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Abstract

We introduce a novel conformal prediction framework for constructing conformal
prediction bands with high probability around biomarker trajectories observed at
subject-specific, randomly-timed follow-up visits. Existing conformal methods
typically assume fixed time grids, limiting their applicability in longitudinal clin-
ical studies. Our approach addresses this limitation by defining a time-varying
nonconformity score that normalizes prediction errors using model-derived uncer-
tainty estimates, enabling conformal inference at arbitrary time points. We evaluate
our method on two well-established brain biomarkers—hippocampal and ventric-
ular volume—using a range of standard and state-of-the-art predictors. Across
models, our conformalized predictors consistently achieve nominal coverage with
tighter prediction intervals compared to baseline uncertainty estimates. To further
account for population heterogeneity, we develop group-conditional conformal
bands with formal coverage guarantees across clinically relevant and high-risk
subgroups. Finally, we demonstrate the clinical utility of our approach in iden-
tifying subjects at risk of progression to Alzheimer’s disease. We introduce an
uncertainty-aware progression metric based on the lower conformal bound and
show that it enables the identification of 17.5% more high-risk subjects com-
pared to standard slope-based methods, highlighting the value of uncertainty cal-
ibration in real-world clinical decision making. We make the code available at
github.com/vatass/ConformalBiomarkerTrajectories.

1 Introduction
Predicting biomarker trajectories is crucial for monitoring disease progression and improving patient
outcomes through early intervention. In neurodegenerative diseases such as Alzheimer’s, volumetric
biomarkers—most notably hippocampal atrophy—are closely associated with clinical decline and
are widely used to track disease progression [1–3]. Given the clinical importance of biomarker
trajectories, recent advances in machine learning have led to a growing number of methods designed
to forecast biomarker evolution from longitudinal data [4–8]. However, inter-individual variability in
disease progression and measurement noise inherent in imaging data make predictions inherently
uncertain—models cannot determine exact future values with complete confidence. If uncertainty
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is not properly accounted for, predictions can cause high-risk subjects to be misclassified as stable.
Such potential misclassifications hinder the deployment of biomarker predictors in clinical workflows,
where failure to identify high-risk individuals can delay urgently needed intervention or exclude
such individuals from trials. To enable safe and reliable decision-making in healthcare, uncertainty
calibration of the learned predictors is important.

A popular approach for equipping predictors with reliable uncertainty estimates is given by conformal
prediction [9–11]. Conformal prediction is highly versatile, accommodating any black-box predictive
model (e.g., neural networks) and any data distribution (e.g., non-Gaussian). The first step in
the approach is to evaluate the learned model’s prediction error, as characterized by a so-called
nonconformity score, on a held-out calibration dataset. Assuming that the calibration and test data are
sampled independently from the same probability distribution*, the prediction error on the calibration
data can be used to estimate the prediction error on the test data. Thus, model predictions can be
turned into regions that are guaranteed to cover the true observations with arbitrarily high probability.

In the context of trajectory prediction, existing conformal methods have focused on fixed-time
trajectories [12–16]. However, biomarker datasets typically contain randomly-timed biomarker
trajectories due to missed visits and variable scheduling in clinical studies (see Figure 1). Such
trajectories create a more complex setting for designing conformal prediction bands with guaranteed
coverage properties, which are critical for safely delivering early diagnoses and effectively guiding
clinical interventions.

Figure 1: Illustration of randomly-timed biomarker
trajectories from five subjects. Time is measured
with respect to the first biomarker observation of
each subject. Note the varying trajectory length
and the different time points of observations across
subjects.

In this paper, we propose a novel conformal
prediction method tailored to the setting of
randomly-timed biomarker trajectories. Our ap-
proach derives prediction bands that are guar-
anteed to cover the entire true biomarker tra-
jectory with arbitrarily high probability. We
apply our method to forecasting hippocampal
and ventricular-volume trajectories—two well-
established biomarkers to monitor the onset and
progression of Alzheimer’s disease (AD). To
better capture variability across clinically mean-
ingful subgroups, including high-risk individu-
als such as those diagnosed with Mild Cognitive
Impairment (MCI), we design group-conditional
conformal predictors that offer formal coverage
guarantees within covariate-defined strata. We
evaluate these predictors across five key stratifications—sex, race, diagnosis, education level, and
APOE4 allele status—motivated by clinical risk and the need for equitable performance across
underrepresented demographic subgroups. Beyond evaluating calibration, we translate conformal
uncertainty into a downstream decision task: identifying MCI patients at high risk of progression to
Alzheimer’s disease. We introduce a trajectory-based risk score derived from the lower conformal
bounds and show that this uncertainty-calibrated metric enables more inclusive and safety-aware
subject selection in scenarios such as trial enrichment or early intervention planning.

Our contributions can be summarized as follows: 1) We introduce a new conformal prediction frame-
work for randomly-timed biomarker trajectory forecasting. Our method defines a nonconformity
score over multiple time points—similar in spirit to Yu et al. [17], Cleaveland et al. [18]—with
the key distinction that our time points are not fixed across individuals but randomly distributed,
reflecting real-world clinical follow-up schedules. 2) We test our approach on two well-established
neurodegenerative biomarkers—hippocampal volume and ventricular volume—using real clinical
data. By conformalizing a range of standard and state-of-the-art predictors, we demonstrate that
our method achieves the nominal coverage while maintaining tight prediction bands, outperform-
ing baselines that rely solely on model-specific uncertainty estimates. 3) To address population
heterogeneity, we incorporate covariate-based stratification into the calibration step and develop
group-conditional conformal predictors with formal subgroup-level coverage guarantees. We empiri-
cally validate these guarantees across five demographic and clinically relevant stratifications: sex,
race, diagnosis, education level, and APOE4 allele status. 4) We demonstrate the clinical utility of our

*Conformal methods typically require that the calibration and test data are exchangeable—a milder condition
than that of independent and identically distributed data (see Appendix A).
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uncertainty-calibrated conformal prediction bands in a downstream decision task, where the goal is to
identify MCI subjects at high risk of progression to Alzheimer’s disease. To this end, we introduce a
novel uncertainty-aware progression metric—the rate of change bound—which leverages conformal
uncertainty to provide an estimate of the biomarker’s rate of change over time. This metric enables
the identification of 17.5% more high-risk MCI subjects who progress to Alzheimer’s disease
compared to standard approaches.

2 Related Work
Uncertainty-Calibrated Prediction of Biomarker Trajectories. Uncertainty-calibrated predictors
for biomarker trajectories integrate uncertainty quantification into their architecture. Bayesian
methods achieve this by employing probabilistic frameworks to model uncertainty. For instance,
Gaussian Processes (GPs) [19] utilize kernel-defined priors over functions to encode structural
assumptions, such as smoothness. Their posterior distributions quantify prediction uncertainty
through covariance-based inference under Gaussian likelihoods. Several studies [8, 20–24] involve
predictors with inherent uncertainty measures based on Gaussian distribution assumptions. In contrast,
Lin et al. [25] introduce a conformal variant for fixed-time biomarker trajectories, ensuring asymptotic
longitudinal coverage without any distributional assumptions.

Conformal Prediction for Fixed-Time Trajectories. Conformal methods for predicting fixed-time
trajectories have been developed for settings with single time series data [26–28] and multiple time
series data [13, 17, 18, 25, 29, 30]. Our setting differs from the above, involving data with generally
non-temporal inputs (e.g., sex) and randomly-timed trajectory outputs (e.g., hippocampal-volume
measurements taken at random time points for each subject). We focus on the latter line of works,
whose setting is a special case of ours.

Lin et al. [25] present a conformal prediction method with asymptotic longitudinal coverage guar-
antees. Stankeviciute et al. [13] and Lindemann et al. [30] design conformal prediction bands with
finite-sample coverage guarantees, by leveraging a union bound argument. Sun and Yu [29] propose
using copulas to model the uncertainty of predictions at multiple time points. Their approach ensures
coverage with narrower prediction bands, but is limited to situations with ample calibration data, as
noted by the authors. Yu et al. [17] and Cleaveland et al. [18] overcome this limitation by defining a
normalized nonconformity score jointly over multiple time points. Their framework provides narrow
prediction bands with simultaneous coverage guarantees over the entire trajectory length. In the next
section, we extend their approach to our setting of randomly-timed trajectories, where observations
are collected at varying time points.

