper-gte-small	26.54	0.44
	BAAI-bge-small-en-v1.5	24.31	0.41
massive_intent	bert-base-uncased	24.72	0.41
	intfloat-e5-base	27.49	0.46
	thenlper-gte-small	24.92	0.42
	BAAI-bge-small-en-v1.5	22.18	0.37
few_rel_nat	bert-base-uncased	45.91	0.77
	intfloat-e5-base	66.86	1.11
	thenlper-gte-small	63.53	1.06
	BAAI-bge-small-en-v1.5	63.22	1.05
Reddit	bert-base-uncased	35.48	0.59
	intfloat-e5-base	48.39	0.81
	thenlper-gte-small	43.38	0.72
	BAAI-bge-small-en-v1.5	42.57	0.71
mtop_intent	bert-base-uncased	31.22	0.52
	intfloat-e5-base	47.50	0.79
	thenlper-gte-small	44.53	0.74
	BAAI-bge-small-en-v1.5	41.39	0.69

Table 30: Actual Execution Time per Dataset for HCC Co-Alignment (ChatGPT 4o mini).

L ADDITIONAL ABLATION STUDIES BASED ON CHATGPT3.5 TURBO LARGE LANGUAGE MODEL

L.1 FAILURE CASE OF CAI ON CHATGPT 3.5 TURBO

No Failure Case: Our experiments show that CAI is extremely effective on ChatGPT-3.5 Turbo compared to other LLMs such as GPT-4o-Mini and open-source LLM Llama3-8 Instruct. CAI im-

1836	Dataset	Backbone	Initial CAI	Final CAI	Zero-Shot	Single-Shot	Specialized	HCC (R2)
1837	CLINC	BERT	0.70	1.34	76.82	56.89	55.40	85.91
1838		E5	1.42	5.23	77.33	71.87	80.71	87.67
1839		GTE	1.34	5.51	77.16	70.93	81.22	88.04
1840		BGE	1.59	6.51	78.38	72.64	83.13	88.02
1841	Massive Scenario	BERT	0.73	1.51	64.29	55.78	58.44	77.91
1842		E5	1.02	3.32	63.21	63.52	69.91	76.06
1843		GTE	1.20	4.63	64.36	67.72	73.60	78.21
1844		BGE	1.10	3.27	61.87	69.87	76.40	73.67
1845	MTOP Intent	BERT	0.74	1.30	71.82	54.77	51.39	74.76
1846		E5	0.68	1.29	70.75	55.77	51.48	67.74
1847		GTE	0.65	1.59	71.32	54.65	50.98	71.45
1848		BGE	0.82	2.20	71.77	58.50	56.57	74.94
1849	StackExchange	BERT	0.22	0.42	35.90	39.03	38.67	44.18
1850		E5	0.41	0.87	41.34	41.03	38.67	51.15
1851		GTE	0.40	0.89	41.46	42.11	38.98	51.79
1852		BGE	0.38	0.83	40.59	41.24	37.13	49.15
1853	Banking77	BERT	0.47	0.78	58.44	47.76	40.13	79.09
1854		E5	1.41	3.74	62.60	71.66	71.56	80.19
1855		GTE	1.51	5.02	62.89	75.29	75.62	82.14
1856		BGE	1.82	5.23	64.68	79.42	79.48	81.59
1857	Reddit	BERT	0.19	0.54	45.63	38.42	32.05	59.56
1858		E5	0.44	1.47	48.80	52.44	51.63	61.36
1859		GTE	0.50	1.66	49.95	53.93	53.34	63.38
1860		BGE	0.47	1.58	50.20	51.76	51.51	60.24
1861	FewRel-Nat	BERT	0.33	0.93	35.40	41.29	42.50	45.67
1862		E5	0.33	1.03	34.84	40.49	41.23	49.01
1863		GTE	0.31	1.01	36.29	38.13	38.37	47.68
1864		BGE	0.30	0.98	35.58	36.99	37.68	45.96
1865	Massive Intent	BERT	0.69	0.95	72.76	48.45	42.80	70.14
1866		E5	1.58	2.86	74.01	62.51	61.26	69.77
1867		GTE	2.86	2.98	74.54	64.22	63.21	68.99
1868		BGE	2.13	4.52	75.45	69.10	68.83	75.22

Table 31: **Aggregated Backbone Comparison across 8 datasets.** Initial CAI = Final CAI = model’s Consistent-Inconsistent Ratio Count. Zero-Shot = without showing intent, Single-Shot = with showing intent, Specialized = correction rate, HCC (R2) = two-round majority voting accuracy.

