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Abstract

Data-efficient reinforcement learning(RL) requires deep exploration. Thompson sampling
is a principled method for deep exploration in reinforcement learning. However, Thompson
sampling need to track the degree of uncertainty by maintaining the posterior distribution
of models, which is computationally feasible only in simple environments with restrictive as-
sumptions. A key problem in modern RL is how to develop data and computation efficient
algorithm that is scalable to large-scale complex environments. We develop a principled
framework, called HyperFQI, to tackle both the computation and data efficiency issues.
HyperFQI can be regarded as approximate Thompson sampling for reinforcement learning
based on hypermodel. Hypermodel in this context serves as the role for uncertainty estima-
tion of action-value function. HyperFQI demonstrates its ability for efficient and scalable
deep exploration in DeepSea benchmark with large state space. HyperFQI also achieves
super-human performance in Atari benchmark with 2M interactions with low computation
costs. We also give a rigorous regret performance analysis for the proposed method, justi-
fying its computation and data efficiency. The analysis is enabled by a sequential random
projection argument, a non-trivial margtingale extension of Johnson–Lindenstrauss. To
the best of knowledge, this is the first principled RL algorithm that is both provably effi-
cient and practically efficiently scalable to complex environments such as Arcade learning
environment that requires deep networks for pixel-based control.

1. Introduction

In reinforcement learning (RL), intelligent exploration relies on decisions that are driven not
only by expectations but also by epistemic uncertainty (Osband et al., 2019b). Actions are
taken to resolve epistemic uncertainty not only based on immediate consequences but also on
what will be observed over subsequent time periods, a concept known as deep exploration
(Osband et al., 2019b). One popular exploration scheme in RL is Thompson Sampling
(TS), which makes decisions based on a posterior distribution over models (Thompson,
1933; Strens, 2000; Russo et al., 2018). A basic form of TS involves sampling a model from
the posterior and selecting an action that optimizes the sampled model.

However, generating exact posterior samples is computationally tractable only for sim-
ple environments, such as tabular MDPs with Dirichlet priors over transition probability
vectors (Strens, 2000; Osband et al., 2013). For complex domains, approximations are nec-
essary (Russo et al., 2018). In order to address this need, Osband et al. (2019b) developed
randomized least-squares value iteration (RLSVI). RLSVI aims to approximate sampling
from the posterior over the optimal value function without explicitly representing the dis-
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Figure 1: This figure investigates the relationship between the required training data and
the model parameters for achieving human-level performance using various algorithms. The
evaluation is conducted using the metric called Interquartile Mean (IQM) (Agarwal et al.,
2021) on 26 Atari games. The x-axis represents the amount of training data required to
achieve human-level performance, measured in 1.0 IQM. The × indicates that the algorithm
fails to reach human-level performance with the corresponding amount of training data. The
⋆ denotes that our proposed algorithm, HyperFQI, achieves human-level performance using
only 15% of the training data compared with DQN (Nature) (Van Hasselt et al., 2016) and
5% of the model parameters compared with BBF (Schwarzer et al., 2023).

tribution. The algorithm achieves this by randomly perturbing a prior and an accumulated
dataset and fitting a point estimate of the value function to this perturbed prior and data.
The induced randomness from these perturbations leads to deep exploration, improving
data efficiency (Osband et al., 2019b).

While RLSVI avoids the explicit maintenance of a posterior distribution, it still requires
computationally intensive operations to generate a new point estimate for each episode.
These computations do not leverage previously computed point estimates and therefore
cannot be incrementally updated. Ensemble sampling has been proposed as an alterna-
tive approach to approximate RLSVI’s performance. It involves maintaining a set of point
estimates, with each estimate updated incrementally as data accumulates (Osband et al.,
2016, 2018, 2019b). Nevertheless, maintaining an ensemble of complex models can be com-
putationally burdensome. Furthermore, to obtain a good approximation of the posterior
distribution, the ensemble size needs to grow significantly with the complexity of the dis-
tribution (Dwaracherla et al., 2020; Osband et al., 2021; Li et al., 2022a; Qin et al., 2022).

Alternatively, instead of maintaining an ensemble of models, one can learn a hypermodel.
A hypermodel can be used to generate approximate posterior samples, as discussed in prior
works (Dwaracherla et al., 2020; Li et al., 2022a). This approach shows promise, but it
requires a representation that can be more complex than a point estimate of the value
function. The computational requirements and the number of parameters needed for this
representation, however, lack theoretical understanding.

None of these algorithms have been shown to be computationally efficient, data efficient
and scalable at the same time. In particular, RLSVI is data efficient but it is neither
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computationally efficient nor scalable. Ensemble (Osband et al., 2016, 2018, 2019b) or
previous hypermodel-related approaches (Li et al., 2022a) are computationally tractable to
scale to complex environment with deep networks but they are not efficient enough and
also have no theoretical guarantees. This paper aims to develop a principled RL algorithm
that is both computationally and data efficient and also scalable to large-scale complex
environments.

1.1 Contributions

We propose a novel algorithm, called HyperFQI, that combines the benefits of RLSVI and
hypermodel-based approaches. HyperFQI can be regarded as an online version of the fitted
Q-iteration (FQI) algorithm (Ernst et al., 2005; Mnih et al., 2015). FQI is originally a batch
RL algorithm that learns a Q-function by fitting a regression model to a dataset of state-
action-reward-state tuples. HyperFQI maintains a hypermodel that can be used to generate
approximate posterior samples and carefully designs a way to sample from hypermodel for
both training and action selection.

• HyperFQI is the first algorithm in the literature solving DeepSea at a large scale up
to 1002 states, see details in Section 4.1.

• HyperFQI is also the first one achieving human-level performance in Atari games,
when considering both data and computation efficiency, see details in Figure 1 and Sec-
tion 4.2.

• We provide a rigorous performance analysis for the proposed method in Section 5,
justifying its computation and data efficiency. HyperFQI achieves the Bayesian regret
bound of order Õ(H2

√
|X ||A|K) for finite horizon MDPs with H horizon, |X | states,

|A| actions, and K episodes, sharing the same order with famous RLSVL (Osband
et al., 2019b) and PSRL (Osband and Van Roy, 2017). The additional computation
burden of HyperFQI than single point estimate is only logarithmic in |X | and |A|
and episode number K, i.e. the additional dimension is M = Õ(log(|X ||A|K)). The
analysis is enabled by our novel probability tools in Appendices G and H, which maybe
of independent interest.

To the best of knowledge, this is the first principled RL algorithm that is provably efficient
and also practically efficiently scalable to complex environments such as DeepSea with large
state space and Arcade learning environment. We believe this work serves as a bridge for
theory and practice in reinforcement learning.

2. Preliminary

2.1 Reinforcement Learning

We consider the episodic RL setting in which an agents interacts with an unknown en-
vironment over a sequence of episodes. We model the environment as a Markov decision
problem (MDP) M = (S,A, R, P, sterminal, ρ), where S is the state space, A is the action
space, terminal ∈ S is the terminal state, and ρ is the initial state distribution. For each
episode, the initial state S0 is drawn from the distribution ρ. In each time period t = 1, 2, . . .
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within an episode, the agent observes a state St ∈ S. If St ̸= sterminal, the agent selects
an action At ∈ A, receives a reward Rt+1 ∼ R (· | St, At), and transitions to a new state
St+1 ∼ P (· | St, At). An episode terminates once the agent arrives at the terminal state.
Let τ be the termination time of a generic episode, i.e., Sτ = sterminal. Note that τ is a
stopping time in general. To illustrate, we denote the sequence of observations in episode
k by Ok = (Sk,0, Ak,0, Rk,1, . . . , Sk,τk−1, Ak,τk−1, Rk,τk) where Sk,t, Ak,t, Rk,t+1 are the state,
action, reward observed at t-th time period of the k-th episode and τk is the termina-
tion time at episode k. We denote the history of observations made prior to episode k by
Hk = (O1, . . . ,Ok−1).

A policy π : S → A maps a state s ∈ S to an action a ∈ A. For each MDP M with
state space S and action space A, and each policy π, we define the associated state-action
value function as:

Qπ
M (s, a) := EM,π

[
τ∑

t=1

Rt | S0 = s,A0 = a

]
where the subscript π next under the expectation is a shorthand for indicating that ac-
tions over the whole time periods are selected according to the policy π. Let V π

M (s) :=
Qπ

M (s, π(s)). We say a policy πM is optimal for the MDP M if πM (s) ∈ argmaxπ V
π
M (s) for

all s ∈ S. To simplify the exposition, we assume that under any MDP M and any policy
π, the termination time τ <∞ is finite with probability 1.

The agent is given knowledge about S,A, sterminal, and ρ, but is uncertain about R and
P . The unknown MDP M , together with reward function R and transition function P , are
modeled as random variables with a prior belief. The agent’s behavior is governed by a RL
algorithm alg which uses the history of observations Hk to select a policy πk = alg(S,A,Hk)
for the k-th episode. The design goal of RL algorithm is to maximize the expected total
reward up to episode K

EM,alg[
K∑
k=1

τk∑
t=1

Rk,t] = EM,alg[
K∑
k=1

V πk
M (sk,0)]. (1)

where the subscript alg under the expectation indicates that policies are generated through
algorithm alg. Note that the expectations in both sides of Equation (1) is over the stochastic
transitions and rewards under the MDP M , the possible randomization in the learning
algorithm alg. The expectation in the LHS of Equation (1) is also over the randomness in
the termination time τk.

2.2 Hypermodel

We build RL agents based on the hypermodel framework (Li et al., 2022a; Dwaracherla
et al., 2020; Osband et al., 2021). Hypermodel is a function f parameterized with θ,
receiving input x ∈ Rd and an random index ξ ∈ RM from reference distribution Pξ,
making predictions fθ(x, ξ) ∈ R. We aim to capture the uncertainty via the variation over
the hypermodel predictions by the random index ξ. Hypermodel parameter θ is trainable
to adjust its uncertainty representation when seeing more data. The reference distribution
Pξ remain fixed throughout the training. For example, linear-Gaussian model is a special
case of hypermodel with parameter θ = (A, µ) with reference distribution Pξ = N(0, IM ),
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where fθ(x, ξ) = ⟨x, µ +Aξ⟩. In this case fθ follows a Gaussian distribution with mean µ
and covariance AA⊤. Ensemble of M neural networks gθ1 , . . . , gθM is also a special case
of hypermodel with parameter θ = (θ1, . . . , θM ) ∈ Rd×M with reference distribution Pξ =
U(e1, . . . , eM ) being uniform distribution over one-hot vectors, where fθ(x, ξ) = g⟨θ,ξ⟩(x).
In general, the hypermodel fθ(·) can be any function, e.g. neural networks, transforming
the reference distribution Pξ to arbitrary distribution. We adopt a class of hypermodel that
can be represented as an additive function

fθ(x, ξ)︸ ︷︷ ︸
“Posterior” Hypermodel

= fL
θ (x, ξ)︸ ︷︷ ︸

Learnable function

+ fP (x, ξ)︸ ︷︷ ︸
Fixed prior model

(2)

The prior model fP represents the prior bias and uncertainty and has NO trainable param-
eters. The learnable function is initialized to output value near zero and is then trained
by fitting the data. The resultant sum fθ produces reasonable predictions for all probable
values of ξ. Variations of a prediction fθ(x, ·) as a function of ξ indicate the epistemic
uncertainty estimation. The prior model fP (·, ξ) can be viewed as a prior distribution of
the true model f∗, which is the true function that generates the data. The hypermodel
fθ(·, ξ) can be viewed as a trained approximate posterior distribution of the true model f∗

given the data. Similar decomposition in Equation (2) is also used in (Dwaracherla et al.,
2020; Osband et al., 2021; Li et al., 2022a). We will discuss the implementation details and
clarify the importance of difference between our work and prior works in Appendix A.

3. Algorithm

We now develop a novel DQN-type algorithm for large-scale RL problems with value func-
tion approximation, called HyperFQI. HyperFQI uses a hypermodel to maintain a probability
distribution over the action-value function and aims to approximate the posterior distribu-
tion of Q∗ := Qπ∗

M . The hypermodel in this context is a function fθ : S × A × Ξ → R
parameterized by θ ∈ Θ and Ξ is the index space. Hypermodel is then trained by minimiz-
ing the loss function motivated by fitted Q-iteration (FQI), a classical method (Ernst et al.,
2005) for value function approximation. HyperFQI selects the action based on sampling in-
dices from reference distribution Pξ and then taking the action with the highest value from
hypermodels applying these indices. This can be viewed as an value-based approximate
Thompson sampling via Hypermodel.