3 Conformal Prediction for Randomly-Timed Trajectories
In this section, we introduce a novel conformal prediction method tailored to settings with randomly-
timed trajectories. In Subsection 3.1, we present the problem of conformal prediction for data with
vector-valued inputs and randomly-timed trajectory outputs. In Subsection 3.2, we derive conformal
prediction bands with coverage guarantees for our setting, inspired by the approach of Yu et al. [17]
and Cleaveland et al. [18] for fixed-time trajectories.

3.1 Problem Formulation
Our setting of randomly-timed trajectories is characterized by a triplet of random variables (X, T , Y ),
where X ∈ Rd denotes the input, T ⊆ N+ the set of time points at which observations Yt ∈ R are
collected, and Y := {Yt : t ∈ T } the corresponding trajectory output. In the context of biomarkers,
the triplet (X, T , Y ) can be interpreted, for instance, in the following way: i) the input X may involve
demographic covariates (e.g., sex, race) as well as the biomarker observation on the patient’s first
clinical visit, ii) the set T may include the times of the patient’s subsequent visits, and iii) the output
Y the corresponding biomarker observations at these times. We note the implicit dependence of the
trajectory output Y on the set of time points T .

Suppose we have a dataset D := {(X(i), T (i), Y (i))}Ni=1 such that for each test example (X, T , Y ),
the random variables (X(1), T (1), Y (1)), . . . , (X(N), T (N), Y (N)), and (X, T , Y ) are exchange-
able†. We note that exchangeability is weaker than the standard assumption of independent and
identically distributed data, imposing a reasonable condition for biomarker datasets, where each
triplet (X(i), T (i), Y (i)) corresponds to a different subject. Our goal is to leverage the dataset D and

†Exchangeability implies that the joint probability distribution of a sequence of random variables remains
unchanged under any permutation of the variables (see definition in Appendix A).
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the input X to design a high-confidence prediction band for the unknown trajectory Y (see Figure 3).
Our problem is formalized in the following statement.
Problem 3.1. Consider a given dataset D, consisting of N data
(X(1), T (1), Y (1)), . . . , (X(N), T (N), Y (N)), and a test example (X, T , Y ), such that all
(X(i), T (i), Y (i)) and (X, T , Y ) are exchangeable. Given a failure probability α ∈ (0, 1), design
conformal intervals Ct(X) ⊆ R for the unknown observations Yt, such that:

P (∀t ∈ T : Yt ∈ Ct(X)) ≥ 1− α. (1)

The intervals Ct(X) may also depend on the dataset D as well as the parameters N and α.

3.2 Conformal Prediction Bands for Randomly-Timed Trajectories
In this subsection, we introduce conformal prediction for randomly-timed trajectories, under the
setting of Subsection 3.1. Inspired by the conformal methods in [17, 18] for fixed-time trajectories, we
design a prediction band that guarantees covering the unknown trajectory Y with arbitrary confidence
(see (1)).

We focus on the standard tractable variant of conformal prediction, referred to as split conformal pre-
diction [11]. Specifically, we start by splitting the dataset D into a training set Dtrain and a calibration
set Dcal. Let Itrain := {i : (X(i), T (i), Y (i)) ∈ Dtrain} and Ical := {i : (X(i), T (i), Y (i)) ∈ Dcal}
denote the corresponding sets of indices. Employing the dataset Dtrain, we train an arbitrary model
that maps the input X to predictions Ŷt of the future observations Yt (see Appendix E for examples of
predictive models). Moreover, let Ŷ (i)

t denote the estimate of Y (i)
t returned by the learned predictor.

The idea is to leverage the data in Dcal and the corresponding predictions Ŷ
(i)
t to transform the

estimates Ŷt into intervals that ensure the guarantee (1). To this end, we define the normalized
nonconformity scores:

R(i) = max
t∈T (i)

{
|Y (i)

t − Ŷ
(i)
t |

σ(Ŷ
(i)
t )

}
, (2)

where σ(·) : R → R+ is an arbitrary normalizing function, for all i ∈ Ical. A natural way of defining
the function σ(·) is by leveraging some notion of predictive standard deviation (std). In cases of
predictors with inherent predictive stds, the function σ(·) can be defined accordingly (see Appendix E
for examples). Otherwise, the factors σ(Ŷ

(i)
t ) can be computed from the given data, employing

ideas from [17, 18]. In the following theorem, we use the scores in (2) to design a prediction band
composed of intervals Ct(X) ⊆ R that ensure the guarantee (1). The proof of the theorem is given in
Appendix B.
Theorem 3.2 (Conformal Prediction Bands for Randomly-Timed Trajectories). Fix a failure prob-
ability α ∈ (0, 1). Let Ŷt be the prediction of the future observation Yt at time point t. Consider
the nonconformity scores R(i) defined as in (2), for any normalizing function σ(·). Then, if R is the
⌈(|Dcal|+ 1)(1− α)⌉‡-th smallest value of the set {R(i) : i ∈ Ical} ∪ {∞}, the guarantee (1) holds
with intervals Ct(X) := [−Rσ(Ŷt) + Ŷt, Ŷt +Rσ(Ŷt)], ∀t.

Notice in Theorem 3.2 that the normalizing factors σ(Ŷt) are leveraged to scale the score R into
Rσ(Ŷt) across different time points t. For the intervals Ct(X) to be bounded, we need to have
⌈(|Dcal|+ 1)(1− α)⌉ ≤ |Dcal|. We note that, while the set of time points T is a priori unknown, we
can design a prediction band for Y by deriving the intervals Ct(X) for all time points t ∈ {1, . . . , T},
for a user-defined maximum time T ∈ N+, and interpret the intervals at time points outside T as
interpolations among the true time points (i.e., those contained in T ). For example, in Figure 3,
the conformal prediction band is guaranteed to cover the true observations (black bullets) at the
corresponding (a priori unknown) time points.
Remark 3.3. The nonconformity scores in (2) are inspired by the conformal methods in [17, 18],
which guarantee coverage for fixed-time trajectories, where the sets of time points T and T (i),
i = 1, . . . , N , are identical and known a priori. However, in the context of biomarker trajectory
prediction, observations are collected at random time points for each subject, as depicted in Figure 1.
Therefore, the application of the approach from [17, 18] is hindered by the lack of prior knowledge
of the time points at which observations are collected for the test subject. More details on why

‡The notation ⌈·⌉ represents the ceiling function.
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a)

b)

Figure 2: (a) We compare the mean coverage and mean interval width of our baseline and conformal
prediction bands for hippocampal- and ventricular-volume trajectories. Error bars denote the 95th
percentile of the metrics across 10 data splits. The baseline predictors (solid bars) either exceed the
desired coverage by a noticeable margin (DKPG, DME) or fall short of it (DQR, DRMC, Bootstrap).
In contrast, all conformalized predictors (striped bars) achieve the nominal coverage while also
maintaining relatively tight intervals. (b) We show the temporal evolution of the mean interval
width of the 90% conformal prediction bands for hippocampal- (left) and ventricular-volume (right)
trajectories. The curve corresponds to the CP-DKGP predictor and yields relatively tight intervals
early in time, with bands steadily widening as the prediction horizon extends, reflecting the expected
growth in uncertainty over time. Reported interval widths are on the standardized scale.

these previous approaches cannot be used in our setting are given in F. Our method removes this
assumption and guarantees coverage of randomly-timed trajectories (see Theorem 3.2).

Beyond the coverage guarantee (1), our conformal prediction method provides us with a distribution-
agnostic framework for obtaining uncertainty-aware variants of arbitrary trajectory predictors. In
the following section, we demonstrate the applicability of our approach to several standard and
state-of-the-art predictive models.

