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Abstract
Social bots are becoming increasingly common in social networks,
and their activities affect the security and authenticity of social me-
dia platforms. Current state-of-the-art social bot detection methods
leverage multimodal approaches that analyze various modalities,
such as user metadata, text, and social network relationships. How-
ever, these methods may not always extract additional dimensions
of semantic feature information that could offer a deeper under-
standing of users’ social patterns. To address this issue, we propose
ETS-MM, a multimodal detection framework designed to augment
multidimensional information from text and extract the semantic
feature representation of user text information. We first analyze
the user’s tweeting behavior based on topic preference and emo-
tion tendency, integrating them into the textual data. Then, we
try to extract enhanced semantic representations that reveal the
latent relationship between tweeting behavior and tweet content
while identifying potential contextual associations and emotional
changes. Additionally, to capture the complex interaction between
users, we integrate the user’s multimodal information, including
metadata, textual features, enhanced semantic features, and so-
cial network relationships to propagate and aggregate information
across various modalities. Experimental results demonstrate that
ETS-MM significantly outperforms existing methods across two
widely used social bot detection benchmark datasets, validating its
effectiveness and superiority.

CCS Concepts
• Computing methodologies → Natural language processing;
Neural networks; • Information systems → Social networks.

Keywords
Social Bot Detection, Language Model, Large Language Model,
Graph Neural Network
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Figure 1: Topic distribution of humans and bots in Cresci15
[9] and emotion distribution within the "news" and "music"
topics.

1 Introduction
Social bots often carry specific intentions, such as spreading disin-
formation [1, 10, 40, 44, 47], manipulating public opinion[7, 20, 21],
promoting certain political or commercial agendas[3, 8, 11, 19, 38].
These bots pose a threat to the security of social media platforms.
This threat affects users’ trust and disrupts the overall information
ecosystem[5, 35, 37]. Therefore, effectively detecting social bots has
become a critical issue in social media. Researchers have shifted
from single-modal to multimodal detection, integrating multiple
data sources, such as user metadata, text, and social network re-
lationships. By combining these diverse data sources, multimodal
models can more comprehensively and accurately detect social
bots[17]. Among these modalities, text, as the main information
carrier, is not only the main form of interaction between users
but also a key tool for them to influence their behavior and public
opinion.

Users’ text shows a huge difference between humans and bots
regarding emotional expression and social interaction. In terms of
social interactions, humans can understand and respond to the emo-
tional states of others and establish deep social relationships. While
bots lack an understanding of deep emotions and find it difficult to
develop deep social relationships [4]. As shown in Figure 1, humans
tend to have in-depth discussions around one or two topics, while
bots cover a much wider range. Regarding emotional expression,
bots can mimic human emotions in approximate situations. Still,
humans have an advantage in the subtle differences in emotional
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expression, while bots have difficulty replicating these subtle emo-
tional differences[18]. This leads to differences in the distribution
of emotions between bots and humans on specific topics. As shown
in Figure 1, the emotion distributions for the "news" topic differ
significantly between humans and bots; humans are more likely to
express neutral or positive emotions, whereas bots tend to exhibit
neutral or negative emotions.

Analyzing users’ topics and emotions gives us a more compre-
hensive and accurate understanding of their behavioral patterns.
However, current multimodal detection models tend to ignore the
multidimensional semantic information in the text and the connec-
tion between this information when processing the text. Two main
challenges are included: (1) Some works[6, 28] merely concatenate
various users’ text information into sequences without delving into
the wealth of more dimension information contained within the
tweets, such as topics and emotions. (2) Other works[14, 17, 32]
directly use pre-trained LMs to obtain the encoding representa-
tions of tweets. This method lacks sophisticated mechanisms for
extracting enriched semantic features, particularly those related to
multidimensional information, which is crucial for distinguishing
between bots and humans.

To address the above challenges, we propose a multimodal social
bot detection framework incorporating topic preference and emo-
tion tendency to enhance semantic feature representation. Specifi-
cally, we use a large language model (LLM) to identify user’s most
and least frequent topics and emotions to analyze the user’s tweet-
ing behavior, incorporating these insights into the tweet data. We
then merge each user’s description and tweet information (includ-
ing tweets, topics, and emotions) into textual sequences. Subse-
quently, we combine each user’s metadata with these textual se-
quences to create hybrid sequences. These hybrid sequences train
a language model (LM), capturing enhanced semantic representa-
tions that reveal the relationships between topics and emotions
within the textual data. Finally, we integrate the user’s metadata,
description, tweet features, enhanced semantic representation, and
social network relationships using a graph neural network (GNN)
to accurately determine whether a user is a bot or a human. This
work makes the following contributions:

• We analyze the topic preference and emotion tendency in
textual data to explore the differences between social bots’
and humans’ latent social behavior patterns.