Alongside the learning process, HyperFQI maintains two hypermodels, one for the cur-
rent value function fθ and the other for the target value function fθ− . HyperFQI also
maintains a buffer of transitions D = {(s, a, r, s′, z)}, where z ∈ RM is the algorithm-
generated perturbation random vector sampled from the perturbation distribution Pz. For
a transition tuple d = (s, a, r, s′, z) ∈ D and given index ξ, the temporal difference (TD)
error for hypermodel is

ℓγ,σ(θ; θ−, ξ−, ξ, d) =

(
fθ(s, a, ξ)− (r + σξ⊤z+ γmax

a′∈A
fθ−(s

′, a′, ξ−(s′)))

)2

(3)

where θ− is the target parameters, and the σ is a hyperparameter to control the injected
noise by algorithm. ξ− is the target index mapping such that ξ−(s) one-to-one maps each
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state s ∈ S to a random vector from Pξ, all of which are independent with ξ.1 The
algorithm update the hypermodel for value function by minimizing

Lγ,σ,β(θ; θ−, ξ−, D) = Eξ∼Pξ
[
∑
d∈D

1

|D|ℓ
γ,σ
z− (θ; θ−, ξ−, ξ, d)] +

β

|D|∥θ∥
2 (4)

where β ≥ 0 is the prior regularization parameter. Note the target hypermodel is necessary
for stabilizing the optimization and reinforcement learning process, as discussed in target
Q-network literature (Mnih et al., 2015; Li et al., 2022b). We optimize the loss function
Equation (4) using stochastic gradient descent (SGD) with a mini-batch of data D̃ and a
batch of indices Ξ̃ from Pξ. That is, we take gradient descent with respect to the sampled
version of loss

L̃(θ; θ−, ξ−, D̃) =
1

|Ξ̃|
∑
ξ∈Ξ̃

∑
d∈D̃

1

|D̃|
ℓγ,σ(θ; θ−, ξ−, ξ, d)

+
β

|D|∥θ∥
2 (5)

We summarize the HyperFQI algorithm: At each episode k, HyperFQI samples an index
mapping ξk from the index distribution Pξ and then take action by maximizing the associ-
ated hypermodel fθ(·, a, ξk(·)), which we call index sampling (IS) action selection.2 This can
be viewed as an value-based approximate Thompson sampling. The algorithm updates the
hypermodel parameters θ in each episode according to Equation (5), and updates the target
hypermodel parameters θ− periodically. The algorithm also maintains a replay buffer of
transitions D, which is used to sample a mini-batch of data D̃ for training the hypermodel.

Algorithm 1 HyperFQI for RL

1: Input: Initial parameter θinit, Hypermodel for value fθ(s = ·, a = ·, ξ = ·) with dist.
Pξ.

2: Initialize θ = θ− = θinit, train step j = 0 and buffer D
3: for each episode k = 1, 2, . . . do
4: Sample index mapping ξk ∼ Pξ

5: Set t = 0 and Observe Sk,0 ∼ ρ
6: repeat
7: Select Ak,t = argmaxa∈A fθ(Sk,t, a, ξk(Sk,t))
8: Observe Rk,t+1 and Sk,t+1 from environment
9: Sample zk,t+1 ∼ Pz and D.add((Sk,t, Ak,t, Rk,t+1, Sk,t+1, zk,t+1))

10: Increment step counter t← t+ 1
11: θ, θ−, j ← update(D, θ, θ−, ξ− = ξk, t, j)
12: until St = sterminal

13: end for

This algorithm offers several advantages over existing methods. First, it is computation-
ally efficient due to the nature of incremental update and scalable to large-scale problems.

1. To clarify, the random vector ξ−(s) remains the same vector if we do not resample the mapping ξ−.
2. To clarify, the random vector ξk(s) remains the same vector within the episode k.
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Second, it is compatible with existing deep RL algorithms and can be used as a drop-in
replacement for the Q-network in DQN-type methods. Finally, it is easy to implement and
can be applied to a wide range of problems.

4. Experimental studies

This section evaluates the efficiency and scalability of our HyperFQI. Our experiments on
the DeepSea demonstrate its high data and computation efficiency, achieving polynomial
performance. We also showcase the scalability of our approach by successfully processing
large-scale states with a size of 1002. In addition, we evaluate the scalability using the Atari
games, where our HyperFQI performs exceptionally well in processing states with pixels.
Furthermore, our approach can achieve human-level performance with remarkable data and
computation efficiency in Atari games. To highlight, HyperFQI is (1) the first algorithm
in the literature solving DeepSea at a large scale up to 1002 states, and (2) also the first one
achieving human-level performance in Atari games, considering both data and computation
efficiency.

4.1 Computational results for deep exploration

We demonstrate the exploration effectiveness of our HyperFQI using DeepSea, a reward-
sparse environment that demands deep exploration. DeepSea offers only two actions: mov-
ing left or right; see Appendix B. The agent receives a reward of 0 for moving left, and a
penalty of −(0.01/N) for moving right, where N denotes the size of DeepSea. The agent
earns a reward of 1 upon reaching the lower-right corner of the DeepSea, making it optimal
for the agent to continuously move towards the right and get the total return 0.99.
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Figure 2: Experimental results on DeepSea. The y-axis represents the number of episodes
required to learn the optimal policy for a specific problem size. The symbol × indicates that
the algorithm was unable to solve the problem within 10e3 episodes. (a) The performance
of various baselines. (b) The performance of different variants with our HyperFQI.

Baselines Result: We define the Time to Learn(N) := mean{K|R̄K ≥ 0.99}, which
serves as an evaluation metric for algorithm performance on DeepSea with size N . The
R̄K represents the return obtained by the agent after K episodes of interaction, and R̄K is
the average return over 100 evaluation instances. Overall, the Time to Learn(N) indicates
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the number of episodes needed to learn the optimal policy. As shown in Figure 2(a), our
HyperFQI can achieve superior performance compared to other baselines. Based on the
structure of DeepSea, we can deduce that discovering the optimal policy requires at least
N2/2 episodes, as all accessible states must be traversed. Our experiments demonstrate
that our HyperFQI can achieve the optimal policy within the aforementioned episodes
range, which fully demonstrates the data efficiency of our algorithm.

For all baselines in Figure 2(a), we set the index dimension to 4 (and set the number
of ensemble networks to 4 for BootDQN), and conduct experiments with 10 different seeds.
Notably, BootDQN (Osband et al., 2018), known for its effective exploration in chain en-
vironments of considerable size, fails to solve the DeepSea with a size of 20 within 10e3
episodes. Furthermore, HyperDQN (Li et al., 2022a), which has demonstrated effective
deep exploration, cannot learn the optimal policy when the size of DeepSea exceeds 50
within 10e3 episodes. These results provide evidence for the effectiveness of our network
structure and suggest that the update method used in HyperFQI enhances the ability to
capture uncertainty and promote effective exploration.

The ENNDQN, which was adapted from Osband et al. (2023), struggles to solve
DeepSea as its size increases. Compared to our approach, ENNDQN includes the original
input as a component of the final ENN layer’s input. Both HyperFQI and ENNDQN share
the same feature network, and the parameters in our output layer (hypermodel) remain
constant when scaling up the problem. However, the ENN layer requires a greater number
of parameters and computational workload, especially as the problem’s scale increases. In
the case of DeepSea with of size of 20, the number of parameters in the ENN layer is almost
20 times larger than our hypermodel. These findings demonstrate that the network archi-
tecture of our HyperFQI can enhance both computational efficiency and scalability when
dealing with large scale problem.

Variants of HyperFQI: We can produce various variants based on the framework
of HyperFQI, including HyperFQI-OIS, which applies optimistic index sampling (OIS) to
action selection and computation of Q-target (refer to Appendix A.1.2 for details). Further-
more, we substitute the Gaussian distributional index with a one-hot index under two dif-
ferent action selections, resulting in HyperFQI-OH and HyperFQI-OIS-OH. In Figure 2(b),
we compare the performance of different variants of our approach. Our HyperFQI-OIS
impressively outperforms HyperFQI by utilizing optimistic index sampling to achieve more
optimistic estimates, which can enhance exploration. The OIS method does not increase
much computation as we set the dimension M to 4. We observed that HyperFQI-OH is
not effective in DeepSea as the Gaussian distributional index provides superior expectation
estimation compared to the one-hot index. However, subsequent experiments show that
increasing the dimension of the one-hot index can improve exploration.

Ablation Study: We consider how the dimension M of the index affects our methods.
Figure 3 demonstrates that increasing the M of the one-hot index can lead to improved
estimation of expectations, which in turn can enhance exploration. HyperFQI-OIS also can
result in better performance when using the one-hot index with M = 16, which is shown in
Appendix C.1. On the other hand, increasing the dimension of the Gaussian distributional
index can actually hurt the algorithm’s performance because it becomes more difficult to
estimate the expectation in Equation (5) under Pξ higher index dimension. However, there
are ways to mitigate this problem. For a given dimension M , increasing the number of
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indices |Ξ̃| of Equation (5) during the update phase can result in more accurate estimates, as
demonstrated in Appendix C.1. However, this comes at the cost of increased computation,
which slows down the algorithm. To strike a balance between performance and computation,
we have chosen M = 4 and |Ξ̃| = 20 as our default hyper-parameters. In addition, we
have also investigated the effect of other hyper-parameters on our methods, as shown in
Appendix C.1.
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Figure 3: Ablation results under different index dimension M .

4.2 Atari Results

We assess the computational complexity of various methods on the Arcade Learning Envi-
ronment (Bellemare et al., 2013) using IQM (Agarwal et al., 2021) as the evaluation crite-
rion. An IQM score of 1 indicates that the algorithm’s performance is comparable to that of
a human. We examine our HyperFQI with six baselines: DQN (Nature) (Van Hasselt et al.,
2016), Rainbow (Hessel et al., 2018), HyperDQN (Li et al., 2022a), BBF (Schwarzer et al.,
2023) and EfficientZero (Ye et al., 2021). Specially, the EfficientZero is a state-of-the-art
model-based method, while the others are value-based methods. Following the established
practice in popular and widely accepted research (Van Hasselt et al., 2019; Ye et al., 2021),
the results is compared on 26 Atari games in Arcade Learning Environment. Figure 1 illus-
trates the relationship between model parameters and the amount of training data required
to achieve human-level performance. Our HyperFQI achieves human-level performance with
minimal parameters and relatively little training data, outperforming other methods. No-
tably, the Convolutional layers in our model are the same as those in Rainbow and account
for only a small fraction (about 13%) of the overall model parameters. This suggests that
the Fully Connected layers dominate the computational complexity of the model, and as we
know, the computational complexity of a Fully Connected layer is directly proportional to
the number of parameters. In fact, our model employs the first Fully Connected layer with
just 256 units, which is even fewer than DQN (Nature). Consequently, our HyperFQI offers
superior computational performance due to having fewer parameters in the Fully Connected
layer than other baselines.

We also assessed various variants of our HyperFQI on 26 Atari games using 2 million
training data, and we presented their performance in Table 1. In addition, we implemented
our version of DDQN, named DDQN(ours), using the same hyper-parameters and network
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IQM Median Mean

DDQN† 0.13 (0.11, 0.15) 0.12 (0.07, 0.14) 0.49 (0.43, 0.55)
DDQN(ours) 0.70 (0.69, 0.71) 0.55 (0.54, 0.58) 0.97 (0.95, 1.00)
HyperFQI 1.22 (1.15, 1.30) 1.07 (1.03, 1.14) 1.97 (1.89, 2.07)
HyperFQI-OH 1.28 (1.21, 1.35) 1.13 (1.10, 1.18) 2.03 (1.93, 2.15)
HyperFQI-OIS 1.15 (1.09, 1.22) 1.12 (1.02, 1.18) 2.02 (1.91, 2.16)
HyperFQI-OIS-OH 1.25 (1.18, 1.32) 1.10 (1.04, 1.17) 2.02 (1.93, 2.12)

Table 1: Performance profiles of our HyperFQI with different variant.

initialization scheme as our HyperFQI. In comparison, We report the results of vanilla
DDQN† from Hessel et al. (2018). Our results show that DDQN(ours) outperforms DDQN†

due to the increased data efficiency provided by our hyper-parameters and network ini-
tialization. Furthermore, our HyperFQI demonstrates superior performance compared to
DDQN, as HyperFQI includes an additional hypermodel that enables deep exploration in
Atari games. Additionally, our findings indicate that all methods performed similarly,
implying that the OIS method or one-hot index do not generate significant differences in
complex networks such as Convolutional layers. More detailed results for each Atari game
are available in Appendix C.2, where we visualize the relative improvement compared to
other baselines and the learning curve of our variants. The results demonstrate the bet-
ter exploration efficiency of our HyperFQI than all baselines and the robustness of all our
variants across all Atari games.

Furthermore, we demonstrated the superiority of our HyperFQI on the 8 hardest ex-
ploration Atari games with more baselines. We utilized the released results of AdamLM-
CDQN (Ishfaq et al., 2023), LangevinAdam (Ishfaq et al., 2023), and HyperDQN (Li et al.,
2022a) on Atari games. Additionally, we adopted SANE (Aravindan and Lee, 2021) as
our new baseline, which leverages a variational distribution to approximate the posterior.
To reproduce the outcomes, we employed the official implementation of SANE. We trained
both HyperFQI and SANE with 5 different seeds, up to a limit of 2M steps. The Fig-
ure 4 indicates that our HyperFQI outperformed other baselines on 5 out of 8 games. For
Solaris and Venture, we anticipate that providing more training time can further improve
the performance of our HyperFQI. Overall, these results demonstrate the effectiveness and
exploration ability of our HyperFQI in environments with complex observation.

5. Analysis

In this section, we try to explain the intuition behind the HyperFQI algorithm and how
it achieves efficient deep exploration. We also provide a regret bound for HyperFQI in
finite horizon time-inhomoegeneous MDPs. First, we describe the HyperFQI algorithm in
Algorithm 1 when specified to tabular problems.