4 Prediction of Brain Biomarker Trajectories
In this section, we apply our conformal prediction method in a case study involving two well-
established brain biomarkers. Particularly, we focus on predicting hippocampal- and ventricular-
volume trajectories, both of which are critical for diagnosing and monitoring the progression of
neurodegenerative diseases, such as Alzheimer’s disease (AD) [31]. For each biomarker, we use a
dataset of 2, 200 samples with (X(i), T (i), Y (i)) from subject i: i) X(i) are input features consisting
of demographic and clinical covariates, such as sex, race, and clinical diagnosis, as well as volume
measures from 145 brain regions, collected on the subject’s first visit; ii) T (i) includes the set of time
points of the subject’s subsequent visits, relative to their first visit; iii) Y (i) is the output trajectory
involving the corresponding biomarker values at the observed time points. For our experiment, we
combine the preprocessed and harmonized neuroimaging measures from two well-known longitudinal
studies— Alzheimer’s Disease Neuroimaging Initiative (ADNI) ADNI [32] and Baltimore Longitudi-
nal Study of Aging (BLSA) [33]—which focus on AD and Brain Aging, respectively. Details on the
studies and our preprocessing pipelines can be found in Appendix D.

To demonstrate the model-agnostic nature of our framework, we apply it to various standard and
state-of-the-art predictors: i) Deep Kernel Gaussian Process (DKGP) model [24], ii) Deep Mixed
Effects (DME) model [20], iii) Deep Quantile Regression (DQR) model [34], iv) Deep Regression
with Monte Carlo (DRMC) dropout model [35], and v) Bootstrap Deep Regression model [36].
Details on the architecture and training of each model can be referred to Appendix E.1. We note that
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Figure 3: We compare trajectory bounds for DKGP and DRMC before and after conformal calibration.
The baseline DKGP model produces overly wide bounds, while DRMC yields narrow, overconfident
intervals that fail to capture later observations. After conformalization, CP–DKGP and CP–DRMC
adjust their bounds to achieve the nominal coverage, correcting over- and under-confidence respec-
tively.

existing conformal prediction methods are designed for fixed-time settings and cannot be applied to
randomly-timed trajectories, which precludes direct comparisons. We elaborate further in Appendix F.

For each predictor, we present a comparative case study between its baseline variant, which is
trained on the entire given dataset, and its conformalized variant, which is trained on a subset of the
given dataset, as described in Subsection 3.2. To design prediction bands for the baseline variants,
we employ the inherent uncertainty measure provided by their predictive standard deviation (see
Appendix E.2 for details). By leveraging the same uncertainty measure, we define the normalizing
function σ(·) employed in the design of our conformal prediction bands (see Theorem 3.2). We note
that while baseline bands provide a notion of uncertainty-aware prediction, the desired coverage
might not be achieved when model assumptions are violated.

In all experiments, we evaluate the performance of the baseline and conformal prediction bands
in terms of mean coverage (i.e., the proportion of test trajectories entirely contained within the
prediction bands) and mean interval width (across all test trajectories and corresponding time points).
Specifically, we compute these metrics by averaging over 10 random splits of the dataset into given
data and test data, with the test set comprising 10% of the total dataset. For the design of our
conformal prediction bands, we perform an additional splitting of the given data into training and
calibration sets. In all cases, the calibration set size is selected as 20% of the given dataset (see
Appendix G.1 for details about this choice). Moreover, in this section, we consider a confidence level
of 0.9 (i.e., α = 0.1), while additional confidence levels are explored in Appendix G.2.

In Figure 2a), we illustrate the mean coverage and mean interval width attained by all the baseline and
conformalized predictors for the two biomarkers of interest. We observe that in the case of the DKGP
and DME predictors, both the baseline and conformalized variants achieve the desired coverage.
However, the mean coverage of the conformalized predictors is closer to 0.9, and the corresponding
prediction bands are tighter, as indicated by their reduced mean interval width compared to the
baselines. We also see that unlike the corresponding baseline variants, the conformalized DQR,
DRMC, and Bootstrap predictors are able to achieve the desired coverage, confirming our coverage
guarantee in (1). Figure 2b shows the temporal evolution of conformal interval width for CP–DKGP.
The intervals remain stable over time and increase only gradually with prediction horizon. The mean
interval width with time for the remaining predictors are provided in Appendix G.3. To illustrate the
bands qualitatively, we visualize baseline and conformal prediction intervals for hippocampal-volume
trajectories from DKGP and DRMC on an example subject in Figure 3.
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5 Group-Conditional Application across Covariate Subpopulations
So far, we have developed and tested conformalized predictors of biomarker trajectories that guar-
antee coverage across the overall patient population. However, these guarantees may not hold
uniformly when applied to subpopulations defined by demographic or clinical covariates. In par-
ticular, high-risk groups (e.g., individuals with MCI or genetic risk factors) and underrepresented
demographic subgroups may be inadequately captured by population-based conformal bands, leading
to miscalibrated uncertainty estimates. To address this, we employ a group-conditional variant of
our approach, directly derived from the conformal framework in [9, 37]. We describe this method in
Subsection 5.1 and evaluate it in our case study on hippocampal- and ventricular-volume trajectories
in Subsection 5.2.

5.1 Group-Conditional Conformal Prediction for Randomly-Timed Trajectories
In this subsection, we present a group-conditional variant of the conformal prediction method
described in Subsection 3.2. Specifically, we provide group-conditional conformal prediction bands
for randomly-timed trajectories, following the Mondrian conformal prediction framework from
[9, 37].

Mondrian conformal prediction is a general approach for deriving group-conditional variants of
conformalized predictors. To apply it to our setting of randomly-timed trajectories for distinct
covariate subpopulations, consider a grouping function G : Rd → G, where G is a predefined set
of covariate groups. The idea is to stratify the calibration data by group, and apply the conformal
method from Subsection 3.2 to each of the groups. In this way, we can derive group-conditional
conformal bands that guarantee coverage within each covariate subpopulation. We formalize our
result in the following corollary, adopting the notation from Section 3. The proof is omitted, as it
directly follows from the application of Theorem 3.2 across all subpopulations, similar to the proof
of [37, Proposition 3].
Corollary 5.1 (Group-Conditional Conformal Prediction Bands for Randomly-Timed Trajectories).
Fix a failure probability α ∈ (0, 1). Let Ŷt be the prediction of the future observation Yt at time point t.
Consider the nonconformity scores R(i) defined as in (2), for any normalizing function σ(·). For each
g ∈ G, let Dcal,g := {(X(i), T (i), Y (i)) ∈ Dcal : G(X(i)) = g} be the corresponding subset of Dcal

and Ical,g := {i ∈ Ical : G(X(i)) = g} the corresponding set of indices. Moreover, for each g ∈ G,
let Rg denote the ⌈(|Dcal,g|+ 1)(1− α)⌉‡-th smallest value of the set {R(i) : i ∈ Ical,g} ∪ {∞}.
Then, for every g ∈ G, we have:

P (∀t ∈ T : Yt ∈ Ct(X) |G(X) = g) ≥ 1− α,

with Ct(X) = [−RG(X)σ(Ŷt) + Ŷt, Ŷt +RG(X)σ(Ŷt)], ∀t.

Simply put, the above corollary guarantees that, given a test example from a known covariate group
g, we can derive conformal prediction intervals with guaranteed coverage of 1− α for the unknown
trajectory Y , for any α ∈ (0, 1).

5.2 Application across Heterogeneous Demographic and Clinical Covariate Groups
In this subsection, we test our group-conditional conformal prediction method in the case study of
hippocampal- and ventricular-volume trajectories, described in Section 4. Specifically, we design
group-conditional conformal prediction bands for a total of five population stratifications, each based
on a distinct demographic or clinical covariate. Among demographic factors, we consider sex, race,
and education level, with the following respective subpopulations: i) females and males, ii) Asians,
Blacks, and Whites, and iii) subjects with less than 16 years of education (Edu < 16) and more than
16 years of education (Edu > 16). As for clinical covariates, we consider diagnosis and APOE4
allele status, a genetic risk factor associated with Alzheimer’s disease. As noted in Section 4, our
diagnostic composition divides subjects into: Cognitively Normal (CN), Mildly Cognitively Impaired
(MCI), and subjects diagnosed with Alzheimer’s disease (AD). Moreover, subjects are classified
based on their APOE4 status as non-carriers, heterozygotes and homozygotes depending on whether
they have zero, one, or two copies of the APOE4 allele, respectively.

