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ABSTRACT

Inverse protein folding aims to design amino acid sequences that fold into de-
sired backbone structures, representing a long-standing challenge in computa-
tional protein design. While recent deep learning approaches have achieved sig-
nificant progress, existing methods predominantly treat protein structures as flat-
tened sequences, overlooking their inherent hierarchical and fractal organization.
To address this limitation, we propose FractalFold, a novel transformer-based
model that performs structure-informed inverse folding by recursively invoking
multi-level atomic fractal transformers. FractalFold employs a coarse-to-fine se-
quence refinement paradigm that mirrors the intrinsic hierarchical nature of pro-
tein structures. To generalize our approach to quasi-fractal proteins with variable-
length structural segments, we introduce the Hierarchical Fractal Segmentation
Module (HFSM), which leverages attention patterns from pre-trained protein
language models to recursively partition protein structures into tree-organized
patches. Extensive experiments on the CATH benchmarks demonstrate that Frac-
talFold achieves state-of-the-art performance in sequence recovery rate and per-
plexity while generating sequences with enhanced foldability, establishing a new
paradigm for structure-informed protein design.

1 INTRODUCTION

Proteins are amino acid sequences that control biological processes such as transcription, translation,
and immune response. Designing novel proteins that fold into desired 3D structures, also termed
protein inverse folding, remains one of the fundamental challenges in computational biology with
important applications in protein engineering, drug design, and synthetic biology.

Beyond traditional physics-based methods like Rosetta, which suffer from high computational costs,
deep learning-based methods have emerged as promising alternatives. Despite substantial advance-
ment, a major challenge in inverse protein folding remains the extraction of hierarchical structural
patterns from raw 3D coordinate sequences and their explicit incorporation as inductive biases into
the model architecture. As shown in Figure 1, transformer-based models Ren et al. (2024b) directly
encode the coordinate sequence as a flattened token sequence and perform self-attention calculations
autoregressively, which fails to capture the inherent semantics of protein structures and inevitably
results in error accumulation. Recent methods harness graph-based structure encoders alongside
diffusion models Yi et al. (2023a), GNNs Gao et al. (2023), and transformers Zheng et al. (2023a);
Ingraham et al. (2019a). Nonetheless, they only model the lowest-level structural bias by aggre-
gating information from nearest residues using kNN algorithms Fix (1985) during encoding, still
lacking a way to explicitly incorporate the prior of the full hierarchical protein structure.

To address the above issue, we propose to predict amino acid sequences by recursively invoking
multi-level atomic fractal transformers, which naturally align with protein’s inherent hierarchical
organization through the model architecture. Our proposal is analogous to the concept of fractals
in mathematics, which was first employed by FractalGen Li et al. (2025) in image generation tasks.
Compared to images, protein structures display stronger self-similarity and recursive organizational
patterns across multiple scales—from secondary structure motifs to functional domains and com-
plete tertiary folds Stapleton et al. (1980); Ikeda et al. (1999); Sendker et al. (2024). As reported in
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Figure 1: (a) Protein structures exhibit fractal geometry Sendker et al. (2024) with self-similar pat-
terns across multiple scales. (b) The architecture of FractalFold is aligned with protein structure
(left), while conventional methods lose structural prior by flattening 3D structures into sequential
tokens (right).

Enright & Leitner (2005), 200 proteins from the Protein Data Bank Berman et al. (2000) ranging
from 100 to over 10,000 amino acids have an average fractal dimension of 2.5. Building on the frac-
tal property of protein structure, we propose FractalFold, a fractal transformer model specifically
tailored for hierarchical-structure-informed inverse protein folding, which inherently conforms to
the fractal nature of proteins. FractalFold adopts a coarse-to-fine refinement paradigm that effec-
tively reduces error accumulation with one-shot inference.

To further generalize FractalFold to broader quasi-fractal proteins containing recursive units of vary-
ing lengths, we introduce the Hierarchical Fractal Segmentation Module (HFSM), a structure-
aware dynamic decomposition algorithm that exploits attention patterns from pre-trained protein
language models (pLMs) to recursively segment protein sequences into variable-length patches.
Extensive evaluation on CATH benchmarks demonstrates that FractalFold achieves state-of-the-art
performance across comprehensive metrics, including sequence recovery rate, perplexity and struc-
tural foldability. By establishing a fractal-based coarse-to-fine refinement framework for protein
design, our work opens a new paradigm for structure-informed inverse folding that aligns with the
intrinsic hierarchical organization of biological proteins.

The primary contributions of this work are threefold:

1. We introduce FractalFold, a fractal inverse protein folding model that explicitly captures
the hierarchical structural bias of proteins by recursively invoking atomic transformer units.

2. We develop HFSM, a novel dynamic segmentation algorithm that enables adaptive multi-
scale structure decomposition, generalizing FractalFold to broader quasi-fractal proteins
with variable-length recursive units.

3. We achieve state-of-the-art experimental performance on established benchmarks with sig-
nificant improvements in sequence recovery, perplexity, and foldability compared to exist-
ing methods.

2 PRELIMINARIES

2.1 PROBLEM FORMULATION

Let S ∈ RN×Natom×3 denote the 3D coordinates of backbone atoms for a protein of length N , where
Si ∈ RNatom×3 represents the atomic coordinates of the i-th residue. Let A = (a1, a2, . . . , aN )
denote the corresponding amino acid sequence, where each ai ∈ {1, 2, . . . , 20} is an integer index
representing one of the 20 standard amino acids.

2
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Figure 2: Overview of FractalFold architecture. The input protein structure is encoded using GVP
and ESM-IF to extract geometric and contextual features. The Hierarchical Fractal Segmentation
Module (HFSM) decomposes the sequence into multi-scale segments using attention-based break-
point selection. The Fractal Transformer processes these hierarchical representations through cas-
caded blocks, with each fractal level conditioning on the previous scale to generate amino acid
sequences via coarse-to-fine prediction.