Table 32: **Two-Round Correction / GPT-4o mini & CAI Score Summary.**

	Dataset	Backbone	Initial CAI	Final CAI	HCC (R1) Acc	HCC (R2) Acc	Δ Gain	Observation
1869	CLINC	BERT	0.70	1.34	85.93	85.91	-0.02	Convergence
1870		E5	1.42	5.23	87.33	87.67	+0.34	Convergence
1871		GTE	1.34	5.51	86.87	87.04	+0.17	Convergence
1872		BGE	1.59	6.51	89.24	88.02	-1.22	Convergence
1873	Massive Scenario	BERT	0.73	1.51	78.41	77.91	-0.50	Saturation
1874		E5	1.02	3.32	72.73	76.06	+3.33	Convergence
1875		GTE	1.20	4.63	77.71	78.21	+0.50	Saturation
1876		BGE	1.10	3.27	71.12	73.67	+2.55	Convergence
1877	MTop Intent	BERT	0.74	1.30	73.26	74.76	+1.50	Refinement
1878		E5	0.68	1.29	67.83	67.74	-0.09	Saturation
1879		GTE	0.65	1.59	69.81	71.45	+1.64	Refinement
1880		BGE	0.82	2.20	73.00	74.94	+1.94	Refinement
1881	StackExchange	BERT	0.22	0.42	43.53	44.18	+0.65	Convergence
1882		E5	0.87	0.87	50.94	51.15	+0.21	Convergence
1883		GTE	0.40	0.89	51.32	51.49	+0.17	Saturation
1884		BGE	0.38	0.83	49.83	49.16	-0.67	Convergence
1885	Banking77	BERT	0.47	0.78	75.97	79.09	+3.12	Refinement
1886		E5	1.41	3.74	71.66	80.19	+8.53	Correction
1887		GTE	1.51	5.02	75.29	82.14	+6.85	Refinement
1888		BGE	1.82	5.23	81.62	81.59	-0.03	Convergence
1889	FewRel-Nat	BERT	0.33	0.93	26.90	45.67	+18.77	Correction
1890		E5	0.33	1.03	50.29	49.00	-1.29	Convergence
1891		GTE	0.31	1.01	47.88	47.70	-0.18	Saturation
1892		BGE	0.30	0.98	46.96	45.96	-1.00	Convergence
1893	Reddit	BERT	0.19	0.54	42.40	59.56	+17.16	Correction
1894		E5	0.44	1.47	44.82	61.36	+16.54	Correction
1895		GTE	0.50	1.66	45.79	63.38	+17.59	Correction
1896		BGE	0.47	1.58	43.33	60.24	+16.91	Correction
1897	Massive Intent	BERT	0.69	0.95	70.40	70.14	-0.26	Saturation
1898		E5	1.58	2.86	69.83	69.77	-0.06	Convergence
1899		GTE	1.62	2.98	69.24	69.00	-0.24	Convergence
1900		BGE	2.13	4.52	74.45	75.22	+0.77	Refinement

1887 improvements correlate reliably with downstream gains, showing that ChatGPT-3.5 aligns well with 1888 embedding-driven cluster structure. **Even in extremely fine-grained settings such as MASSIVE-1889 Intent, where cluster separability is weak, CAI correctly identifies that only marginal improvements are possible. The small CAI gain (0.69→0.95) aligns proportionally with the small accu-**

1890
 1891 **racy gain from Zero-Shot to HCC(R2) (+0.47%), demonstrating that CAI remains a reliable**
 1892 **indicator even under challenging semantic conditions.**

1893 1894 L.2 TOTAL TOKEN USAGE AND LLM RUNNING TIME (CHATGPT-3.5 TURBO)

1895
 1896 We report the total token usage and LLM (ChatGPT-3.5 Turbo) running time across all tasks in
 1897 Table 33. For each dataset and specialised encoder backbone, we provide the estimated token
 1898 consumption per 10k examples and the corresponding estimated runtime for **single-shot** (with intent)
 1899 and **zero-shot** (without intent) prompting. These results show that HCC does not introduce signifi-
 1900 cant additional token usage or latency beyond the baseline prompting scheme.

Dataset/ChatGPT 3.5 Turbo	Model	Est. Tokens/10k (Millions)		Est. Time/10k (Minutes)	
		Single-Shot	Zero-Shot	Single-Shot	Zero-Shot
Banking77	bert-base-uncased	1.02	0.92	16.1	18.2
	intfloat-e5-base	0.99	0.90	15.9	17.7
	thenlper-gte-small	1.01	0.88	16.2	17.2
	BAAI-bge-small-en-v1.5	1.02	0.86	16.3	16.9
Cline	bert-base-uncased	1.11	0.98	13.9	14.9
	intfloat-e5-base	1.12	0.97	14.1	14.3
	thenlper-gte-small	1.13	0.98	14.0	14.5
	BAAI-bge-small-en-v1.5	1.11	0.98	14.3	15.0
few_rel_nat	bert-base-uncased	1.15	1.06	14.7	15.7
	intfloat-e5-base	1.14	1.07	14.5	15.8
	thenlper-gte-small	1.13	1.10	14.7	16.1
	BAAI-bge-small-en-v1.5	1.15	1.12	14.3	16.2
massive_intent	bert-base-uncased	0.78	0.75	14.7	19.1
	intfloat-e5-base	0.78	0.71	15.0	17.7
	thenlper-gte-small	0.77	0.70	14.9	17.2
	BAAI-bge-small-en-v1.5	0.77	0.72	14.9	17.3
massive_scenario	bert-base-uncased	0.52	0.37	12.6	13.6
	intfloat-e5-base	0.52	0.37	12.5	12.6
	thenlper-gte-small	0.52	0.37	12.7	13.1
	BAAI-bge-small-en-v1.5	0.52	0.37	12.4	12.8
mtop_intent	bert-base-uncased	1.07	1.63	15.7	30.3
	intfloat-e5-base	1.06	1.62	16.3	29.0
	thenlper-gte-small	1.05	1.69	16.1	30.8
	BAAI-bge-small-en-v1.5	1.04	1.71	15.7	31.0
Reddit	bert-base-uncased	0.83	0.67	15.0	15.6
	intfloat-e5-base	0.83	0.67	14.9	15.0
	thenlper-gte-small	0.83	0.67	14.9	15.6
	BAAI-bge-small-en-v1.5	0.83	0.67	14.9	15.2
Stackexchange	bert-base-uncased	1.60	1.45	19.8	21.2
	intfloat-e5-base	1.59	1.43	19.7	21.1
	thenlper-gte-small	1.60	1.44	19.9	20.2
	BAAI-bge-small-en-v1.5	1.59	1.43	20.1	20.3

1920
 1921 Table 33: Marginal estimated cost per 10k examples (ChatGPT-3.5 Turbo): single-shot (with intent)
 1922 vs. zero-shot (without intent).

1944

1945

1946

L.3 RUNNING TIME OF HCC FOR CO-ALIGNMENT (CHATGPT-3.5 TURBO)

1947

We further report the wall-clock running time of HCC for co-alignment on all tasks in Table 34. For each dataset and embedding model, we list the per-dataset execution time in seconds and minutes. These measurements confirm that HCC operates within **0.36–1.15 minutes per dataset**, demonstrating that the verification and correction procedure is highly efficient in practice.