Tabular HyperFQI. Let fθ(s, a, ξ) = µsa + m⊤
saξ + µ0,sa + σ0z

⊤
0,saξ where θ = (µ ∈

RSA,m ∈ RSA×M ) are the parameters to be learned, and z0,sa ∈ RM is a random vector
from Pz and µ0,sa, σ0 is a prior mean and prior variance for each (s, a). The regularizer in
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Figure 4: Comparative results on 8 hardest exploration games. HyperFQI shows significant
performance and data efficiency gain compared with baselines.

Equation (4) becomes β∥θ∥2 = β
∑

s,a

(
µ2
sa + ∥msa∥2

)
. Let the set Ek,sa record the time

index the agent encountered (s, a) in the k-th episode Ek,sa = {t : (Sk,t, Ak,t) = (s, a)} . Let
Nk,sa =

∑k−1
ℓ=1

∑H−1
t=0 1(Sℓ,t,Aℓ,t)=(s,a) denoting the counts of visitation for state-action pair

(s, a) prior to episode k.

Closed-form incremental update. Let β = σ2/σ2
0. Then, given the dataset D = Hk

and target noise mapping ξ− = ξk at the beginning of the episode k, tabular HyperFQI

with hyper-parameters specified in Table 3 would yield the following closed-form iterative

procedure θ
(i)
k = (µ

(i)
k ,mk) → θ

(i+1)
k = (µ

(i+1)
k ,mk) for all i = 1, 2, . . . ,H: for all (s, a) ∈

S ×A

mk,sa =
σ
∑k−1

ℓ=1

∑
t∈Eℓ,sa

zℓ,t+1 + βσ0z0,sa

Nk,sa + β
, (6)

µ
(i+1)
k,sa =

∑k−1
ℓ=1

∑
t∈Eℓ,sa

yℓ,t+1(θ
− = θ

(i)
k , ξ− = ξk) + βµ0,sa

Nk,sa + β
, (7)

where yℓ,t+1(θ
−, ξ−) = Rℓ,t+1 + γmaxa′∈A fθ−(Sℓ,t+1, a

′, ξ−(Sℓ,t+1)).

5.1 How does HyperFQI drives efficient deep exploration?

In this section, we highlight the key components of HyperFQI that enable efficient deep
exploration. We consider a simple example (adapted from (Osband et al., 2019b)) to un-
derstand the HyperFQI’s learning rule in Equations (4) and (5) and the role of hypermodel,
and how they together drive efficient deep exploration.
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Example 5.1. Consider a fixed horizon MDP M with four states S = {1, 2, 3, 4}, two
actions A = {up, down} and a horizon of H = 6. Let H be the list of all transitions observed
so far, and let Hs,a = ((ŝ, â, r, s′) ∈ H : (ŝ, â) = (s, a)) contain the transitions from state-
action pair (s, a). Suppose |H4,down| = 1, while for every other pair (s, a) ̸= (4, down), |Ds,a|
is very large, virtually infinite. Hence, we are highly certain about the expected immediate
rewards and transition probabilities except for (4, down). Assume that this is the case for
all time periods t ∈ {0, 1, . . . , 5}.

HyperFQI produces a sequence of action-value functions f0, f1, . . . f5. In Figure 5, each
triangle in row s and column t contains two smaller triangles that are associated with
action-values of up and down actions at state s. The shade on the smaller triangle shows
the uncertainty estimates in the ft(s, a, ξ), specifically the variance Varξ (ft(s, a, ξ)). The
dotted lines show plausible transitions, except at (4, down). Since we are uncertain about
(4, down), any transition is plausible. We will show how HyperFQI efficiently computes the

t=0 t=1 t=2 t=3 t=4 t=5

Time periods

s=1

s=2

s=3

s=4

St
at

es

Figure 5: Example to illustrate how HyperFQI achieves deep exploration. We can see
the propagation of uncertainty from later time period to earlier time period in the figure.
Darker shade indicates higher degree of uncertainty.

uncertainty propagation backward in time, which can be visualized as progressing leftward
in Figure 5. Also, we will show the ability to estimate the degree of uncertainty drives
deep exploration. This can be explained by the incremental closed-form update in tabular
setting described in Equations (12) and (13). A key property is that, with logarithmically
small additional dimensionM , hypermodel can approximate the posterior distribution of the
optimalQ∗-values with low computation cost. This is formalized in the following Lemma 5.2.
To prove Lemma 5.2, we develop a new probability tools for sequential random projection in
Appendices F and G and a new probability tool for random projection Appendix H. These
are novel technical contributions, which maybe of independent interests.

Lemma 5.2 (Approximate posterior variance). For mk defined in Equation (12) with z ∼
Uniform(SM−1). For any k ≥ 1, a good event Gk(s, a) is defined as

Gk(s, a) =
{
∥mk(s, a)∥2 ∈

(
σ2

Nk,sa + β
,

3σ2

Nk,sa + β

)}
.
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Then the joint event ∩(s,a,k)∈S×A×[K]Gk(s, a) holds w.p. at least 1− δ if M ≃ log(SAK/δ).

5.2 Regret bound

Denote the regret of a policy πk over episode k by ∆k := EM,alg[V
π∗
M (sk,0) − V πk

M (sk,0)],
where π∗ is an optimal policy for M . The goal of the agent is equivalent to minimizing the
expected total regret up to episode K, Regret(K, alg) := Ealg

∑K
k=1∆k, where the subscript

alg under the expectation indicates that policies are generated through algorithm alg. Note
that the expectation in Equation (17) is over the random transitions and rewards, the
possible randomization in the learning algorithm alg, and also the unknown MDP M based
on the agent designer’s prior beliefs. Finally, we show that, with the help of hypermodel
approximation property in Lemma 5.2, HyperFQI achieves efficient deep exploration in
finite horizon time-inhomogeneous MDPs. This is formalized in the following theorem. The
detail of analysis is in Appendix E.

Theorem 5.3 (Regret bound of HyperFQI). Consider an HyperFQI with an infinite buffer,
greedy actions and with tabular representation. Under Assumptions E.1 and E.2 with
β ≥ 3, if the tabular HyperFQI is applied with planning horizon H, and parameters with
(M,µ0, σ, σ0) satisfying M ≃ log(|X ||A|HK), (σ2/σ2

0) = β, σ ≥
√
3H and µ0,s,a = H, then

for all K ∈ N,

Regret(K,HyperFQI) ≤ 18H2
√
β|X ||A|K log+(1 + |X ||A|HK) log+

(
1 +

K

|X ||A|

)
, (8)

where log+(x) = max{1, log(x)}.
Remark 5.4. The Assumption E.1 is common in the literature of regret analysis, e.g. (Os-
band et al., 2019b; Jin et al., 2018). The relationship between two set S and X is described
in Assumption E.1. The Assumption E.2 is common in the Bayesian regret literature (Os-
band et al., 2013, 2019b; Osband and Van Roy, 2017; Lu and Van Roy, 2019). Our regret
bound O(H2

√
|X ||A|K) matches the best known Bayesian regret bound in the literature,

say RLSVI (Osband et al., 2019b) and PSRL (Osband and Van Roy, 2017) which while our
HyperFQI provide the computation and scalability benefit that RLSVI and PSRL do not
have. We believe the HyperFQI algorithm provides a bridge for the theory and practice in
RL.
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Appendix A. HyperFQI algorithm details

In this section, we describe more details of the proposed HyperFQI. First, we describe
the general treatment for the update function (in line 11 of HyperFQI) in the following
Algorithm 2. Then, in Appendix A.1, we provide the implementation details of HyperFQI
with deep neural network (DNN) function approximation. We want to emphasize that all
experiments done in this article is using Option 1 with DNN value function approximation.
In Appendix A.2, we describe the closed-form update rule (Option 2) when the tabular
representation of the value function is exploited. Note that the tabular version of HyperFQI
is only for the clarity of analysis and understanding.

Algorithm 2 update

1: Input: bufferD, θ, θ−, ξ−, agent step t, train step j
2: if t mod training freq = 0 then
3: repeat
4: Obtain θ by optimizing the loss Lγ,σ,β(θ; θ−, ξ−, D) in Equation (4):

– Option (1) with gradient descent w.r.t. the mini-batch sampled loss Equa-
tion (5);
– Option (2) with closed-form solution in Equations (12) and (13).

5: Increment j ← j + 1
6: if (j mod target update freq) = 0 then
7: θ− ← θ
8: end if
9: until (j mod sample update ratio× training freq) = 0

10: end if
11: Return: θ, θ−, j.

Notice that in update, there are three important hyper-parameters (target update freq,
sample update ratio, training freq), which we will specify in Table 2 for practical imple-
mentation of HyperFQI for all experiments; and in Table 3 for understanding and regret
analysis.

A.1 Function approximation with deep neural networks

Here we describe the implementation details of HyperFQI with deep neural networks and
the main difference compared to baselines.

A.1.1 Network architecture of HyperFQI

In our implementation, we only apply hypermodel to the output layer of our network, which
will not result in much parameters and provide better expectation estimate. Suppose the
hidden layers in neural networks forms the nonlinear feature mapping ϕw(·) with parameters
w. Our hypermodel takes the random index ξ ∈ RM from reference distribution Pξ and
outputs the weights for output layer. It’s worth to note that our hypermodel only outputs
the weights but not bias for output layer, which is indicated by following equation with
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trainable θ = {A, b, w} and fixed parameters {A0, b0, w0}

fθ(x, ξ) = ⟨Aξ + b, ϕw(x)⟩︸ ︷︷ ︸
Learnable fL

θ (x,ξ)

+ ⟨A0ξ + b0, ϕw0(x)⟩︸ ︷︷ ︸
Fixed prior fP (x,ξ)

= ⟨Aξ, ϕw(x)⟩︸ ︷︷ ︸
σL
θ (x,ξ)

+ ⟨A0ξ, ϕw0(x)⟩︸ ︷︷ ︸
σP (x,ξ)

+ ⟨b, ϕw(x)⟩︸ ︷︷ ︸
µL
θ (x)

+ ⟨b0, ϕw(x)⟩︸ ︷︷ ︸
µP (x)

. (9)

Through our formulation in Equation (9), HyperFQI can accurately estimate the learnable
mean µL

θ (x), which relies solely on the original input x, and the variation prediction σL
θ (x, ξ),

which is dependent on both the original input x and random index ξ. This allows our
hypermodel to capture uncertainty better, without being influenced by other components
that may only depend on the random index ξ like HyperDQN (Li et al., 2022a). The
fixed prior model also offers prior bias and prior variation through the functions µP (x) and
σP (x, ξ). This prior function is NOT trainable so that it will not bring much computation,
and designed to provide better exploration in the early stage of training. We use Xavier
Normal method to initialize our entire network except the part of prior function which is
corresponding to hypermodel. For the initialization of prior model, we follow the method
described in (Li et al., 2022a; Dwaracherla et al., 2020). In this way, each row of prior
function is sampled from the unit hypersphere, which guarantees that the output of prior
function can follow a desired Gaussian distribution.

In the context of reinforcement learning, we define the action-value function with hy-
permodel and DNN approximation as following. For each action a ∈ A, there is a set
of trainable parameters {Aa, ba} and fixed parameters {Aa

0, b
a
0}, i.e., the trainable set of

parameters θ = {w, (Aa, ba) : a ∈ A} and the fixed one {w0, (A
a
0, b

a
0) : a ∈ A} with action-

value function

fθ(s, a, ξ) = ⟨Aaξ + ba, ϕw(s)⟩︸ ︷︷ ︸
Learnable fL

θ (s,a,ξ)

+ ⟨Aa
0ξ + ba0, ϕw0(s)⟩︸ ︷︷ ︸

Fixed prior fP (s,a,ξ)

.

A.1.2 Training details for HyperFQI

For the estimation of expectation in Equation (4), we sample multiple random indices
for each data tuple in the mini-batch and compute the empirical average, as described in
Equation (5). Recall that |Ξ̃| is the number of random indices for each state.

For the detail of sampling scheme for ξk(s), we have two options:

1. State-dependent sampling. As for implementation, especially for continuous or
uncountable infinite state space: in the interaction, ξk(s) in the line 7 of HyperFQI
is implemented as independently sampling ξ ∼ Pξ for each encountered state; for the
target computation in Equation (3), ξk(s

′) is implemented as independently sampling
ξ ∼ Pξ for each tuple d = (s, a, r, s′, z) in the every sampled mini-batch.

2. State-independent sampling. The implementation of state-independent ξk(s) = ξk
is straightforward as we independently sample ξk in the beginning of each episode k
and use the same ξk for each state s encountered in the interaction and for each target
state s′ in target computation.
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We tuned some hyper-parameters on our HyperFQI and listed them in Table 2, and
other hyper-parameters for Atari games are the same as Rainbow Hessel et al. (2018).
Notice that we use a single configuration for all Atari games we test. Also we use a single
configuration for the deepsea environments with variant sizes.