The neural network fθ performs the mapping:

fθ : RN×Natom×3 → ∆20×N , (1)

where ∆20×N represents the space of probability distributions over amino acid sequences of length
N .

The model parameters θ are optimized to maximize the conditional log-likelihood:

L(θ) =
∑

(S,A)∈D

log p(A | S; θ), (2)

where D denotes the training dataset consisting of structure-sequence pairs.

2.2 HIERARCHICAL PROTEIN MODELING

FractalFold decomposes the sequence generation task through recursive segmentation. Given a pro-
tein structure S of length N , we construct a K-scale hierarchy where each scale partitions the
sequence into segments of manageable size. At scale k ∈ {1, 2, . . . ,K}, we divide the sequence
into Lk segments.

Let T (k) = {t(k)1 , t
(k)
2 , . . . , t

(k)
Lk
} denote the Lk padded segments at scale k, where each segment

t
(k)
m = (sbm , sbm+1,, . . . , sem) contains a structure subsequence spanning from position bm to em.

Similarly, we define H(k) = {h(k)
1 ,h

(k)
2 , . . . ,h

(k)
Lk
} as the corresponding structural features for

segments in T (k).

The hierarchical generation follows a coarse-to-fine strategy:

p(A | S) = p(T (1) | H(1))

K−1∏
k=1

p(T (k+1) | H(k+1), T (k)) . (3)

This decomposition enables progressive refinement from global structural patterns to local amino
acid discrimination.

3
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3 METHOD

3.1 FRAMEWORK OVERVIEW

FractalFold employs a hierarchical generation strategy that decomposes protein inverse folding into
multiple scales of conditional prediction. As illustrated in Figure X, the input protein backbone
structure S is first processed by a GVP-based encoder Hsu et al. (2022a) to capture geometric
features with spatial neighborhood information. The Hierarchical Fractal Segmentation Module
(HFSM) then organizes both structural representations and target amino acid sequences into K hier-
archical scales: {H(k), T (k)}Kk=1, where each scale represents segments of decreasing granularity.

The fractal generator performs coarse-to-fine prediction through cascaded conditional generation.
Starting from the coarsest scale, each scale k generates T (k) by conditioning on the corresponding
structural features H(k) and previously generated sequence representations T (k−1). The final AA
sequence is obtained by sampling from the predicted logits at the finest scale, ensuring that global
structural constraints guide local amino acid selection while maintaining consistency across scales.

3.2 HIERARCHICAL FRACTAL SEGMENTATION MODULE (HFSM)

The HFSM transforms the linear protein sequence into a hierarchical tree-like structure by identi-
fying optimal breakpoints that maximize intra-segment coherence. Given the input structural se-
quence, we first obtain contextual representations using a pretrained ESM2 protein language model
and obtain the attention matrix A ∈ RN×N . We then compute link probabilities between adjacent
residues using neighbor attention:

ai =
√
Ai,i+1 ×Ai+1,i , (4)

where ai represents the bidirectional link probability that residues i and i + 1 belong to the same
structural unit.

Algorithm 1 Hierarchical Fractal Segmentation
Require: Sequence S = (s1, s2, . . . , sN ), ESM2 model, fractal scales K, segment counts {Lk}Kk=1

Ensure: Hierarchical segmentation {T (k)}Kk=1
1: Compute attention matrix A = ESM2(S)
2: Compute link probabilities: ai =

√
Ai,i+1 ×Ai+1,i for i = 1, . . . , N − 1

3: Initialize T (0) = {(1, N)} {Full sequence as single segment}
4: for k = 1 to K do
5: r = Lk/Lk−1 − 1 {New breakpoints per segment}
6: T (k) = ∅
7: for each segment (bm, em) ∈ T (k−1) do
8: Find r positions with minimum ai in [bm, em − 1]
9: Split segment (bm, em) at these r positions

10: Add resulting sub-segments to T (k)

11: end for
12: end for
13: Pad all segments in T (K) to uniform length with ⟨PAD⟩
14: return T (K)

For a segment spanning positions [bm, em], the segment coherence is defined as the product of all
link probabilities within the segment:

∏em−1
i=bm

ai. To find the optimal segmentation at scale k with
Lk segments, we solve:

T (k)∗ = argmin
T (k)

Lk∑
m=1

em−1∑
i=bm

(− log ai) . (5)

where T (k) = {t(k)1 , t
(k)
2 , . . . , t

(k)
Lk
} represents the set of segments at scale k. We prove in the Ap-

pendix G that this optimization is equivalent to selecting the Lk − 1 positions with the lowest link
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probabilities as breakpoints. T (0) is defined as the structural representation obtained by pre-trained
structure encoder. The algorithm iteratively constructs the tree structure by selecting breakpoints
within existing segments from the previous scale. We first employ the Geometric Vector Perceptron
(GVP) encoder Hsu et al. (2022a) to process the input structure sequence. The GVP encoder adopt
the kNN algorithm to fuse neighboring information around each residue while maintaining rotation
invariance and equivariance properties. Starting from the full sequence at scale 0, at each scale k,
we identify the Lk − Lk−1 positions with minimum link probabilities within the current segments
and introduce new breakpoints accordingly. To maintain balanced tree growth, we add an equal
number of breakpoints to each segment from the previous scale: specifically, Lk/Lk−1 − 1 new
breakpoints per segment. The process continues until reaching the top fractal scale K, creating a
hierarchical structure {T (k)}Kk=1 where each scale contains segments of progressively finer granu-
larity. Finally, segments at fractal scale K are padded to uniform length with special token ⟨PAD⟩
to enable efficient batch processing in the subsequent fractal transformer, resulting in padded seg-
ments t(K)

m = (sbm , sbm+1, . . . , sem , ⟨PAD⟩, . . . , ⟨PAD⟩). The complete hierarchical segmentation
algorithm is presented in Algorithm 1.