1952

1953

1954

1955

1956

1957

1958

1959

1960

1961

1962

1963

1964

1965

1966

1967

1968

1969

1970

1971

1972

1973

1974

1975

1976

1977

1978

1979

Table 34: Execution Time per Dataset for HCC Co-alignment (ChatGPT-3.5 Turbo).

1980

1981

1982

1983

1984

1985

1986

1987

1988

1989

1990

1991

1992

1993

1994

1995

1996

1997

Dataset	Embedding Model	Time (s)	Time (min)
Cline	bert-base-uncased	32.53	0.54
	intfloat-e5-base	33.55	0.56
	thenlper-gte-small	32.38	0.54
	BAAI-bge-small-en-v1.5	32.06	0.53
Massive Scenario	bert-base-uncased	22.32	0.37
	intfloat-e5-base	29.06	0.48
	thenlper-gte-small	24.82	0.41
	BAAI-bge-small-en-v1.5	24.98	0.42
StackExchange	bert-base-uncased	47.76	0.80
	intfloat-e5-base	58.51	0.98
	thenlper-gte-small	53.74	0.90
	BAAI-bge-small-en-v1.5	55.59	0.93
Banking77	bert-base-uncased	25.88	0.43
	intfloat-e5-base	24.55	0.41
	thenlper-gte-small	21.65	0.36
	BAAI-bge-small-en-v1.5	21.61	0.36
Massive Intent	bert-base-uncased	23.93	0.40
	intfloat-e5-base	25.66	0.43
	thenlper-gte-small	25.12	0.42
	BAAI-bge-small-en-v1.5	22.20	0.37
FewRel-Nat	bert-base-uncased	46.35	0.77
	intfloat-e5-base	67.00	1.12
	thenlper-gte-small	65.12	1.09
	BAAI-bge-small-en-v1.5	68.96	1.15
Reddit	bert-base-uncased	35.28	0.59
	intfloat-e5-base	44.34	0.74
	thenlper-gte-small	38.55	0.64
	BAAI-bge-small-en-v1.5	39.20	0.65
Mtop Intent	bert-base-uncased	33.70	0.56
	intfloat-e5-base	51.86	0.86
	thenlper-gte-small	48.40	0.81
	BAAI-bge-small-en-v1.5	45.46	0.76

1998

1999

2000

2001

2002

L.4 CO-ALIGNMENT AND CAI IMPROVEMENT (CHATGPT-3.5 TURBO)

2003

2004

2005

Finally, Table L.4 reports the two-round HCC correction results for ChatGPT-3.5 Turbo across all datasets. We list the initial and final CAI ratios, the Round-1 (R1) and Round-2 (R2) accuracies, and the resulting accuracy change $\Delta = R2 - R1$. This comparison highlights where HCC leads to refinement, convergence, saturation, or regression when applied on top of ChatGPT-3.5 Turbo.

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

Table 35: **Aggregated Backbone Comparison across 8 datasets.** Initial CAI and Final CAI represent Consistent-Inconsistent ratios. Zero-Shot = accuracy without showing intent, Single-Shot = accuracy with showing intent, Specialized = correction rate, HCC (R2) = two-round majority vote accuracy.

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

Dataset	Backbone	Initial CAI	Final CAI	Zero-Shot	Single-Shot	Specialized	HCC (R2)
CLINC	BERT	0.89	1.49	67.78	56.22	55.40	82.76
	E5	1.93	6.29	68.89	80.04	80.71	86.80
	GTE	1.84	6.50	67.71	80.49	81.22	85.84
	BGE	1.94	6.51	68.80	82.00	83.13	87.67
Massive Scenario	BERT	0.88	1.62	58.81	60.52	58.44	74.98
	E5	1.31	3.21	59.65	67.25	69.91	70.28
	GTE	1.60	4.53	60.86	71.32	73.60	73.71
	BGE	1.56	5.73	60.66	73.97	76.40	77.30
MTOP Intent	BERT	0.59	1.28	56.79	53.67	51.39	71.71
	E5	0.59	1.28	57.84	52.49	51.48	71.71
	GTE	0.55	1.70	58.96	53.90	50.98	68.40
	BGE	0.67	2.11	60.37	57.73	56.57	69.81
StackExchange	BERT	0.39	0.58	31.47	27.45	27.41	41.58
	E5	0.74	1.25	36.33	38.57	38.67	48.44
	GTE	0.74	1.26	35.68	38.76	38.98	47.16
	BGE	0.61	1.11	34.53	37.05	37.13	45.43
Banking77	BERT	0.58	0.91	51.46	42.08	40.13	74.81
	E5	2.03	4.88	62.31	71.56	71.56	77.44
	GTE	2.59	5.15	64.81	75.49	75.62	73.96
	BGE	2.62	4.08	66.72	79.41	79.48	72.63
Reddit	BERT	0.24	0.59	42.56	34.19	32.05	58.38
	E5	0.70	1.88	51.48	51.91	51.63	60.58
	GTE	0.84	2.24	52.75	53.93	53.34	60.71
	BGE	0.82	2.19	52.10	51.79	51.51	58.19
FewRel-Nat	BERT	0.33	0.95	31.14	43.46	42.50	44.91
	E5	0.36	1.10	31.00	40.49	41.23	48.59
	GTE	0.32	1.01	31.65	38.77	38.37	47.32
	BGE	0.29	0.98	30.76	38.68	37.68	45.85
Massive Intent	BERT	0.69	0.95	67.22	48.15	42.80	67.69
	E5	1.89	3.25	71.08	63.25	61.26	68.86
	GTE	1.71	3.21	68.59	64.93	63.21	68.66
	BGE	2.43	4.90	69.94	69.33	68.83	72.73

Table 36: Two-Round Correction / ChatGPT-3.5 Turbo & CAI Score Summary.