To demonstrate the impact of our group-conditional conformal method, we compare it with the
approach from Subsection 3.2 for the five population stratifications. Herein, we refer to the latter
method as population conformal prediction, owing to its coverage guarantees across the overall
population. Our experiments focus on the setup of Section 4, employing the state-of-the-art Deep
Kernel Gaussian Process model from [24], as well as the combined cohort of the ADNI and BLSA

7



>

>

>

>

Figure 4: We compare the mean coverage of population and group-conditional conformal prediction
bands for hippocampal- and ventricular-volume trajectories. Error bars denote the 95th percentile of
the metrics across 10 data splits. Results are presented across five population stratifications based
on individual covariates. For most covariate groups, the population conformalized predictors fail
to achieve the desired coverage, while the group-conditional conformalized predictors consistently
attain the desired confidence level.

studies. For the composition of the dataset across all five population strata, we refer the readers
to Table 3 in Appendix D. We conduct experiments for 10 distinct splits of the data into training,
calibration, and test sets, as detailed in Section 4. For each of the splits, we first learn a model from
the corresponding training data, and then design: i) a single population conformalized predictor, and
ii) five group-conditional conformalized predictors for the respective population stratifications. For
the group-conditional conformal prediction bands, the test data are stratified by group. The mean
coverage and mean interval width are computed by averaging over all 10 data splits. Results are
presented for a confidence level of 0.9, while additional values are in Appendix H.

Figure 4 shows the mean coverage achieved by population- and group-conditional conformal pre-
dictors across five covariate stratifications for hippocampal-volume trajectories. We observe that
the population conformalized predictors (in blue) fail to achieve the nominal coverage across most
covariate groups in several cases—including clinically high-risk or underrepresented groups such
as individuals diagnosed with Mild Cognitive Impairment (MCI), APOE4 homozygotes, and Asian
subjects. On the other hand, while group-conditional predictors (red) consistently attain the nominal
90% coverage across all subgroups. These results confirm that group-conditional conformal bands
provide more reliable coverage across diverse patient subpopulations and underscore the translational
potential of our approach in clinical settings where early risk identification is essential. In the next
section, we illustrate how conformal uncertainty can be directly leveraged in a downstream clinical
task, enabling more informed decision-making and improving individual-level risk stratification.

6 Clinical Utility of Conformal Bands: Identifying High-Risk Subjects
Having established coverage guarantees, we now focus on clinical utility for identifying high-
risk individuals. Specifically, we apply our conformal bounds to stratify MCI patients by risk of
Alzheimer’s progression, enabling early detection and targeted intervention. In clinical practice,
the rate of change (RoC) of a longitudinal biomarker between the subject’s first clinical visit and a
subsequent clinical visit has been widely used as a progression marker for early detection and cohort
enrichment [2, 38–40]. In the case of predicted biomarker trajectories, we can define the predicted
rate of change R̂oC of subject i as the slope of the predicted trajectory between an initial and a future
time point, denoted by t0 and tN , respectively, as follows:

R̂oC
(i)

=
Ŷ

(i)
tN − Y

(i)
t0

tN − t0
. (3)

While the predicted R̂oC is widely used as a progression marker, relying on trajectory predictions
alone can underestimate risk in uncertain cases. We therefore introduce the Rate of Change Bound
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(RoCB) as an uncertainty-aware progression metric that quantifies the worst-case rate of change with
high probability. Let L(i)

t and U
(i)
t denote the lower and upper bounds of an uncertainty interval

obtained for subject i at time point t with a given method (e.g., a baseline method or our conformal
prediction method). To account for the different behaviors of distinct biomarkers, the RoCB of
subject i is defined as follows:

RoCB(i) =


L(i)(tN )− Y (i)(t0)

tN − t0
, if biomarker decreases with progression,

U (i)(tN )− Y (i)(t0)

tN − t0
, if biomarker increases with progression.

(4)

Note that the RoCB provides a notion of an uncertainty-aware slope. In particular, for decreasing
biomarkers, such as hippocampal volume, the worst-case decline is captured by the lower bound of
the interval, whereas for increasing biomarkers, such as ventricular volume, the upper bound of the
interval is used. In the experiments below, we focus on hippocampal volume and therefore compute
RoCB using the lower bound.

Table 1: Youden-optimised discrimination on z-standardised pre-
dicted rate of change R̂oC and rate of change bound RoCB for
MCI converters, with 95% bootstrap confidence intervals. For hip-
pocampal volume (a decreasing biomarker), RoCB corresponds
to the lower bound of the interval.

Method Metric τ⋆ Precision Recall F1

DRMC R̂oC −0.006 0.436 ± 0.022 0.671 ± 0.058 0.528 ± 0.023
RoCB −0.012 0.403 ± 0.022 0.884 ± 0.058 0.553 ± 0.023

CP–DRMC R̂oC −0.006 0.432 ± 0.022 0.740 ± 0.095 0.546 ± 0.024
RoCB −0.020 0.395 ± 0.022 0.915 ± 0.095 0.552 ± 0.024

In this experiment, we focus on
the hippocampal-volume trajec-
tory as a key neurodegenerative
biomarker. We evaluate each sub-
ject’s predicted rate of change as
a baseline progression metric and
compare it to the proposed rate
of change bound. The R̂oC is de-
fined as the slope between the
baseline prediction and the fu-
ture predicted mean value, while
the RoCB is computed using the
lower bound of the prediction in-
terval at the final timepoint.

We analyze subjects diagnosed with MCI at their first clinical visit. Those remaining MCI at all
follow-ups are labeled MCI-Stable; those converting to Alzheimer’s are MCI-Progressors. A threshold
τ applied to RoC or RoCB determines trial eligibility: subjects below τ are classified as high-risk.
The cohort includes 462 MCI-Stable participants (mean follow-up 22.5 months; range 0–153) and
258 MCI-Progressors (mean 23.5 months; range 0–142).

To evaluate the clinical value of our conformal bands, we compare the discriminative performance of
DRMC (with its baseline uncertainty measures—see Section 4) and its conformalized counterpart
(CP–DRMC) using both the predicted rate of change and rate of change bound. For each metric
(RoC or RoCB), we determine the optimal threshold τ∗ via Youden’s index. As shown in Table 1,
the RoCB metric substantially improves recall within both models. For DRMC, recall increases
from 67.1% (R̂oC) to 88.4% (RoCB), and for CP–DRMC, from 74.0% to 91.5%. These increases
demonstrate the benefit of incorporating predictive uncertainty into the slope-based progression metric.
Importantly, even under the same RoCB metric, conformalization yields an additional improvement:
CP–DRMC achieves a recall of 91.5% compared to 88.4% for DRMC. This increase highlights the
impact of conformal calibration itself: it not only produces well-calibrated prediction intervals, but it
also systematically improves risk identification by lowering uncertainty bounds. Although precision
decreases modestly when using RoCB instead of RoC, the F1 score remains similar, confirming that
the increased sensitivity does not come at the cost of overall discrimination. Appendix Section I
(Table 4) presents the quantitative results for the remaining predictors.

To further illustrate how conformal prediction improves clinical decision-making, Figure 5 presents
two representative hippocampal-volume trajectories comparing DRMC and CP–DRMC. On the left,
an MCI subject who converts to AD is misclassified by DRMC: the model’s overconfident prediction
band fails to capture the true trajectory, and the resulting RoCB (−0.011 SD month−1) lies above the
Youden-optimal threshold (τ⋆), leading to a missed detection. In contrast, CP–DRMC produces a
wider and better-calibrated prediction band that lowers the RoCB to (−0.020 SD month−1), correctly
classifying the subject as an AD progressor. On the right, we show a stable MCI subject incorrectly
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Figure 5: We visualize hippocampal-volume trajectories for two MCI participants. On the left, a
converter from MCI to AD. The over-confident DRMC band (green) fails to cover the true trajectory
and yields a lower-bound rate of change of −0.011,mo−1—above the Youden-optimal threshold—so
the subject would be missed. Conformal calibration (CP-DRMC, lilac) lowers the band, produces
RoCB = −0.020,mo−1 ≤ τ⋆, and correctly flags the converter. On the right, a non-converter who
remains MCI. DRMC erroneously predicts conversion, whereas the wider CP-DRMC band raises
the RoCB above the threshold and prevents a false enrolment. Together these examples demonstrate
how conformalisation rescues under-scored converters while simultaneously reducing false positives
among stable cases.

identified as high-risk by DRMC due to an overly steep R̂oC. The conformal predictor expands the
interval, raising the RoCB to a larger value and avoiding a false inclusion.