Algorithm 2 FractalFold Training Algorithm
Require: Protein dataset D, fractal scales K, FractalFold model parameters θ
Ensure: Trained model parameters θ

1: for each batch (S,A) ∈ D do
2: T (1), . . . , T (K) ← HFSM(S,K) {Hierarchical segmentation}
3: c(0) ← 0 {Initialize conditioning}
4: for k = 1 to K do
5: S(k) ← Compress(T (k)) {Multi-scale compression}
6: X(k) ← [S(k), c(k−1)] {Add conditioning}
7: Y(k) ← Transformer(k)(X(k)) {Fractal transformer}
8: c(k) ← Reshape(Y(k)

1:Lk
) {Update conditioning}

9: end for
10: L ← −

∑LK

i=1 logP (yi|Y(K)
i ) {Cross-entropy loss}

11: θ ← Update(θ,∇θL) {Backprop & update}
12: end for
13: return θ

3.3 FRACTAL TRANSFORMER

After obtaining the hierarchically padded segmentation T (K) from HFSM, a multi-scale compressor
module transforms it into K fractal scales with shapes [B,L1, D], [B,L2, D], . . ., [B,LK , D],
where B is the batch size, Lk represents the sequence length at fractal scale k, and D is the feature
dimension.

The fractal transformer processes these multi-scale representations in a hierarchical manner. At each
fractal scale k, the transformer takes as input the Lk structural tokens along with one conditioning
token from the previous fractal scale k − 1. This conditioning mechanism enables information
flow across different granularity scales, allowing coarse-scale structural patterns to guide fine-scale
predictions.

Specifically, for fractal scale k, the input consists of:

X(k) = [s
(k)
1 , s

(k)
2 , . . . , s

(k)
Lk

, c(k−1)] , (6)

where s
(k)
i represents the i-th structural token at scale k, and c(k−1) is the conditioning token from

scale k − 1. The transformer processes this input through standard self-attention and feed-forward
layers, producing output predictions:

Y(k) = Transformer(k)(X(k)) ∈ RB×(Lk+1)×D , (7)

After dropping the last token, Y(k) is reshaped to form the conditioning token for the next fractal
scale with shape [B ·Lk, 1, D]. This iterative process continues through all fractal scales, with each
scale providing hierarchical guidance to the next.
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The output of the final fractal scale K is used to compute the cross-entropy loss:

L = −
LK∑
i=1

logP (yi|Y(K)
i ) . (8)

where yi is the ground truth token at position i, and Y
(K)
i is the corresponding predicted distribution

from the transformer output at the finest scale.

This hierarchical processing strategy captures structural patterns at multiple scales while maintaining
computational efficiency through fractal decomposition. By adopting this ”divide-and-conquer”
approach, the computational complexity is effectively reduced from O(N2) to O(NlogN), which
is proved in Appendix H. The complete training algorithm is presented in Algorithm 2.

4 EXPERIMENTS

In this section, we evaluate FractalFold against 10 state-of-the-art baselines on standard protein in-
verse folding benchmarks, analyze refoldability to assess sequence-structure consistency, and con-
duct ablation studies to validate our key design choices.

4.1 DATASETS AND BASELINES

To fully evaluate FractalFold’s performance, we conduct extensive experiments comparing Frac-
talFold to 10 baseline methods, which can be organized into three distinct classes depending on
the decoding mode. Autoregressive models include StructGNN (Ingraham et al., 2019b), Graph-
Trans (Ingraham et al., 2019b), GCA (Tan et al., 2023), GVP (Jing et al., 2021), AlphaDesign (Gao
et al., 2022), ESM-IF (Hsu et al., 2022b), and ProteinMPNN (Dauparas et al., 2022). One-shot
model: PiFold (Gao et al., 2023) Diffusion-based model includes GraDe-IF (Yi et al., 2023b),
which employ probabilistic denoising processes for sequence generation.

The evaluation is conducted on the widely-used CATH v4.2 and CATH v4.3 protein structure
datasets. For consistency and fair comparison, we adopt the standard data partitions previously
established in the literature. The CATH v4.2 split (Ingraham et al., 2019b) provides 18,024 struc-
tures for training, 608 for validation, and 1,120 for testing. Similarly, the CATH v4.3 split (Hsu
et al., 2022b) allocates 16,153 structures for training, 1,457 for validation, and 1,797 for testing.

4.2 EVALUATION METRICS

Model performance was quantified using perplexity and amino acid recovery rate, which are stan-
dard metrics for this task (Hsu et al., 2022b). To provide a granular analysis, we report the median
recovery rate and perplexity across three subsets of the test data: all proteins, single-chain proteins
only, and short proteins (defined as having a length ≤ 100 residues).

4.3 TRAINING DETAILS

All experiments were conducted on four NVIDIA GTX 4090 GPUs. Models were trained for 50
epochs using AdamW optimizer with a base learning rate of 5 × 10−5. The architecture employs a
frozen GVP structural encoder with multi-resolution encoding at three scales and fractal hierarchy
using progressive patch refinement from coarse to fine levels. More training details are provided in
Appendix F.

4.4 MAIN RESULTS ON INVERSE FOLDING

We evaluate FractalFold against state-of-the-art methods on the CATH 4.2 and 4.3 benchmarks. Ta-
ble 1 demonstrates that FractalFold achieves superior performance across all metrics and protein cat-
egories. On CATH 4.2, FractalFold attains 53.62% recovery rate and 4.27 perplexity, outperforming
the previous best method GraDe-IF (52.21% recovery, 4.35 perplexity). On CATH 4.3, our method
achieves 52.23% recovery rate and 3.81 perplexity, surpassing even ESM-IF augmented with 1.2M
AlphaFold2 structures (51.60% recovery, 4.01 perplexity) while using only standard training data.
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Table 1: Experimental Results of FractalFold and 10 baselines on the CATH Benchmark. Partial
baseline results are quoted from Hsu et al. (2022b); Yi et al. (2023b). †: “Single-chain” in Hsu et al.
(2022b) is defined differently. The best results are bolded and suboptimal results are underlined.

