

000 001 FRACTALFOLD: TOWARDS FRACTAL STRUCTURE 002 MODELING FOR HIERARCHICAL INVERSE PROTEIN 003 FOLDING 004

005
006 **Anonymous authors**
007 Paper under double-blind review
008

009 010 ABSTRACT 011

012
013 Inverse protein folding aims to design amino acid sequences that fold into de-
014 sired backbone structures, representing a long-standing challenge in computa-
015 tional protein design. While recent deep learning approaches have achieved sig-
016 nificant progress, existing methods predominantly treat protein structures as flat-
017 tened sequences, overlooking their inherent hierarchical and fractal organization.
018 To address this limitation, we propose FractalFold, a novel transformer-based
019 model that performs structure-informed inverse folding by recursively invoking
020 multi-level atomic fractal transformers. FractalFold employs a coarse-to-fine se-
021 quence refinement paradigm that mirrors the intrinsic hierarchical nature of pro-
022 tein structures. To generalize our approach to quasi-fractal proteins with variable-
023 length structural segments, we introduce the Hierarchical Fractal Segmentation
024 Module (HFSM), which leverages attention patterns from pre-trained protein
025 language models to recursively partition protein structures into tree-organized
026 patches. Extensive experiments on the CATH benchmarks demonstrate that Frac-
027 talFold achieves state-of-the-art performance in sequence recovery rate and per-
028 perplexity while generating sequences with enhanced foldability, establishing a new
029 paradigm for structure-informed protein design.

030 1 INTRODUCTION 031

032 Proteins are amino acid sequences that control biological processes such as transcription, translation,
033 and immune response. Designing novel proteins that fold into desired 3D structures, also termed
034 protein inverse folding, remains one of the fundamental challenges in computational biology with
035 important applications in protein engineering, drug design, and synthetic biology.

036 Beyond traditional physics-based methods like Rosetta, which suffer from high computational costs,
037 deep learning-based methods have emerged as promising alternatives. Despite substantial advance-
038 ment, a major challenge in inverse protein folding remains the extraction of hierarchical structural
039 patterns from raw 3D coordinate sequences and their explicit incorporation as inductive biases into
040 the model architecture. As shown in Figure 1, transformer-based models Ren et al. (2024b) directly
041 encode the coordinate sequence as a flattened token sequence and perform self-attention calculations
042 autoregressively, which fails to capture the inherent semantics of protein structures and inevitably
043 results in error accumulation. Recent methods harness graph-based structure encoders alongside
044 diffusion models Yi et al. (2023a), GNNs Gao et al. (2023), and transformers Zheng et al. (2023a);
045 Ingraham et al. (2019a). Nonetheless, they only model the lowest-level structural bias by aggre-
046 gating information from nearest residues using kNN algorithms Fix (1985) during encoding, still
047 lacking a way to explicitly incorporate the prior of the full hierarchical protein structure.

048 To address the above issue, we propose to predict amino acid sequences by recursively invoking
049 multi-level atomic fractal transformers, which naturally align with protein’s inherent hierarchical
050 organization through the model architecture. Our proposal is analogous to the concept of **fractals**
051 in mathematics, which was first employed by FractalGen Li et al. (2025) in image generation tasks.
052 Compared to images, protein structures display stronger self-similarity and recursive organizational
053 patterns across multiple scales—from secondary structure motifs to functional domains and com-
plete tertiary folds Stapleton et al. (1980); Ikeda et al. (1999); Sendker et al. (2024). As reported in

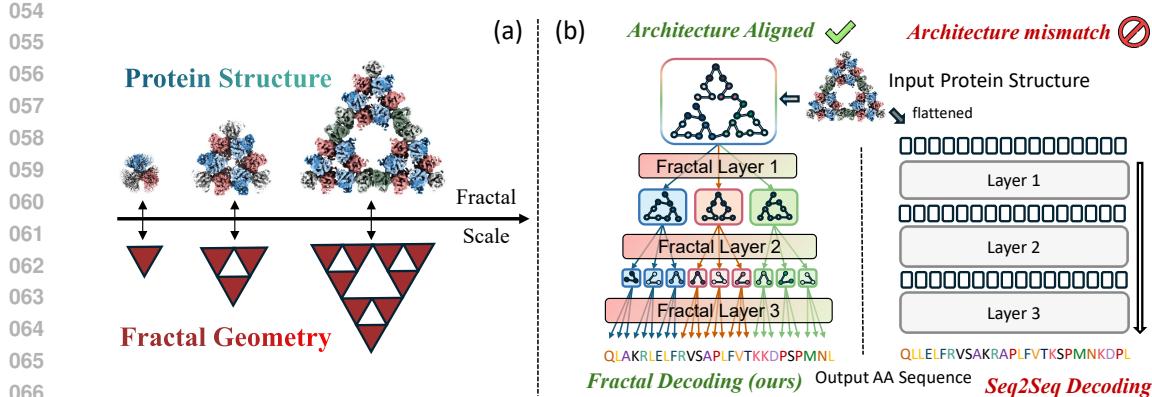


Figure 1: (a) Protein structures exhibit fractal geometry Sendker et al. (2024) with self-similar patterns across multiple scales. (b) The architecture of FractalFold is aligned with protein structure (left), while conventional methods lose structural prior by flattening 3D structures into sequential tokens (right).

Enright & Leitner (2005), 200 proteins from the Protein Data Bank Berman et al. (2000) ranging from 100 to over 10,000 amino acids have an average fractal dimension of 2.5. Building on the fractal property of protein structure, we propose **FractalFold**, a fractal transformer model specifically tailored for hierarchical-structure-informed inverse protein folding, which inherently conforms to the fractal nature of proteins. FractalFold adopts a coarse-to-fine refinement paradigm that effectively reduces error accumulation with one-shot inference.

To further generalize FractalFold to broader quasi-fractal proteins containing recursive units of varying lengths, we introduce the **Hierarchical Fractal Segmentation Module (HFSM)**, a structure-aware dynamic decomposition algorithm that exploits attention patterns from pre-trained protein language models (pLMs) to recursively segment protein sequences into variable-length patches. Extensive evaluation on CATH benchmarks demonstrates that FractalFold achieves state-of-the-art performance across comprehensive metrics, including sequence recovery rate, perplexity and structural foldability. By establishing a fractal-based coarse-to-fine refinement framework for protein design, our work opens a new paradigm for structure-informed inverse folding that aligns with the intrinsic hierarchical organization of biological proteins.

The primary contributions of this work are threefold:

1. We introduce FractalFold, a fractal inverse protein folding model that explicitly captures the hierarchical structural bias of proteins by recursively invoking atomic transformer units.
2. We develop HFSM, a novel dynamic segmentation algorithm that enables adaptive multi-scale structure decomposition, generalizing FractalFold to broader quasi-fractal proteins with variable-length recursive units.
3. We achieve state-of-the-art experimental performance on established benchmarks with significant improvements in sequence recovery, perplexity, and foldability compared to existing methods.

2 PRELIMINARIES

2.1 PROBLEM FORMULATION

Let $\mathbf{S} \in \mathbb{R}^{N \times N_{\text{atom}} \times 3}$ denote the 3D coordinates of backbone atoms for a protein of length N , where $\mathbf{S}_i \in \mathbb{R}^{N_{\text{atom}} \times 3}$ represents the atomic coordinates of the i -th residue. Let $\mathbf{A} = (a_1, a_2, \dots, a_N)$ denote the corresponding amino acid sequence, where each $a_i \in \{1, 2, \dots, 20\}$ is an integer index representing one of the 20 standard amino acids.

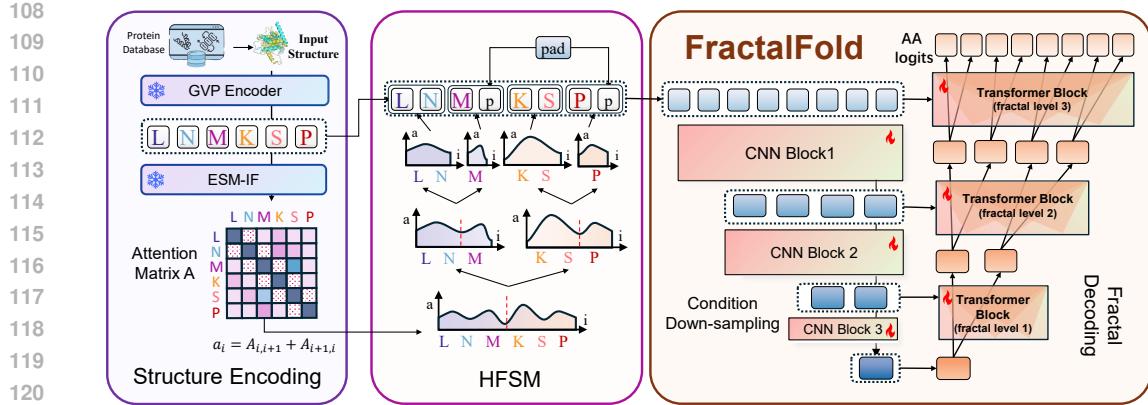


Figure 2: Overview of FractalFold architecture. The input protein structure is encoded using GVP and ESM-IF to extract geometric and contextual features. The Hierarchical Fractal Segmentation Module (HFSM) decomposes the sequence into multi-scale segments using attention-based breakpoint selection. The Fractal Transformer processes these hierarchical representations through cascaded blocks, with each fractal level conditioning on the previous scale to generate amino acid sequences via coarse-to-fine prediction.

The neural network f_θ performs the mapping:

$$f_\theta : \mathbb{R}^{N \times N_{\text{atom}} \times 3} \rightarrow \Delta^{20 \times N}, \quad (1)$$

where $\Delta^{20 \times N}$ represents the space of probability distributions over amino acid sequences of length N .

The model parameters θ are optimized to maximize the conditional log-likelihood:

$$\mathcal{L}(\theta) = \sum_{(\mathbf{S}, \mathbf{A}) \in \mathcal{D}} \log p(\mathbf{A} \mid \mathbf{S}; \theta), \quad (2)$$

where \mathcal{D} denotes the training dataset consisting of structure-sequence pairs.

2.2 HIERARCHICAL PROTEIN MODELING

FractalFold decomposes the sequence generation task through recursive segmentation. Given a protein structure S of length N , we construct a K -scale hierarchy where each scale partitions the sequence into segments of manageable size. At scale $k \in \{1, 2, \dots, K\}$, we divide the sequence into L_k segments.