7 Discussion on Clinical Impact

Our framework brings distribution-free, uncertainty-calibrated forecasting to biomarker trajectories
observed at randomly-timed visits—a pervasive reality in longitudinal clinical studies. By confor-
malizing trajectory predictions, we equip downstream decisions (e.g., early intervention, enrichment
for MCI or APOE4 subgroups) with formal coverage guarantees at subject-specific time points. Im-
portantly, our approach is model-agnostic and can conformalize any biomarker predictor to enhance
reliability in precision trial design [41], where slope-based metrics guide inclusion to the clinical trial
[2]. Our rate of change bound (RoCB) uses the conformal band to favor conservative, safety-oriented
screening without parametric uncertainty assumptions. Both population- and group-conditional
calibration improve trustworthiness in high-risk or underrepresented subgroups.

8 Limitations and Future Work

Our contribution adapts split conformal and group-conditional conformal prediction to randomly-time
settings via a time-varying normalizing function. We focus on single biomarkers; joint guarantees
across coupled trajectories (e.g., hippocampus, ventricles, cognitive measures) are not yet addressed,
though multivariate conformal prediction that provides joint coverage is a natural extension of
our approach to be pursued next. Furthermore, the group-conditional conformal prediction faces
challenges: as we create intersectional subgroups (e.g., APOE4 status, race, sex, age), the resulting
ones become too small for effective calibration, yielding wide or uninformative bands. Future
work will explore alternative approaches for multi-covariate conditioning that maintain coverage
guarantees while avoiding the sample size limitations of fully stratified calibration. Additionally,
our coverage guarantees assume the test and calibration data are drawn from the same underlying
distribution (i.e., they are exchangeable). When this assumption is violated—such as when applying
the method to new cohorts from different sites, imaging protocols, or demographic compositions—the
coverage guarantees may no longer hold. Addressing distribution shift remains an open challenge.
Furthermore, online variants that update prediction bands as new patient visits arrive could support
continual adaptation, though the theoretical properties of such approaches in our setting remain to be
established.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state the paper’s primary contribu-
tions: a conformal prediction framework for randomly-timed biomarker trajectories, group-
conditional coverage guarantees across clinical subpopulations, and a clinical application
demonstrating improved identification of high-risk subjects. These claims are fully supported
by the methods, experiments, and results presented in the paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes, the limitations of previous works and why we cannot directly compare
with them are discussed in Appendix.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.
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• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: Yes.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, we provide all the details in the appendix for the reproducibility of the
results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

The paper provides access to code and sample data.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes, all the details regarding the architecture and the training of the predictors
are presented in the Appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We estimate the CI’s of the metrics so as to be easily comparable across
methods.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes, we are aware of the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The paper discusses positive societal impacts through its focus on improving
clinical decision-making and early detection of neurodegenerative disease using uncertainty-
calibrated predictions. It also addresses potential harms, such as overconfident misclassifica-
tion, and mitigates them via conformal calibration and subgroup-valid coverage. While not
framed as a separate section, these considerations are integrated into the methodological and
clinical narrative.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms for monitoring how a system learns
from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite all the previous published works.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: Yes, we provide details regarding the architecture, the training and the calibra-
tion for each predictor used.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [No]

Justification: This paper does not involve crowdsourcing.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [No]
Justification: All the studies used in this paper are IRB approved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: No LMM was used for the curation of the method.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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Technical Appendices

A Exchangeability

Exchangeability of a sequence of random variables implies that their joint probability distribution
remains unchanged under any permutation of the variables. This condition is milder than the standard
one of independent and identically distributed random variables. Below we provide the formal
definition of exchangeability from [10].

Definition A.1. The variables Z(1), . . . , Z(N+1) are exchangeable if for every permutation π(·) of
the integers 1, . . . , N + 1, the variables W (1), . . . ,W (N+1), where W (i) = Z(π(i)), have the same
joint probability distribution as Z(1), . . . , Z(N+1).

B Proof of Theorem 3.2

For simplicity of presentation, we introduce the notation (X(N+1), T (N+1), Y (N+1)) to represent
the test sample (X, T , Y ) and the notation R(N+1) to represent the random variable R defined in
the theorem statement. Since the random variables (X(i), T (i), Y (i)), i ∈ {1, . . . , N + 1}, are
exchangeable by assumption, the random variables (X(i), T (i), Y (i)), i ∈ Ical ∪ {N + 1}, are also
exchangeable. Somewhat abusing notation, we define the nonconformity score function:

R(X, T , Y ) = max
t∈T

{
|Yt − Ŷt|
σ(Ŷt)

}
,

that applied to each datapoint (X(i), T (i), Y (i)), i ∈ Ical ∪ {N + 1}, yields the corresponding score
R(i). Conditioned on the dataset Dtrain, the function R(·) is deterministic. Therefore, we conclude
that conditioned on Dtrain, the random variables R(i), i ∈ Ical ∪ {N + 1}, are exchangeable. Hence,
from [42, Lemma 1] we obtain the conditional property:

P

(
max
t∈T

{
|Yt − Ŷt|
σ(Ŷt)

}
≤ R

∣∣∣∣Dtrain

)
≥ 1− α, (5)

where R is defined as in the theorem statement. By marginalizing over Dtrain, (5) yields the
unconditional property:

P

(
max
t∈T

{
|Yt − Ŷt|
σ(Ŷt)

}
≤ R

)
≥ 1− α. (6)

The guarantee (1) directly follows from rewriting (6) as:

P
(
∀t ∈ T : |Yt − Ŷt| ≤ Rσ(Ŷt)

)
≥ 1− α

and setting Ct(X) = [−Rσ(Ŷt) + Ŷt, Ŷt +Rσ(Ŷt)], for all t.

■

C Discussion on Clinical Impact

Our conformal prediction framework provides prediction bands that enable clinicians to perform
informed prognosis and decision-making with greater reliability. This is important as predictive
models are increasingly applied in healthcare for both patient management and drug development. In
the latter case, Cummings et al. [41] highlighted the need for AI-informed clinical trials, referred
to as precision trial design. Along these lines, Maheux et al. [2] evaluates a predictive model for
biomarker trajectories, in the context of AD, where derived measures—such as biomarker rate of
change—serve as quantitative indicators of whether a subject is likely to progress to the disease
during the clinical trial. This assessment ultimately informs decisions on subject inclusion in the
drug administration process. By conformalizing such predictors, either population level or calibrated
in covariate groups, such as MCI subjects, we provide confidence bands alongside predictions, thus
increasing the reliability of these critical clinical decisions.
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Table 2: Demographic and clinical characteristics of the clinical studies. The joint cohort of ADNI and
BLSA comprises our base population, whereas the remaining cohorts represent external populations.
For the total time of observation and the age, we report the mean and standard deviation over all
subjects contained in each study. CN: Cognitively Normal, MCI: Mild Cognitive Impairment, AD:
Alzheimer’s Disease.

Study Subjects Obs. Time (mo) Males (%) Age Diagnosis (%)
CN MCI AD

ADNI+BLSA 2200 65 ± 39 53.2 75.4 ± 8.6 49.3 34.8 15.9

Table 3: Composition of the joint cohort of the ADNI and BLSA studies across five demographic and
clinical covariates.

Covariate Groups Percentage of Subjects Number of Subjects
Sex Male 52.89 1164
Race White 87.46 1924

Black 8.60 189
Asian 3.94 87

Education Years Less than 16 54.56 1200
More than 16 45.44 1000

Diagnosis Cognitively Normal 49.12 1081
Mild Cognitive Impairment 34.76 765

Alzheimer’s Disease 16.01 352
APOE4 Status Heterozygous 32.16 707

Homozygous 7.31 161
None 60.54 1332

D Clinical Datasets and Preprocessing

Our data consists of neuroimaging and demographic measures taken from subjects in the iSTAGING
consortium [43]. Specifically, the neuroimaging measures are the 145 anatomical brain Regions of
Interest (ROI) volumes (119 ROIs in gray matter, 20 ROIs in white matter and 6 ROIs in ventricles)
extracted using a multi-atlas label fusion method [44]. Phase-level harmonization is applied on these
145 ROI volumes to remove site effects [45]. To train, calibrate and test the conformalized predictors
we use data from two cohorts: the Alzheimerś Disease Neuroimaging Initiative [32], which is a
public-private collaborative longitudinal cohort study and has recruited participants categorized as
Cognitively Normal (CN), Mildly Cognitively Impaired (MCI) and diagnosed with Alzheimer’s
Disease (AD) through 4 phases (ADNI1, ADNIGO and ADNI2) [46]. We also use Baltimore
Longitudinal Study of Aging (BLSA) follows participants who are cognitively normal at enrollment
with imaging and cognitive exams since 1993 [33].