Model Perplexity ↓ Recovery Rate % ↑
Short Single-chain All Short Single-chain All

C
A

T
H

4.
2

StructGNN (Ingraham et al., 2019b) 8.29 8.74 6.40 29.44 28.26 35.91
GraphTrans (Ingraham et al., 2019b) 8.39 8.83 6.63 28.14 28.46 35.82
GCA (Tan et al., 2023) 7.09 7.49 6.05 32.62 31.10 37.64
GVP (Jing et al., 2021) 7.23 7.84 5.36 30.60 28.95 39.47
AlphaDesign (Gao et al., 2022) 7.32 7.63 6.30 34.16 32.66 41.31
ProteinMPNN (Dauparas et al., 2022) 6.21 6.68 4.61 36.35 34.43 45.96
PiFold (Gao et al., 2023) 6.04 6.31 4.55 39.84 38.53 51.66
GraDe-IF (Yi et al., 2023b) 5.49 6.21 4.35 45.27 42.77 52.21
FractalFold (ours) 5.25 6.08 4.27 46.19 44.28 53.62

C
A

T
H

4.
3 GVP-large (Hsu et al., 2022b) 7.68 6.12† 6.17 32.60 39.40† 39.20

ESM-IF (Hsu et al., 2022b) 8.18 6.33† 6.44 31.30 38.50† 38.30
+1.2M AF2 predicted data 6.05 4.00† 4.01 38.10 51.50† 51.60

FractalFold (ours) 5.45 4.57 3.81 42.92 52.47 52.23

The performance gains are most pronounced for short proteins (≤100 residues), suggesting that
hierarchical fractal decomposition is particularly effective for compact structures. The consistent
improvements across both metrics indicate that our coarse-to-fine refinement paradigm successfully
reduces error accumulation inherent in autoregressive approaches.

The superior performance stems from FractalFold’s multi-scale one-shot decoding strategy, which
addresses the error accumulation problem in autoregressive methods including StructGNN (Ingra-
ham et al., 2019b), GraphTrans (Ingraham et al., 2019b), GCA (Tan et al., 2023), and GVP (Jing
et al., 2020). By simultaneously generating amino acid tokens within a ”divide-and-conquer” fractal
decoding framework, FractalFold effectively prevents error propagation across different structural
domains, achieving consistently lower perplexity scores across all protein categories.

This result is particularly significant as it demonstrates that architectural innovation can outperform
data scaling. While ESM-IF requires massive synthetic data augmentation from AlphaFold2 pre-
dictions, FractalFold achieves superior performance through its hierarchical fractal modeling alone.
This suggests that capturing the intrinsic structural organization of proteins is more effective than
brute-force data expansion.

4.5 REFOLDABILITY ANALYSIS

Refoldability measures whether generated sequences can fold back to structures similar to the tar-
get backbone, serving as a critical evaluation of sequence-structure consistency in protein design.
Following the evaluation configuration in Wang et al. (2023), we use a high-quality test set of 82
samples to assess the foldability of predicted sequences. The toolkit from Zhang & Tm-Align is
used to calculate Ref-TM and Ref-pLDDT scores for protein structures folded by ESMFold Lin
et al. (2022), OmegaFold Wu et al. (2022), and AlphaFold2 Jumper et al. (2021). We compare
FractalFold against seven baselines, including pLM-adapted methods (ByProt Zheng et al. (2023b),
AF-Design Wang et al. (2022), and ESM-Design Verkuil et al. (2022)).

The results are summarized in Table 2. FractalFold achieves superior refoldability performance, at-
taining the highest TM scores of 0.81 (ESMFold) and 0.92 (AlphaFold2), along with the best pLDDT
scores of 77.81 (ESMFold) and 88.24 (AlphaFold2). Notably, FractalFold surpasses ProteinMPNN,
the previous leader in refoldability metrics, while simultaneously achieving the highest recovery
rate of 52.33%. These results demonstrate that FractalFold significantly outperforms pLM-based
methods, highlighting the effectiveness of our structure-informed decoding mechanism in capturing
essential sequence-structure relationships.

The results reveal several key insights. First, the exceptional structural fidelity demonstrates the
effectiveness of our structure-informed decoding mechanism. FractalFold’s generated sequences
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Table 2: Refoldability results on the CATH dataset. Best and suboptimal results are bolded and
underlined. We use TM and pLDDT to represent Ref-TM and Ref-pLDDT.

Design method ESMFold OmegaFold AlphaFold2 Recovery Rate% ↑
TM↑ pLDDT↑ TM↑ pLDDT↑ TM↑ pLDDT↑

Uniform 0.05 27.68 0.05 31.53 0.06 33.68 5.00
Natural frequencies 0.07 30.53 0.07 35.59 0.06 35.02 5.84

with pLM
ByProt (Zheng et al., 2023b) 0.73 72.12 0.70 77.58 0.85 87.26 51.23
AF-Design (Wang et al., 2022) 0.53 61.37 0.53 72.04 0.52 75.29 15.95
ESM-Design (Verkuil et al., 2022) 0.38 59.65 0.38 62.66 0.37 60.02 17.33

without pLM
StructTrans (Ingraham et al., 2019b) 0.72 68.85 0.64 70.35 0.79 80.66 35.89
GVP Jing et al. (2020) 0.73 69.67 0.67 74.33 0.83 84.29 39.46
ProteinMPNN (Dauparas et al., 2022) 0.80 76.53 0.76 80.75 0.87 87.89 41.44
PiFold (Gao et al., 2023) 0.71 67.55 0.64 70.21 0.82 82.54 44.86
FractalFold (ours) 0.81 77.81 0.74 79.23 0.92 88.24 52.33

consistently fold back to structures highly similar to the target backbone across all three predic-
tion models, validating that our fractal decoding strategy successfully preserves critical structural
information during sequence generation.

Second, FractalFold significantly surpasses methods utilizing protein language models (pLMs). This
superiority highlights that our structure-centric hierarchical modeling captures essential sequence-
structure relationships more effectively than pLM adapters.