Dataset	Backbone	Initial CAI	Final CAI	HCC (R1) Acc	HCC (R2) Acc	Δ Gain	Observation
Massive Scenario	BERT	0.88	1.62	71.15	74.98	+3.83	Correction
	E5	1.31	3.21	68.22	70.28	+2.06	Correction
	GTE	1.60	4.53	75.55	73.71	-1.84	Saturation
	BGE	1.56	5.73	80.36	77.30	-3.06	Saturation
FewRel-Nat	BERT	0.33	0.95	45.51	44.91	-0.60	Saturation
	E5	0.36	1.10	49.96	48.59	-1.37	Saturation
	GTE	0.32	1.01	47.30	47.32	+0.02	Convergence
	BGE	0.29	0.98	46.41	45.85	-0.56	Saturation
Reddit	BERT	0.24	0.59	41.19	58.38	+17.19	Correction
	E5	0.70	1.88	43.36	60.58	+17.22	Correction
	GTE	0.84	2.24	43.99	60.71	+16.72	Correction
	BGE	0.82	2.19	42.24	58.19	+15.95	Correction
CLINC	BERT	0.89	1.49	82.33	82.76	+0.43	Convergence
	E5	1.93	6.29	86.69	86.80	+0.11	Convergence
	GTE	1.84	6.50	85.64	85.84	+0.20	Convergence
	BGE	1.94	6.51	87.89	87.67	-0.22	Saturation
MTop Intent	BERT	0.59	1.28	70.73	71.71	+0.98	Refinement
	E5	0.59	1.28	71.48	71.71	+0.23	Minor Gain
	GTE	0.55	1.70	65.32	68.40	+3.08	Correction
	BGE	0.67	2.11	69.40	69.81	+0.41	Refinement
Massive Intent	BERT	0.72	1.02	66.64	67.69	+1.05	Correction
	E5	1.89	3.25	69.97	68.86	-1.11	Saturation
	GTE	1.71	3.21	68.90	68.66	-0.24	Saturation
	BGE	2.43	4.90	68.80	72.73	+3.93	Correction
StackExchange	BERT	0.39	0.58	42.16	41.58	-0.58	Saturation
	E5	0.74	1.25	48.32	48.44	+0.12	Convergence
	GTE	0.74	1.26	47.88	47.16	-0.72	Saturation
	BGE	0.61	1.11	45.28	45.43	+0.15	Convergence
Banking77	BERT	0.58	0.91	72.40	74.81	+2.41	Refinement
	E5	2.03	4.88	75.88	77.44	+1.56	Refinement
	GTE	2.59	5.15	72.05	73.96	+1.91	Refinement
	BGE	2.62	4.08	82.11	72.63	-9.48	Overshoot

Table 37: HCC Correction Summary: Initial vs Final CAI, R1/R2 Accuracy (in %), and Gain.

Dataset	Backbone	Initial CAI	Final CAI	HCC(R1) Acc.	HCC(R2) Acc.	Δ Gain	Observation
Cline	BERT	0.89	1.49	82.33	82.76	+0.43	Convergence
	E5	1.93	6.29	86.69	86.80	+0.11	Convergence
	GTE	1.84	6.50	85.64	85.84	+0.20	Convergence
	BGE	1.94	6.51	87.89	87.67	-0.22	Saturation
Massive Scenario	BERT	0.88	1.62	71.15	74.98	+3.83	Correction
	E5	1.31	3.21	68.22	70.28	+2.06	Correction
	GTE	1.60	4.53	75.55	73.71	-1.84	Saturation
	BGE	1.56	5.73	80.36	77.30	-3.06	Saturation
StackExchange	BERT	0.39	0.58	42.16	41.58	-0.58	Saturation
	E5	0.74	1.25	48.32	48.44	+0.12	Convergence
	GTE	0.74	1.26	47.88	47.16	-0.72	Saturation
	BGE	0.61	1.11	45.28	45.43	+0.15	Convergence
Banking77	BERT	0.58	0.91	72.40	74.81	+2.41	Refinement
	E5	2.03	4.88	75.88	77.44	+1.56	Refinement
	GTE	2.59	5.15	72.05	73.96	+1.91	Refinement
	BGE	2.62	4.08	82.11	72.63	-9.48	Overshoot
Massive Intent	BERT	0.72	1.02	66.64	67.69	+1.05	Correction
	E5	1.89	3.25	69.97	68.86	-1.11	Saturation
	GTE	1.71	3.21	68.90	68.66	-0.24	Saturation
	BGE	2.43	4.90	68.80	72.73	+3.93	Correction
FewRel-Nat	BERT	0.33	0.95	45.51	44.91	-0.60	Saturation
	E5	0.36	1.10	49.96	48.59	-1.37	Saturation
	GTE	0.32	1.01	47.30	47.32	+0.02	Convergence
	BGE	0.29	0.98	46.41	45.85	-0.56	Saturation
Reddit	BERT	0.24	0.59	41.19	58.38	+17.19	Strong Correction
	E5	0.70	1.88	43.36	60.58	+17.22	Strong Correction
	GTE	0.84	2.24	43.99	60.71	+16.72	Strong Correction
	BGE	0.82	2.19	42.24	58.19	+15.95	Strong Correction
MTOP Intent	BERT	0.59	1.28	70.73	71.71	+0.98	Refinement
	E5	0.59	1.28	71.48	71.71	+0.23	Minor Gain
	GTE	0.55	1.70	65.32	68.40	+3.08	Correction
	BGE	0.67	2.11	69.40	69.81	+0.41	Refinement

M ABLATION STUDIES ON LAMA 3-7B INSTRUCT MODEL WITH 1%, 5% AND 10% USER PREFERENCE

With less instantiated user preference sample size that HCC would be more susceptible to imbalance issue. We first used the specialised model generated annotations to cluster the samples. Then, we applied group prompting, where each query included 10 requests belonging to the same annotation.