Let $T^{(k)} = \{\mathbf{t}_1^{(k)}, \mathbf{t}_2^{(k)}, \dots, \mathbf{t}_{L_k}^{(k)}\}$ denote the L_k padded segments at scale k , where each segment $\mathbf{t}_m^{(k)} = (s_{b_m}, s_{b_{m+1}}, \dots, s_{e_m})$ contains a structure subsequence spanning from position b_m to e_m . Similarly, we define $H^{(k)} = \{\mathbf{h}_1^{(k)}, \mathbf{h}_2^{(k)}, \dots, \mathbf{h}_{L_k}^{(k)}\}$ as the corresponding structural features for segments in $T^{(k)}$.

The hierarchical generation follows a coarse-to-fine strategy:

$$p(A \mid S) = p(\mathcal{T}^{(1)} \mid \mathcal{H}^{(1)}) \prod_{k=1}^{K-1} p(\mathcal{T}^{(k+1)} \mid \mathcal{H}^{(k+1)}, \mathcal{T}^{(k)}) . \quad (3)$$

This decomposition enables progressive refinement from global structural patterns to local amino acid discrimination.

162 3 METHOD
163164 3.1 FRAMEWORK OVERVIEW
165

166 FractalFold employs a hierarchical generation strategy that decomposes protein inverse folding into
167 multiple scales of conditional prediction. As illustrated in Figure X, the input protein backbone
168 structure S is first processed by a GVP-based encoder Hsu et al. (2022a) to capture geometric
169 features with spatial neighborhood information. The Hierarchical Fractal Segmentation Module
170 (HFSM) then organizes both structural representations and target amino acid sequences into K hier-
171 archical scales: $\{\mathcal{H}^{(k)}, \mathcal{T}^{(k)}\}_{k=1}^K$, where each scale represents segments of decreasing granularity.

172 The fractal generator performs coarse-to-fine prediction through cascaded conditional generation.
173 Starting from the coarsest scale, each scale k generates $\mathcal{T}^{(k)}$ by conditioning on the corresponding
174 structural features $\mathcal{H}^{(k)}$ and previously generated sequence representations $\mathcal{T}^{(k-1)}$. The final AA
175 sequence is obtained by sampling from the predicted logits at the finest scale, ensuring that global
176 structural constraints guide local amino acid selection while maintaining consistency across scales.
177

178 3.2 HIERARCHICAL FRACTAL SEGMENTATION MODULE (HFSM)
179

180 The HFSM transforms the linear protein sequence into a hierarchical tree-like structure by identi-
181 fying optimal breakpoints that maximize intra-segment coherence. Given the input structural se-
182 quence, we first obtain contextual representations using a pretrained ESM2 protein language model
183 and obtain the attention matrix $\mathbf{A} \in \mathbb{R}^{N \times N}$. We then compute link probabilities between adjacent
184 residues using neighbor attention:

$$185 \quad a_i = \sqrt{\mathbf{A}_{i,i+1} \times \mathbf{A}_{i+1,i}} \quad , \quad (4)$$

187 where a_i represents the bidirectional link probability that residues i and $i + 1$ belong to the same
188 structural unit.

189 **Algorithm 1** Hierarchical Fractal Segmentation
190

191 **Require:** Sequence $S = (s_1, s_2, \dots, s_N)$, ESM2 model, fractal scales K , segment counts $\{L_k\}_{k=1}^K$
192 **Ensure:** Hierarchical segmentation $\{\mathcal{T}^{(k)}\}_{k=1}^K$

193 1: Compute attention matrix $\mathbf{A} = ESM2(S)$
194 2: Compute link probabilities: $a_i = \sqrt{\mathbf{A}_{i,i+1} \times \mathbf{A}_{i+1,i}}$ for $i = 1, \dots, N - 1$
195 3: Initialize $\mathcal{T}^{(0)} = \{(1, N)\}$ {Full sequence as single segment}
196 4: **for** $k = 1$ to K **do**
197 5: $r = L_k / L_{k-1} - 1$ {New breakpoints per segment}
198 6: $\mathcal{T}^{(k)} = \emptyset$
199 7: **for** each segment $(b_m, e_m) \in \mathcal{T}^{(k-1)}$ **do**
200 8: Find r positions with minimum a_i in $[b_m, e_m - 1]$
201 9: Split segment (b_m, e_m) at these r positions
202 10: Add resulting sub-segments to $\mathcal{T}^{(k)}$
203 11: **end for**
204 12: **end for**
205 13: Pad all segments in $\mathcal{T}^{(K)}$ to uniform length with {PAD}
206 14: **return** $\mathcal{T}^{(K)}$

207 For a segment spanning positions $[b_m, e_m]$, the segment coherence is defined as the product of all
208 link probabilities within the segment: $\prod_{i=b_m}^{e_m-1} a_i$. To find the optimal segmentation at scale k with
209 L_k segments, we solve:

$$211 \quad T^{(k)*} = \arg \min_{T^{(k)}} \sum_{m=1}^{L_k} \sum_{i=b_m}^{e_m-1} (-\log a_i) \quad . \quad (5)$$

212 where $T^{(k)} = \{t_1^{(k)}, t_2^{(k)}, \dots, t_{L_k}^{(k)}\}$ represents the set of segments at scale k . We prove in the Ap-
213 pendix G that this optimization is equivalent to selecting the $L_k - 1$ positions with the lowest link

216 probabilities as breakpoints. $T^{(0)}$ is defined as the structural representation obtained by pre-trained
 217 structure encoder. The algorithm iteratively constructs the tree structure by selecting breakpoints
 218 within existing segments from the previous scale. We first employ the Geometric Vector Perceptron
 219 (GVP) encoder Hsu et al. (2022a) to process the input structure sequence. The GVP encoder adopt
 220 the kNN algorithm to fuse neighboring information around each residue while maintaining rotation
 221 invariance and equivariance properties. Starting from the full sequence at scale 0, at each scale k ,
 222 we identify the $L_k - L_{k-1}$ positions with minimum link probabilities within the current segments
 223 and introduce new breakpoints accordingly. To maintain balanced tree growth, we add an equal
 224 number of breakpoints to each segment from the previous scale: specifically, $L_k/L_{k-1} - 1$ new
 225 breakpoints per segment. The process continues until reaching the top fractal scale K , creating a
 226 hierarchical structure $\{T^{(k)}\}_{k=1}^K$ where each scale contains segments of progressively finer granu-
 227 larity. Finally, segments at fractal scale K are padded to uniform length with special token $\langle \text{PAD} \rangle$
 228 to enable efficient batch processing in the subsequent fractal transformer, resulting in padded seg-
 229 ments $\mathbf{t}_m^{(K)} = (s_{b_m}, s_{b_m+1}, \dots, s_{e_m}, \langle \text{PAD} \rangle, \dots, \langle \text{PAD} \rangle)$. The complete hierarchical segmentation
 230 algorithm is presented in Algorithm 1.

Algorithm 2 FractalFold Training Algorithm

Require: Protein dataset \mathcal{D} , fractal scales K , FractalFold model parameters θ
Ensure: Trained model parameters θ

```

1: for each batch  $(S, A) \in \mathcal{D}$  do
2:    $T^{(1)}, \dots, T^{(K)} \leftarrow \text{HFSM}(S, K)$                                 {Hierarchical segmentation}
3:    $\mathbf{c}^{(0)} \leftarrow \mathbf{0}$                                               {Initialize conditioning}
4:   for  $k = 1$  to  $K$  do
5:      $\mathbf{S}^{(k)} \leftarrow \text{Compress}(T^{(k)})$                                 {Multi-scale compression}
6:      $\mathbf{X}^{(k)} \leftarrow [\mathbf{S}^{(k)}, \mathbf{c}^{(k-1)}]$                                 {Add conditioning}
7:      $\mathbf{Y}^{(k)} \leftarrow \text{Transformer}^{(k)}(\mathbf{X}^{(k)})$                                 {Fractal transformer}
8:      $\mathbf{c}^{(k)} \leftarrow \text{Reshape}(\mathbf{Y}^{(k)}_{1:L_k})$                                 {Update conditioning}
9:   end for
10:   $\mathcal{L} \leftarrow -\sum_{i=1}^{L_K} \log P(y_i | \mathbf{Y}_i^{(K)})$                                 {Cross-entropy loss}
11:   $\theta \leftarrow \text{Update}(\theta, \nabla_{\theta} \mathcal{L})$                                 {Backprop & update}
12: end for
13: return  $\theta$ 

```

3.3 FRACTAL TRANSFORMER

250 After obtaining the hierarchically padded segmentation $T^{(K)}$ from HFSM, a multi-scale compressor
 251 module transforms it into K fractal scales with shapes $[B, L_1, D]$, $[B, L_2, D]$, \dots , $[B, L_K, D]$,
 252 where B is the batch size, L_k represents the sequence length at fractal scale k , and D is the feature
 253 dimension.

254 The fractal transformer processes these multi-scale representations in a hierarchical manner. At each
 255 fractal scale k , the transformer takes as input the L_k structural tokens along with one conditioning
 256 token from the previous fractal scale $k - 1$. This conditioning mechanism enables information
 257 flow across different granularity scales, allowing coarse-scale structural patterns to guide fine-scale
 258 predictions.

259 Specifically, for fractal scale k , the input consists of:

$$\mathbf{X}^{(k)} = [\mathbf{s}_1^{(k)}, \mathbf{s}_2^{(k)}, \dots, \mathbf{s}_{L_k}^{(k)}, \mathbf{c}^{(k-1)}] \quad , \quad (6)$$

260 where $\mathbf{s}_i^{(k)}$ represents the i -th structural token at scale k , and $\mathbf{c}^{(k-1)}$ is the conditioning token from
 261 scale $k - 1$. The transformer processes this input through standard self-attention and feed-forward
 262 layers, producing output predictions:

$$\mathbf{Y}^{(k)} = \text{Transformer}^{(k)}(\mathbf{X}^{(k)}) \in \mathbb{R}^{B \times (L_k+1) \times D} \quad , \quad (7)$$

263 After dropping the last token, $\mathbf{Y}^{(k)}$ is reshaped to form the conditioning token for the next fractal
 264 scale with shape $[B \cdot L_k, 1, D]$. This iterative process continues through all fractal scales, with each
 265 scale providing hierarchical guidance to the next.

270 The output of the final fractal scale K is used to compute the cross-entropy loss:
 271

$$272 \quad 273 \quad 274 \quad \mathcal{L} = - \sum_{i=1}^{L_K} \log P(y_i | \mathbf{Y}_i^{(K)}) \quad . \quad (8)$$

275 where y_i is the ground truth token at position i , and $\mathbf{Y}_i^{(K)}$ is the corresponding predicted distribution
 276 from the transformer output at the finest scale.
 277

278 This hierarchical processing strategy captures structural patterns at multiple scales while maintaining
 279 computational efficiency through fractal decomposition. By adopting this "divide-and-conquer"
 280 approach, the computational complexity is effectively reduced from $O(N^2)$ to $O(N \log N)$, which
 281 is proved in Appendix H. The complete training algorithm is presented in Algorithm 2.