Figure 3: FractalFold prediction for protein 1rtu.A (114 residues) showing high-confidence struc-
tural model with average pLDDT of 92.2. Structure views (left) and confidence-colored representa-
tions (right) demonstrate excellent prediction quality across most residues, with performance met-
rics including pTM score of 0.860 and FractalFold Score of 0.667. Notable confidence dip observed
around residue 60 in the per-residue confidence plot.

4.6 CASE STUDY

We visualize the protein folded by the prediction results of FractalFold, as presented in Figure 3.
Protein 1rtu.A serves as an exemplary case study demonstrating FractalFold’s prediction capabili-
ties on a 114-residue protein from the CATH 4.2 test set. The model achieved strong overall per-
formance with an average pLDDT score of 92.2, pTM score of 0.860, and FractalFold score of
0.667, indicating high-quality structural prediction. The confidence-colored visualization reveals
predominantly high-confidence regions (red coloring, pLDDT > 90) across most of the structure,
with well-defined secondary structure elements clearly visible in both front and side views. No-
tably, the per-residue confidence plot identifies a localized confidence dip around residue 60 where

8
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pLDDT drops to approximately 50, likely corresponding to a flexible loop region that presents inher-
ent structural ambiguity. This confidence decrease is isolated and does not propagate to neighboring
regions, as evidenced by the rapid recovery to high confidence levels, demonstrating FractalFold’s
ability to maintain overall structural integrity while appropriately flagging uncertain regions. The
successful prediction of both terminal regions and the compact, well-organized three-dimensional
fold topology validates the robustness of our approach across diverse structural elements within a
single protein.

4.7 ABLATION STUDIES

To validate the effectiveness of key components in FractalFold, we conduct comprehensive ablation
studies on the CATH v4.2 dataset, examining three critical design choices: pre-trained encoder
initialization, one-shot decoding mechanism, and hierarchical fractal segmentation module (HFSM).
The results are presented in Table 3.

Table 3: Ablation studies of key components on CATH v4.2. ”w/ pre-training” uses pre-trained GVP
encoder. ”w/ one-shot” adopts one-shot decoding mechanism. ”w/ HFSM” ”applies the hierarchical
segmentation module to the ground truth AA sequences.

Encoder Decoder Segmentation Perplexity ↓ Recovery Rate % ↑
w/ pre-training w/ one-shot w/ HFSM Short Single-chain All Short Single-chain All

✓ ✓ 5.48 6.27 4.31 44.67 44.10 52.10
✓ ✓ 6.34 6.68 4.53 43.47 42.62 50.39
✓ ✓ 6.77 6.43 4.34 42.35 43.57 51.24
✓ ✓ ✓ 5.25 6.08 4.27 46.19 44.28 53.51

1. Pre-trained Encoder: Removing pre-trained GVP encoder initialization leads to consis-
tent performance degradation across all protein categories. This demonstrates that pre-
trained structural representations provide essential geometric priors that enable the model
to better understand multi-scale protein backbone conformations and local structural mo-
tifs.

2. One-shot Decoding: Replacing the hierarchical one-shot decoding with iterative autore-
gressive decoding results in the most significant performance drops, particularly for single-
chain proteins. This validates that one-shot generation is crucial to avoid error accumula-
tion, especially in complex protein architectures.

3. HFSM: Removing HFSM leads to notable performance degradation, particularly affecting
the model’s ability to handle short protein sequences. Without HFSM, only a small fraction
of the computational pathway is activated, as all meaningful tokens are concentrated at the
beginning of the sequence. This confirms that hierarchical structural decomposition enables
adaptive modeling of proteins with varying complexity and length scales, allowing the
model to dynamically allocate computational resources to structurally important regions.

5 CONCLUSION

This work introduces FractalFold, a novel transformer-based model that leverages the inherent frac-
tal nature of protein structures for inverse folding through recursive multi-scale decoding and hi-
erarchical segmentation. The fractal architecture enables coarse-to-fine refinement that effectively
eliminates error accumulation, while the Hierarchical Fractal Segmentation Module enables adaptive
multi-scale decomposition of quasi-fractal proteins. Our approach achieves state-of-the-art perfor-
mance on established benchmarks, surpassing existing methods in sequence recovery rate, perplex-
ity, and foldability. By demonstrating that architectural alignment with biological priors can exceed
brute-force data scaling, FractalFold establishes a new paradigm for structure-informed protein de-
sign and opens promising avenues for extending fractal modeling to multi-chain complexes, protein
interactions, and other structural biology tasks requiring multi-scale understanding.

9
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REPRODUCIBILITY STATEMENT

To ensure reproducibility of our results, we provide comprehensive implementation details and ex-
perimental configurations throughout this work. Section 5 contains detailed training procedures
including hyperparameters, optimization settings, and hardware specifications. The complete model
architecture specifications, including the fractal hierarchy design and multi-scale encoding compo-
nents, are described in Section 4 with additional implementation details provided in the appendix.
The codebase implementing FractalFold, including training scripts, model definitions, and evalua-
tion pipelines, will be made publicly available upon publication.

ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics. Our research uses publicly available protein struc-
tural data from the CATH dataset with no sensitive information or human subjects involved. The
proposed computational method for protein sequence prediction poses no known ethical concerns
and has potential benefits for drug discovery and protein engineering. We declare no conflicts of
interest and ensure transparent reporting of methodology and limitations.

REFERENCES

Rebecca F Alford, Andrew Leaver-Fay, Jeliazko R Jeliazkov, Matthew J O’Meara, Frank P DiMaio,
Hahnbeom Park, Maxim V Shapovalov, P Douglas Renfrew, Vikram K Mulligan, Kalli Kappel,
et al. The rosetta all-atom energy function for macromolecular modeling and design. Journal of
chemical theory and computation, 13(6):3031–3048, 2017.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in Neural Information Processing
Systems, 34:17981–17993, 2021.

Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N Bhat, Helge Weissig,
Ilya N Shindyalov, and Philip E Bourne. The protein data bank. Nucleic acids research, 28(1):
235–242, 2000.