We also extract from iSTAGING cohort: the OASIS [47], The Wisconsin Registry for Alzheimer’s
Prevention (WRAP) study [48], the Australian Imaging, Biomarker, and Lifestyle (AIBL) study [49],
the Coronary Artery Risk Development in Young Adults (CARDIA) [50], the PreventAD [51] and
PENN.

For the clinical variables, we utilize Age at Baseline, Sex, Years of Education, and APOE4 Allele
status, the latter being a known risk factor for Alzheimer’s Disease. Diagnostic categories were
designated as Cognitively Normal (CN), Mild Cognitive Impairment (MCI), and Alzheimer’s Disease
(AD). Subjects diagnosed with alternative forms of dementia, such as Lewy Body Dementia and
Frontotemporal Dementia, were excluded from the study. These exclusions are minimal (less than
10 subjects) and did not impact the overall sample size. After filtering, our dataset consists of 2200
subjects. Furthermore, Years of Education was dichotomized: subjects with more than 16 years of
education were coded as ’1’, while those with 16 years or fewer were coded as ’0’. Also, duplicate
acquisitions within the same month are discarded.
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E Predictors

E.1 Architectural Design and Training

Our input data consists of multivariate features, including volumetric imaging features, demographic
information, and clinical variables. All our predictors generate biomarker trajectories by using
a learned model with an additional time input variable t ∈ N+, that outputs an estimate of the
corresponding future biomarker value Ŷt. Below we present five examples of such models, along
with corresponding learning algorithms.

Deep Kernel Regression. A fully connected feedforward neural network is used to linearly transform
input data into a low-dimensional latent space. The transformed input is then passed to a Gaussian
Process with a zero mean function and an radial basis function (RBF) kernel. The GP component is
trained using exact inference by minimizing the negative marginal log-likelihood. For details on exact
GP inference, refer to [19]. DKGP approach builds upon the deep kernel learning paradigm presented
in [52] and applied for trajectory prediction in [24]. The DKGP is trained for 100 epochs, using
the Adam optimizer [53] with weight decay 0.02 and a learning rate of 0.01 for the deep network
parameters and 0.2 for the hyperparameters of the Gaussian Process.

Deep Mixed Effects. The DME model leverages an embedding network and a deep mean function
to capture both global trends and local variations in structured regression tasks. The embedding
network projects inputs into a 64-dimensional latent space, while the mean function, implemented as
an MLP, maps the latent features to a scalar regression output. The Gaussian Process (GP) with an
RBF kernel operates on the latent space to model residuals, with warping applied when an embedding
function is used. The model is trained end-to-end using variational inference, minimizing the negative
Evidence Lower Bound (ELBO). Separate Adam optimizers are employed for the mean function
and GP kernel parameters, each using a learning rate of 10−3 and an L2-penalty of 10−3. For each
training iteration, the GP parameters are adapted over nadapt = 10 steps with an inner learning rate of
10−2. The training process spans 50 epochs, alternating between optimizing the mean function and
GP parameters. Details on the DME model can be found in [20].

Deep Quantile Regression. The model is a fully connected feedforward neural network designed for
quantile regression, predicting multiple quantiles simultaneously (e.g., 0.1, 0.5, 0.9). It includes a
128-unit hidden layer and a 64-unit hidden layer, both followed by ReLU activations and dropout
with a 0.2 rate for regularization. The output layer has one unit per quantile to estimate. The model is
trained using a quantile loss function [54]. DQR is using Adam for the optimization, with a learning
rate of 0.01 for 200 epochs.

Deep Regression with Monte Carlo Dropout. The model is a fully connected feedforward neural
network with Monte Carlo Dropout for uncertainty estimation in regression tasks. It consists of a
128-unit hidden layer, a 64-unit hidden layer, and a single-unit output layer for continuous scalar
prediction. ReLU activations are applied to the hidden layers, and a dropout layer with a fixed rate
0.2 is applied during both training and inference to approximate Bayesian uncertainty. DRMC is
using Adam for the optimization with learning rate of 0.01 for 200 epochs.

Bootstrap. The model is a fully connected feedforward neural network for regression tasks, compris-
ing a 128-unit hidden layer, a 64-unit hidden layer, and a single-unit output layer. ReLU activations are
applied to hidden layers, and the output layer produces a raw scalar value for regression. The model
is deployed as part of a bootstrap ensemble, where 10 instances are trained on different bootstrap-
resampled subsets of the train data. Each instance is trained with consistent hyperparameters (epochs
and learning rate) to enhance robustness and reduce variance by aggregating predictions.

E.2 Predictive Standard Deviation

We outline the models and their uncertainty quantification mechanisms. Predictions are denoted as Ŷt

with standard deviation σ(Ŷt).

Deep Kernel Regression (DKGP) and Deep Mixed Effects (DME). Both models estimate the
posterior predictive distribution using exact inference. The posterior predictive distribution is a
gaussian distribution, and from that we extract the predictive mean that corresponds to the point
estimates Ŷt and the predictive variance that corresponds to a requested confidence level, i.e 0.90.
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From that we calculate the standard deviation σ(Ŷt). Details on the mathematical formula of the
predictive mean and predictive variance can be found in [19]

Deep Quantile Regression (DQR). Deep Quantile Regression predicts the desired quantiles—lower,
mean, and upper—for a specific confidence level. From these predictions, we calculate the quan-
tiles corresponding to different percentiles, such as the 10th, 50th, and 90th percentiles, enabling
uncertainty quantification. The confidence level represents the range between the lower and upper
percentiles. The predicted variance is estimated using the spread between the upper and lower
quantiles, adjusted by a z-score corresponding to the desired confidence level (e.g., 1.645 for a
90% confidence interval). This calculation assumes that the predictive distribution is approximately
Gaussian, allowing the z-score to be used as a scaling factor for the quantile spread.

Deep Regression with Monte Carlo (DRMC) dropout. Monte Carlo dropout approximates
Bayesian inference via multiple stochastic forward passes with dropout. The model generates
multiple predictions, and from these we extract the standard deviation of the sample. We run
inference 100 times.

Bootstrap Deep Regression (Bootstrap). Bootstrap Deep Regression leverages an ensemble of 20
deep regression models, each trained on a different bootstrap sample, to estimate uncertainty. During
inference, the ensemble produces multiple predictions for the same input, and the sample standard
deviation of these predictions quantifies predictive uncertainty.

F Relation to the Broad Conformal Prediction Literature

Our conformal prediction method provides an extension to the setting of randomly timed trajectories,
which is necessary for applying conformal prediction using real-world biomarker data. None of
the previous methods, including [25] can handle randomly-timed trajectories. Below, we elaborate
on why prior CP methods for fixed-time trajectories cannot be applied in our setting of randomly
timed biomarker trajectories. Our simple yet effective normalization function is able to accommodate
conformal inference on randomly-time trajectories. The normalizing function enables us to compute
a normalized prediction error across all time steps, ensuring that no component within the maximum
dominates the others in terms of scale. This function leverages the model’s predictive standard
deviation to measure prediction uncertainty, effectively normalizing errors in a standard way. Our
conformal prediction intervals at each time point in a test trajectory are not influenced by the
trajectory’s length. The bound for the prediction error |Ŷt − Yt| at each time t is derived by scaling
the score R by the time-specific uncertainty estimate σ(Ŷt), yielding the value R · σ(Ŷt). This
time-varying scaling ensures that the conformal bands adapt to the uncertainty at each time point.
Additionally, a true “worst-case” scenario would arise only if σ(Ŷt) = 1 at all time points, which
does not hold here.