• We capture enhanced semantic features that reveal relation-
ships between tweeting behavior and content, identifying
contextual associations and emotional changes.

• We integrate enhanced semantic features with multimodal
features, enabling effective information propagation and
aggregation across modalities, achieving SOTA in social
bot detection.

2 Background
2.1 Multi-model Social bot Detection
Early methods for detecting social bots can be broadly categorized
into feature-based, text-based, and graph-based. Feature-based ap-
proaches identify bots by extracting key attributes from user meta-
data and applying machine learning classifiers[27, 43, 45]. Text-
based methods apply natural language processing techniques (NLP)

to analyze and encode users’ textual content, primarily focusing
on their tweets and descriptions, to identify social bots[15, 27, 42].
Graph-based methods detect bots by constructing social network
relationships as graphs and applying GNNs for network analysis[2,
12, 26, 29, 34].

As social bots become increasingly sophisticated in their dis-
guise capabilities, more researchers are employing multimodal ap-
proaches for social bot detection. Multimodal methods integrate
multiple sources of information, such as user metadata, textual
data, and social network information, for more comprehensive
detection[24, 36, 46]. Feng et al.[17] enhanced the detection of bots
with diverse camouflage behaviors by constructing a heteroge-
neous graph and exploiting multimodal user semantic and attribute
information. Liu et al.[32] synthesized user representations from
different prespectives by leveraging multimodal information (meta-
data, text, network structure). They introduced a modality-specific
encoder and a community-aware expert hybrid layer to improve
the accuracy and generalization of detection. Feng et al.[14] used
a heterogeneous graph information network to learn node repre-
sentations for graph-based detection of heterogeneity-aware bots,
applying relational graph Transformers and semantic attention net-
works to account for user heterogeneity. Lei et al.[28] combined
text and social network information, utilizing a text-graph inter-
action and semantic coherence approach to assess and counteract
bots’ evolving behaviors comprehensively. Cai et al.[6] represented
each user as a text sequence and performed domain adaptation
through an LM, using the model’s output as the input features for
the GNN. They distilled knowledge from the GNN back into the
LM, enhancing the robustness of social bot detection.

Compared to methods that rely on a single source of information,
such as user metadata, text, or social network relations, multimodal
information provides a more comprehensive analysis.

2.2 Text Processing in Social Bot Detection
The processing of textual modalities is a key aspect of social bot
detection. Early methods typically use NLP techniques to extract
features from text to identify bots. Kudugunta et al.[27] proposed
a long short-term memory(LSTM)-based deep network model to
process the tweet and account levels. Wei et al.[42] used a BiLSTM
modal to detect Twitter bots for featureless engineering.

Current research has concatenated user data into text sequences
and used LMs to obtain the encoded representations[6, 28]. How-
ever, these methods fail to extract more dimension information
within the tweets. Other approaches to text processing in mul-
timodal methods encoded users’ textual information using pre-
trained LM. Feng et al.[17] obtained the user descriptions and em-
bedded representation of tweets through an LM, averaging the
encoded representation of each tweet to get an overall represen-
tation of the user’s tweets. However, this approach widely used
in social bot detection[14, 17, 32] does not include advanced tech-
niques for extracting semantic features, especially those involving
multidimensional information.

Although multimodal social bot detection models effectively rec-
ognize bots, they often fail to capture textual information. Therefore,
we propose extracting the topics and emotions from user tweets
through LLM. By leveraging the knowledge of LLM, we can obtain
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Figure 2: The framework of ETS-MM.

a more comprehensive representation of the tweets, capturing both
expressive and contextual features. These topics and emotions are
integrated into the user’s information, which is then used to train
the LM. This process represents the user’s textual information (in-
cluding descriptions, topics, emotions, and tweets) more holistically,
ensuring a deeper and more comprehensive understanding of the
user’s textual behavior.

3 Methodology
We present the ETS-MM framework that consists of three mod-
ules: the semantic augmentation module, the feature enhancement
module, and the multimodal feature fusion module, as shown in
Figure 2. The semantic augmentation module uses an LLM to ex-
tract topics and emotions to augment the text data. The feature
enhancement module extracts the metadata, textual, and enhanced
semantic features. The multimodal feature fusion module employs a
GNN to integrate multimodal features, including user metadata, tex-
tual information, enhanced semantic features, and social network
relationships.