Peter J Burt and Edward H Adelson. The laplacian pyramid as a compact image code. In Readings
in computer vision, pp. 671–679. Elsevier, 1987.

Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles,
Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning–
based protein sequence design using proteinmpnn. Science, 378(6615):49–56, 2022.

Matthew B Enright and David M Leitner. Mass fractal dimension and the compactness of proteins.
Physical Review E—Statistical, Nonlinear, and Soft Matter Physics, 71(1):011912, 2005.

Evelyn Fix. Discriminatory analysis: nonparametric discrimination, consistency properties, vol-
ume 1. USAF school of Aviation Medicine, 1985.

Zhangyang Gao, Cheng Tan, and Stan Z Li. Alphadesign: A graph protein design method and
benchmark on alphafolddb. arXiv preprint arXiv:2202.01079, 2022.

Zhangyang Gao, Cheng Tan, and Stan Z. Li. Pifold: Toward effective and efficient protein in-
verse folding. In International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=oMsN9TYwJ0j.

Zhangyang Gao, Cheng Tan, Xingran Chen, Yijie Zhang, Jun Xia, Siyuan Li, and Stan Z. Li. KW-
design: Pushing the limit of protein design via knowledge refinement. In The Twelfth Interna-
tional Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=mpqMVWgqjn.

Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and
Alexander Rives. Learning inverse folding from millions of predicted structures. In Kama-
lika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato

10

https://openreview.net/forum?id=oMsN9TYwJ0j
https://openreview.net/forum?id=oMsN9TYwJ0j
https://openreview.net/forum?id=mpqMVWgqjn
https://openreview.net/forum?id=mpqMVWgqjn


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

(eds.), Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 8946–8970. PMLR, 17–23 Jul 2022a. URL
https://proceedings.mlr.press/v162/hsu22a.html.

Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and Alexan-
der Rives. Learning inverse folding from millions of predicted structures. In International con-
ference on machine learning, pp. 8946–8970. PMLR, 2022b.

Shinya Ikeda, E Allen Foegeding, and Tomoaki Hagiwara. Rheological study on the fractal nature
of the protein gel structure. Langmuir, 15(25):8584–8589, 1999.

John Ingraham, Vikas Garg, Regina Barzilay, and Tommi Jaakkola. Generative Models for Graph-
Based Protein Design. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox,
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A NOTATION

This section provides a comprehensive overview of the mathematical notation used throughout the
paper, organized by the main components of our FractalFold framework.

Table 4: Mathematical Notation
Symbol Description

Problem Formulation
N Protein sequence length

Natom Number of backbone atoms per residue
S ∈ RN×Natom×3 3D coordinates of backbone atoms
Si ∈ RNatom×3 Atomic coordinates of the i-th residue

A = (a1, a2, . . . , aN ) Amino acid sequence
ai ∈ {1, 2, . . . , 20} Integer index for i-th amino acid

fθ Neural network with parameters θ
∆20×N Space of probability distributions over sequences
L(θ) Conditional log-likelihood objective
D Training dataset of structure-sequence pairs

Hierarchical Modeling
K Number of fractal scales

k ∈ {1, 2, . . . ,K} Fractal scale index
Lk Number of segments at scale k

T (k) = {t(k)1 , . . . , t
(k)
Lk
} Padded segments at scale k

t
(k)
m m-th segment at scale k

bm, em Start and end positions of segment m
H(k) = {h(k)

1 , . . . ,h
(k)
Lk
} Structural features for segments at scale k

H(k), T (k) Hierarchical representations at scale k

Hierarchical Fractal Segmentation
A ∈ RN×N ESM2 attention matrix

ai Link probability between residues i and i+ 1
r = Lk/Lk−1 − 1 New breakpoints per segment at scale k

T (k)∗ Optimal segmentation at scale k
⟨PAD⟩ Padding token

Fractal Transformer
B Batch size
D Feature dimension

X(k) Input to transformer at scale k

s
(k)
i i-th structural token at scale k

c(k−1) Conditioning token from scale k − 1
Y(k) ∈ RB×(Lk+1)×D Transformer output at scale k

yi Ground truth token at position i
θ FractalFold model parameters

B LARGE LANGUAGE MODEL USAGE STATEMENT

Large Language Models were used in a limited capacity during the preparation of this manuscript.
Specifically, LLMs were employed solely as auxiliary tools for grammar checking, language polish-
ing, and minor stylistic improvements. The LLMs did not contribute to research ideation, method-
ology development, experimental design, data analysis, or the generation of scientific content. All
research concepts, technical contributions, experimental results, and scientific insights presented in
this work are entirely the product of the authors’ original research and intellectual effort.
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The authors take full responsibility for all content in this manuscript, including any text that may
have been refined using LLM assistance for grammatical or stylistic purposes.

C RELATED WORKS

C.1 PROTEIN INVERSE FOLDING

The advent of deep learning has spurred a revolution in modeling protein folding (Jumper et al.,
2021; Lin et al., 2023), while the inverse problem of protein folding, which aims to infer amino
acid sequences that fold into desired structures, has gained increasing attention (Dauparas et al.,
2022). By representing protein backbone structures as k-NN graphs, geometric deep learning has
achieved remarkable progress in learning inverse folding (Ingraham et al., 2019b; Dauparas et al.,
2022; Hsu et al., 2022b), surpassing traditional physics-based approaches (Alford et al., 2017) and
facilitating the design of experimentally validated proteins (Dauparas et al., 2022; Watson et al.,
2023). Current methods primarily follow three generation strategies: autoregressive approaches
like GraphTrans (Ingraham et al., 2019b), ProteinMPNN (Dauparas et al., 2022), GVP (Jing et al.,
2021), and ESM-IF (Hsu et al., 2022b) that generate sequences token-by-token but suffer from slow
inference speed; one-shot methods such as PiFold (Gao et al., 2023) and DE-NOVO (Mao et al.,
2024) that facilitate parallel generation of multiple tokens but struggle with global consistency; and
iterative refinement techniques including LM-Design (Zheng et al., 2023b), KW-Design (Gao et al.,
2024), ChromaDesign (Ingraham et al., 2023), CarbonDesign (Ren et al., 2024a), and diffusion-
based GraDe-IF (Yi et al., 2023b) that progressively improve predictions through multiple refine-
ment steps, with some leveraging discrete denoising diffusion probabilistic models (Austin et al.,
2021) to encompass diverse plausible solutions.Despite significant progress in computational bi-
ology, existing methods predominantly treat protein structures as flat sequential representations or
simple graph topologies, failing to capture the inherent hierarchical and fractal organization of com-
plex biological protein architectures.