As a result, higher-quality annotations from the specialised model led to better clustering, meaning that more similar samples were provided to the LLMs. This, in turn, improved response accuracy—similar to how better intermediate steps in chain-of-thought prompting enhance final output quality. Consequently, the response accuracy of the top 10% of LLM outputs (LLaMA-8B-Instruct) was significantly higher than that of the bottom 1%, highlighting the strong impact of annotation alignment on model performance. All the results are shown in Table 38.

Table 38: Lama 3-8B Instruct Performance Across Datasets with 1%, 5% and 10% User Preference Sample (Mean \pm Standard Deviation %)

Dataset	Prop.	Accuracy Metrics			
		LLM (%)	specialised model + LLM (%)	Specialised Model (%)	HCC (Ours)(%)
CLINC	1%	29.26 \pm 1.04	54.68 \pm 1.24	64.85 \pm 0.13	71.18 \pm 0.13
	5%	31.51 \pm 1.82	65.08 \pm 1.72	79.31 \pm 0.47	81.36 \pm 0.60
	10%	36.87 \pm 1.00	70.80 \pm 0.02	84.38 \pm 0.40	86.84 \pm 0.06
MASSIVE_SCENARIO	1%	43.99 \pm 0.37	55.56 \pm 1.06	60.42 \pm 0.67	66.21 \pm 0.24
	5%	46.48 \pm 1.14	67.33 \pm 0.52	72.83 \pm 0.27	74.45 \pm 0.74
	10%	46.92 \pm 0.50	71.33 \pm 0.63	78.53 \pm 0.22	79.22 \pm 0.90
STACKEXCHANGE	1%	11.39 \pm 0.36	20.96 \pm 0.17	21.15 \pm 0.14	29.36 \pm 0.51
	5%	12.15 \pm 0.25	30.48 \pm 0.43	31.61 \pm 0.20	38.85 \pm 0.66
	10%	14.26 \pm 1.09	34.16 \pm 0.23	36.92 \pm 0.59	44.74 \pm 0.05
BANKING77	1%	29.23 \pm 1.09	50.18 \pm 3.39	53.73 \pm 3.71	60.28 \pm 1.49
	5%	38.07 \pm 1.09	69.79 \pm 1.57	73.71 \pm 1.86	78.08 \pm 1.23
	10%	39.75 \pm 0.38	76.38 \pm 0.02	81.50 \pm 0.16	84.38 \pm 0.60
MASSIVE_INTENT	1%	29.66 \pm 1.98	44.57 \pm 0.05	46.42 \pm 0.59	54.37 \pm 0.33
	5%	35.13 \pm 1.37	55.83 \pm 0.76	61.72 \pm 1.06	60.15 \pm 5.35
	10%	35.86 \pm 1.23	58.56 \pm 0.92	65.03 \pm 0.77	66.85 \pm 0.67
GO_EMOTION	1%	19.61 \pm 0.40	12.52 \pm 0.68	12.50 \pm 0.55	18.80 \pm 0.92
	5%	20.15 \pm 0.20	14.34 \pm 0.58	14.31 \pm 0.67	21.11 \pm 0.02
	10%	19.68 \pm 0.10	18.05 \pm 0.29	17.90 \pm 0.27	26.10 \pm 1.15
FEW_REL_NAT	1%	11.59 \pm 0.22	23.68 \pm 1.07	25.52 \pm 0.73	34.58 \pm 0.92
	5%	12.81 \pm 0.64	31.68 \pm 0.02	34.02 \pm 0.34	42.75 \pm 0.09
	10%	13.20 \pm 0.24	33.84 \pm 0.18	36.68 \pm 0.78	45.61 \pm 1.37
REDDIT	1%	22.70 \pm 0.47	37.17 \pm 0.02	37.88 \pm 0.27	51.06 \pm 0.51
	5%	28.31 \pm 0.94	49.27 \pm 0.12	50.99 \pm 0.26	58.80 \pm 0.33
	10%	31.84 \pm 0.43	52.08 \pm 0.20	54.18 \pm 0.41	60.79 \pm 0.02
FEW_NERD_NAT	1%	36.05 \pm 0.10	25.48 \pm 1.07	20.76 \pm 0.81	29.53 \pm 0.19
	5%	36.41 \pm 0.07	29.66 \pm 0.24	27.62 \pm 0.01	31.31 \pm 0.12
	10%	35.82 \pm 1.65	31.68 \pm 0.93	29.89 \pm 0.91	29.97 \pm 0.95
MTOP_INTENT	1%	28.10 \pm 0.22	45.30 \pm 0.57	41.14 \pm 0.90	44.95 \pm 1.79
	5%	31.22 \pm 0.74	56.68 \pm 0.87	53.44 \pm 0.50	61.87 \pm 0.70
	10%	32.08 \pm 0.77	59.32 \pm 1.56	56.48 \pm 0.25	61.67 \pm 4.87

2160 N OVERALL REFLECTION OF CAI
2161

2162 **Interpretation.** A low CAI value indicates that the *Consistent* subset (LLM–encoder agreement)
 2163 remains small relative to the *Inconsistent* subset. Importantly, this does *not* mean that HCC has
 2164 failed; rather, CAI is correctly signalling **low semantic confidence due to weak embedding sepa-**
 2165 **ration.** In such cases, the encoder struggles to form meaningful clusters, and the consistency signal
 2166 becomes naturally noisier.

2167 To improve the robustness of CAI in these low-CAI scenarios, we recommend:
 2168

- 2169 • (i) increasing the proportion of human-in-the-loop or user-preference samples to stabilise
 2170 cluster boundaries, and
- 2171 • (ii) adopting a stronger encoder backbone (e.g., E5 or BGE) to enhance representation
 2172 separability.