3.1 Semantic Augmentation
To extract more dimensional semantic information, we construct
two types of sequences: textual sequences and hybrid sequences.

Textual sequences. The text sequence 𝑆𝑡𝑥 includes the user’s
description, tweets:

𝑆𝑡𝑥 = [𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛]{𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛}[𝑇𝑤𝑒𝑒𝑡]{𝑡𝑤𝑒𝑒𝑡}[𝐸𝑁𝐷] (1)

where tweets include topics and emotions extracted from LLM,
following Chang et al. [8]. We extract their ten longest tweets by

GPT-3.5 [30] to identify each tweet’s corresponding topic prefer-
ence and emotion tendency. Appendix A.1 shows the prompts for
extracting topics and emotions from GPT-3.5.

• Topic preference. We identify the subjects that the user
frequently engages within their tweets. This involves cate-
gorizing tweets based on content and determining the most
and least frequent topics 𝑡𝑜𝑝𝑖𝑐𝑚𝑜𝑠𝑡/𝑙𝑒𝑎𝑠𝑡 . The topics are
drawn from a list of 16 Twitter categories1.

• Emotion tendency. We further analyze the emotion ten-
dency corresponding to each tweet topic by identifying the
most and least frequent emotions 𝑒𝑚𝑜𝑡𝑖𝑜𝑛𝑚𝑜𝑠𝑡/𝑙𝑒𝑎𝑠𝑡 . The
emotions are classified based on Plutchik’s three sentiment
categories[19].

To further enhance the tweets representation, we incorporate
a sequence of topics and emotions into the tweet sequence rep-
resentation: {𝑡𝑜𝑝𝑖𝑐 − 𝑒𝑚𝑜𝑡𝑖𝑜𝑛} = Most of these tweets are about
𝑡𝑜𝑝𝑖𝑐𝑚𝑜𝑠𝑡 and 𝑒𝑚𝑜𝑡𝑖𝑜𝑛𝑚𝑜𝑠𝑡 , a few of these are about 𝑡𝑜𝑝𝑖𝑐𝑙𝑒𝑎𝑠𝑡 and
𝑒𝑚𝑜𝑡𝑖𝑜𝑛𝑙𝑒𝑎𝑠𝑡 . We add this sequence into the sequence of tweets:

{𝑡𝑤𝑒𝑒𝑡} =[𝑇𝑤𝑒𝑒𝑡]{𝑡𝑜𝑝𝑖𝑐 − 𝑒𝑚𝑜𝑡𝑖𝑜𝑛}[𝑆𝐸𝑃]{𝑡𝑤𝑒𝑒𝑡1}[𝑆𝐸𝑃]
{𝑡𝑤𝑒𝑒𝑡2}[𝑆𝐸𝑃] ...[𝑆𝐸𝑃]{𝑡𝑤𝑒𝑒𝑡𝑛}

(2)

where 𝑡𝑤𝑒𝑒𝑡𝑖 represents the i-th tweet, and 𝑛 represents the overall
count of user tweets.

Hybrid sequences. The hybrid sequence 𝑆ℎ𝑏 includes user meta-
data and text sequence 𝑆𝑡𝑥 :

𝑆ℎ𝑏 =[𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎]{𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎}[𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛]{𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛}
[𝑇𝑤𝑒𝑒𝑡]{𝑡𝑤𝑒𝑒𝑡}[𝐸𝑁𝐷] (3)

1https://inboundfound.com/twitter-topics-list/
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[Metadata]15[SEP]115[SEP]256[SEP]61[SEP]8[SEP]1[SEP]
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Numerical feature Categorical feature

Figure 3: The example of a hybrid sequence and a textual sequence.

where {𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎} is the sequence of user metadata:
{𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎} =[𝑀𝑒𝑡𝑎𝑑𝑎𝑡𝑎]{𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎1}[𝑆𝐸𝑃]{𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎2}

[𝑆𝐸𝑃] ...[𝑆𝐸𝑃]{𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎𝑚} (4)

where 𝑚𝑒𝑡𝑎𝑑𝑎𝑡𝑎𝑖 represents numerical and categorical features
of users, and𝑚 represents the overall count of metadata features.
Figure 3 shows the example of a hybrid and textual sequence.