Hyper-parameters Atari Setting DeepSea Setting

discount factor γ 0.99 0.99
learning rate 0.001 0.001

minibatch size |D̃| 32 128
index dim M 4 4

# Indices |Ξ̃| for approximation 20 20
n-step target 5 1
target update freq in update 5 4
sample update ratio in update 1 1
training freq in update 1 1
hidden units 256 64
min replay size for sampling 2,000 steps 128 steps
memory size 500,000 steps 1000000 steps

Table 2: Hyper-parameters of our HyperFQI

As per the framework of HyperFQI, we can generate various variants. By default, a
Gaussian distribution is used for Pξ, but this can be changed to a one-hot index, referred
to as HyperFQI-OH.

The action selection and computation of Q-target can also be modified by sampling
multiple indexes and computing multiple Q-values for each action under one exact state.
The optimal action is then selected based on these multiple Q-values. This variant is called
HyperFQI-OIS and is described in the following.

Optimistic Index Sampling. To make agent’s behavior more optimistic, in each episode
k, we can sample NOIS indices ξk,1, . . . , ξk,NOIS

and take the greedy action according to the
associated hypermodel

ak = argmax
a∈A

max
n∈[NOIS]

fθ(sk, a, ξk,n), (10)

which we call optimistic index sampling (OIS) action selection scheme.

In the hypermodel training part, for any transition tuple d = (s, a, r, s′, z) , we also
sample multiple indices ξ−1 , . . . , ξ

−
NOIS

independently and modify the target computation in
Equation (3) as

r + σξ⊤z+ γmax
a′∈A

max
n∈[NOIS]

fθ−(s
′, a′, ξ−n (s

′)). (11)

This modification in target computation boosts the propagation of uncertainty estimates
from future states to earlier states, which is beneficial for deep exploration. We call this
variant HyperFQI-OIS. For the completeness, we also specify the sampling scheme for
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ξk(s) in the line 7 of HyperFQI and the target computation in Equation (3) for HyperFQI-
OIS in the following.

1. State-dependent sampling. In the interaction, ξk(s) in the line 7 of HyperFQI is
implemented as independently sampling ξk,n ∼ Pξ for each encountered state s and
for each index n ∈ [NOIS]; for the target computation in Equation (11), ξk,n(s

′) is
implemented as independently sampling ξn ∼ Pξ for each tuple d = (s, a, r, s′, z) in
the every sampled mini-batch.

2. State-independent sampling. For each n ∈ NOIS, the implementation of state-
independent ξk,n(s) = ξk,n is straightforward as we independently sample ξk,n in the
beginning of each episode k and use the same ξk,n for each state s encountered in the
interaction and for each target state s′ in target computation.

A.1.3 Difference compared to prior works

Several related work can be included in the hypermodel framework introduced in Section 2.2.
We will discuss the structural differences under the unified framework in this sections. Fur-
thermore, we performs ablation studies concerning these mentioned differences in Figure 11.

Difference with Hypermodel (Dwaracherla et al., 2020). Hypermodel (Dwaracherla
et al., 2020) employs hypermodels to represent epistemic uncertainty and facilitate explo-
ration. However, the use of hypermodels over entire networks leads to an extensive number
of parameters and optimization challenges. As a result, applying HyperModel (Dwaracherla
et al., 2020) to address large-scale problems such as Atari games can be extremely difficult.
Additionally, HyperModel also encounters challenges in addressing the DeepSea problem
due to its substantial state space, even when the space is relatively small. Our HyperFQI
only apply hypermodel to the output layer, which provide better exploration and efficient
computation in large scale problem.

Difference with BootDQN (Osband et al., 2018). BootDQN (Osband et al., 2018)
also applies an ensemble method to the entire network, utilizing a random mask from a
Bernoulli distribution to update the network. When combined with prior network, it has
demonstrated effective exploration in chain environments with large sizes and other tasks
that necessitate exploration. However, BootDQN requires a relatively large ensemble size to
achieve effective exploration, which presents similar challenges to the HyperModel, namely,
dealing with an extensive number of parameters and optimization issues. BootDQN is akin
to a variant of HyperModel (Dwaracherla et al., 2020) in which the index is sampled from
a Bernoulli distribution. Typically, an ensemble size of 10 is chosen for BootDQN to ensure
effective exploration. However, even with an ensemble size of 16, BootDQN fails to efficiently
solve the DeepSea, as depicted in Figure 9. Our HyperFQI applies the hypermodel solely
to the final output layer of the network, with our index dimension set at 4, leading to a
reduction in network parameters.

Difference with HyperDQN (Li et al., 2022a). HyperDQN (Li et al., 2022a) shares
a similar structure with our HyperFQI and has shown promising results in exploration.
Nevertheless, it falls short in handling the DeepSea environment, which demands deep
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exploration. We have improved HyperDQN by simplifying our hypermodel, as shown in
equation (9). Our HyperFQI estimates the mean µ solely based on the original input x,
and estimates the variation σ based on both the original input x and a random index ξ.
However, HyperDQN use hypermodel to generate the both weights and bias for output
layer, resulting in some redundant components, such as functions that depend solely on
the random index ξ or functions that depend only on the parameters of the hypermodel.
These components lack a clear semantic explanation, rendering HyperFQI unsuitable for
estimating uncertainty.

Additionally, we apply multiple indexes |Ξ̃| to each transition in update stage to improve
the expectation estimate, whereas HyperDQN only applies them to batch transitions. We
have found that initializing the hypermodel with Xavier Normal can improve optimization.
The combination of these factors leads to our HyperFQI outperforming HyperDQN on both
DeepSea and Atari, as demonstrated in Section 4.

Differnce with Episdemic Neural Networks (ENN) (Osband et al., 2021, 2023).
The ENN approach, as described in Osband et al. (2023), shows promise for capturing epis-
temic uncertainty and has demonstrated efficiency on various tasks. We have implemented
the ENNDQN by their description on bsuite (Osband et al., 2019a). Except for the update
method and network structure, other settings are the same as our HyperFQI. In the up-
date stage, they use “stop gradient” between feature layers and final ENN layers. For the
network structure, they concatenate the original input x, feature ϕ(x) and random index ξ
as the input for the ENN layer, and use ensemble prior function for ENN layer but don’t
have prior function for feature network. The network structure leads to larger parameters
when processing tasks at a large scale, causing significant computation and optimization
challenges. As shown in Section 4.1, ENNDQN performs well on DeepSea-20 but struggles
with larger scale of the problem. This difficulty arises because the input x in DeepSea
has a dimension of N2, which is too large for the ENN layer to handle. We designed our
HyperFQI to take only a random index ξ as input, resulting in a more efficient computation
with fewer parameters.

A.2 Tabular algorithm

To understand and analyze the behavior of HyperFQI, we specify the algorithm in the
tabular setups.

Tabular HyperFQI. Let the tabular hypermodel be fθ(s, a, ξ) = µsa + m⊤
saξ + µ0,sa +

σ0z
⊤
0,saξ where θ = (µ ∈ RSA,m ∈ RSA×M ) are the parameters to be learned, and

z0,sa ∈ RM is a independent random vector sampled from Pz and µ0,sa, σ0 is a prior
mean and prior variance for each (s, a) ∈ S × A. The regularizer in Equation (4) then
becomes β∥θ∥2 = β

∑
s,a

(
µ2
sa + ∥msa∥2

)
. Let the set Ek,sa record the time index the

agent encountered (s, a) in the k-th episode Ek,sa = {t : (Sk,t, Ak,t) = (s, a)} . Let Nk,sa =∑k−1
ℓ=1

∑H−1
t=0 1(Sℓ,t,Aℓ,t)=(s,a) denoting the counts of visitation for state-action pair (s, a) prior

to episode k.

Closed-form incremental update. Let β = σ2/σ2
0. Then, given the dataset D = Hk

and target noise mapping ξ− = ξk at the beginning of the episode k, HyperFQI with hyper-
parameters specified in Table 3 would yield the following closed-form iterative procedure

21



θ
(i)
k = (µ

(i)
k ,mk)→ θ

(i+1)
k = (µ

(i+1)
k ,mk) for all i = 1, 2, . . . ,H: for all (s, a) ∈ S ×A

mk,sa =
σ
∑k−1

ℓ=1

∑
t∈Eℓ,sa

zℓ,t+1 + βσ0z0,sa

Nk,sa + β
, (12)

µ
(i+1)
k,sa =

∑k−1
ℓ=1

∑
t∈Eℓ,sa

yℓ,t+1(θ
− = θ

(i)
k , ξ− = ξk) + βµ0,sa

Nk,sa + β
, (13)

where yℓ,t+1(θ
−, ξ−) = Rℓ,t+1 + γmaxa′∈A fθ−(Sℓ,t+1, a

′, ξ−(Sℓ,t+1)). The derivation of

Hyper-parameters Finite MDP with Horizon H

discount factor γ 1
target update freq 1
sample update ratio 1
training freq H

Table 3: Hyper-parameters of our Tabular-HyperFQI

Equations (12) and (13) is mainly from the separability of optimization problem in tab-
ular setup. Let θsa = (µsa,msa) be the optimization variable for specific (s, a) ∈ S × A.
Let the optimal solution θk,sa = argminθsa L(θ; θ

−, ξ−, Hk). In tabular setting, by the
separability of the objective function in Equation (4), we have θk,sa = (µk,sa,mk,sa) =
argminθsa Lsa(θsa; θ

−, ξ−, Hk) which is defined as

Eξ∼Pξ
[
k−1∑
ℓ=1

∑
t∈Eℓ,sa

(fθ(Sℓ,t, Aℓ,t, ξ)− (σξ⊤zℓ,t+1 + yℓ,t+1(θ
−, ξ−)))2] + β(µ2

sa + ∥msa∥2)

= Eξ∼Pξ
[
k−1∑
ℓ=1

∑
t∈Eℓ,sa

(fθ(s, a, ξ)− (σξ⊤zℓ,t+1 + yℓ,t+1(θ
−, ξ−)))2] + β(µ2

sa + ∥msa∥2).

A.2.1 Understanding through Bellman equation

In this section, we provide a deeper understanding of HyperFQI via the lens of Bellman equa-
tions. First, we introduce the empirical transition operators that depends on the collected
data by algorithm.

Empirical transition. For every pair (s, a) with Nk,sa > 0, ∀s′ ∈ S, the empirical
transition probabilities up to pseudo-episode k are

P̂k(s
′ | s, a) = 1

Nk,sa

k−1∑
ℓ=1

∑
t∈Eℓ,sa

1(Sℓ,t,Aℓ,t,Sℓ,t+1)=(s,a,s′).

If the pair (s, a) has never been sampled before pseudo-episode k, we define P̂k(s
′ | s, a) = 1

for any selected s′ ∈ S, and P̂k(s
′′ | s, a) = 0 for s′′ ∈ S \ {s′}.

Next, we introduce some short notations for the convenience of specifying bellman op-
erators.
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Useful definitions and short notations. Let B(S ×A) be the space of bounded func-
tions Q : S × A → R. Let VQ be a vector of S-dim such that VQ(s) = maxa∈AQ(s, a) for
all s ∈ S, which is the greedy value with respect to Q. Let Psa = [P (s′ | s, a)]s′∈S and
P̂k,sa = [P̂k(s

′ | s, a)]s′∈S be the vectors of S-dim. Denote the short notation rsa = r(s, a).

We also use the short notation P̂k,sa = [P̂k(s
′ | s, a)]s′∈S which is S-dim vector.

Now we are ready to introduce the Bellman operator underlying the true environment
E and a notion of a Bellman operator that represents the iterative procedure induced by
Tabular HyperFQI. Given the randomness in M by Assumption E.2, and the addition
of algorithmic randomness in each iteration of HyperFQI, these operators are essentially
stochastic in nature. When one of these operators acts upon a state-action value function
Q ∈ B(S ×A), the result is a random state-action value function.

True Bellman Operator. For any E = (S,A, P ), consider a function Q ∈ B(S × A).
The true Bellman operator, when applied to Q, is defined as follows:

F γ
E Q(s, a) = rsa + γV ⊤

Q Psa, ∀(s, a) ∈ S ×A. (14)

Particularly with Assumption E.1, iterat When applied in reverse chronological order, FM,t

yields a series of optimal state-action value functions, fulfilling Q∗
M,H = 0 and the Bellman

equation Q∗
M,t = FM,tQ

∗
M,t+1 for t < H. Under Assumption 1, this process is akin to a

random Bellman operator, due to the stochastic nature of the MDPM.”

Bellman operator of HyperFQI. We define the bellman operator according to Hyper-
FQI in Algorithm 1 as

F γ
k Q(s, a) :=

βµ0,sa +Nk,sa(rsa + γV ⊤
Q P̂k,sa)

Nk,sa + β
+m⊤

k,saξk, ∀(s, a) ∈ S ×A. (15)

With the following observation,

k−1∑
ℓ=1

∑
t∈Eℓ,sa

yℓ,t+1(θ
−, ξ−) = Nk,sa

(
rsa + γ

∑
s′∈S

P̂k,sa(s
′)(max

a′∈A
fθ−(s

′, a′, ξ−(s′)))

)

Then Equation (13) has a simple expression with the bellman operator of HyperFQI,

f
θ
(i+1)
k ,ξk

= F γ
k fθ(i)k ,ξk

(16)

where fθ−,ξ− = fθ−(ξ
−(·), ·, ·).