Our extension of conformal prediction to randomly timed trajectories is necessary for real-world
biomarker data. None of the previous methods [13, 18, 25, 30]can handle randomly-timed trajectories.
Closest to our work are the approaches by [18] and [17], which are designed under the assumption
of fixed-time trajectories—i.e., observations are made at the same pre-defined time points across
the entire population. In contrast, our setting involves trajectories with observations collected at
random times due to missed visits and variable scheduling typical in clinical studies. To adapt the
method from [17, 18] to our setting, one could select a subset of the data corresponding to a fixed set
of time points (e.g., 3, 7, 9, and 12 months) and extract only the corresponding observations from
each subject. However, this leads to substantial dataset reduction. In a simple experiment following
this approach, we found that only 37 trajectories with observations at all four selected time points
remained out of the total dataset of 2200 trajectories. Beyond dataset reduction, this method limits
the applicability of the conformal prediction bands. More specifically, since [18] and [17] define
normalization factors σt only at the pre-specified time points t (e.g., 3, 7, 9, 12 months), their method
can produce prediction intervals only at those times during inference. Thus, if a test subject visits
the clinic at months 4, 5, and 14, the available intervals at months 3, 7, 9, and 12, provided by [18]
and [17], do not allow valid conformal inference at months 4, 5, and 14. In contrast, we introduce a
normalizing function σ(·) that produces predictive uncertainty estimates σ(Ŷt) for any time point
t, even if no observations at that time are available in the calibration data. This allows our method
to produce valid conformal intervals at arbitrary test-time points, in contrast to existing conformal
prediction methods designed for fixed-time trajectories.
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G Case Study: Details and Extended Results

G.1 Calibration Set Size Selection

In this section, we outline the procedure for determining the suitable calibration set size for conformal
prediction. Specifically, we vary the fraction of the training set used for calibration from 0.01 to
0.30, while the remaining portion is reserved for predictor training. We then evaluate the resulting
conformal intervals on a held-out validation set in terms of two key metrics: (i) mean coverage and
(ii) mean interval width.

This procedure is repeated for both hippocampus and ventricular volume biomarkers, at confidence
levels of 0.90, 0.95, and 0.99, and for all five conformal predictors. Our goal is to pick the size that
achieves the desired coverage with the smallest possible interval width.

Our findings, visualized in figure 6 indicate that as the calibration set fraction increases, the empirical
coverage exceeds the nominal coverage level. We identify a calibration set fraction of 0.20 as a
practical choice that achieves coverage while avoiding wide prediction intervals. This calibration set
fraction corresponds to a calibration set with 414 subjects.

Hippocampal Volume

Ventricular Volume

Figure 6: Mean coverage and mean interval width for hippocampal- and ventricular-volume trajec-
tories at nominal coverage levels of 0.90, 0.95, and 0.99. Error bars denote the 95th percentile of
the metrics across 10 data splits. Each column corresponds to a different nominal coverage level,
and each curve represents one of five conformalized predictors (CP-DKGP, CP-DME, CP-DQR,
CP-DRMC, CP-Bootstrap). Dashed red lines indicate the nominal coverage. The horizontal axis
shows the fraction of the training set used for calibration, ranging from 0.01 to 0.30
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G.2 Comparison between Baseline and Conformalized Predictors for Other Confidence
Levels

In this section, we provide additional results comparing the conformalized predictors with their
baseline counterparts at confidence levels of 0.95 and 0.99. For both hippocampal- and ventricular-
volume trajectories, we observe trends similar to those reported at the 0.90 confidence level in
Section 4 of the main paper. Specifically, conformal adjustments effectively boost empirical coverage
to the desired nominal level. Gaussian Process based methods, such as the DKGP and DME already
achieve the nominal coverage. Conformalized-DGKP and conformalized-DME attain nominal
coverage with tighter bounds, which corresponds to less conservative uncertainty quantification.
On the contrary, for the methods of DQR, DRMC and Boostrap, that provide undercoverage, their
conformalized versions achive nominal coverage by widening the intervals.

These findings confirm the effectiveness of our conformal prediction across varying confidence levels.

Hippocampus Volume Ventricular Volume

Figure 7: Mean coverage and mean interval width of baseline and conformalized predictors for
hippocampal- and ventricular-volume trajectories at nominal confidence levels of 0.95 (top) and 0.99
(bottom). The dashed red line indicates the nominal coverage. Error bars denote the 95th percentile
of the metrics across 10 data splits. Overall, the conformalized methods exhibit coverage closer to
the nominal level, by adjusting accordingly the interval width.

Next, we demonstrate how uncertainty changes over time starting from the initial acquisition, which,
in our study, corresponds to the test subject’s first hospital visit.

G.3 Mean Interval Width of the Conformalized Predictors over Time

Having established in the previous section that each conformalized baseline achieves desired coverage
levels across different calibration set sizes and confidence levels, we now focus to the evolution of
the conformal prediction intervals over time. In practical scenarios, the uncertainty in predicting
future measurements naturally increases as we move further away from a known data acquisition,
and understanding this growth in interval width is crucial for longitudinal analyses.

27



Figure 8 shows how the conformal prediction intervals of our selected methods vary with the time
elapsed from the most recent (known) acquisition. Each row corresponds to a different conformalized
predictor, while the horizontal axis indicates increasing time from the known data point, and the
vertical axis shows the corresponding mean interval width. As expected, most methods exhibit
relatively tight intervals when predicting only a short time ahead, but the intervals expand as the
temporal distance grows. This behavior reflects the increasing uncertainty associated with predicting
further into the future.

Figure 8: Temporal evolution of the mean interval width (averaged per year) for the five conformalized
predictors. We observe that as time increases, the average conformal predictive intervals increase.
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H Group-Conditional Application across Covariate Subpopulations:
Extended Results

Figure 10 depicts the mean interval widths for hippocampal- and ventricular-volume trajectories
across subgroups defined by demographic (Sex, Race, Education) and clinical (Diagnosis, APOE4
alleles) covariates. The population conformal prediction generates narrower intervals for all the
subgroups, leading to undercoverage, particularly for high-risk or underrepresented groups such as
Black and Asian participants, MCI patients, and APOE4 homozygotes. In contrast, group-conditional
conformalized predictors (in red) produces wider intervals in order to ensure that empirical coverage
aligns with nominal levels within the specific subpopulations. While for the hippoampal volume all
the subpopulations were not covered, for the ventricular volume several subpopulations were already
reaching the nominal coverage of 0.9, specifically for females, Asian, Black, subjects with less than
16 years of education as well as the Non-carriers. From the Figure 10 we observe that these are the
ones that already reach the nominal level of coverage exhibit the lower increase in the interval width
withing the subpopulation. For example, females have lower mean interval width than males.
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>

>

>

>

Figure 9: We compare the mean coverage of population and group-conditional conformal prediction
bands for ventricular-volume trajectories. Error bars denote the 95th percentile of the metrics
across 10 data splits. Results are presented across five population stratifications based on individual
covariates (sex, race, education level, cognitive diagnosis, and APOE4 alleles status). We observe that
group-conditional intervals are adjusted per covariate group in order to reach the nominal coverage.
On the contrary, the population conformal prediction provides consistent intervals across all groups,
that cause the coverage disparities.
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Figure 10: We compare the mean interval width of population and group-conditional conformal
prediction bands for hippocampal- and ventricular-volume trajectories.Error bars denote the 95th per-
centile of the metrics across 10 data splits. Results are presented across five population stratifications
based on individual covariates (sex, race, education level, cognitive diagnosis, and APOE4 alleles
status). We observe that group-conditional intervals are adjusted per covariate group in order to reach
the nominal coverage. On the contrary, the population conformal prediction provides consistent
intervals across all groups, that cause the coverage disparities.

Figure 9 presents the empirical coverage and mean interval widths for hippocampal-volume trajecto-
ries across subgroups at varying confidence levels 0.95 and 0.99. Again, we observe the same trend
as in the Figure 4, where population conformal prediction bands show noticeable undercoverage for
underrepresented subgroups, such as Black and Asian participants, APOE4 homozygotes, and MCI
patients. For the nominal level of 0.95 only the Homozygotes appear to be covered by the population
conformal predictor. Again, the group-conditional conformal prediction adapts the intervals of each
subpopulation in order to achieve the nominal coverage withing subpopulation. For the nominal level
of 0.99 we observe that less subpopulations are miscovered and the majority of them align closely to
the nominal level. This is expected as the confidence bands are wide enough in order to capture any
subpopulation variability.