3.2 Feature Enhancement
We extract metadata, textual, and enhanced semantic features for
node embedding.

Metadata Feature. Following the feature extraction approach
by Feng et al.[17], we process metadata, description, and tweet
features. Metadata refers to the user’s numerical and categorical
features, 𝑛𝑢𝑚 (0) and 𝑐𝑎𝑡 (0) .

Textual Feature. The description representation 𝑑𝑒𝑠 (0) is ob-
tained by a pre-trained LM model. For the tweet representation
𝑡𝑤𝑒 (0) , we first use the LM model to obtain the embedding for each
tweet and then compute the average embedding of all tweets.

Enhanced Semantic Feature. We train LM with hybrid se-
quences 𝑆ℎ𝑏 to capture the enhanced semantic features from the
user’s augmented semantic data. We design our training framework
from the LMs proposed by Cai et al.[6]. Firstly, we use a pre-trained
LM model to obtain the user representation 𝑧𝑖 and apply mean
pooling to the LM output:

𝑧𝑖 =
1
𝑀𝑖

𝑀𝑖∑︁
𝑗=1

𝐿𝑀 (𝑆ℎ𝑏𝑖 ) 𝑗 (5)

where 𝑆ℎ𝑏𝑖 is i - th user’s hybrid sequence. 𝐿𝑀 (·) is a text encoder
to obtain the representation of 𝑆ℎ𝑏𝑖 , and 𝑀𝑖 is the number of to-
kens in 𝑆ℎ𝑏𝑖 . We obtain a 768-dimensional embedding for the user
representation.

We utilize an L layer MLP to perform feature dimensionality
reduction and project it into a binary classification space to deter-
mine whether the user is human or bot. The final predictions are
computed using the 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 function:

𝑦𝑖 = 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈 (𝑊(𝑙 ) · 𝑧
(𝑙−1)
𝑖

+ 𝑏 (𝑙 ) )) (6)

where𝑊(𝑙 ) and 𝑏 (𝑙 ) are learnable parameters. The model is then
optimized using the cross-entropy loss function.

Finally, the enhanced semantic representation 𝐸𝑡𝑥 within the
relationships between topics and emotions is derived by embedding
the textual sequences 𝑆𝑡𝑥 using the trained LM:

𝐸𝑡𝑠 = 𝐿𝑀 (𝑋 ;𝜃∗), 𝑋 ∈ 𝑆𝑡𝑥 (7)

where 𝜃∗ denotes the trained LM parameters.

3.3 Multimodal Feature Fusion
We integrate the user’s metadata feature, textual feature, social
relationships, and enhanced semantic features using a GNN to clas-
sify the user. We construct the social relationships between users
as a graph and apply the GNN to learn user representations. The
structure of the GNN framework is illustrated in Figure 4. Specifi-
cally, we first transform the user’s features into node embeddings
by passing them through a linear layer followed by ReLU activation
(linear_relu layer):

𝑛𝑢𝑚
(ℎ)
𝑖

′
= 𝑅𝑒𝐿𝑢 (𝐿𝑖𝑛𝑒𝑎𝑟 (𝑊 0

(ℎ) · 𝑛𝑢𝑚
(ℎ)
𝑖

+ 𝑏0(ℎ) ))

𝑐𝑎𝑡
(ℎ)
𝑖

′
= 𝑅𝑒𝐿𝑢 (𝐿𝑖𝑛𝑒𝑎𝑟 (𝑊 1

(ℎ) · 𝑐𝑎𝑡
(ℎ)
𝑖

+ 𝑏1(ℎ) ))

𝑑𝑒𝑠
(ℎ)
𝑖

′
= 𝑅𝑒𝐿𝑢 (𝐿𝑖𝑛𝑒𝑎𝑟 (𝑊 2

(ℎ) · 𝑑𝑒𝑠
(ℎ)
𝑖

+ 𝑏2(ℎ) ))

𝑡𝑤𝑒
(ℎ)
𝑖

′
= 𝑅𝑒𝐿𝑢 (𝐿𝑖𝑛𝑒𝑎𝑟 (𝑊 3

(ℎ) · 𝑡𝑤𝑒
(ℎ)
𝑖

+ 𝑏3(ℎ) ))

𝐸𝑡𝑥
(ℎ)
𝑖

′
= 𝑅𝑒𝐿𝑢 (𝐿𝑖𝑛𝑒𝑎𝑟 (𝑊 4

(ℎ) · 𝐸𝑡𝑥
(ℎ)
𝑖

+ 𝑏4(ℎ) ))