Lemma A.1 (Contraction mapping). Let ρ be the distance metric ρ(Q,Q′) = sup(s,a)∈S×A |Q(s, a)−
Q′(s, a)|. For all k ∈ Z++ the Bellman operator of HyperFQI F γ

k : B(S × A)→ B(S × A)
is a contraction mapping with modulus γ ∈ [0, 1) in metric space (B(S ×A), ρ).

By Lemma A.1, since contraction mapping, the bellman operator of HyperFQI F γ
k has

a unique fixed point and the iterative process in Equation (16) can converge.
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Appendix B. Environment Settings

In this section, we describe our environment used in experiments. We firstly use the DeepSea
to demonstrate the exploration efficiency of our HyperFQI. DeepSea is a reward-sparse
environment that demands extensive exploration (see Figure 6). The environment under
consideration has a discrete action space consisting of two actions: moving left or right.
During each run of the experiment, the action for moving right is randomly sampled from
Bernoulli distribution for each row. Specifically, the action variable takes binary values of 1
or 0 for moving right, and the action map is different for each run of the experiment. The
agent receives a reward of 0 for moving left, and a penalty of −(0.01/N) for moving right,
where N denotes the size of DeepSea. The agent will earn a reward of 1 upon reaching the
lower-right corner. The optimal policy for the agent is to learn to move continuously to the
right. The sparse rewards and states present in this environment effectively showcase the
exploration efficiency of our method without any additional complexity.

For the experiments on the Atari games, we evaluate our HyperFQI on 26 of the 55 games
from the full ALE suite. We utilized the standard wrapper provided by OpenAI gym. For
example, we terminated each environment after a maximum of 108K steps without using
sticky actions. For further details on the settings used for the Atari games, please refer to
the Table 4.

Figure 6: Illustration for DeepSea.

Hyper-parameters Setting

Grey-scaling True
Observation down-sampling (84, 84)
Frames stacked 4
Action repetitions 4
Reward clipping [-1, 1]
Terminal on loss of life True
Max frames per episode 108K

Table 4: Detailed settings for Atari games

Appendix C. Additional Results

This section presents additional results for our HyperFQI algorithm. We demonstrate its
robustness through ablation experiments on DeepSea. Moreover, we provide detailed re-
sults for each environment of Atari, highlighting the superiority of our approach over other
baselines.

C.1 Results on DeepSea

In Section 4.1, we noted that a larger M in the Gaussian distributional index can harm
the algorithm’s performance due to increased difficulty in estimating the expectation. To
address this, we can increase the number of indices |Ξ̃| of Equation (5) during the update
stage for each state in the batch, thereby improving the estimation of expectation. As
shown in Figure 7 for M = 16, increasing |Ξ̃| can lead to better performance. However,
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Figure 7: Ablation results under different
|Ξ̃|.
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Figure 8: Ablation results under different σ.

some seeds with |Ξ̃| = 80 still do not work well for M = 16. To achieve accurate estimation
of expectation, |Ξ̃| should grow exponentially withM , but this comes at the cost of increased
computation, slowing down the algorithm. To balance performance and computation, we
have chosen M = 4 and |Ξ̃| = 20 as our default hyper-parameters, which have demonstrated
superior performance in Figure 2.

In addition, we have also investigated the effect of the σ of Equation (3) on our methods,
as shown in Figure 8. Our HyperFQI is not sensitive to this hyper-parameter, and we have
selected σ = 0.0001 as our default hyper-parameters.

We observed that HyperFQI-OIS method performs better when using Gaussian distri-
butional index, but not with one-hot index in Figure 2(b). This is because M = 4 cannot
accurately estimate the expectation when using one-hot index. However, We observed that
HyperFQI with one-hot index achieves good performance when M = 16 in Figure 3(b).
Thus, we evaluated the efficiency of HyperFQI-OH and HyperFQI-OIS-OH with one-hot
index when M = 16. Furthermore, we incorporated optimistic index sampling (OIS) into
BootDQN, labeling the modified version as BootDQN-OIS. Subsequently, we compared our
HyperFQI with both BootDQN and BootDQN-OIS, each employing an ensemble size of
16. It’s worth noting that BootDQN-OIS can be regarded as an implementation of LSVI-
PHE (Ishfaq et al., 2021) with DNN.3

As depicted in Figure 9, BootDQN still struggled to efficiently solve the DeepSea
with large ensemble size of 16. Nonetheless, the integration of the OIS method enabled
BootDQN-OIS to effectively tackle DeepSea with a smaller size, showcasing the efficacy of
our OIS approach in exploration. Additionally, with a relatively large M = 16 for one-hot
index, our HyperFQI-OH actually achieves better performance. In contrast, our Hyper-
FQI approach efficiently solves DeepSea with index dimension M = 4, demonstrating its
superiority. These experiments again justify that HyperFQI can efficiently solve large-scale
complex environment with low computation cost.

We also conduct an ablation experiment concerning the ξk using DeepSea. In our
implementation, we employ the state-dependent ξk, where we independently sample ξ ∼ Pξ

3. As we do not find the official implementation of LSVI-PHE (Ishfaq et al., 2021) anywhere.We use results
of BootDQN-OIS to represent the performance of LSVI-PHE.
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Figure 9: Results on DeepSea with additional baselines. In this experiment, we set M = 16
for all algorithms except for HyperFQI.

for each transition. Furthermore, we assess our HyperFQI with state-independent ξk, where
we sample ξk at the start of each episode k and use the same ξk for all transitions within
the episode, referring to as HyperFQI-SAME. As illustrated in Figure 10, these two distinct
sampling schemes for ξk exhibit nearly identical performance.
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Figure 10: Ablation results about ξk on DeepSea.

We perform an ablation experiment examining various network structures outlined
in Appendix A.1.3 with the same hyper-parameters, algorithmic update rule and action
selection rule. Initially, we compare our HyperFQI with HyperModel (Dwaracherla et al.,
2020), which integrates the hypermodel across the entire network. Subsequently, we com-
pare it with ENNDQN, which applies the ENN layer (Osband et al., 2021) to the final
output layer, requiring the original input x as the input for the ENN layer. Both of the
baselines encounter challenges due to their network architectures, possibly due to extensive
number of parameters and the accompanying optimization issues. The comparison results
are presented in Figure 11. It is clear that HyperModel is incapable of solving DeepSea even
with a size of 20. In contrast, the network structure of ENNDQN contains fewer parame-
ters than HyperModel, as it only applies the ENN layer to the final output layer. However,
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ENNDQN is unable to solve DeepSea with a larger size, as the ENN layer necessitates the
use of the original input x. Overall, our HyperFQI demonstrates superb efficiency and scal-
ability, as it efficiently solves DeepSea instances of size 1002 that previous literatures have
never achieved.
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Figure 11: Ablation experimental results regarding the network structure.

C.2 Results on Atari

We demonstrated the efficiency of our HyperFQI in handling data and computation in
Section 4.2. Here, we present comprehensive results on each environment to further establish
the superiority of our approach.

In Table 5, we present the best score achieved in each environment with 2M steps. Our
training and evaluation protocol follows the baseline works (Li et al., 2022a; Mnih et al.,
2015; Van Hasselt et al., 2016). To be more specific, the protocol includes the following steps:
(1) for each Atari game, the algorithm is performed with 20 different initial random seeds;
(2) The program with one particular random seed will produce one best model in hindsight,
leading to 20 different models for each Atari game; (3) We then evaluate all 20 models, each
for 200 times; 4) We calculate the average score from these 200 evaluations as the score for
each model associated with each seed. 5) Finally, we calculate and report the average score
across 20 seeds as the final score for each Atari game. The scores for Rainbow and DDQN
are obtained from Hessel et al. (2018), which were based on 200M Frames. Specifically,
we extracted the first 20M steps from these results to compare them with our HyperFQI.
For HyperDQN, we refer to the results from (Li et al., 2022a) and similarly extracted the
first 20M steps for comparison purposes. The DER (Van Hasselt et al., 2019) was executed
using the popular implementation available at https://github.com/Kaixhin/Rainbow.
We conducted all experiments with 20 different seeds and computed the average best score
with the best policy during training.

We also present the relative improvement of our HyperFQI in comparison to other
baselines for each game, which is determined by the given following equation as per (Wang
et al., 2016).

relative improvement =
proposed− baseline

max(human,baseline)− human
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Game Random Human DDQN DER Rainbow HyperDQN HyperFQI

Alien 227.8 7127.7 722.7 1642.2 1167.1 862.0 1830.2
Amidar 5.8 1719.5 61.4 476.0 374.0 140.0 800.4
Assault 222.4 742.0 815.3 488.3 2725.2 494.2 3276.2
Asterix 210.0 8503.3 2471.1 1305.3 3213.3 713.3 2370.2
BankHeist 14.2 753.1 7.4 460.5 411.1 272.7 430.3
BattleZone 2360.0 37187.5 3925.0 19202.5 19379.7 11266.7 29399.0
Boxing 0.1 12.1 26.7 1.7 69.9 6.8 74.0
Breakout 1.7 30.5 2.0 6.5 137.3 11.9 54.8
ChopperCommand 811.0 7387.8 354.6 1488.9 1769.4 846.7 2957.2
CrazyClimber 10780.5 35829. 53166.5 36311.1 110215.8 42586.7 121855.8
DemonAttack 152.1 1971.0 1030.8 955.3 45961.3 2197.7 5852.0
Freeway 0.0 29.6 5.1 32.8 32.4 30.9 32.2
Frostbite 65.2 4334.7 358.3 3628.3 3648.7 724.7 4583.9
Gopher 257.6 2412.5 569.8 742.1 4938.0 1880.0 7365.8
Hero 1027.0 30826.4 2772.9 15409.4 11202.3 9140.3 12324.7
Jamesbond 29.0 302.8 15.0 462.1 773.1 386.7 951.6
Kangaroo 52.0 035.0 134.9 8852.3 6456.1 3393.3 8517.1
Krull 1598.0 2665.5 6583.3 3786.7 8328.5 5488.7 8222.6
KungFuMaster 258.5 22736.3 12497.2 15457.0 25257.8 12940.0 23821.2
MsPacman 307.3 6951.6 1912.3 2333.7 1861.1 1305.3 3182.3
Pong -20.7 14.6 -15.4 20.6 5.1 20.5 20.5
PrivateEye 24.9 69571.3 37.8 900.9 100.0 64.5 171.9
Qbert 163.9 13455.0 1319.4 12345.5 7885.3 5793.3 12021.9
RoadRunner 11.5 7845.0 3693.5 14663.0 33851.0 7000.0 28789.4
Seaquest 68.4 42054.7 367.6 662.0 1524.7 370.7 2732.4
UpNDown 533.4 11693.2 3422.8 6806.3 39187.1 4080.7 19719.2

Table 5: The best score over 200 evaluation episodes for the best policy in hindsight (after
2M steps) for Atari games. The performance of the random policy and the human expert
is from dqn zoo (Quan and Ostrovski, 2020).
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Our classification of environments into three groups, namely “hard exploration (dense re-
ward)”, “hard exploration (sparse reward)” and “easy exploration”, is based on the taxon-
omy proposed by Bellemare et al. (2016). The overall results are illustrated in Figure 12,
Figure 13, Figure 14 and Figure 15.
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Figure 12: Relative improvement of HyperFQI compared with DDQN
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Figure 13: Relative improvement of HyperFQI compared with DER
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Figure 14: Relative improvement of HyperFQI compared with HyperDQN

de
m

on
at

ta
ck

br
ea

ko
ut

up
nd

ow
n

ro
ad

ru
nn

er
as

te
rix

ku
ng

fu
m

as
te

r
kr

ul
l

fre
ew

ay
pr

iv
at

ee
ye

ba
nk

he
ist

se
aq

ue
st

he
ro

bo
xi

ng
al

ie
n

cr
az

yc
lim

be
r

ch
op

pe
rc

om
m

an
d

m
sp

ac
m

an
fro

st
bi

te
as

sa
ul

t
ja

m
es

bo
nd

am
id

ar
ba

ttl
ez

on
e

qb
er

t
ka

ng
ar

oo
po

ng
go

ph
er

-100%

0%

20%

40%

60%

80%

100%

Re
la

tiv
e 

Sc
or

e

-88

-61

-50

-15

-10
-6

-2 -1

0
3 3 4

6
10

12

18 20
22 22

24 25
29

31 32

44

52

Relative Score of HyperFQI Compared with Rainbow
Hard Exploration (Dense Reward)
Hard Exploration (Sparse Reward)
Easy Exploration

Figure 15: Relative improvement of HyperFQI compared with Rainbow

Our HyperFQI algorithm exhibits significant improvement compared to DDQN, DER,
and HyperDQN in environments with “easy exploration”, and overall it performs better in
all environments. This indicates that HyperFQI has better generalization and exploration
abilities. On the other hand, when compared to Rainbow, our algorithm performs better in

30



environments which are in the group of “hard exploration (dense reward)”, demonstrating
our superior deep exploration capabilities. However, in the case of Freeway, which belongs
to the “hard exploration (sparse reward)” group, both HyperFQI and Rainbow achieve
similar optimal scores (as shown in Table 5), suggesting no significant improvement in
this environment. Overall, our HyperFQI showcases better generalization and exploration
efficiency.