282 283 4 EXPERIMENTS

284 In this section, we evaluate FractalFold against 10 state-of-the-art baselines on standard protein in-
 285 verse folding benchmarks, analyze refoldability to assess sequence-structure consistency, and con-
 286 duct ablation studies to validate our key design choices.
 287

288 289 4.1 DATASETS AND BASELINES

290 To fully evaluate FractalFold's performance, we conduct extensive experiments comparing Frac-
 291 talFold to 10 baseline methods, which can be organized into three distinct classes depending on
 292 the decoding mode. **Autoregressive models** include StructGNN (Ingraham et al., 2019b), Graph-
 293 Trans (Ingraham et al., 2019b), GCA (Tan et al., 2023), GVP (Jing et al., 2021), AlphaDesign (Gao
 294 et al., 2022), ESM-IF (Hsu et al., 2022b), and ProteinMPNN (Dauparas et al., 2022). **One-shot**
 295 **model**: PiFold (Gao et al., 2023) **Diffusion-based model** includes GraDe-IF (Yi et al., 2023b),
 296 which employ probabilistic denoising processes for sequence generation.

297 The evaluation is conducted on the widely-used **CATH v4.2** and **CATH v4.3** protein structure
 298 datasets. For consistency and fair comparison, we adopt the standard data partitions previously
 299 established in the literature. The CATH v4.2 split (Ingraham et al., 2019b) provides 18,024 struc-
 300 tures for training, 608 for validation, and 1,120 for testing. Similarly, the CATH v4.3 split (Hsu
 301 et al., 2022b) allocates 16,153 structures for training, 1,457 for validation, and 1,797 for testing.
 302

303 304 4.2 EVALUATION METRICS

305 Model performance was quantified using **perplexity** and amino acid **recovery rate**, which are stan-
 306 dard metrics for this task (Hsu et al., 2022b). To provide a granular analysis, we report the median
 307 recovery rate and perplexity across three subsets of the test data: all proteins, single-chain proteins
 308 only, and short proteins (defined as having a length ≤ 100 residues).

309 310 4.3 TRAINING DETAILS

311 All experiments were conducted on four NVIDIA GTX 4090 GPUs. Models were trained for 50
 312 epochs using AdamW optimizer with a base learning rate of 5×10^{-5} . The architecture employs a
 313 frozen GVP structural encoder with multi-resolution encoding at three scales and fractal hierarchy
 314 using progressive patch refinement from coarse to fine levels. More training details are provided in
 315 Appendix F.
 316

317 318 4.4 MAIN RESULTS ON INVERSE FOLDING

319 We evaluate FractalFold against state-of-the-art methods on the CATH 4.2 and 4.3 benchmarks. Ta-
 320 ble 1 demonstrates that FractalFold achieves superior performance across all metrics and protein cat-
 321 egories. On CATH 4.2, FractalFold attains 53.62% recovery rate and 4.27 perplexity, outperforming
 322 the previous best method GraDe-IF (52.21% recovery, 4.35 perplexity). On CATH 4.3, our method
 323 achieves 52.23% recovery rate and 3.81 perplexity, surpassing even ESM-IF augmented with 1.2M
 AlphaFold2 structures (51.60% recovery, 4.01 perplexity) while using only standard training data.

324
 325 Table 1: Experimental Results of FractalFold and 10 baselines on the CATH Benchmark. Partial
 326 baseline results are quoted from Hsu et al. (2022b); Yi et al. (2023b). \dagger : “Single-chain” in Hsu et al.
 327 (2022b) is defined differently. The **best** results are bolded and suboptimal results are underlined.

Model	Perplexity \downarrow			Recovery Rate % \uparrow		
	Short	Single-chain	All	Short	Single-chain	All
CATH 4.2	StructGNN (Ingraham et al., 2019b)	8.29	8.74	6.40	29.44	28.26
	GraphTrans (Ingraham et al., 2019b)	8.39	8.83	6.63	28.14	28.46
	GCA (Tan et al., 2023)	7.09	7.49	6.05	32.62	31.10
	GVP (Jing et al., 2021)	7.23	7.84	5.36	30.60	28.95
	AlphaDesign (Gao et al., 2022)	7.32	7.63	6.30	34.16	32.66
	ProteinMPNN (Dauparas et al., 2022)	6.21	6.68	4.61	36.35	34.43
	PiFold (Gao et al., 2023)	6.04	6.31	4.55	39.84	38.53
	GraDe-IF (Yi et al., 2023b)	5.49	6.21	4.35	45.27	42.77
CATH 4.3	FractalFold (ours)	5.25	6.08	4.27	46.19	44.28
	GVP-large (Hsu et al., 2022b)	7.68	6.12 \dagger	6.17	32.60	39.40 \dagger
	ESM-IF (Hsu et al., 2022b)	8.18	6.33 \dagger	6.44	31.30	38.50 \dagger
	+1.2M AF2 predicted data	6.05	4.00 \dagger	4.01	38.10	51.50 \dagger
	FractalFold (ours)	5.45	4.57	3.81	42.92	52.47
						52.23

344 The performance gains are most pronounced for short proteins (≤ 100 residues), suggesting that
 345 hierarchical fractal decomposition is particularly effective for compact structures. The consistent
 346 improvements across both metrics indicate that our coarse-to-fine refinement paradigm successfully
 347 reduces error accumulation inherent in autoregressive approaches.

348 The superior performance stems from FractalFold’s multi-scale one-shot decoding strategy, which
 349 addresses the error accumulation problem in autoregressive methods including StructGNN (Ingra-
 350 ham et al., 2019b), GraphTrans (Ingraham et al., 2019b), GCA (Tan et al., 2023), and GVP (Jing
 351 et al., 2020). By simultaneously generating amino acid tokens within a “divide-and-conquer” fractal
 352 decoding framework, FractalFold effectively prevents error propagation across different structural
 353 domains, achieving consistently lower perplexity scores across all protein categories.

354 This result is particularly significant as it demonstrates that architectural innovation can outperform
 355 data scaling. While ESM-IF requires massive synthetic data augmentation from AlphaFold2 pre-
 356 dictions, FractalFold achieves superior performance through its hierarchical fractal modeling alone.
 357 This suggests that capturing the intrinsic structural organization of proteins is more effective than
 358 brute-force data expansion.

360 4.5 REFOLDABILITY ANALYSIS

362 Refoldability measures whether generated sequences can fold back to structures similar to the tar-
 363 get backbone, serving as a critical evaluation of sequence-structure consistency in protein design.
 364 Following the evaluation configuration in Wang et al. (2023), we use a high-quality test set of 82
 365 samples to assess the foldability of predicted sequences. The toolkit from Zhang & Tm-Align is
 366 used to calculate Ref-TM and Ref-pLDDT scores for protein structures folded by ESMFold Lin
 367 et al. (2022), OmegaFold Wu et al. (2022), and AlphaFold2 Jumper et al. (2021). We compare
 368 FractalFold against seven baselines, including pLM-adapted methods (ByProt Zheng et al. (2023b),
 369 AF-Design Wang et al. (2022), and ESM-Design Verkuil et al. (2022)).

370 The results are summarized in Table 2. FractalFold achieves superior refoldability performance, at-
 371 taining the highest TM scores of 0.81 (ESMFold) and 0.92 (AlphaFold2), along with the best pLDDT
 372 scores of 77.81 (ESMFold) and 88.24 (AlphaFold2). Notably, FractalFold surpasses ProteinMPNN,
 373 the previous leader in refoldability metrics, while simultaneously achieving the highest recovery
 374 rate of 52.33%. These results demonstrate that FractalFold significantly outperforms pLM-based
 375 methods, highlighting the effectiveness of our structure-informed decoding mechanism in capturing
 376 essential sequence-structure relationships.

377 The results reveal several key insights. First, the exceptional structural fidelity demonstrates the
 378 effectiveness of our structure-informed decoding mechanism. FractalFold’s generated sequences

378

379
380
Table 2: Refoldability results on the CATH dataset. Best and suboptimal results are **bolded** and
underlined. We use TM and pLDDT to represent Ref-TM and Ref-pLDDT.

Design method	ESMFold		OmegaFold		AlphaFold2		Recovery Rate% ↑
	TM↑	pLDDT↑	TM↑	pLDDT↑	TM↑	pLDDT↑	
Uniform	0.05	27.68	0.05	31.53	0.06	33.68	5.00
Natural frequencies	0.07	30.53	0.07	35.59	0.06	35.02	5.84
<i>with pLM</i>							
ByProt (Zheng et al., 2023b)	0.73	72.12	0.70	77.58	0.85	87.26	<u>51.23</u>
AF-Design (Wang et al., 2022)	0.53	61.37	0.53	72.04	0.52	75.29	<u>15.95</u>
ESM-Design (Verkuil et al., 2022)	0.38	59.65	0.38	62.66	0.37	60.02	17.33
<i>without pLM</i>							
StructTrans (Ingraham et al., 2019b)	0.72	68.85	0.64	70.35	0.79	80.66	35.89
GVP Jing et al. (2020)	0.73	69.67	0.67	74.33	0.83	84.29	39.46
ProteinMPNN (Dauparas et al., 2022)	<u>0.80</u>	<u>76.53</u>	0.76	80.75	<u>0.87</u>	<u>87.89</u>	41.44
PiFold (Gao et al., 2023)	0.71	67.55	0.64	70.21	0.82	82.54	44.86
FractalFold (ours)	0.81	77.81	0.74	79.23	0.92	88.24	52.33

392

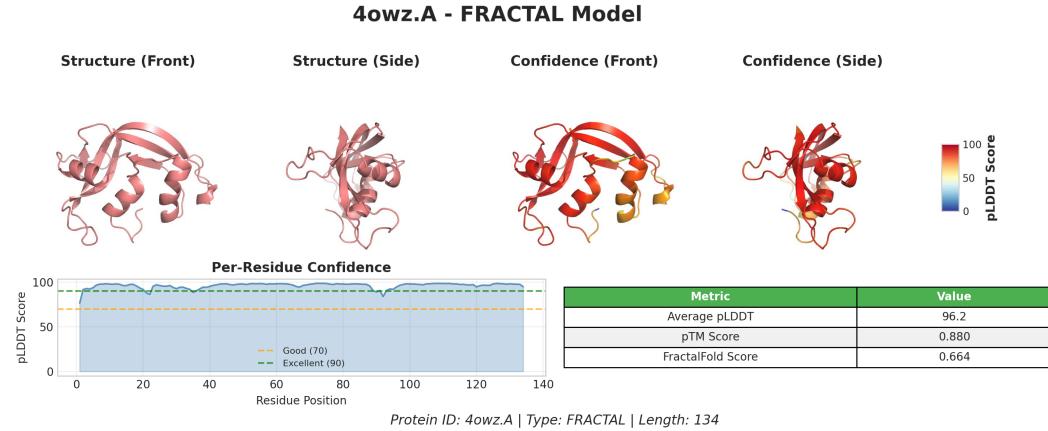
393

394
395
396
consistently fold back to structures highly similar to the target backbone across all three prediction
models, validating that our fractal decoding strategy successfully preserves critical structural
information during sequence generation.