2173 Crucially, even when CAI is small (e.g., StackExchange), HCC often still yields substantial accuracy
 2174 improvements. In such cases, CAI serves its intended role—**warning that improvements will**
 2175 **be moderate and that predictions should be interpreted with caution.** This observation aligns
 2176 consistently with the broader CAI analyses presented in Section 5.2 and Table 21, where smaller
 2177 CAI deltas correspond to weaker post-alignment gains.

2179 O CROSS-DOMAIN GENERALIZATION.
2180

2181 Our evaluation already spans **four distinct domain families**, demonstrating that HCC generalizes
 2182 across radically different linguistic styles, noise levels, and task structures **without any modification**
 2183 **to the method.** The domains included are:

- 2185 • **Technical and Specialized:**
 - 2186 – **Banking77** — fine-grained financial queries (HCC (R2): 71–80%)
 - 2187 – **StackExchange** — programming and troubleshooting (HCC (R2): 39–47%)
- 2188 • **Social Media (Noisy, Informal):**
 - 2189 – **Reddit** — subjective, noisy user discussions (HCC (R2): 58–60%)
- 2190 • **Fact-Based / Structured:**
 - 2191 – **FewRel-Nat** — relation classification with structured logical semantics (HCC (R2):
 2192 42–47%)
- 2193 • **General Assistant and Everyday Queries:**
 - 2194 – **CLINC, Massive Intent, Massive Scenario, MTOP** — broad user-assistant intent
 2195 spaces (HCC (R2): 62–83%)

2196 Across all domains, HCC achieves moderate improvement over baselines. These consistent gains
 2197 demonstrate **strong cross-domain generalization.**

2201 P CAN HCC HANDLE CONFLICTING USER PREFERENCES?
2202

2203 **Conflicting Preferences.** HCC naturally accommodates conflicting user preferences because the
 2204 propagation step is *conditioned on each user’s seed examples (H)*. Our method assumes that each
 2205 user provides a *small labeled set per class*, which captures that user’s individual labeling preferences.
 2206 These seed examples act as the **personalized anchors** that guide consistency propagation and align-
 2207 ment. Thus, HCC generates **per-user, preference-aligned annotations** for large unlabeled corpora,
 2208 rather than learning a global reward model shared across users.

2209 The goal of HCC is therefore **not general RLHF-style preference modeling**, but **Personalized**
 2210 **Natural Language Understanding**, reflecting each user’s subjective preferences to unlabeled data
 2211 in a reliable, scalable, and training-free manner.

2212 **Pairwise Data.** Our framework addresses *categorical annotation* rather than *pairwise preference*
 2213 *ranking*. While CAI could, in principle, be extended to pairwise comparisons for RLHF-style data,

2214 this falls outside the scope of our cold-start classification setting. Nevertheless, we view this as a
2215 promising direction for future work.
2216

2217

2218

2219

2220

2221

2222

2223

2224

2225

2226

2227

2228

2229

2230

2231

2232

2233

2234

2235

2236

2237

2238

2239

2240

2241

2242

2243

2244

2245

2246

2247

2248

2249

2250

2251

2252

2253

2254

2255

2256

2257

2258

2259

2260

2261

2262

2263

2264

2265

2266

2267

2268 Q MODEL SELECTION STUDIES
2269

2270 **Model Selection with CAI Ratio** Model selection based solely on the CAI Ratio correctly identifies the best-performing LLMs in 60% of cases. Among the mismatched cases, the accuracy differences are not significant. Although CAI Ratio alone is not a perfect indicator of LLMs accuracy, it serves as a reliable heuristic for selecting well-performing LLMs in semi-supervised settings. We have chosen the Best CAI Model and the Best Accuracy Model from the candidate LLM set, which includes GPT-3.5 Turbo, GPT-4o Mini, Google Gemini 1.5 Flash, and Llama-8B Instruct.

2277 2278 Dataset	2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 Best CAI Model		2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3979 3980 3981 3982 3983 3984	

2322 **R ALGORITHM TABLE**
2323

2324 We present the algorithmic tables for Divide-and-Conquer Co-Alignment (DCCA) with MV-VTES
2325 (Algorithm 1) and for Majority Voting via the Top-Nearest Embedding Scheme (MV-VTES) (Algo-
2326 rithm 2) below.

2327

2328 **Algorithm 1:** Divide-and-Conquer Co-Alignment (DCCA) with MV-VTES

2329 **Input:** Consistent set $\mathcal{C} = \{(x_i, \bar{y}_i^c)\}$, inconsistent set $\mathcal{I} = \{(x_i, \bar{y}_i^i)\}$, user-preference set H ,
2330 number of neighbours K .
2331 **Output:** Self-corrected dataset $D^{(\text{final})}$.

2332 **1 Round 1: Self-aligning \mathcal{I} to obtain $\mathcal{I}^{(1)}$**
2333 **2** $\mathcal{I}^{(1)} \leftarrow \emptyset$
2334 **3 foreach** $(x, \bar{y}^i) \in \mathcal{I}$ **do**
2335 **4** $\hat{y}^i \leftarrow \text{MV-VTES}(x, \mathcal{C} \cup H, K)$ // Eq. equation 3, equation 4
2336 **5** $\mathcal{I}^{(1)} \leftarrow \mathcal{I}^{(1)} \cup \{(x, \hat{y}^i)\}$
2337