Figure 16 illustrates the learning curve for each game. Our HyperFQI has shown superior
performance in comparison to DDQN (ours), attributed to the incorporation of a hyper-
model that enhances exploration in Atari games. Additionally, our HyperFQI variants
demonstrated stable and efficient learning, as indicated by the results. The learning curves
of these variants exhibit remarkable similarity, indicating the robustness of our HyperFQI
on Atari games. However, our experiments have demonstrated that the HyperFQI-OIS
outperforms the others in DeepSea, which necessitates deep exploration. Furthermore, it
is worth highlighting that the learning curve of our algorithm continues to rise in certain
environments, indicating that our HyperFQI can achieve even better performance with
additional training.
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Figure 16: Learning curve for each game. All variants exhibit remarkable similarity, indi-
cating the robustness of our HyperFQI on Atari games.
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Appendix D. Probabilistic formalism

One of the difficulties in the analysis is to deal with the sequential dependence structure
among the random variables generated from the reinforcement learning problems. We define
some important concept that would be useful in the analysis.

Let (Ω,F , (Ft)t≥0,P) be a complete filtered probability space.

Definition D.1 (Adapted process). For an index set I of the form {t ∈ N : t ≥ t0} for
some t0 ∈ N, we say a stochastic process (xt)t∈I is adapted to the filtration (Ft)t∈I if each
xt is Ft-measurable.

Definition D.2 ((Conditionally) σ-sub-Gaussian). We first describe the property asso-
ciated with one-dimensional random variable. Second, we describe the generalization in
high-dimension random vector.

• Random variables

– We say a random variable x is σ-sub-Gaussian if

E[exp(λx)] ≤ exp

(
λ2σ2

2

)
, ∀λ ∈ R.

– Let (xt)t≥1 ⊂ RM be a stochastic process adapted to filtration (Ft)t≥1. Let
σ = (σt)t≥0 be a stochastic process adapted to filtration (Ft)t≥0. We say the
process is (xt)t≥1 is conditionally σ-sub-Gaussian if

E[exp(λxt) | Ft−1] ≤ exp

(
λ2σ2

t−1

2

)
, a.s. ∀λ ∈ R.

Specifically for the index t + 1, we can say xt+1 is (Ft-conditionally) σt-sub-
Gaussian. If σt is a constant σ for all t ≥ 0, then we just say (conditionally)
σ-sub-Gaussian.

• Random vectors

– For random vector x or vector process (xt)t≥1, we say it is σ-sub-Gaussian is for
every fixed v ∈ SM−1 if the random variable ⟨v,x⟩ or stochastic process ⟨v,xt⟩
is σ-sub-Gaussian.

Definition D.3 (Almost sure unit-norm). We say a random vector x is almost sure unit-
norm if ∥x∥2 = 1 almost surely.

Definition D.4 (cx-bounded process). For an index set I of the form {t ∈ N : t ≥ t0} for
some t0 ∈ N, the stochastic process (xt)t∈I is cx-bounded if x2t ≤ cx almost surely for all
t ∈ I.
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Appendix E. Regret bound

Denote the regret of a policy πk over episode k by

∆k := EM,alg[V
π∗
M (sk,0)− V πk

M (sk,0],

where π∗ is an optimal policy for M . The goal of the agent is equivalent to minimizing the
expected total regret up to episode K

Regret(K, alg) := Ealg

K∑
k=1

∆k, (17)

where the subscript alg under the expectation indicates that policies are generated through
algorithm alg. Note that the expectation in Equation (17) is over the random transitions
and rewards, the possible randomization in the learning algorithm alg, and also the unknown
MDP M based on the agent designer’s prior beliefs.

Assumption E.1 (Finite-horizon time-inhomogeneous MDPs). We consider a problem
class that can be formulated as a special case of the general formulation in Section 2. Assume
the state space factorizes as S = S0 ∪S1 ∪S2 ∪ · · · ∪ SH−1 where the state always advances
from some state st ∈ St to st+1 ∈ St+1 and the process terminates with probability 1 in
period H. For notational convenience, we assume each set S0 = . . . = SH−1 = X contains
an equal number of elements that is X . That is |S| = |X |H.

We study the regret of HyperFQI under the following Bayesian model for the MDP M .

Assumption E.2 (Independent Dirichlet prior for outcomes). For each (s, a) ∈ S ×A, the
outcome distribution is drawn from a Dirichlet prior

Psa ∼ Dirichlet(α0,sa)

for α0,sa ∈ RS
+ and each Psa is drawn independently across (s, a). Assume there is β ≥ 3

such that 1⊤α0,sa = β for all (s, a).

A key observation that enable the regret analysis is that hypermodel can approximate
the posterior distribution of the optimal Q∗-values with low computation cost. This is
formalized in the following lemma.

Lemma E.3 (Approximate posterior variance (restated for Lemma 5.2)). For mk defined
in Equation (12) with z ∼ Uniform(SM−1). For any k ≥ 1, a good event Gk(s, a) is defined
as

Gk(s, a) =
{
∥mk(s, a)∥2 ∈

(
σ2

Nk,sa + β
,

3σ2

Nk,sa + β

)}
.

Then the joint event ∩(s,a,k)∈S×A×[K]Gk(s, a) holds w.p. at least 1− δ if M ≃ log(SAK/δ).

To prove Lemma E.3, we develop a new probability tools for sequential random projec-
tion in Appendices F and G and a new probability tool for random projection Appendix H.
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These are novel technical contributions, which maybe of independent interests. Once the ap-
proximation lemma Lemma E.3 is established, the rest proof can be reduced to the Bayesian
regret analysis of RLSVI in Osband et al. (2019b), which will be appeared in the full version
later. Still, we want to emphasize a key argument that enables efficient deep exploration is
the stochastic optimism of HyperFQI.

Definition E.4 (Stochastic optimism). A random variable X is stochastically optimistic
with respect to another random variable Y , written X ≥SO Y , if for all convex increasing
functions u : R→ R

E[u(X)] ≥ E[u(Y )].

We show that HyperFQI is stochastic optimistic in the sense that it overestimates the
value of each action in expectation. This is formalized in the following lemma.

Proposition E.5. If Assumption E.2 holds and tabular HyperFQI is applied with param-
eters parameters (M,µ0, σ, σ0) satisfying M ≃ log(SAK), (σ2/σ2

0) = β, σ ≥
√
3H and

mins,a µ0,s,a ≥ H,

fθHk
(s, a, ξk) |Hk ≥SO Q∗

M (s, a)|Hk. (18)

for any history Hk and state-action pair (s, a) ∈ S0 × A given the event Gk defined in
Lemma E.3 holds.

Appendix F. Proof of the key approximate posterior Lemma 5.2

Proof [Proof of Lemma 5.2] We first show the prior approximation by the fixed prior
model using the tool from Appendix H. By Lemma H.4, we show ∥βσ0z∥ ≈ε/2 βσ2

0 with
high probability.

To handle the posterior approximation, take a look at the formula in Equation (12)
and apply Theorem G.1 with sequence (zℓ,t)ℓ≥1,H−1≥t≥0 and (xℓ,t)ℓ≥1,H−1≥t≥0 s.t. xℓ,t =
σ1t∈Eℓ,sa

and s = βσ0z0,sa, s = βσ0 for each state action pair (s, a) ∈ S × A. Then taking
union bound over the set S ×A yields the results.

Appendix G. Sequential random projection

In this section, we describe our technical innovation in a probability statement for sequential
random projection. Based on a novel and careful construction of stopped process that
controls the deviation behavior of the good event on concentration, we adopt the method
of mixtures (Peña et al., 2009) in self-normalized process to derive a probability tool stated
in Theorem G.1. This bound is new to the whole literature of random projection and also
sequential analysis, which may be of independent interests.

Now we provide the key theorem that enables the analysis of approximate posterior argu-
ment in Appendix F. We use short notation for [n] = {1, 2, . . . , n} and T = {0, 1, . . . , T} =
{0} ∪ [T ].
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Theorem G.1 (Sequential random projection in adaptive process). Let (Ft)t≥0 be a filtra-
tion. For any fixed ε ∈ (0, 1) any fixed s ∈ R+, let s ∈ RM be an F0-measurable random
vector satisfies E[∥s∥2] = s2 and |∥s∥2 − s2| ≤ (ε/2)s2. Let (zt)t≥1 ⊂ RM be a stochastic
process adapted to filtration (Ft)t≥1 such that it is

√
c0/M -sub-Gaussian and each zt is

unit-norm. Let (xt)t≥1 ⊂ R be a stochastic process adapted to filtration (Ft−1)t≥1 such that
it is cx-bounded. Here, c0 and cx are absolute constants.

If the following condition is satisfied

M ≥ 16c0(1 + ε)

ε2

(
log

(
1

δ

)
+ log

(
1 +

cxT

s2

))
,

we have, with probability at least 1− δ

∀t ∈ T , (1− ε)

(
s2 +

t∑
i=1

x2i

)
≤ ∥s+

t∑
i=1

xizi∥2 ≤ (1 + ε)

(
s2 +

t∑
i=1

x2i

)
.

Remark G.2. We say this is an “sequential random projection” argument because one can
relate Theorem G.1 to the traditional random projection setting where Π = (z1, . . . , zT ) ∈
RM×T is a random projection matrix and x = (x1, . . . , xT )

⊤ ∈ RT is the vector to be
projected. When s = 0 and s = 0, this is essentially an analog of distributional JL lemma
(discribed in Lemma H.3) while the traditional JL lemma are NOT handle the sequential
dependence structure in our setup. Therefore, Theorem G.1 also an innovation in the
literature of random projection and sequential analysis.

Remark G.3. The unit-norm condition in the Theorem G.1 is easy to remove. Then, more
distribution of random vectors can be covered in our probability framework. We leave it
for the future work.

Example G.4 (Stylized stochastic process satisfying the condition in Theorem G.1.). If s
is a random vector that is independent with all following random variables and (zt)t≥1 are
i.i.d random vectors, each sampled from U(SM−1). The stochastic process (xt)t≥1 has the
following dependence structure with the process (zt)t≥1:

• xt is dependent on s, x1, z1, . . . , xt−1, zt−1.

• zt is independent of s, x1, z1, . . . , xt−1, zt−1, xt

Define the filtration (Ft)t≥0 where Ft = σ(s, x1, z1, . . . , xt, zt, xt+1). From Example I.2, we

notice z∼U(SM−1) is (1/
√
M)-sub-Gaussian random vector. Thus, (zt)t≥1

i.i.d.∼ U(SM−1) is
a stochastic process adapted to (Ft)t≥1 and is 1/

√
M -sub-Gaussian and unit-norm.

First, we state a Peña et al. (2009) type self-normalized bound that would be useful to
prove our main theoretical contribution of sequential random projection in Theorem G.1.

Theorem G.5 (Any-time self-normalized concentration bound). Let (Ft)t≥0 be a filtration
and {(At, Bt), t ≥ 1} be a sequence of pairs of random variables satisfying that for all λ ∈ R{

exp

(
λAt −

λ2

2
B2

t

)
,Ft, t ≥ 1

}
is a supermartingale with mean ≤ 1. (19)
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Then, for any fixed positive sequence (Lt)t≥1, with probability at least 1− δ

∀t ≥ 1, |At| ≤

√√√√2
(
B2

t + Lt

)
log

(
1

δ

(
B2

t + Lt

)1/2
L
1/2
t

)
(20)

The proof of Theorem G.5 can be found in Appendix G.2.

G.1 Sequential random projection argument in Theorem G.1

Before dig into the proof, we identify some important sequence structure and also clarity
our proof idea in a intuitive level.

G.1.1 Preparation for the proof of Theorem G.1

For t ∈ T , let the short notation be

Yt = ∥s+
t∑

i=1

xizi∥2 −
(
s2 +

t∑
i=1

x2i

)
.

and St = s2 +
∑t

i=1 x
2
i . Our key observation is that for any t ∈ [T ]

∥s+
t∑

i=1

xizi∥2 = ∥s+
t−1∑
i=1

xizi + xtzt∥2

= ∥s+
t−1∑
i=1

xizi∥2 + 2

(
s+

t−1∑
i=1

xizi

)⊤

xtzt + x2t ∥zt∥2

and thus we have the following relationship between Yt and Yt−1

Yt − Yt−1 = 2xtz
⊤
t (s+

t−1∑
i=1

xizi) + x2t
(
∥zt∥2 − 1

)
.

Since zt is unit-norm, we can further simplify the exposition

Yt − Yt−1 = 2xtz
⊤
t (s+

t−1∑
i=1

xizi). (21)

Another key observation is that the difference term in Equation (21) depends on the (s +∑t−1
i=1 xizi) that is Ft−1-measurable. We can control the deviation of the difference Yt−Yt−1

by if we already have information in the history-dependent term. Intuitively, once the
concentration behavior is bad, it is highly possible to be bad for the later time index.
To mathematically formalize this intuition, we introduce a definition of good event and
stopping time for analysis.
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Definition G.6 (Good event). For each time t ∈ T , we introduce the good event Et under
which the strongly concentration behavior is guaranteed, suppose ε ∈ (0, 1),

Et(ε) =

{
(1− ε)

(
s2 +

t∑
i=1

x2i

)
≤ ∥s+

t∑
i=1

xizi∥2 ≤ (1 + ε)

(
s2 +

t∑
i=1

x2i

)}
.