397

398
399
Second, FractalFold significantly surpasses methods utilizing protein language models (pLMs). This
superiority highlights that our structure-centric hierarchical modeling captures essential sequence-
structure relationships more effectively than pLM adapters.

400



414

415

416

417
418
419
420
421
Figure 3: FractalFold prediction for protein 1rtu.A (114 residues) showing high-confidence struc-
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
50100
50101
50102
50103
50104
50105
50106
50107
50108
50109
50110
50111
50112
50113
50114
50115
50116
50117
50118
50119
50120
50121
50122
50123
50124
50125
50126
50127
50128
50129
50130
50131
50132
50133
50134
50135
50136
50137
50138
50139
50140
50141
50142
50143
50144
50145
50146
50147
50148
50149
50150
50151
50152
50153
50154
50155
50156
50157
50158
50159
50160
50161
50162
50163
50164
50165
50166
50167
50168
50169
50170
50171
50172
50173
50174
50175
50176
50177
50178
50179
50180
50181
50182
50183
50184
50185
50186
50187
50188
50189
50190
50191
50192
50193
50194
50195
50196
50197
50198
50199
50200
50201
50202
50203
50204
50205
50206
50207
50208
50209
50210
50211
50212
50213
50214
50215
50216
50217
50218
50219
50220
50221
50222
50223
50224
50225
50226
50227
50228
50229
50230
50231
50232
50233
50234
50235
50236
50237
50238
50239
50240
50241
50242
50243
50244
50245
50246
50247
50248
50249
50250
50251
50252
50253
50254
50255
50256
50257
50258
50259
50260
50261
50262
50263
50264
50265
50266
50267
50268
50269
50270
50271
50272
50273
50274
50275
50276
50277
50278
50279
50280
50281
50282
50283
50284
50285
50286
50287
50288
50289
50290
50291
50292
50293
50294
50295
50296
50297
50298
50299
50300
50301
50302
50303
50304
50305
50306
50307
50308
50309
50310
50311
50312
50313
50314
50315
50316
50317
50318
50319
50320
50321
50322
50323
50324
50325
50326
50327
50328
50329
50330
50331
50332
50333
50334
50335
50336
50337
50338
50339
50340
50341
50342
50343
50344
50345
50346
50347
50348
50349
50350
50351
50352
50353
50354
50355
50356
50357
50358
50359
50360
50361
50362
50363
50364
50365
50366
50367
50368
50369
50370
50371
50372
50373
50374
50375
50376
50377
50378
50379
50380
50381
50382
50383
50384
50385
50386
50387
50388
50389
50390
50391
50392
50393
50394
50395
50396
50397
50398
50399
50400
50401
50402
50403
50404
50405
50406
50407
50408
50409
50410
50411
50412
50413
50414
50415
50416
50417
50418
50419
50420
50421
50422
50423
50424
50425
50426
50427
50428
50429
50430
50431
50432
50433
50434
50435
50436
50437
50438
50439
50440
50441
50442
50443
50444
50445
50446
50447
50448
50449
50450
50451
50452
50453
50454
50455
50456
50457
50458
50459
50460
50461
50462
50463
50464
50465
50466
50467
50468
50469
50470
50471
50472
50473
50474
50475
50476
50477
50478
50479
50480
50481
50482
50483
50484
50485
50486
50487
50488
50489
50490
50491
50492
50493
50494
50495
50496
50497
50498
50499
50500
50501
50502
50503
50504
50505
50506
50507
50508
50509
50510
50511
50512
50513
50514
50515
50516
50517
50518
50519
50520
50521
50522
50523
50524
50525
50526
50527
50528
50529
50530
50531
50532
50533
50534
50535
50536
50537
50538
50539
50540
50541
50542
50543
50544
50545
50546
50547
50548
50549
50550
50551
50552
50553
50554
50555
50556
50557
50558
50559
50560
50561
50562
50563
50564
50565
50566
50567
50568
50569
50570
50571
50572
50573
50574
50575
50576
50577
50578
50579
50580
50581
50582
50583
50584
50585
50586
50587
50588
50589
50590
50591
50592
50593
50594
50595
50596
50597
50598
50599
50600
50601
50602
50603
50604
50605
50606
50607
50608
50609
50610
50611
50612
50613
50614
50615
50616
50617
50618
50619
50620
50621
50622
50623
50624
50625
50626
50627
50628
50629
50630
50631
50632
50633
50634
50635
50636
50637
50638
50639
50640
50641
50642
50643
50644
50645
50646
50647
50648
50649
50650
50651
50652
50653
50654
50655
50656
50657
50658
50659
50660
50661
50662
50663
50664
50665
50666
50667
50668
50669
50670
50671
50672
50673
50674
50675
50676
50677
50678
50679
50680
50681
50682
50683
50684
50685
50686
50687
50688
50689
50690
50691
50692
50693
50694
50695
50696
50697
50698
50699
50700
50701
50702
50703
50704
50705
50706
50707
50708
50709
50710
50711
50712
50713
50714
50715
50716
50717
50718
50719
50720
50721
50722
50723
50724
50725
50726
50727
50728
50729
50730
50731
50732
50733
50734
50735
50736
50737
50738
50739
50740
50741
50742
50743
50744
50745
50746
50747
50748
50749
50750
50751
50752
50753
50754
50755
50756
50757
50758
50759
50760
50761
50762
50763
50764
50765
50766
50767
50768
50769
50770
50771
50772
50773
50774
50775
50776
50777
50778
50779
50780
50781
50782
50783
50784
50785
50786
50787
50788
50789
50790
50791
50792
50793
50794
50795
50796
50797
50798
50799
50800
50801
50802
50803
50804
50805
50806
50807
50808
50809
50810
50811
50812
50813
50814
50815
50816
50817
50818
50819
50820
50821
50822
50823
50824
50825
50826
50827
50828
50829
50830
50831
50832
50833
50834
50835
50836
50837
50838
50839
50840
50841
50842
50843
50844
50845
50846
50847
50848
50849
50850
50851
50852
50853
50854
50855
50856
50857
50858
50859
50860
50861
50862
50863
50864
50865
50866
50867
50868
50869
50870
50871
50872
50873
50874
50875
50876
50877
50878
50879
50880
50881
50882
50883
50884
50885
50886
50887
50888
50889
50890
50891
50892
50893
50894
50895
50896
50897
50898
50899
50900
50901
50902
50903
50904
50905
50906
50907
50908
50909
50910
50911
50912
50913
50914
50915
50916
50917
50918
50919
50920
50921
50922
50923
50924
50925
50926
50927
50928
50929
50930
50931
50932
50933
50934
50935
50936
50937
50938
50939
50940
50941
50942
50943
50944
50945
50946
50947
50948
50949
50950
50951
50952
50953
50954
50955
50956
50957
50958
50959
50960
50961
50962
50963
50964
50965
50966
50967
50968
50969
50970
50971
50972
50973
50974
50975
50976
50977
50978
50979
50980
50981
50982
50983
50984
50985
50986
50987
50988
50989
50990
50991
50992
50993
50994
50995
50996
50997
50998
50999
501000
501010
501020
501030
501040
501050
501060
501070
501080
501090
501100
501110
501120
501130
501140
501150
501160
501170
501180
501190
501200
501210
501220
501230
501240
501250
501260
501270
501280
501290
501300
501310
501320
501330
501340
501350
501360
501370
501380
501390
501400
501410
501420
501430
501440
501450
501460
501470
501480
501490
501500
501510
501520
501530
501540
501550
501560
501570
501580
501590
501600
501610
501620
501630
501640
501650
501660
501670
501680
501690
501700
501710
501720
501730
501740
501750
501760
501770
501780
501790
501800
501810
501820
501830
501840
501850
501860
501870
501880
501890
501900
501910
501920
501930
501940
501950
501960
501970
501980
501990
502000
502010
502020
502030
502040
502050
502060
502070
502080
502090
502100
502110
502120
502130
502140
502150
502160
502170
502180
502190
502200
502210
502220
502230
502240
502250
502260
502270
502280
502290
502300
502310
502320
502330
502340
502350
502360
502370
502380
502390
502400
502410
502420
502430
502440
502450
502460
502470
502480
502490
502500
502510
502520
502530
502540
502550
502560
502570

432 pLDDT drops to approximately 50, likely corresponding to a flexible loop region that presents inherent
 433 structural ambiguity. This confidence decrease is isolated and does not propagate to neighboring
 434 regions, as evidenced by the rapid recovery to high confidence levels, demonstrating FractalFold’s
 435 ability to maintain overall structural integrity while appropriately flagging uncertain regions. The
 436 successful prediction of both terminal regions and the compact, well-organized three-dimensional
 437 fold topology validates the robustness of our approach across diverse structural elements within a
 438 single protein.

440 4.7 ABLATION STUDIES

442 To validate the effectiveness of key components in FractalFold, we conduct comprehensive ablation
 443 studies on the CATH v4.2 dataset, examining three critical design choices: pre-trained encoder
 444 initialization, one-shot decoding mechanism, and hierarchical fractal segmentation module (HFSM).
 445 The results are presented in Table 3.

447
 448 Table 3: Ablation studies of key components on CATH v4.2. "w/ pre-training" uses pre-trained GVP
 449 encoder. "w/ one-shot" adopts one-shot decoding mechanism. "w/ HFSM" "applies the hierarchical
 450 segmentation module to the ground truth AA sequences.