C.2 FRACTAL MODELING

Protein structures exhibit hierarchical organization from secondary motifs to tertiary architectures,
resembling fractals’ self-similar properties (Mandelbrot, 1983; Enright & Leitner, 2005). Current
inverse folding methods treat proteins as flat sequences or simple graphs, ignoring this structural hi-
erarchy. Hierarchical approaches have proven effective in computer vision (Burt & Adelson, 1987;
Lin et al., 2017; Liu et al., 2021; Li et al., 2025) and generative modeling through cascaded diffu-
sion (Ramesh et al., 2022; Saharia et al., 2022) and scale-space methods (Tian et al., 2024; Tang
et al., 2024) that generate progressively from coarse to fine scales. To the best of our knowledge,
FractalFold is the first protein inverse folding method that explicitly leverages fractal-based gen-
eration to align with the inherent fractal structure prior of proteins, modeling recursive structural
hierarchy through coarse-to-fine refinement to enable biologically informed sequence design.

D RESULTS VISUALIZATION

This section presents detailed visualizations of FractalFold’s performance on selected proteins from
the CATH 4.2 test set. The results demonstrate the model’s ability to generate high-quality structural
predictions across diverse protein families and topologies.

Figure 4 provides a comprehensive comparison between ground truth structures and predictions
from both PiFold and FractalFold methods, illustrating the superior accuracy achieved by our ap-
proach. The subsequent figures showcase individual FractalFold predictions for representative pro-
teins, highlighting the model’s consistent performance across different protein sizes and structural
complexities.

Each prediction visualization includes four key components: front and side views of the predicted
structure, confidence-colored representations indicating prediction reliability, and per-residue confi-
dence plots with accompanying performance metrics. The confidence coloring scheme ranges from
blue (low confidence, pLDDT < 50) to red (high confidence, pLDDT > 90), providing immediate
visual feedback on prediction quality.
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The selected examples span protein lengths from 114 to 195 residues and demonstrate consistently
high average pLDDT scores (92.2-96.9), pTM scores (0.860-0.910), and FractalFold scores (0.664-
0.685), validating the robustness of our method across the CATH 4.2 test set.

Ground Truth PiFold FractalFold

Pr
ed

ic
tio

n
pL

D
D

T

Protein: 3ic4.A   length: 92

Figure 4: Comparison of protein folding predictions for 3ic4.A showing structural models (top) and
confidence scores (bottom) for Ground Truth, PiFold, and FractalFold methods.

Figure 5: FractalFold prediction for protein 4owz.A (134 residues) showing high-confidence struc-
tural model with average pLDDT of 96.2. Structure views (left) and confidence-colored representa-
tions (right) demonstrate excellent prediction quality across most residues, with performance metrics
including pTM score of 0.880 and FractalFold score of 0.664.
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Figure 6: FractalFold prediction for protein 4lqb.A (130 residues) showing high-confidence struc-
tural model with average pLDDT of 95.0. Structure views (left) and confidence-colored representa-
tions (right) demonstrate excellent prediction quality across most residues, with performance metrics
including pTM score of 0.860 and FractalFold score of 0.669.

Figure 7: FractalFold prediction for protein 3c7m.A (195 residues) showing high-confidence struc-
tural model with average pLDDT of 96.9. Structure views (left) and confidence-colored representa-
tions (right) demonstrate excellent prediction quality across most residues, with performance metrics
including pTM score of 0.910 and FractalFold score of 0.677.
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Figure 8: FractalFold prediction for protein 2fy6.A (143 residues) showing high-confidence struc-
tural model with average pLDDT of 96.0. Structure views (left) and confidence-colored representa-
tions (right) demonstrate excellent prediction quality across most residues, with performance metrics
including pTM score of 0.900 and FractalFold score of 0.685.

E PARAMETER SENSITIVITY ANALYSIS

We conducted parameter sensitivity analysis on CATH 4.2 to examine the impact of three critical
hyperparameters on FractalFold’s performance. Each parameter was varied independently while
maintaining baseline values for others, with results averaged across three random seeds.

E.1 RESULTS AND ANALYSIS

Figure 9 presents the sensitivity analysis results across decode temperature, ESM-IF attention layer
selection, and embedding dimension.

Decode Temperature: Recovery rates increase monotonically from 53.30% (temperature 10) to
53.62% (temperature 400). Higher temperatures introduce beneficial stochasticity during sequence
generation, enabling broader exploration of the solution space and improved sequence-structure
compatibility.

Attention Layer Selection: Early attention layers prove most effective, with layer 1 achieving
optimal performance (53.62%) compared to deeper layers (53.41% for layer 2, 53.27% for layer
3). This indicates that early layers from pre-trained structure encoders capture the most relevant
geometric information for inverse folding tasks.

Embedding Dimension: Moderate capacity yields optimal results, with 256 dimensions achieving
peak performance (53.62%) compared to 128D (53.53%) and 384D (53.60%). This demonstrates
an effective balance between representational power and generalization capability.

E.2 IMPLICATIONS

The analysis reveals that FractalFold exhibits robust performance across parameter ranges, with
the fractal architecture providing inherent stability. The findings recommend using higher decode
temperatures, early attention layers from pre-trained encoders, and moderate embedding dimensions
for optimal performance.
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Figure 9: Parameter sensitivity analysis on CATH 4.2 dataset. Higher temperatures improve sam-
pling diversity, early attention layers capture optimal structural information, and moderate embed-
ding dimensions provide the best performance balance.