With short notation,

Et(ε) = {|Yt| ≤ εSt} .
We also define the stopping time as the first time the bad event happens, i.e. the good

event in Definition G.6 violates.

Definition G.7 (Stopping time). For any fixed ε, we define the stopping time

τ(ε) = min{t ∈ T : ¬Et(ε)}.
Based on the stopping time, we construct a stopped process. For t ∈ [T ], define the

stopped difference term

Xτ
t = (Yt − Yt−1)1t≤τ (22)

such that the process (Xτ
t )t≥1 is adapted to the filtration (Ft)t≥1.

Claim G.8. The stopping time τ defined in Definition G.7. Let (Xτ
t )t≥1 be the stochastic

process defined in Equation (22) which is adapted to (Ft)t≥0. Let Aτ
t =

∑t
i=1X

τ
i . Further

denote (Bτ
t )

2 =
∑t

i=1(C
τ
i )

2 with

(Cτ
t )

2 :=
4c0
M

x2t (1 + ε)St−11t≤τ .

If the (Ft)t≥1-adapted process (zt)t≥1 is (
√

c0
M )-sub-Gaussian and each zt is unit-norm, then

for any fixed λ ∈ R

M τ
t (λ) = exp

(
λAτ

t −
λ2

2
(Bτ

t )
2

)
, t ≥ 1

is a supermartingale.

Proof [Proof of Claim G.8] Note 1t≤τ = 1− 1τ≤t−1 is Ft−1-measurable. Thus, the vector
(s+

∑t−1
i=1 xizi)1t≤τxt is Ft−1-measurable. By the condition on process (zt)t≥1, we conclude

from the definition of conditionally sub-Gaussian from Definition D.2 that

E[exp(λXτ
t ) | Ft−1] = E[exp(2λxt⟨zt, s+

t−1∑
i=1

xizi⟩1t≤τ ) | Ft−1]

≤ exp

(
λ2

2
(4c0/M)x2t ∥s+

t−1∑
i=1

xizi∥21t≤τ

)

≤ exp

(
λ2

2
(4c0/M)x2t (1 + ε)St−11t≤τ

)
= exp

(
λ2

2
(Cτ

t )
2

)
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where the last inequality is because of the stopping time argument.

We also need the following lemma in the intial treatment of the proof of Theorem G.1.

Lemma G.9 (Trigger lemma). For any sequence of event (Et, t ∈ T ), define the stopping
time τ as the first time t the event Et is violated, i.e.

τ = min{t ∈ T : ¬Et}.

Then, the following equality holds for all t ∈ T ,

{τ ≤ t} = ¬Et∧τ . (23)

G.1.2 Proof of Theorem G.1

Now we are ready to the proof.
Proof [Proof of Theorem G.1] We apply Lemma G.9 for Et = Et(ε) and it follows

P (∃t ∈ T ,¬Et(ε)) = P(τ ≤ T ) = P (¬ET∧τ (ε))

= P (|YT∧τ | ≥ εST∧τ )

= P

(
|Y0 +

T∑
t=1

(Yt − Yt−1)1t≤τ | ≥ εST∧τ

)
(24)

By the construction of stopped process YT∧τ − Y0 =
∑T

t=1X
τ
t = Aτ

T . Then, our goal, from
Equation (24), becomes to upper bound the RHS of Equation (25),

P (∃t ∈ T , (¬Et)) = P (|Y0 +Aτ
T | ≥ εST∧τ ) (25)

By Claim G.8, the process (Aτ
t , B

τ
t )t≥1 with Aτ

t =
∑t

i=1X
τ
i =

∑t
i=1(Yt − Yt−1)1t≤τ and

(Bτ
t )

2 =
∑t

i=1(4c0/M)x2t (1 + ε)St−11t≤τ satisfy the condition of Theorem G.5. Then we
can apply the Theorem G.5: with probability at least 1− δ,

∀t ≥ 1, |Aτ
t | ≤

√√√√2 ((Bτ
t )

2 + Lt) log

(
1

δ

((Bτ
t )

2 + Lt)
1/2

L
1/2
t

)

Since by the condition in Theorem G.1, we have |Y0| ≤ (ε/2)s2. Now we want to argue that
for any fixed ε ∈ (0, 1), with suitable choice of LT and M , we have with probability at least
1− δ

|Y0 +Aτ
T | ≤

√√√√2
(
(Bτ

T )
2 + LT

)
log

(
1

δ

(
(Bτ

T )
2 + LT

)1/2
L
1/2
T

)
+ (ε/2)s2︸ ︷︷ ︸

(I)

≤ εST∧τ . (26)

Claim G.10. With some computations, we found the following configuration suffices for
Equation (26):

LT ≤
4(1 + ε)s4

2M
and M ≥ (16(1 + ε)/ε2)

(
log

(
1

δ

)
+ log

(
1 +

T

s2

))
.
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Proof [Proof of Claim G.10] Recall the definition

St = s2 +
t∑

t=1

x2i

We first calculate the term (Bτ
T )

2 by our construction:

(Bτ
T )

2 ≤ 4c0
M

T∧τ∑
t=1

x2t ((1 + ε)St−1)

=
4c0(1 + ε)

M

T∧τ∑
t=1

x2t (ST∧τ − (ST∧τ − St−1))

≤ 4c0(1 + ε)

M
(ST∧τ − s2)ST∧τ

Then, the almost sure upper bound of (Bτ
T )

2 assuming x2t ≤ cx is

(Bτ
T )

2 ≤ 4c0(1 + ε)

M

T∑
t=1

(s2 + (t− 1)cx) ≤
4c0(1 + ε)

M
(s2T + cxT

2/2)

Since (a+ b)2 ≤ (1 + λ)(a2 + (1/λ)b2) for all λ,

(I)2 ≤ (1 + λ)

(
2
(
B2

T + LT

)
log

(
1

δ

(
B2

T + LT

)1/2
L
1/2
T

)
+

ε2s4

4λ

)
Let LT = cℓ/M and c = 4c0(1 + ε) and ℓ to be determined.

(I)2 ≤ (1 + λ)

(
2
(
B2

T + LT

)
log

(
1

δ

(
B2

T + LT

)1/2
L
1/2
T

)
+

ε2s4

4λ

)

≤ (1 + λ)

(
2c

M

(
(ST∧τ − s2)ST∧τ + ℓ

)
log

(
1

δ

√
(s2T + cxT 2/2 + ℓ)

ℓ

)
+

ε2s4

4λ

)

Let M = (2c/m) log

(
1
δ

√
(s2T+cxT 2/2)+ℓ

ℓ

)
, we can simplify

(I)2 ≤ (1 + λ)

(
m((ST∧τ − s2)ST∧τ + ℓ) +

ε2s4

4λ

)
Let ℓ = s4/2cx, m = ε2/(1 + λ) and λ = 1, we have

(I)2 ≤ ε2((ST∧τ − s2)ST∧τ + s4/2 + s4/2) ≤ ε2S2
T∧τ

where the last inequality is because s2 = S0 ≤ ST∧τ and s4 ≤ s2ST∧τ . The conclusion is
that we could select

M ≥ (16c0(1 + ε)/ε2) log

(
1

δ

√
2s2cxT + c2xT

2 + s4

s4

)

= (16c0(1 + ε)/ε2)

(
log

(
1

δ

)
+ log

(
1 +

cxT

s2

))
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and the auxiliary variable

LT ≤
4c0(1 + ε)s4

2Mcx
.

G.2 Proof of Theorem G.5: Method of mixtures

Robbins-Siegmund method of mixtures (Robbins and Siegmund, 1970) originally is devel-
oped to evaluate boundary crossing probabilities for Brownian motion. The method was
further developed in the general theory for self-normalized process (de la Peña, Klass, and
Lai, 2004; Peña, Lai, and Shao, 2009; Lai, 2009).

Remark G.11 (Essential idea of Laplace approximation). If we integrate the exponential of
a function that has a pronounced maximum, then we can expect that the integral will be
close to the exponential function of the maximum. In our case, let

Mt(λ) = exp

(
λAt −

λ2

2
B2

t

)
Informally, with this principle of Laplace approximation, we would have

max
λ

Mt(λ) ≈
∫
Ω
Mt(λ)dh(λ)

where h is some measure on Ω.

The main benefit of replacing the maximum maxλMt(λ) with an integral M̄t :=
∫
ΩMt(λ)dh(λ)

is that we can handle the expectation E[M̄t] easier while we don’t know the upper bound on
E[maxλMt(λ)]. This is formalized in the following lemma.

Lemma G.12. Let (ht) be a sequence of probability measures on Ω. If (Mt(λ),Ft, t ≥ 1)
is a supermartingale with E[M1(λ)] ≤ 1 for all λ ∈ Ω, then for any t ≥ 1, the integrated
random variable M̄t =

∫
ΩMt(λ)dht(λ) has expectation E[M̄t] ≤ 1.

Further, let τ be a stopping time with respect to filtration (Ft)t≥0, i.e. {τ ≤ t} ∈
Ft,∀t ≥ 0. Then Mτ (λ) is almost surely well-defined with expectation E[Mτ (λ)] ≤ 1 as well
as E[M̄τ ] ≤ 1.

Proof Using Fubini’s theorem and the fact thatMt(λ) is a supermartingale with E[Mt(λ)] ≤
E[M1(λ)] = 1, we have

E[M̄t] =

∫
Ω
E[Mt(λ)]dht(λ) ≤ 1.

For the expectation of stopped version Mτ (λ) and M̄τ , we apply (supermartingale) optional
sampling theorem.
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Finally, we are comfortable to drive the proof of the self-normalized concentration bounds.

Proof [Proof of Theorem G.5] Let Λ = (Λt) be a sequence of independent Gaussian random
variable with densities

fΛt(λ) = c(Lt) exp(−
1

2
Ltλ

2)

where c(A) =
√
A/2π is a normalizing constant. We explicitly calculate M̄t for any t ≥ 1,

M̄t =

∫
R
exp

(
λAt −

λ2

2
B2

t

)
fΛt(λ)dλ

=

∫
R
exp

(
−1

2

(
λ− At

B2
t

)2

B2
t +

1

2

A2
t

B2
t

)
fΛt(λ)dλ

= exp

(
1

2

A2
t

B2
t

)∫
R
exp

(
−1

2

(
λ− At

B2
t

)2

B2
t

)
fΛt(λ)dλ

= c (Lt) exp

(
1

2

A2
t

B2
t

)∫
R
exp

(
−1

2

((
λ−At/B

2
t

)2
B2

t + λ2Lt

))
dλ.

Completing the square yields(
λ− At

B2
t

)2

B2
t + λ2Lt =

(
λ− At

Lt +B2
t

)2 (
Lt +B2

t

)
+

A2
t

B2
t

− A2
t

Lt +B2
t

.

By the change of variables λ′ = λ−At/(Lt +B2
t ) in the following (i),

M̄t = c (Lt) exp

(
1

2

A2
t

Lt +B2
t

)∫
R
exp

(
−1

2

(
λ− At

Lt +B2
t

)2 (
Lt +B2

t

))
dλ

(i)
= c (Lt) exp

(
1

2

A2
t

Lt +B2
t

)∫
R
exp

(
−1

2

(
λ2
(
Lt +B2

t

)))
dλ

=
c (Lt)

c
(
Lt +B2

t

) exp(1

2

A2
t

Lt +B2
t

)
.

A final application of Markov’s inequality yields

P

|Aτ | ≥

√√√√2 (Lτ +B2
τ ) log

(
1

δ

(Lτ +B2
τ )

1/2

L
1/2
τ

)
= P

[
c (Lτ )

c (Lτ +B2
τ )

exp

(
1

2

A2
τ

Lτ +B2
τ

)
≥ 1

δ

]
≤ δ · E

[
c (Lτ )

c (Lτ +B2
τ )

exp

(
1

2

A2
τ

Lτ +B2
τ

)]
i)

≤ δ · E
[
M̄τ

] (ii)

≤ δ,

where (i) uses the inequality for M̄τ derived above, and (ii) follows from Lemma G.12.
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To get the anytime result in Theorem G.5, we define the stopping time

τ = min

t ≥ 1 : |At| ≥

√√√√2
(
Lt +B2

t

)
log

(
1

δ

(
Lt +B2

t

)1/2
L
1/2
t

)
With an application of extended version of Lemma G.9, and applying the previous inequality
yields

P

∃t ≥ 1, |At| ≥

√√√√2
(
Lt +B2

t

)
log

(
1

δ

(
Lt +B2

t

)1/2
L
1/2
t

)
= P

τ <∞, |Aτ | ≥

√√√√2 (Lτ +B2
τ ) log

(
1

δ

(Lτ +B2
τ )

1/2

L
1/2
τ

)
≤ P

|Aτ | ≥

√√√√2 (Lτ +B2
τ ) log

(
1

δ

(Lτ +B2
τ )

1/2

L
1/2
τ

)
≤ δ.

This completes the proof.

Appendix H. A new proof of random projection for fixed data

This section provide a new tool for random projection, which maybe of independent inter-
est. In this work, it is used to deal with the initial approximation in the prior model in
Appendix F.