451 Encoder	452 Decoder	453 Segmentation	454 Perplexity ↓			455 Recovery Rate % ↑		
			456 Short	457 Single-chain	458 All	459 Short	460 Single-chain	461 All
w/ pre-training	w/ one-shot	w/ HFSM	5.48	6.27	4.31	44.67	44.10	52.10
✓	✓	✓	6.34	6.68	4.53	43.47	42.62	50.39
✓	✓		6.77	6.43	4.34	42.35	43.57	51.24
✓	✓	✓	5.25	6.08	4.27	46.19	44.28	53.51

- 462 1. **Pre-trained Encoder:** Removing pre-trained GVP encoder initialization leads to consistent
 463 performance degradation across all protein categories. This demonstrates that pre-trained
 464 structural representations provide essential geometric priors that enable the model to better
 465 understand multi-scale protein backbone conformations and local structural motifs.
- 466 2. **One-shot Decoding:** Replacing the hierarchical one-shot decoding with iterative autoregressive
 467 decoding results in the most significant performance drops, particularly for single-chain
 468 proteins. This validates that one-shot generation is crucial to avoid error accumulation,
 469 especially in complex protein architectures.
- 470 3. **HFSM:** Removing HFSM leads to notable performance degradation, particularly affecting
 471 the model’s ability to handle short protein sequences. Without HFSM, only a small fraction
 472 of the computational pathway is activated, as all meaningful tokens are concentrated at the
 473 beginning of the sequence. This confirms that hierarchical structural decomposition enables
 474 adaptive modeling of proteins with varying complexity and length scales, allowing the
 475 model to dynamically allocate computational resources to structurally important regions.

476 5 CONCLUSION

477 This work introduces FractalFold, a novel transformer-based model that leverages the inherent fractal
 478 nature of protein structures for inverse folding through recursive multi-scale decoding and
 479 hierarchical segmentation. The fractal architecture enables coarse-to-fine refinement that effectively
 480 eliminates error accumulation, while the Hierarchical Fractal Segmentation Module enables adaptive
 481 multi-scale decomposition of quasi-fractal proteins. Our approach achieves state-of-the-art perfor-
 482 mance on established benchmarks, surpassing existing methods in sequence recovery rate, perplex-
 483 ity, and foldability. By demonstrating that architectural alignment with biological priors can exceed
 484 brute-force data scaling, FractalFold establishes a new paradigm for structure-informed protein de-
 485 sign and opens promising avenues for extending fractal modeling to multi-chain complexes, protein
 486 interactions, and other structural biology tasks requiring multi-scale understanding.

486 REPRODUCIBILITY STATEMENT
487488 To ensure reproducibility of our results, we provide comprehensive implementation details and ex-
489 perimental configurations throughout this work. Section 5 contains detailed training procedures
490 including hyperparameters, optimization settings, and hardware specifications. The complete model
491 architecture specifications, including the fractal hierarchy design and multi-scale encoding compo-
492 nents, are described in Section 4 with additional implementation details provided in the appendix.
493 The codebase implementing FractalFold, including training scripts, model definitions, and evalua-
494 tion pipelines, will be made publicly available upon publication.495
496 ETHICS STATEMENT
497498 This work adheres to the ICLR Code of Ethics. Our research uses publicly available protein struc-
499 tural data from the CATH dataset with no sensitive information or human subjects involved. The
500 proposed computational method for protein sequence prediction poses no known ethical concerns
501 and has potential benefits for drug discovery and protein engineering. We declare no conflicts of
502 interest and ensure transparent reporting of methodology and limitations.503
504 REFERENCES
505506 Rebecca F Alford, Andrew Leaver-Fay, Jeliazko R Jeliazkov, Matthew J O’Meara, Frank P DiMaio,
507 Hahnbeom Park, Maxim V Shapovalov, P Douglas Renfrew, Vikram K Mulligan, Kalli Kappel,
508 et al. The rosetta all-atom energy function for macromolecular modeling and design. *Journal of*
509 *chemical theory and computation*, 13(6):3031–3048, 2017.
510 Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
511 denoising diffusion models in discrete state-spaces. *Advances in Neural Information Processing*
512 *Systems*, 34:17981–17993, 2021.
513 Helen M Berman, John Westbrook, Zukang Feng, Gary Gilliland, Talapady N Bhat, Helge Weissig,
514 Ilya N Shindyalov, and Philip E Bourne. The protein data bank. *Nucleic acids research*, 28(1):
515 235–242, 2000.
516 Peter J Burt and Edward H Adelson. The laplacian pyramid as a compact image code. In *Readings*
517 *in computer vision*, pp. 671–679. Elsevier, 1987.
518 Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F Milles,
519 Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep learning-
520 based protein sequence design using proteinmpnn. *Science*, 378(6615):49–56, 2022.
521 Matthew B Enright and David M Leitner. Mass fractal dimension and the compactness of proteins.
522 *Physical Review E—Statistical, Nonlinear, and Soft Matter Physics*, 71(1):011912, 2005.
523 Evelyn Fix. *Discriminatory analysis: nonparametric discrimination, consistency properties*, vol-
524 ume 1. USAF school of Aviation Medicine, 1985.
525 Zhangyang Gao, Cheng Tan, and Stan Z Li. Alphadesign: A graph protein design method and
526 benchmark on alphafolddb. *arXiv preprint arXiv:2202.01079*, 2022.
527 Zhangyang Gao, Cheng Tan, and Stan Z. Li. Pifold: Toward effective and efficient protein in-
528 verse folding. In *International Conference on Learning Representations*, 2023. URL <https://openreview.net/forum?id=oMsN9TYwJ0j>.
529 Zhangyang Gao, Cheng Tan, Xingran Chen, Yijie Zhang, Jun Xia, Siyuan Li, and Stan Z. Li. KW-
530 design: Pushing the limit of protein design via knowledge refinement. In *The Twelfth Interna-
531 tional Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=mpqMVWgqjn>.
532 Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and
533 Alexander Rives. Learning inverse folding from millions of predicted structures. In Kama-
534 lika Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato

540 (eds.), *Proceedings of the 39th International Conference on Machine Learning*, volume 162 of
 541 *Proceedings of Machine Learning Research*, pp. 8946–8970. PMLR, 17–23 Jul 2022a. URL
 542 <https://proceedings.mlr.press/v162/hsu22a.html>.

543

544 Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and Alexan-
 545 der Rives. Learning inverse folding from millions of predicted structures. In *International con-
 546 ference on machine learning*, pp. 8946–8970. PMLR, 2022b.

547

548 Shinya Ikeda, E Allen Foegeding, and Tomoaki Hagiwara. Rheological study on the fractal nature
 549 of the protein gel structure. *Langmuir*, 15(25):8584–8589, 1999.

550

551 John Ingraham, Vikas Garg, Regina Barzilay, and Tommi Jaakkola. Generative Models for Graph-
 552 Based Protein Design. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d' Alché-Buc, E. Fox,
 553 and R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 32. Curran
 554 Associates, Inc., 2019a. URL https://proceedings.neurips.cc/paper_files/paper/2019/file/f3a4ff4839c56a5f460c88cce3666a2b-Paper.pdf.

555

556 John Ingraham, Vikas Garg, Regina Barzilay, and Tommi Jaakkola. Generative models for graph-
 557 based protein design. *Advances in neural information processing systems*, 32, 2019b.

558

559 John B Ingraham, Max Baranov, Zak Costello, Karl W Barber, Wujie Wang, Ahmed Ismail, Vincent
 560 Frappier, Dana M Lord, Christopher Ng-Thow-Hing, Erik R Van Vlack, et al. Illuminating protein
 561 space with a programmable generative model. *Nature*, 623(7989):1070–1078, 2023.

562

563 Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael JL Townshend, and Ron Dror. Learning
 564 from protein structure with geometric vector perceptrons. *arXiv preprint arXiv:2009.01411*, 2020.

565

566 Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael John Lamarre Townshend, and Ron Dror.
 567 Learning from protein structure with geometric vector perceptrons. In *International Confer-
 568 ence on Learning Representations*, 2021. URL <https://openreview.net/forum?id=1YLJDvSx6J4>.

569

570 John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
 571 Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
 572 protein structure prediction with alphafold. *nature*, 596(7873):583–589, 2021.

573

574 Tianhong Li, Qinyi Sun, Lijie Fan, and Kaiming He. Fractal generative models. *arXiv preprint
 575 arXiv:2502.17437*, 2025.

576

577 Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie.
 578 Feature pyramid networks for object detection. In *Proceedings of the IEEE conference on com-
 579 puter vision and pattern recognition*, pp. 2117–2125, 2017.

580

581 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Allan dos San-
 582 tos Costa, Maryam Fazel-Zarandi, Tom Sercu, Sal Candido, et al. Language models of protein
 583 sequences at the scale of evolution enable accurate structure prediction. *BioRxiv*, 2022:500902,
 584 2022.

585

586 Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
 587 Robert Verkuil, Ori Kabeli, Yaniv Shmueli, et al. Evolutionary-scale prediction of atomic-level
 588 protein structure with a language model. *Science*, 379(6637):1123–1130, 2023.

589

590 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.
 591 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the
 592 IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.

593

Benoit B Mandelbrot. The fractal geometry of nature/revised and enlarged edition. *New York*, 1983.

Weian Mao, Muzhi Zhu, Zheng Sun, Shuaike Shen, Lin Yuanbo Wu, Hao Chen, and Chunhua
 Shen. De novo protein design using geometric vector field networks. In *The Twelfth International
 Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=9UIGyJJPay>.

594 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
 595 conditional image generation with clip latents. *arXiv preprint arXiv:2204.06125*, 2022.
 596

597 Milong Ren, Chungong Yu, Dongbo Bu, and Haicang Zhang. Accurate and robust protein sequence
 598 design with carbondesign. *Nature Machine Intelligence*, 6(5):536–547, 2024a.
 599

600 Milong Ren, Chungong Yu, Dongbo Bu, and Haicang Zhang. Accurate and robust protein se-
 601 quence design with CarbonDesign. *Nature Machine Intelligence*, 6(5):536–547, May 2024b.
 602 ISSN 2522-5839. doi: 10.1038/s42256-024-00838-2. URL <https://doi.org/10.1038/s42256-024-00838-2>.
 603

604 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 605 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 606 text-to-image diffusion models with deep language understanding. *NeurIPS*, 2022.
 607

608 Franziska L. Sendker, Yat Kei Lo, Thomas Heimerl, Stefan Bohn, Louise J. Persson, Christopher-
 609 Nils Mais, Wiktoria Sadowska, Nicole Paczia, Eva Nußbaum, María del Carmen Sánchez Ol-
 610 mos, Karl Forchhammer, Daniel Schindler, Tobias J. Erb, Justin L. P. Benesch, Erik G. Mark-
 611 lund, Gert Bange, Jan M. Schuller, and Georg K. A. Hochberg. Emergence of fractal ge-
 612ometries in the evolution of a metabolic enzyme. *Nature*, 628(8009):894–900, April 2024.
 613 ISSN 1476-4687. doi: 10.1038/s41586-024-07287-2. URL <https://doi.org/10.1038/s41586-024-07287-2>.
 614

615 H. J. Stapleton, J. P. Allen, C. P. Flynn, D. G. Stinson, and S. R. Kurtz. Fractal form of proteins.
 616 *Phys. Rev. Lett.*, 45:1456–1459, Oct 1980. doi: 10.1103/PhysRevLett.45.1456. URL <https://link.aps.org/doi/10.1103/PhysRevLett.45.1456>.
 617