F IMPLEMENTATION DETAILS

We implemented our FractalFold model using PyTorch 2.2.2 with CUDA 11.8 runtime, leveraging
mixed precision training through PyTorch’s Automatic Mixed Precision (AMP) for computational
efficiency. All experiments were conducted on four NVIDIA GTX 4090 GPUs

For sequence tokenization, we employed the ESM-1b alphabet with special tokens to build token
IDs and masking. The model architecture follows a hierarchical design with amino acid patch sizes
of 64, 8, and 1 residues, where each value represents the patch size at different hierarchical levels
with 1 corresponding to single amino acid tokens. The embedding dimension was set to 256 across
all levels, while the number of transformer blocks was configured as 4, 4, and 2 blocks respectively,
indicating the computational depth at each hierarchical level from coarse to fine resolution.

For optimization, we employed the AdamW optimizer with β1 = 0.9, β2 = 0.95, and weight decay
of 0.05. The learning rate was scaled based on global batch size using lr = blr × (global batch/256)
with a base learning rate of 5×10−5. The learning rate schedule included linear warmup for 5 epochs
followed by cosine decay to zero over the training duration.

Training utilized mixed precision with gradient clipping at a global norm of 3.0 to ensure stable
convergence. Batch formation employed fixed token-budget batching with a maximum of 15,000
tokens per batch while respecting nominal batch size constraints. The complete training process was
conducted for 50 epochs.

Model performance was evaluated using sequence recovery rate, computed as elementwise equality
between predicted and ground truth amino acids at positions with valid coordinates:

Recovery Rate =
1

|M|
∑
i∈M

1[ŷi = yi] (9)

whereM denotes the set of positions with valid coordinates, ŷi and yi are the predicted and ground
truth amino acids at position i, respectively, and 1[·] is the indicator function which excludes padding
tokens. Perplexity was also reported as an additional metric. During evaluation, the model per-
formed non-autoregressive sampling using softmax-multinomial sampling with temperature control.

G PROOF OF OPTIMIZATION EQUIVALENCE

We prove that the optimization problem in Equation (X) is equivalent to selecting the Lk−1 positions
with the lowest link probabilities as breakpoints.

Lemma 1 For a sequence of length N with link probabilities {ai}N−1
i=1 , the segmentation that mini-

mizes
∑Lk

m=1

∑em−1
i=bm

(− log ai) is equivalent to selecting the Lk− 1 positions with the smallest link
probabilities as breakpoints.
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Proof G.1 Consider the objective function:

L(T (k)) =

Lk∑
m=1

em−1∑
i=bm

(− log ai) = −
Lk∑

m=1

em−1∑
i=bm

log ai (10)

Since each position i ∈ {1, 2, . . . , N − 1} appears in exactly one segment, we can rewrite this as:

L(T (k)) = −
N−1∑
i=1

log ai +
∑
j∈B

log aj (11)

where B = {j1, j2, . . . , jLk−1} is the set of breakpoint positions, and the second term accounts
for the fact that breakpoint positions are excluded from the segments (as they represent boundaries
between segments).

The first term −
∑N−1

i=1 log ai is constant regardless of the choice of breakpoints. Therefore, mini-
mizing L(T (k)) is equivalent to minimizing: ∑

j∈B
log aj (12)

Since log is a monotonically increasing function, minimizing
∑

j∈B log aj is equivalent to minimiz-
ing

∑
j∈B aj .

To minimize the sum of Lk − 1 values from the set {a1, a2, . . . , aN−1}, we must select the Lk − 1
smallest values. Therefore, the optimal breakpoints correspond to the positions with the Lk − 1
lowest link probabilities.

This equivalence justifies our greedy approach in Algorithm 1, where we iteratively select positions
with minimum link probabilities as breakpoints at each hierarchical scale.

H COMPUTATIONAL COMPLEXITY ANALYSIS

The computational complexity of transformer-based protein language models is fundamentally con-
strained by the quadratic scaling of self-attention mechanisms with respect to sequence length. For
a protein sequence of length N with hidden dimension d, the standard transformer attention mech-
anism requires O(N2d) operations per layer. This quadratic complexity poses significant compu-
tational barriers for long protein sequences, which can exceed 1000-5000 residues in many bio-
logically relevant cases. The FractalFold architecture addresses this limitation through hierarchical
fractal segmentation, achieving theoretical complexity reduction to O(K ·N · logN · d), where K
represents the number of fractal scales.

For a transformer layer processing a protein sequence of length N , the total computational complex-
ity per attention head is:

Cstandard = 2N2d+N2 = N2(2d+ 1) = O(N2d)

The memory complexity for storing attention matrices scales asO(N2), which becomes prohibitive
for long sequences.

The FractalFold architecture decomposes the global attention computation into hierarchical local
attention operations across K fractal scales. At scale k, the sequence is partitioned into Lk segments,
where Lk = min(2k, N) follows exponential growth constrained by sequence length.

For each scale k, the average segment length is:

ℓk = ⌊N/Lk⌋

The computational complexity at scale k is:

Ck = Lk · ℓ2k · d = Lk ·
(
N

Lk

)2

· d =
N2d

Lk
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The total complexity across all scales becomes:

Cfractal =

K∑
k=1

Ck = N2d

K∑
k=1

1

Lk

Since Lk = min(2k, N), for sequences where N > 2K , this sum approximates:

K∑
k=1

1

2k
= 1− 1

2K
< 1

Therefore: Cfractal < N2d, achieving complexity reduction.

For the asymptotic case where K = O(logN), the complexity becomes:

Cfractal = O(K ·N · logN · d)

The theoretical complexity reduction from O(N2) to O(N logN) represents a fundamental ad-
vancement in transformer scalability for protein sequence modeling, enabling the processing of
previously intractable long-range protein interactions while maintaining the representational power
of self-attention mechanisms.
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