2338 **6 CAI-based partition of \mathcal{I}**
2339 **7** $\mathcal{CI} \leftarrow \emptyset, \mathcal{II} \leftarrow \emptyset$
2340 **8 foreach** $(x, \bar{y}^i) \in \mathcal{I}$ **do**
2341 **9** // Find updated label of x in $\mathcal{I}^{(1)}$
2342 **10** $\hat{y}^i \leftarrow \text{label of } x \text{ in } \mathcal{I}^{(1)}$
2343 **11** **if** $\hat{y}^i = \bar{y}^i$ **then**
2344 **12** $\mathcal{CI} \leftarrow \mathcal{CI} \cup \{(x, \hat{y}^i)\}$ // Now consistent
2345 **13** **else**
2346 **14** $\mathcal{II} \leftarrow \mathcal{II} \cup \{(x, \bar{y}^i)\}$ // Still inconsistent
2347

2348 **14 Round 2: Co-aligning \mathcal{II} to obtain $\mathcal{II}^{(1)}$**
2349 **15** $\mathcal{II}^{(1)} \leftarrow \emptyset$
2350 **16 foreach** $(x, \bar{y}^i) \in \mathcal{II}$ **do**
2351 **17** $\hat{y}^{i'} \leftarrow \text{MV-VTES}(x, \mathcal{C} \cup \mathcal{CI} \cup H, K)$
2352 **18** $\mathcal{II}^{(1)} \leftarrow \mathcal{II}^{(1)} \cup \{(x, \hat{y}^{i'})\}$
2353

2354 **19 Final self-corrected dataset**
2355 **20** $D^{(\text{final})} \leftarrow \mathcal{C} \cup \mathcal{CI} \cup \mathcal{II}^{(1)}$
2356 **21 return** $D^{(\text{final})}$

2357

2358

2359 **Algorithm 2:** Majority Voting via Top-Nearest Embedding Scheme (MV-VTES)

2360 **Input:** Query x (inconsistent sample), reference set $D_{(A,L)_e} = \{(a_i, \bar{y}_i)\}$ (e.g., $\mathcal{C} \cup H$ or
2361 $\mathcal{C} \cup \mathcal{CI} \cup H$), neighbours K , embedding function $\mathcal{S}(\cdot)$.
2362 **Output:** Refined annotation \hat{y} for x .

2363 **1 foreach** $(a_i, \bar{y}_i) \in D_{(A,L)_e}$ **do**
2364 **2** \leftarrow Compute similarity $s_i \leftarrow \frac{\mathcal{S}(a_i) \cdot \mathcal{S}(x)}{\|\mathcal{S}(a_i)\| \|\mathcal{S}(x)\|}$ // Cosine similarity
2365

2366 **3 Select the top- K pairs $\{(a_i, \bar{y}_i)\}_{i=1}^K$ with largest s_i as in Eq. equation 3**
2367 **4 Let** $A \leftarrow \{\bar{y}_1, \dots, \bar{y}_K\}$ **be the set of unique labels from the top- K neighbours**
2368 **5 foreach** $a \in A$ **do**
2369 **6** $n_a \leftarrow \sum_{i=1}^K \mathbf{1}\{\bar{y}_i = a\}$ // Label frequency
2370

2371 **7 Assign the refined label by majority voting (Eq. equation 4):**
2372 **8** $\hat{y} \leftarrow \arg \max_{a \in A} n_a$
2373 **9 return** \hat{y}

2374

2376 **S PROMPT INSTRUCTION**
 2377

2378 **S.1 PROMPT INSTRUCTION (WITHOUT INTENT)**
 2379

2380 **Listing 1: Prompt construction for batched intent labelling**
 2381

```

1 def Prompt(prompts, specialised_model_labels, intention_set,
2             temperature):
3     """
4     Build the LLM prompt for batched intent labelling.
5     prompts: list of input sentences
6     specialised_model_labels: labels from the specialised model
7     intention_set: candidate intent set
8     temperature: decoding temperature for the LLM
9     """
10
11    # 1. Build sentence-prefixed inputs
12    combination = []
13    for prompt, label in zip(prompts, specialised_model_labels):
14        prompt1 = f'For the sentence: "{prompt}"'
15        combination.append(prompt1)
16
17    # 2. Assemble instruction block
18    respon = ""
19    respon += f"Please return exactly {len(prompts)} responses.\n"
20    respon += (
21        f"Identify the intention for each sentence "
22        f"using the set: {intention_set}.\n"
23    )
24    respon += "Follow the specified output format strictly.\n"
25    respon += "Make sure the number of outputs matches the number of
26    inputs.\n"
27
28    # 3. Query the LLM
29    output = openai.ChatCompletion.create(
30        model="gpt-4o-mini",
31        messages=[{"role": "user", "content": respon}],
32        temperature=temperature,
33        max_tokens=2048,
34    )
35
36    return output
  
```

2412
 2413
 2414
 2415
 2416
 2417
 2418
 2419
 2420
 2421
 2422
 2423
 2424
 2425
 2426
 2427
 2428
 2429

2430
2431

S.2 PROMPT INSTRUCTION (WITH INTENT)

2432

Listing 2: Prompt construction for batched intent labelling

2433

2434

2435

2436

2437

2438

2439

2440

2441

2442

2443

2444

2445

2446

2447

2448

2449

2450

2451

2452

2453

2454

2455

2456

2457

2458

2459

2460

2461

2462

2463

2464

2465

```

1 def Prompt(prompts, specialised_model_labels, intention_set,
2            temperature):
3     """
4     Build the LLM prompt for batched intent labelling.
5     prompts: list of input sentences
6     specialised_model_labels: labels from the specialised model
7     intention_set: candidate intent set
8     temperature: decoding temperature for the LLM
9     """
10
11    # 1. Build sentence-prefixed inputs
12    combination = []
13    for prompt, label in zip(prompts, specialised_model_labels):
14        prompt1 = f'For the sentence: "{prompt}" and its predicted
15        intent: "{specialised_model_labels}". Use this predicted
16        intent as guidance.'
17        combination.append(prompt1)
18
19    # 2. Assemble instruction block
20    respon = ""
21    respon += f"Please return exactly {len(prompts)} responses.\n"
22    respon += (
23        f"Identify the intention for each sentence "
24        f"using the set: {intention_set}.\n"
25    )
26    respon += "Follow the specified output format strictly.\n"
27    respon += "Make sure the number of outputs matches the number of
28    inputs.\n"
29
30    # 3. Query the LLM
31    output = openai.ChatCompletion.create(
32        model="gpt-4o-mini",
33        messages=[{"role": "user", "content": respon}],
34        temperature=temperature,
35        max_tokens=2048,
36    )
37
38    return output