618 Cheng Tan, Zhangyang Gao, Jun Xia, Bozhen Hu, and Stan Z Li. Global-context aware generative
 619 protein design. In *ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech and*
 620 *Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2023.
 621

622 Haotian Tang, Yecheng Wu, Shang Yang, Enze Xie, Junsong Chen, Junyu Chen, Zhuoyang Zhang,
 623 Han Cai, Yao Lu, and Song Han. Hart: Efficient visual generation with hybrid autoregressive
 624 transformer. *arXiv preprint arXiv:2410.10812*, 2024.
 625

626 Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
 627 Scalable image generation via next-scale prediction. *arXiv preprint arXiv:2404.02905*, 2024.
 628

629 Robert Verkuil, Ori Kabeli, Yilun Du, Basile IM Wicky, Lukas F Milles, Justas Dauparas, David
 630 Baker, Sergey Ovchinnikov, Tom Sercu, and Alexander Rives. Language models generalize be-
 631 yond natural proteins. *BioRxiv*, pp. 2022–12, 2022.
 632

633 Chuanrui Wang, Bozitao Zhong, Zuobai Zhang, Narendra Chaudhary, Sanchit Misra, and Jian Tang.
 634 Pdb-struct: A comprehensive benchmark for structure-based protein design. In *NeurIPS 2023*
 635 *Workshop on New Frontiers of AI for Drug Discovery and Development*, 2023.
 636

637 Jue Wang, Sidney Lisanza, David Juergens, Doug Tischer, Joseph L Watson, Karla M Castro, Robert
 638 Ragotte, Amijai Saragovi, Lukas F Milles, Minkyung Baek, et al. Scaffolding protein functional
 639 sites using deep learning. *Science*, 377(6604):387–394, 2022.
 640

641 Joseph L Watson, David Juergens, Nathaniel R Bennett, Brian L Trippe, Jason Yim, Helen E Eise-
 642 nach, Woody Ahern, Andrew J Borst, Robert J Ragotte, Lukas F Milles, et al. De novo design of
 643 protein structure and function with rfdiffusion. *Nature*, 620(7976):1089–1100, 2023.
 644

645 Ruidong Wu, Fan Ding, Rui Wang, Rui Shen, Xiwen Zhang, Shitong Luo, Chenpeng Su, Zuofan
 646 Wu, Qi Xie, Bonnie Berger, et al. High-resolution de novo structure prediction from primary
 647 sequence. *BioRxiv*, pp. 2022–07, 2022.
 648

649 Kai Yi, Bingxin Zhou, Yiqing Shen, Pietro Lio, and Yu Guang Wang. Graph denoising diffusion for
 650 inverse protein folding. In *Thirty-seventh Conference on Neural Information Processing Systems*,
 651 2023a. URL <https://openreview.net/forum?id=u4YXKKG5dX>.
 652

648 Kai Yi, Bingxin Zhou, Yiqing Shen, Pietro Lio, and Yu Guang Wang. Graph denoising diffusion for
649 inverse protein folding. In *Thirty-seventh Conference on Neural Information Processing Systems*,
650 2023b. URL <https://openreview.net/forum?id=u4YXKKG5dX>.

651

652 Y Zhang and J Skolnick Tm-Align. A protein structure alignment algorithm based on the tm-score.,
653 2005, 33. DOI: <https://doi.org/10.1093/nar/gki524>, pp. 2302–2309.

654

655 Zaixiang Zheng, Yifan Deng, Dongyu Xue, Yi Zhou, Fei Ye, and Quanquan Gu. Structure-informed
656 language models are protein designers. In *Proceedings of the 40th International Conference on*
657 *Machine Learning*, ICML’23. JMLR.org, 2023a.

658

659 Zaixiang Zheng, Yifan Deng, Dongyu Xue, Yi Zhou, Fei Ye, and Quanquan Gu. Structure-informed
660 language models are protein designers. In *International Conference on Machine Learning*, pp.
661 42317–42338. PMLR, 2023b.

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 **A NOTATION**
703704 This section provides a comprehensive overview of the mathematical notation used throughout the
705 paper, organized by the main components of our FractalFold framework.
706708 **Table 4: Mathematical Notation**
709

710 Symbol	710 Description
<i>Problem Formulation</i>	
N	712 Protein sequence length
N_{atom}	713 Number of backbone atoms per residue
$S \in \mathbb{R}^{N \times N_{\text{atom}} \times 3}$	714 3D coordinates of backbone atoms
$S_i \in \mathbb{R}^{N_{\text{atom}} \times 3}$	715 Atomic coordinates of the i -th residue
$A = (a_1, a_2, \dots, a_N)$	716 Amino acid sequence
$a_i \in \{1, 2, \dots, 20\}$	717 Integer index for i -th amino acid
f_{θ}	718 Neural network with parameters θ
$\Delta^{20 \times N}$	719 Space of probability distributions over sequences
$\mathcal{L}(\theta)$	720 Conditional log-likelihood objective
\mathcal{D}	721 Training dataset of structure-sequence pairs
<i>Hierarchical Modeling</i>	
K	722 Number of fractal scales
$k \in \{1, 2, \dots, K\}$	723 Fractal scale index
L_k	724 Number of segments at scale k
$T^{(k)} = \{\mathbf{t}_1^{(k)}, \dots, \mathbf{t}_{L_k}^{(k)}\}$	725 Padded segments at scale k
$\mathbf{t}_m^{(k)}$	726 m -th segment at scale k
b_m, e_m	727 Start and end positions of segment m
$H^{(k)} = \{\mathbf{h}_1^{(k)}, \dots, \mathbf{h}_{L_k}^{(k)}\}$	728 Structural features for segments at scale k
$\mathcal{H}^{(k)}, \mathcal{T}^{(k)}$	729 Hierarchical representations at scale k
<i>Hierarchical Fractal Segmentation</i>	
$\mathbf{A} \in \mathbb{R}^{N \times N}$	731 ESM2 attention matrix
a_i	732 Link probability between residues i and $i + 1$
$r = L_k / L_{k-1} - 1$	733 New breakpoints per segment at scale k
$T^{(k)*}$	734 Optimal segmentation at scale k
$\langle \text{PAD} \rangle$	735 Padding token
<i>Fractal Transformer</i>	
B	737 Batch size
D	738 Feature dimension
$\mathbf{X}^{(k)}$	739 Input to transformer at scale k
$\mathbf{s}_i^{(k)}$	740 i -th structural token at scale k
$\mathbf{c}^{(k-1)}$	741 Conditioning token from scale $k - 1$
$\mathbf{Y}^{(k)} \in \mathbb{R}^{B \times (L_k + 1) \times D}$	742 Transformer output at scale k
y_i	743 Ground truth token at position i
θ	744 FractalFold model parameters

746 **B LARGE LANGUAGE MODEL USAGE STATEMENT**
747748
749 Large Language Models were used in a limited capacity during the preparation of this manuscript.
750 Specifically, LLMs were employed solely as auxiliary tools for grammar checking, language polishing,
751 and minor stylistic improvements. The LLMs did not contribute to research ideation, methodology
752 development, experimental design, data analysis, or the generation of scientific content. All
753 research concepts, technical contributions, experimental results, and scientific insights presented in
754 this work are entirely the product of the authors' original research and intellectual effort.
755

756 The authors take full responsibility for all content in this manuscript, including any text that may
 757 have been refined using LLM assistance for grammatical or stylistic purposes.
 758

759 C RELATED WORKS

760 C.1 PROTEIN INVERSE FOLDING

761 The advent of deep learning has spurred a revolution in modeling protein folding (Jumper et al.,
 762 2021; Lin et al., 2023), while the inverse problem of protein folding, which aims to infer amino
 763 acid sequences that fold into desired structures, has gained increasing attention (Dauparas et al.,
 764 2022). By representing protein backbone structures as k -NN graphs, geometric deep learning has
 765 achieved remarkable progress in learning inverse folding (Ingraham et al., 2019b; Dauparas et al.,
 766 2022; Hsu et al., 2022b), surpassing traditional physics-based approaches (Alford et al., 2017) and
 767 facilitating the design of experimentally validated proteins (Dauparas et al., 2022; Watson et al.,
 768 2023). Current methods primarily follow three generation strategies: autoregressive approaches
 769 like GraphTrans (Ingraham et al., 2019b), ProteinMPNN (Dauparas et al., 2022), GVP (Jing et al.,
 770 2021), and ESM-IF (Hsu et al., 2022b) that generate sequences token-by-token but suffer from slow
 771 inference speed; one-shot methods such as PiFold (Gao et al., 2023) and DE-NOVO (Mao et al.,
 772 2024) that facilitate parallel generation of multiple tokens but struggle with global consistency; and
 773 iterative refinement techniques including LM-Design (Zheng et al., 2023b), KW-Design (Gao et al.,
 774 2024), ChromaDesign (Ingraham et al., 2023), CarbonDesign (Ren et al., 2024a), and diffusion-
 775 based GraDe-IF (Yi et al., 2023b) that progressively improve predictions through multiple refine-
 776 ment steps, with some leveraging discrete denoising diffusion probabilistic models (Austin et al.,
 777 2021) to encompass diverse plausible solutions. Despite significant progress in computational bi-
 778 ology, existing methods predominantly treat protein structures as flat sequential representations or
 779 simple graph topologies, failing to capture the inherent hierarchical and fractal organization of com-
 780 plex biological protein architectures.
 781

782 C.2 FRACTAL MODELING

783 Protein structures exhibit hierarchical organization from secondary motifs to tertiary architectures,
 784 resembling fractals' self-similar properties (Mandelbrot, 1983; Enright & Leitner, 2005). Current
 785 inverse folding methods treat proteins as flat sequences or simple graphs, ignoring this structural hi-
 786 erarchy. Hierarchical approaches have proven effective in computer vision (Burt & Adelson, 1987;
 787 Lin et al., 2017; Liu et al., 2021; Li et al., 2025) and generative modeling through cascaded diffu-
 788 sion (Ramesh et al., 2022; Saharia et al., 2022) and scale-space methods (Tian et al., 2024; Tang
 789 et al., 2024) that generate progressively from coarse to fine scales. To the best of our knowledge,
 790 FractalFold is the first protein inverse folding method that explicitly leverages fractal-based gen-
 791 eration to align with the inherent fractal structure prior of proteins, modeling recursive structural
 792 hierarchy through coarse-to-fine refinement to enable biologically informed sequence design.
 793

794 D RESULTS VISUALIZATION

795 This section presents detailed visualizations of FractalFold's performance on selected proteins from
 796 the CATH 4.2 test set. The results demonstrate the model's ability to generate high-quality structural
 797 predictions across diverse protein families and topologies.
 798

801 Figure 4 provides a comprehensive comparison between ground truth structures and predictions
 802 from both PiFold and FractalFold methods, illustrating the superior accuracy achieved by our ap-
 803 proach. The subsequent figures showcase individual FractalFold predictions for representative pro-
 804 teins, highlighting the model's consistent performance across different protein sizes and structural
 805 complexities.
 806

807 Each prediction visualization includes four key components: front and side views of the predicted
 808 structure, confidence-colored representations indicating prediction reliability, and per-residue con-
 809 fidence plots with accompanying performance metrics. The confidence coloring scheme ranges from
 810 blue (low confidence, $p\text{LDDT} < 50$) to red (high confidence, $p\text{LDDT} > 90$), providing immediate
 811 visual feedback on prediction quality.
 812

The selected examples span protein lengths from 114 to 195 residues and demonstrate consistently high average pLDDT scores (92.2-96.9), pTM scores (0.860-0.910), and FractalFold scores (0.664-0.685), validating the robustness of our method across the CATH 4.2 test set.