Figure 12 presents the empirical coverage and mean interval widths for ventricular-volume trajectories
across subgroups at varying confidence levels 0.95 and 0.99. For ventricular volume conformal
prediction bands, a similar pattern is observed. Population conformal prediction underperform for the
subgroups defined by Diagnosis and APOE4 status. Specifically, at the nominal level of 0.95, MCI
and AD subjects as well as the heterozygotes and homozygotes are not covered by the population
conformal prediction. However, the group-conditional conformal prediction tackles this by widening
the intervals across those subgroups and thus achieving nominal coverage.
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Figure 12: We compare the mean coverage and mean interval width of population and group-
conditional conformal prediction bands for ventricular-volume trajectories for the nominal coverage
of 0.95 and 0.99. Error bars denote the 95th percentile of the metrics across 10 data splits. Results
are presented across five population stratifications based on individual covariates (sex, race, education
level, cognitive diagnosis, and APOE4 alleles status).

I Clinical Utility of Conformal Bands: Identifying High-Risk Subjects

To complement the clinical analysis in Section 6, we further investigate the behavior of predictors that
produce overconservative uncertainty estimates. Such models generate wide prediction intervals that
capture most future outcomes, resulting in high recall but limited precision. While this behavior may
be considered safe in clinical contexts, it can lead to over-inclusion of low-risk subjects and reduced
specificity. Here, we examine whether conformalization can help refine these models by tightening
the prediction bounds, thereby improving the balance between sensitivity and precision. We focus on
two representative predictors: DME and DKGP. The total quantitative results are presented in Table
4.

The DME model exhibits strongly conservative behavior. Using R̂oC, it identifies 81.4% of MCI
converters, and recall increases to 98.4% under RoCB, indicating near-complete inclusion of pro-
gressors. However, this recall comes at the cost of low precision—37.8% for R̂oC and 36.7%
for RoCB—resulting in many false positives. Conformalization (CP–DME) slightly tightens the
intervals, leading to a modest drop in RoCB recall to 94.2%, while improving precision to 36.9%.

The DKGP model also demonstrates overconservative behavior, producing wide prediction intervals
that result in strong recall but imprecise discrimination. Under the R̂oC metric, DKGP identifies
80.2% of MCI converters, and RoCB pushes recall even higher to 92.2%. However, this gain
comes with reduced precision—falling from 50.6% to 37.4%. After conformalization, CP–DKGP
produces slightly narrower intervals. While this modestly lowers recall under R̂oC (to 72.1%), the
RoCB-based recall remains high at 90.3%, and precision increases slightly (to 37.6%). These results
highlight the role of conformalization in refining overly broad uncertainty estimates: by reducing

31



excess conservativeness, CP–DKGP achieves a more balanced trade-off between identifying true
progressors and limiting false positives, while still preserving the safety benefits of RoCB-based risk
stratification.

Table 4: Youden-optimised discrimination on z-standardised rate of change (RoC) and lower-bound
rate of change (RoCB) for MCI converters, with 95% bootstrap confidence intervals (CIs).

Method Metric τ⋆ Precision (95% CI) Recall (95% CI) F1 (95% CI)

DRMC R̂oC −0.006 0.436 [0.367, 0.455] 0.671 [0.693, 0.919] 0.528 [0.504, 0.593]
RoCB −0.012 0.403 [0.367, 0.455] 0.884 [0.693, 0.919] 0.553 [0.504, 0.593]

CP–DRMC R̂oC −0.006 0.432 [0.360, 0.446] 0.740 [0.667, 0.956] 0.546 [0.498, 0.590]
RoCB −0.020 0.395 [0.360, 0.446] 0.915 [0.667, 0.956] 0.552 [0.498, 0.590]

DKGP R̂oC −0.007 0.506 [0.340, 0.414] 0.802 [0.807, 0.993] 0.621 [0.494, 0.573]
RoCB −0.019 0.374 [0.340, 0.414] 0.922 [0.807, 0.993] 0.532 [0.494, 0.573]

CP–DKGP R̂oC −0.007 0.507 [0.338, 0.414] 0.721 [0.809, 0.996] 0.595 [0.491, 0.573]
RoCB −0.015 0.376 [0.338, 0.414] 0.903 [0.809, 0.996] 0.531 [0.491, 0.573]

DME R̂oC −0.000 0.378 [0.333, 0.406] 0.814 [0.813, 1.000] 0.516 [0.489, 0.571]
RoCB −0.011 0.367 [0.333, 0.406] 0.984 [0.813, 1.000] 0.535 [0.489, 0.571]

CP–DME R̂oC −0.000 0.378 [0.335, 0.408] 0.814 [0.836, 1.000] 0.516 [0.492, 0.569]
RoCB −0.012 0.370 [0.335, 0.408] 0.942 [0.836, 1.000] 0.531 [0.492, 0.569]

Bootstrap R̂oC −0.008 0.501 [0.363, 0.450] 0.698 [0.754, 0.930] 0.583 [0.503, 0.588]
RoCB −0.012 0.407 [0.363, 0.450] 0.837 [0.754, 0.930] 0.548 [0.503, 0.588]

CP–Bootstrap R̂oC −0.007 0.454 [0.352, 0.432] 0.733 [0.804, 0.956] 0.561 [0.504, 0.581]
RoCB −0.024 0.387 [0.352, 0.432] 0.888 [0.804, 0.956] 0.539 [0.504, 0.581]
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I.1 Threshold-Free Evaluation of RoCB vs R̂oC Metrics

To address concerns regarding the reliance on threshold-specific performance (e.g., Youden’s J), we
conducted a comprehensive threshold-free evaluation of our uncertainty-aware biomarker, RoCB,
compared against the predicted rate of change (R̂oC). This analysis spans ten trajectory prediction
methods, including DKGP, CP-DRMC, Bootstrap, and others.

For each method, we computed ROC-AUC, PR-AUC, F1 score, precision, recall, and balanced
accuracy across 720 test subjects. These metrics were chosen to reflect not only the discriminative
ability (AUCs) but also the clinical decision trade-offs in high-risk detection (recall vs. precision).

RoCB consistently improves recall across all models, often by large margins (e.g., +62% in CP-
DQR). This demonstrates its strength in identifying high-risk individuals under worst-case prediction
scenarios. However, this gain often comes at the cost of reduced precision and AUC metrics, reflecting
a conservative, sensitivity-focused behavior. Despite this trade-off, F1-score improves in 6 out of 10
models, with the largest increase seen in CP-DQR (+9.8%), indicating that in certain settings RoCB
enhances both sensitivity and overall prediction balance.

These results confirm that RoCB is not a replacement for R̂oC, but a complementary metric that
prioritizes reliable early detection. This behavior is particularly beneficial in clinical contexts such as
trial enrichment or preclinical screening, where high recall is often more critical than specificity.

Table 5: Threshold-free evaluation of R̂oC vs. RoCB using ROC-AUC, PR-AUC, Recall, and
F1-score. Values shown as (R̂oC / RoCB). LRoC improves recall consistently and maintains or
improves F1 in 6 of 10 models.

Model AUC PR Rec F1
DRMC 0.597 / 0.541 0.421 / 0.354 0.671 / 0.884 0.528 / 0.553
CP-DRMC 0.608 / 0.526 0.421 / 0.346 0.740 / 0.915 0.546 / 0.552
DKGP 0.716 / 0.435 0.523 / 0.302 0.802 / 0.922 0.621 / 0.532
CP-DKGP 0.697 / 0.438 0.502 / 0.303 0.721 / 0.903 0.595 / 0.531
DQR 0.637 / 0.508 0.441 / 0.334 0.791 / 0.841 0.583 / 0.539
CP-DQR 0.594 / 0.483 0.431 / 0.325 0.519 / 0.841 0.482 / 0.529
DME 0.495 / 0.412 0.370 / 0.293 0.814 / 0.984 0.516 / 0.535
CP-DME 0.495 / 0.411 0.370 / 0.293 0.814 / 0.942 0.516 / 0.531
Bootstrap 0.686 / 0.520 0.495 / 0.343 0.698 / 0.837 0.583 / 0.548
CP-Bootstrap 0.624 / 0.464 0.432 / 0.314 0.733 / 0.888 0.561 / 0.539
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