```

2466

2467

2468

2469

2470

2471

2472

2473

2474

2475

2476

2477

2478

2479

2480

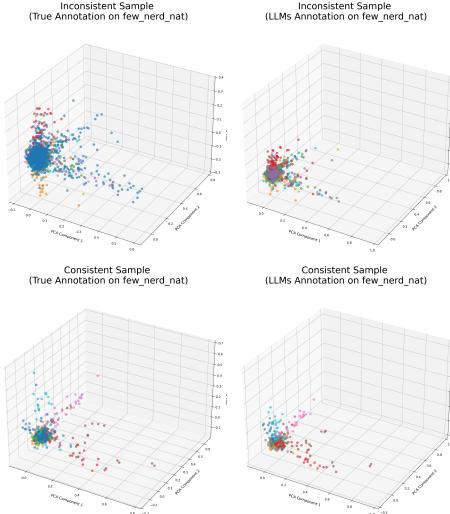
2481

2482

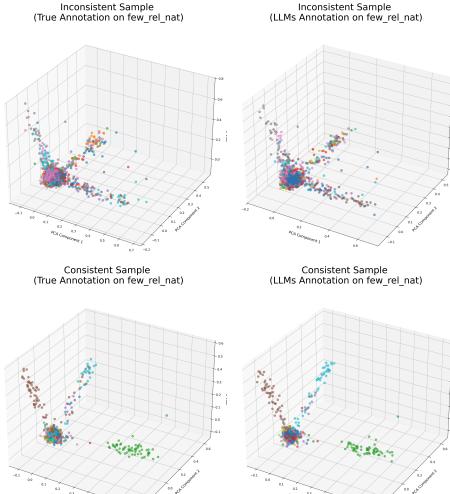
2483

2484 **T T-SNE VISUALIZATION FOR CLUSTERING ON ALL DATASETS FOR**
 2485 **CHATGPT-4O MINI**
 2486

2487 In the following t-SNE visualization, the LLM-generated annotations of the identified inconsistent
 2488 samples exhibit substantial deviation from their true annotations. Conversely, for the identified
 2489 consistent samples, the LLM-generated annotations show strong agreement with the corresponding
 2490 ground-truth labels.

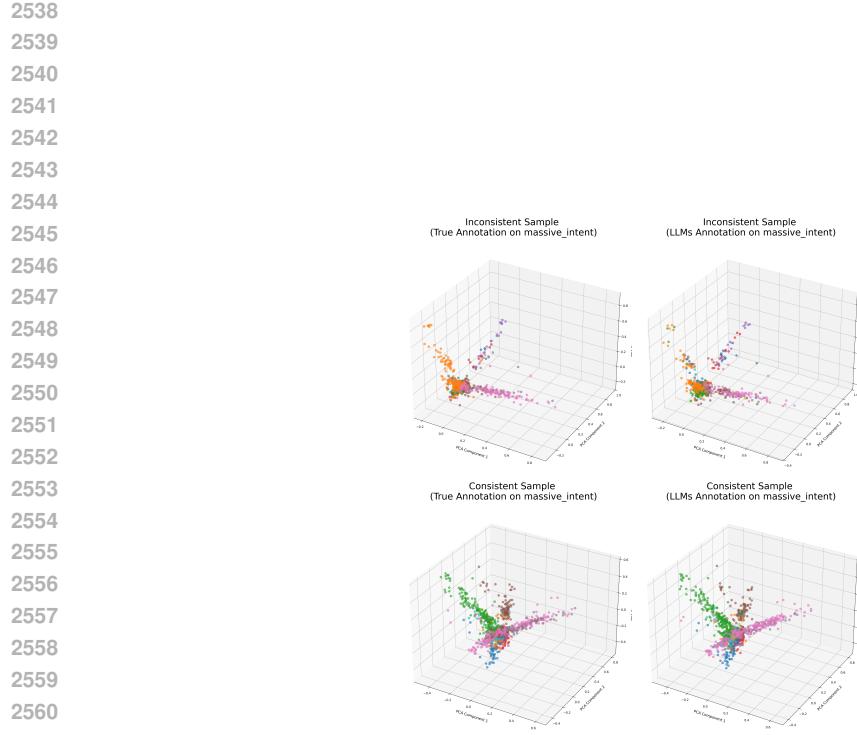


2509 **Figure 9: Visualization of t-SNE Clustering for LLM vs True Annotations**
 2510 **on Few_Nerd_Nat Dataset. LLM outputs exhibit *high similarity* with**
 2511 **ground-truth labels on **consistent** samples, while showing *significant divergence***
 2512 **on **inconsistent** samples.**



2530 **Figure 10: Visualization of t-SNE Clustering for LLM vs True Annotations on**
 2531 **Few_Rel_Nat Dataset. LLM outputs exhibit *high similarity* with ground-truth labels on **consistent** samples, while showing *significant divergence* on **inconsistent****
 2532 **samples.**

2533
 2534
 2535
 2536
 2537



2583 **Figure 12: Visualization of t-SNE Clustering** for LLM vs True Annotations on
 2584 *Reddit* Dataset. LLM outputs exhibit **high similarity** with ground-truth labels on
 2585 **consistent** samples, while showing **significant divergence** on **inconsistent** samples.
 2586
 2587
 2588
 2589
 2590
 2591