Theorem H.1 (High-dimensional Hanson-Wright inequality). Let X1, . . . , Xn be indepen-
dent, mean zero random vectors in RM , each Xi is Ki-subGaussian. Let A = (aij) be an
n× n matrix. Then for any t ≥ 0, we have

P

| n∑
i,j:i ̸=j

aij⟨Xi, Xj⟩| ≥ t

 ≤ 2 exp

(
−min

{
t2

64K4M∥A∥2F
,

t

8K2∥A∥2

})
where K = maxiKi.

Remark H.2. This is an high-dimension extension of famous Hanson-Wright inequality (Rudel-
son and Vershynin, 2013). The Theorem H.1 with exact constant is new in the literature,
which maybe of independent interest. Our proof technique generalizes from (Rudelson and
Vershynin, 2013) with new treatments on the diagnolization.

Lemma H.3 (Distributional JL lemma (Johnson and Lindenstrauss, 1984)). For any 0 <
ε, δ < 1/2 and d ≥ 1 there exists a distribution Dε,δ on RM×d for M = O

(
ε−2 log(1/δ)

)
such that for any x ∈ Rd

P
Π∼Dε,δ

(
∥Πx∥22 /∈

[
(1− ε)∥x∥22, (1 + ε)∥x∥22

])
< δ
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Lemma H.4. We claim that the following construction of the random projection matrix
Π ∈ RM×d with M ≥ 64ε−2 log(2/δ) satisfy the Lemma H.3: Let Π = (z1, . . . , zd) be a
random matrix with each zi ∼ Pz, i.e., uniformly sampled over the unit sphere SM−1.

Proof From Example I.2, we know that zi ∼ Pz = U(SM−1) is a 1√
M
-sub-Gaussian random

vector with mean zero. Let x ∈ Rd be the vector to be projected. By the construction of
Π,

∥Πx∥2 − ∥x∥2 =
∑

1≤i ̸=j≤d

xixj⟨zi, zj⟩︸ ︷︷ ︸
off-diagonal

+
d∑

i=1

x2i (∥zi∥2 − 1)︸ ︷︷ ︸
diagonal

The diagonal term is zero due to the unit sphere SM−1. The JL lemma is then a consequence
of bounding the following

PΠ

(
|off-diagonal| ≥ ε∥x∥2

)
We apply Theorem H.1 with A = xx⊤ and t = ε∥x∥2. Since K = 1/

√
M and ∥A∥F =

tr(xx⊤) = ∥x∥2, ∥A∥2 = ∥x∥2, then

P

| ∑
1≤i ̸=j≤d

xixj⟨zi, zj⟩| ≥ ε∥x∥2
 ≤ 2 exp

(
−min

{
ε2∥x∥4

64K4M∥A∥2F
,

ε∥x∥2
8K2∥A∥2

})
≤ 2 exp

(
−M min

{
ε2/64, ε/8

})
.

This implies that to get the RHS upper bound by δ, we need

M ≥ 64ε−2 log(2/δ).

H.1 Proof of Theorem H.1

Proof We prove the one-side inequality and the other side is similar by replacing A with
−A. Let

S =

n∑
i,j:i ̸=j

aij⟨Xi, Xj⟩. (27)

Step 1: decoupling. Let ι1, . . . , ιd ∈ {0, 1} be symmetric Bernoulli random variables,
(i.e., P(ιi = 0) = P(ιi = 1) = 1/2) that are independent of X1, . . . , Xn. Since

E[ιi(1− ιi)] =

{
0, i = j,

1/4, i ̸= j,

we have S = 4Eι[Sι], where

Sι =
n∑

i,j=1

ιi(1− ιj)aij⟨Xi, Xj⟩
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and the expectation Eι[·] is the expectation taken with respect to the random variables ιi.
By Jensen’s inequality, we have

E[expλS] ≤ EX,ι[exp 4λSι].

Let Λι = {i ∈ [d] : ιi = 1}. Then we write

Sι =
∑
i∈Λι

∑
j∈Λc

ι

aij⟨Xi, Xj⟩ =
∑
j∈Λc

ι

⟨
∑
i∈Λι

aijXi, Xj⟩.

Taking expectation over (Xj)j∈Λc
ι
(i.e., conditioning on (ιi)i=1,...,d and (Xi)i∈Λι ), it follows

that

E(Xj)j∈Λc
ι
[exp 4λSι] =

∏
j∈Λc

ι

E(Xj)j∈Λc
ι
[exp 4λ⟨

∑
i∈Λι

aijXi, Xj⟩]

by the independence among (Xj)j∈Λι . By the assumption that Xi are independent sub-
Gaussian with mean zero, we have

E(Xj)j∈Λc
ι
[exp 4λSι] ≤ exp

∑
j∈Λc

ι

8λ2K2
j ∥
∑
i∈Λι

aijXi∥2
 =: exp

(
8λ2σ2

ι

)
.

Thus we get

EX [exp 4λSι] ≤ EX [exp 8λ2σ2
ι ].

Step 2: reduction to Gaussian random variables. For j = 1, . . . , n, let gj be inde-

pendent N
(
0, 16K2

j I
)

random variables in RM that are independent of X1, . . . , Xn and

ι1, . . . , ιn. Define

T :=
∑
j∈Λc

ι

⟨gj ,
∑
i∈Λι

aijXi⟩.

Then, by the definition of Gaussian random variables in RM , we have

Eg[e
λT ] =

∏
j∈Λc

ι

Eg[exp ⟨gj , λ
∑
i∈Λι

aijXi⟩]

= exp

8λ2
∑
j∈Λc

ι

K2
j ∥
∑
i∈Λι

aijXi∥2
 = exp

(
8λ2σ2

ι

)
So it follows that

EX [exp 4λSι] ≤ EX,g[expλT ].

Since T =
∑

i∈Λι
⟨∑j∈Λc

ι
aijgj , Xi⟩, by the assumption thatXi are independent sub-Gaussian

with mean zero, we have

E(Xi)i∈Λι
[expλT ] ≤ exp

λ2

2

∑
i∈Λι

K2
i ∥
∑
j∈Λc

ι

aijgj∥2
 ,
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which implies that

EX [exp 4λSι] ≤ Eg[exp
(
λ2τ2ι /2

)
] (28)

where τ2ι =
∑

i∈Λι
K2

i ∥
∑

j∈Λc
ι
aijgj∥2. Note that τ2ι is a random variable that depends on

(ιi)
d
i=1 and (gj)

n
j=1.

Step 3: diagonalization. We have gj =
∑M

k=1 ⟨gj , ek⟩ ek and

τ2ι =
∑
i∈Λι

K2
i

∥∥∥∥∥∥
∑
j∈Λc

ι

aijgj

∥∥∥∥∥∥
2

=
∑
i∈Λι

K2
i

∥∥∥∥∥∥
M∑
k=1

∑
j∈Λc

ι

aij ⟨gj , ek⟩

 ek

∥∥∥∥∥∥
2

=
M∑
k=1

∑
i∈Λι

∑
j∈Λc

ι

Kiaij ⟨gj , ek⟩

2

=

M∑
k=1

∥PιÃ(I − Pι)Gk∥2

where the last second step follows from Parseval’s identity. Gjk := ⟨gj , ek⟩ , j = 1, . . . , n, are

independent N
(
0, 16K2

j

)
random variables. Gk = (G1k, . . . , Gnk)

⊤ ∈ Rn. Ã = (ãij)
n
i,j=1

with ãij = Kiaij . Let Pι ∈ Rn×n be the restriction matrix such that Pι,ii = 1 if i ∈ Λι and
Pι,ij = 0 otherwise.

Define normal random variables Zk = (Z1k, . . . , Znk)
⊤ ∼ N(0, I) for each k = 1, . . . ,M .

Then we have Gk
D
= Γ1/2Zk where Γ = 16 diag(K2

1 , . . . ,K
2
n).

Let Ãι := PιÃ(I − Pι). Then by the rotational invariance of Gaussian distributions, we
have

M∑
k=1

∥ÃιGk∥2 D
=

M∑
k=1

∥ÃιΓ
1/2Zk∥2 D

=

M∑
k=1

n∑
j=1

s2jZ
2
jk

where s2j , j = 1, 2, . . . , n are the eigenvalues of Γ1/2Ã⊤
ι ÃιΓ

1/2.
Step 4: bound the eigenvalues. It follows that

max
j∈[n]

s2j = ∥ÃιΓ
1/2∥2op ≤ 16K4∥A∥22.

In addition, we also have

n∑
j=1

s2j = tr(Γ1/2Ã⊤
ι ÃιΓ

1/2) ≤ 16K4∥A∥2F

and
∑M

k=1

∑n
j=1 s

2
j ≤ 16MK4∥A∥2F . Invoking Equation (28), we get

EX

[
e4λSι

]
≤

M∏
k=1

n∏
j=1

EZ

[
exp

(
λ2s2jZ

2
jk/2

)]
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Since Z2
jk are i.i.d. χ2

1 random variables with the moment generating function E[etZ
2
jk ] =

(1− 2t)−1/2 for t < 1/2, we have

EX

[
e4λSι

]
≤

M∏
k=1

n∏
j=1

1√
1− λ2s2j

if max
j

λ2s2j < 1.

Using (1− z)−1/2 ≤ ez for z ∈ [0, 1/2], we get that if 16K4∥A∥22λ2 < 1, then

EX

[
e4λSι

]
≤ exp

λ2
M∑
k=1

n∑
j=1

s2j

 ≤ exp
(
16λ2K4∥A∥2F

)
.

Note that the last inequality is uniform in ι. Taking expectation with respect to δ, we
obtain that

EX

[
eλS
]
≤ EX,ι

[
e4λSι

]
≤ exp

(
16λ2MK4∥A∥2F

)
whenever 0 < λ < (4K2∥A∥2)−1.

Step 5: Conclusion. Step 5: conclusion. Now we have

P(S ≥ t) ≤ exp
(
−λt+ 16λ2MK4∥A∥2F

)
for 0 < λ ≤

(
4K2∥A∥2

)−1

Optimizing in λ, we deduce that there exists a universal constant C > 0 such that

P(S ≥ t) ≤ exp

[
−min

(
t2

64MK4∥A∥2F
,

t

8K2∥A∥2

)]
.

Appendix I. Verify the assumption for some typical distributions

Lemma I.1 (MGF of Beta distribution). For any α, β ∈ R+ with α ≤ β. Random variable
X ∼ Beta(α, β) has variance Var (X) = αβ

(α+β)2(α+β+1)
and the centered MGF E[exp(λ(X−

E[X]))] ≤ exp(λ
2Var(X)

2 ).

Example I.2 (Uniform over sphere U(SM−1)). Given a random vector z ∼ U(SM−1), for
any v ∈ SM−1, we have

⟨z, v⟩ ∼ 2Beta

(
M − 1

2
,
M − 1

2

)
− 1.

Thus, by Lemma I.1, we confirm z is (1/
√
M)-sub-Gaussian random vector.

Proof [Proof of Lemma I.1]
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For X ∼ Beta(α, β), Skorski (2023) gives a novel Order 2 Recurrence for Central Mo-
ments.

E [(X − E[X])p] =
(p− 1)(β − α)

(α+ β)(α+ β + p− 1)
· E
[
(X − E[X])p−1

]
+

(p− 1)αβ

(α+ β)2(α+ β + p− 1)
· E
[
(X − E[X])p−2

]
Let mp :=

E[(X−E[X])p]
p! , When α ≤ β, it follows that mp is non-negative when p is even, and

negative otherwise. Thus, for even p,

mp ≤
1

p
· αβ

(α+ β)2(α+ β + p− 1)
mp−2 ≤

Var (X)

p
·mp−2.

Repeating this p/2 times and combining with mp ⩽ 0 for odd p, we obtain

mp ⩽

{
Var(X)

p
2

p!! p even

0 d odd
.

Using p!! = 2p/2(p/2)! for even p, for t ⩾ 0 we obtain

E[exp(λ[X − E[X]])] ⩽ 1 +
+∞∑
p=2

mpλ
p = 1 +

+∞∑
p=1

(λ2Var (X)/2)p/p! = exp

(
λ2Var (X)

2

)

48


	Introduction
	Contributions
	Preliminary
	Reinforcement Learning
	Hypermodel

	Algorithm
	Experimental studies
	Computational results for deep exploration
	Atari Results

	Analysis
	How does HyperFQI drives efficient deep exploration?
	Regret bound


	[alg:hyperfqi]HyperFQI algorithm details
	Function approximation with deep neural networks
	lyr Network architecture of HyperFQI
	lyr Training details for HyperFQI
	Difference compared to prior works

	Tabular algorithm
	Understanding through Bellman equation

	Environment Settings
	Additional Results
	Results on DeepSea
	Results on Atari

	Probabilistic formalism
	Regret bound
	Proof of the key approximate posterior lem:approx
	Sequential random projection
	Sequential random projection argument in thm:one-dimension-dependent-sequence-1
	Preparation for the proof of thm:one-dimension-dependent-sequence-1
	Proof of thm:one-dimension-dependent-sequence-1

	Proof of thm:anytime-bound: Method of mixtures


	A new proof of random projection for fixed data
	Proof of thm:hdhw





	Verify the assumption for some typical distributions