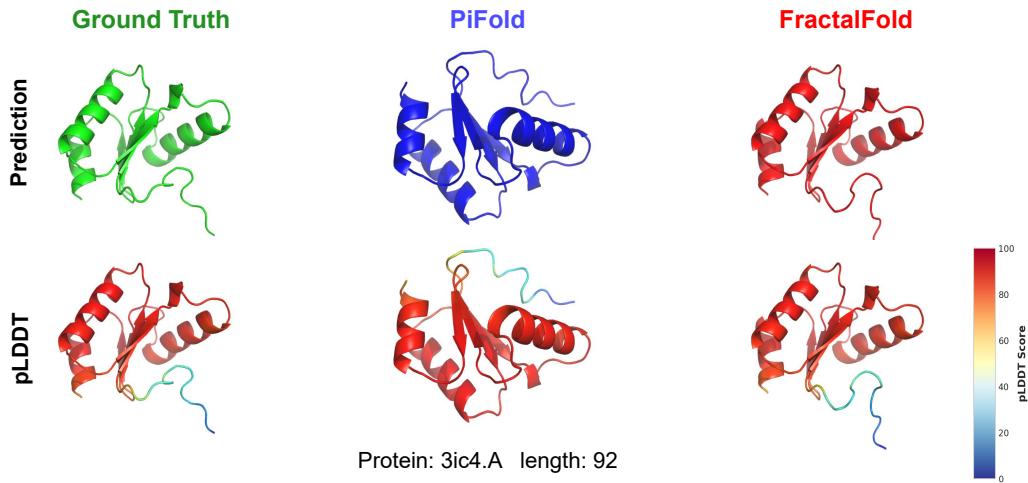


Figure 4: Comparison of protein folding predictions for 3ic4.A showing structural models (top) and confidence scores (bottom) for Ground Truth, PiFold, and FractalFold methods.

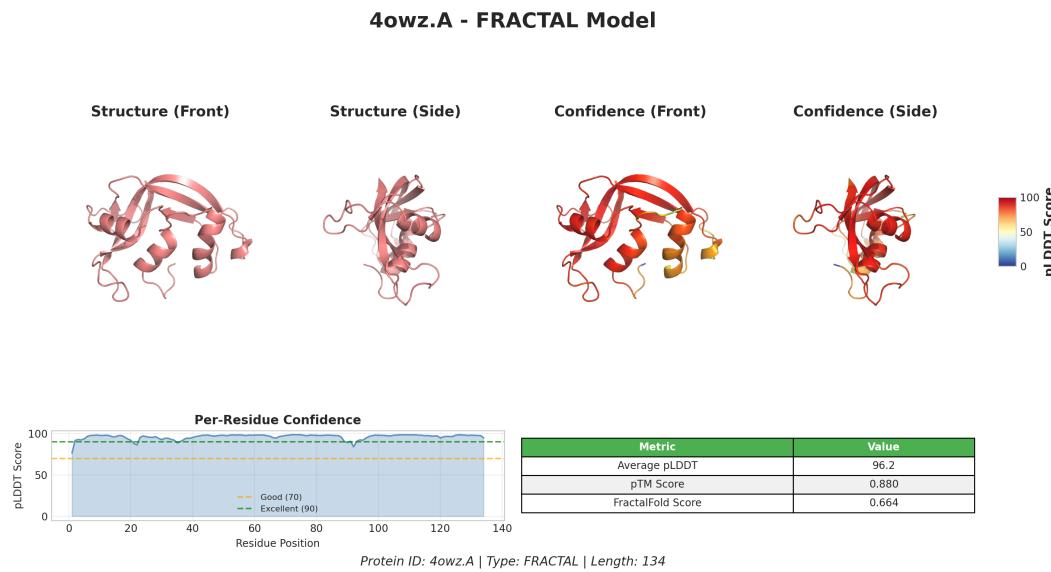


Figure 5: FractalFold prediction for protein 4owz.A (134 residues) showing high-confidence structural model with average pLDDT of 96.2. Structure views (left) and confidence-colored representations (right) demonstrate excellent prediction quality across most residues, with performance metrics including pTM score of 0.880 and FractalFold score of 0.664.

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

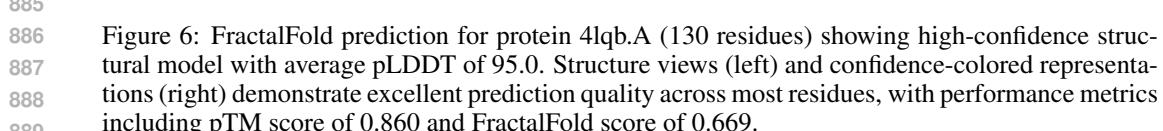
882

883

884

885

886



887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

Figure 6: FractalFold prediction for protein 4lqb.A (130 residues) showing high-confidence structural model with average pLDDT of 95.0. Structure views (left) and confidence-colored representations (right) demonstrate excellent prediction quality across most residues, with performance metrics including pTM score of 0.860 and FractalFold score of 0.669.

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

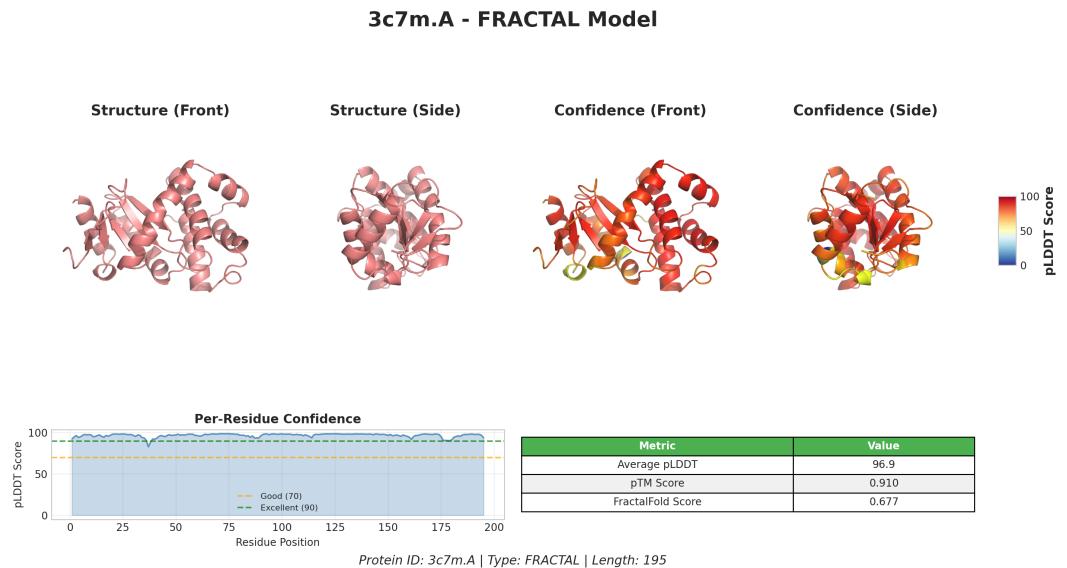


Figure 7: FractalFold prediction for protein 3c7m.A (195 residues) showing high-confidence structural model with average pLDDT of 96.9. Structure views (left) and confidence-colored representations (right) demonstrate excellent prediction quality across most residues, with performance metrics including pTM score of 0.910 and FractalFold score of 0.677.

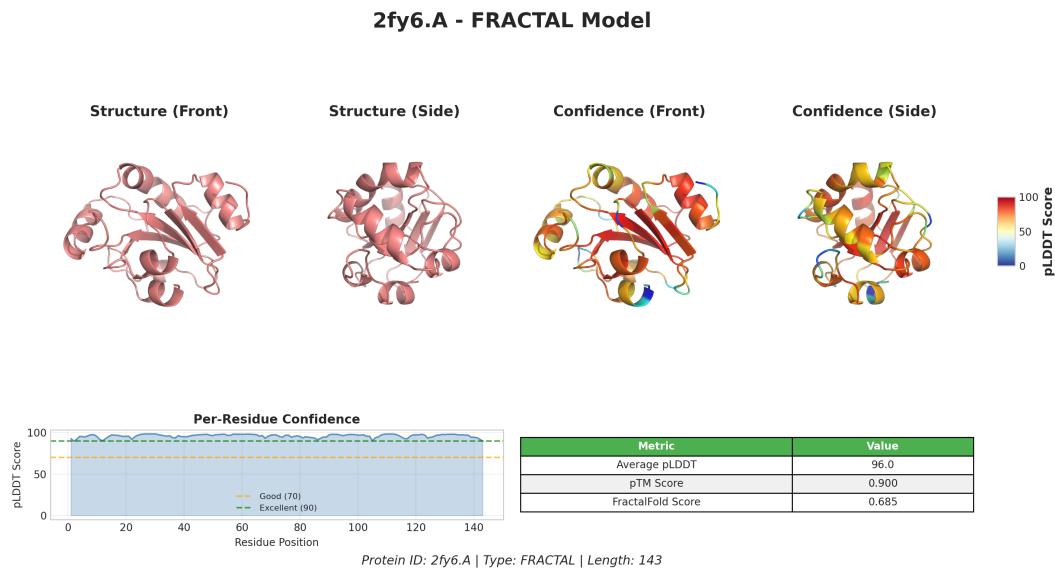


Figure 8: FractalFold prediction for protein 2fy6.A (143 residues) showing high-confidence structural model with average pLDLT of 96.0. Structure views (left) and confidence-colored representations (right) demonstrate excellent prediction quality across most residues, with performance metrics including pTM score of 0.900 and FractalFold score of 0.685.

E PARAMETER SENSITIVITY ANALYSIS

We conducted parameter sensitivity analysis on CATH 4.2 to examine the impact of three critical hyperparameters on FractalFold’s performance. Each parameter was varied independently while maintaining baseline values for others, with results averaged across three random seeds.

E.1 RESULTS AND ANALYSIS

Figure 9 presents the sensitivity analysis results across decode temperature, ESM-IF attention layer selection, and embedding dimension.

Decode Temperature: Recovery rates increase monotonically from 53.30% (temperature 10) to 53.62% (temperature 400). Higher temperatures introduce beneficial stochasticity during sequence generation, enabling broader exploration of the solution space and improved sequence-structure compatibility.

Attention Layer Selection: Early attention layers prove most effective, with layer 1 achieving optimal performance (53.62%) compared to deeper layers (53.41% for layer 2, 53.27% for layer 3). This indicates that early layers from pre-trained structure encoders capture the most relevant geometric information for inverse folding tasks.

Embedding Dimension: Moderate capacity yields optimal results, with 256 dimensions achieving peak performance (53.62%) compared to 128D (53.53%) and 384D (53.60%). This demonstrates an effective balance between representational power and generalization capability.

E.2 IMPLICATIONS

The analysis reveals that FractalFold exhibits robust performance across parameter ranges, with the fractal architecture providing inherent stability. The findings recommend using higher decode temperatures, early attention layers from pre-trained encoders, and moderate embedding dimensions for optimal performance.

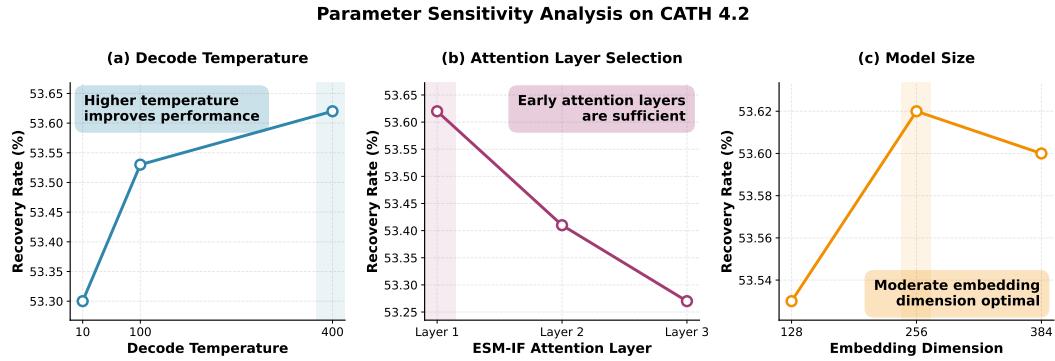


Figure 9: Parameter sensitivity analysis on CATH 4.2 dataset. Higher temperatures improve sampling diversity, early attention layers capture optimal structural information, and moderate embedding dimensions provide the best performance balance.

F IMPLEMENTATION DETAILS

We implemented our FractalFold model using PyTorch 2.2.2 with CUDA 11.8 runtime, leveraging mixed precision training through PyTorch’s Automatic Mixed Precision (AMP) for computational efficiency. All experiments were conducted on four NVIDIA GTX 4090 GPUs

For sequence tokenization, we employed the ESM-1b alphabet with special tokens to build token IDs and masking. The model architecture follows a hierarchical design with amino acid patch sizes of 64, 8, and 1 residues, where each value represents the patch size at different hierarchical levels with 1 corresponding to single amino acid tokens. The embedding dimension was set to 256 across all levels, while the number of transformer blocks was configured as 4, 4, and 2 blocks respectively, indicating the computational depth at each hierarchical level from coarse to fine resolution.

For optimization, we employed the AdamW optimizer with $\beta_1 = 0.9$, $\beta_2 = 0.95$, and weight decay of 0.05. The learning rate was scaled based on global batch size using $\text{lr} = \text{blr} \times (\text{global.batch}/256)$ with a base learning rate of 5×10^{-5} . The learning rate schedule included linear warmup for 5 epochs followed by cosine decay to zero over the training duration.

Training utilized mixed precision with gradient clipping at a global norm of 3.0 to ensure stable convergence. Batch formation employed fixed token-budget batching with a maximum of 15,000 tokens per batch while respecting nominal batch size constraints. The complete training process was conducted for 50 epochs.

Model performance was evaluated using sequence recovery rate, computed as elementwise equality between predicted and ground truth amino acids at positions with valid coordinates:

$$\text{Recovery Rate} = \frac{1}{|\mathcal{M}|} \sum_{i \in \mathcal{M}} \mathbf{1}[\hat{y}_i = y_i] \quad (9)$$

where \mathcal{M} denotes the set of positions with valid coordinates, \hat{y}_i and y_i are the predicted and ground truth amino acids at position i , respectively, and $\mathbf{1}[\cdot]$ is the indicator function which excludes padding tokens. Perplexity was also reported as an additional metric. During evaluation, the model performed non-autoregressive sampling using softmax-multinomial sampling with temperature control.

G PROOF OF OPTIMIZATION EQUIVALENCE

We prove that the optimization problem in Equation (X) is equivalent to selecting the $L_k - 1$ positions with the lowest link probabilities as breakpoints.

Lemma 1 For a sequence of length N with link probabilities $\{a_i\}_{i=1}^{N-1}$, the segmentation that minimizes $\sum_{m=1}^{L_k} \sum_{i=b_m}^{e_m-1} (-\log a_i)$ is equivalent to selecting the $L_k - 1$ positions with the smallest link probabilities as breakpoints.

1026 **Proof G.1** Consider the objective function:
 1027

$$1028 \quad 1029 \quad 1030 \quad \mathcal{L}(T^{(k)}) = \sum_{m=1}^{L_k} \sum_{i=b_m}^{e_m-1} (-\log a_i) = - \sum_{m=1}^{L_k} \sum_{i=b_m}^{e_m-1} \log a_i \quad (10)$$

1031 Since each position $i \in \{1, 2, \dots, N-1\}$ appears in exactly one segment, we can rewrite this as:
 1032

$$1033 \quad 1034 \quad 1035 \quad \mathcal{L}(T^{(k)}) = - \sum_{i=1}^{N-1} \log a_i + \sum_{j \in \mathcal{B}} \log a_j \quad (11)$$

1036 where $\mathcal{B} = \{j_1, j_2, \dots, j_{L_k-1}\}$ is the set of breakpoint positions, and the second term accounts
 1037 for the fact that breakpoint positions are excluded from the segments (as they represent boundaries
 1038 between segments).

1039 The first term $-\sum_{i=1}^{N-1} \log a_i$ is constant regardless of the choice of breakpoints. Therefore, mini-
 1040 mizing $\mathcal{L}(T^{(k)})$ is equivalent to minimizing:

$$1042 \quad 1043 \quad \sum_{j \in \mathcal{B}} \log a_j \quad (12)$$

1044 Since \log is a monotonically increasing function, minimizing $\sum_{j \in \mathcal{B}} \log a_j$ is equivalent to minimiz-
 1045 ing $\sum_{j \in \mathcal{B}} a_j$.

1046 To minimize the sum of $L_k - 1$ values from the set $\{a_1, a_2, \dots, a_{N-1}\}$, we must select the $L_k - 1$
 1047 smallest values. Therefore, the optimal breakpoints correspond to the positions with the $L_k - 1$
 1048 lowest link probabilities.

1049 This equivalence justifies our greedy approach in Algorithm 1, where we iteratively select positions
 1050 with minimum link probabilities as breakpoints at each hierarchical scale.

1054 H COMPUTATIONAL COMPLEXITY ANALYSIS

1055 The computational complexity of transformer-based protein language models is fundamentally con-
 1056 strained by the quadratic scaling of self-attention mechanisms with respect to sequence length. For
 1057 a protein sequence of length N with hidden dimension d , the standard transformer attention mech-
 1058 anism requires $\mathcal{O}(N^2d)$ operations per layer. This quadratic complexity poses significant compu-
 1059 tational barriers for long protein sequences, which can exceed 1000-5000 residues in many bio-
 1060 logically relevant cases. The FractalFold architecture addresses this limitation through hierachical
 1061 fractal segmentation, achieving theoretical complexity reduction to $\mathcal{O}(K \cdot N \cdot \log N \cdot d)$, where K
 1062 represents the number of fractal scales.

1063 For a transformer layer processing a protein sequence of length N , the total computational complex-
 1064 ity per attention head is:

$$1066 \quad 1067 \quad \mathcal{C}_{\text{standard}} = 2N^2d + N^2 = N^2(2d + 1) = \mathcal{O}(N^2d)$$

1068 The memory complexity for storing attention matrices scales as $\mathcal{O}(N^2)$, which becomes prohibitive
 1069 for long sequences.

1070 The FractalFold architecture decomposes the global attention computation into hierachical local
 1071 attention operations across K fractal scales. At scale k , the sequence is partitioned into L_k segments,
 1072 where $L_k = \min(2^k, N)$ follows exponential growth constrained by sequence length.

1073 For each scale k , the average segment length is:

$$1075 \quad 1076 \quad \ell_k = \lfloor N/L_k \rfloor$$

1077 The computational complexity at scale k is:

$$1078 \quad 1079 \quad \mathcal{C}_k = L_k \cdot \ell_k^2 \cdot d = L_k \cdot \left(\frac{N}{L_k}\right)^2 \cdot d = \frac{N^2d}{L_k}$$

1080 The total complexity across all scales becomes:
 1081

1082
$$\mathcal{C}_{\text{fractal}} = \sum_{k=1}^K \mathcal{C}_k = N^2 d \sum_{k=1}^K \frac{1}{L_k}$$

 1083
 1084

1085 Since $L_k = \min(2^k, N)$, for sequences where $N > 2^K$, this sum approximates:
 1086

1087
$$\sum_{k=1}^K \frac{1}{2^k} = 1 - \frac{1}{2^K} < 1$$

 1088
 1089

1090 Therefore: $\mathcal{C}_{\text{fractal}} < N^2 d$, achieving complexity reduction.
 1091

1092 For the asymptotic case where $K = \mathcal{O}(\log N)$, the complexity becomes:
 1093

1094
$$\mathcal{C}_{\text{fractal}} = \mathcal{O}(K \cdot N \cdot \log N \cdot d)$$

 1095

1096 The theoretical complexity reduction from $\mathcal{O}(N^2)$ to $\mathcal{O}(N \log N)$ represents a fundamental ad-
 1097 vancement in transformer scalability for protein sequence modeling, enabling the processing of
 1098 previously intractable long-range protein interactions while maintaining the representational power
 1099 of self-attention mechanisms.
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133