(8)

where𝑊 𝑗

(ℎ) and 𝑏
𝑗

(ℎ) are the learnable parameters of the ℎ-layer of
the GNN convolution (Gconv), where 𝑗 is an integer between 0 and
4. 𝑖 represents the linear layer that processes different user features.
Afterward, we concatenate all the five user features to form the
final representation 𝑥

(ℎ)
𝑖

:

𝑥
(ℎ)
𝑖

= 𝑛𝑢𝑚
(ℎ)
𝑖

′
⊕ 𝑐𝑎𝑡

(ℎ)
𝑖

′
⊕ 𝑑𝑒𝑠

(ℎ)
𝑖

′
⊕ 𝑡𝑤𝑒

(ℎ)
𝑖

′
⊕ 𝐸𝑡𝑥

(ℎ)
𝑖

′
(9)

The fused features are passed through a linear_relu layer, then
combined with the graph-based user relationship features to create
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Figure 4: GNN architecture for multimodal Feature Fusion.

a unified representation:

𝑎
(ℎ+1)
𝑖

= 𝐴𝐺𝐺𝐸𝑅
𝑗∈N(𝑖 )

(𝑥ℎ𝑖 , 𝑥
ℎ
𝑗 , 𝑒𝑖 𝑗 ) (10)

𝑥
(ℎ+1)
𝑖

= 𝑅𝑒𝐿𝑢 (𝐿𝑖𝑛𝑒𝑎𝑟 (𝑈𝑃𝐷𝐴𝑇𝐸 (𝑥ℎ𝑖 , 𝑎
ℎ
𝑖 )) (11)

where 𝐴𝐺𝐺𝐸𝑅(·) represents the information aggregated from the
neighboring users of user 𝑖 . N(𝑖) indicates the set of neighbors of
user 𝑖 . 𝑒𝑖 𝑗 denotes the edge between user 𝑖 and user 𝑗 . 𝑈𝑃𝐷𝐴𝑇𝐸 (·)
denotes updating the user’s representation based on the aggre-
gated information. This updated information is passed through a
linear_relu layer to obtain the user representation in layer ℎ + 1.
Finally, the GNN is optimized using a cross-entropy loss function.

4 Experiment
In this section, we aim to answer the following question in this
experiment:

• Q1: How does the ETS-MM method perform compared to
other multimodal-based social bot detection methods?

• Q2:Which combinations of LMs andGNNs can significantly
enhance the accuracy of social bot detection?

• Q3: Can topics and emotions extracted from LLMs improve
the effectiveness of social bot detection frameworks?

• Q4: Can enhanced semantic features improve the perfor-
mance of social bot detection tasks?

• Q5: How do different modalities influence the model’s per-
formance?

4.1 Experiment settings
4.1.1 Datasets. In our experiments, we use two datasets: Cresci15[9]
and Twibot20[16]. Cresci15 includesmetadatas, descriptions, tweets,
and social network information of humans and bots, making it a
classic dataset in social bot detection. Twibot20 is larger in scale,
providing a broader range of scenarios and diverse user samples.
More dataset statistics are outlined in Appendix A.2.

4.1.2 Baselines. Since we utilizes data from various sources, the
focus is on comparing it with multimodal-based social bot detec-
tion methods. HGT[25] and RGT[14] concentrate on processing
heterogeneous graph. SimpleHGN[33] demonstrates that simple
isomorphic graph GNNs can achieve high effectiveness when con-
figured appropriately. BotRGCN[17] integrates relational graph
convolutional networks with multimodal information to improve
detection performance. BIC[28] highlights the deep interaction be-
tween text and graphs, along with semantic consistency modeling.
BotMoE[32] focuses on multimodal information fusion and incor-
porates a community-aware mixture of experts. Lastly, LMBot[6]
realizes graph-independent bot detection through knowledge dis-
tillation of LMs.

4.1.3 Model Parameters. In our model, we use several parameters
to achieve optimal performance, as shown in Table 1.

Table 1: Parameter settings of ETS-MM.

Parameter Value

Batch size in training LM task 32
Epochs of training LM 3
Max length of LM 512

Hidden dimensions of LM 128
Dropout of LM 0.1
Warmup of LM 0.6

Learning rate of LM 1e-5
Weight decay of LM 0.01

Epochs of training GNN 300
Number of GNN convolution layers 2

Dropout of GNN 0.5
Learning rate of GNN 1e-3
Weight decay of GNN 1e-4
Activation of GNN Leakyrelu

Optimizer of LM and GNN Adamw

4.2 Performance of ETS-MM(Q1)
Our experiments demonstrate that the ETS-MM model consistently
outperforms other state-of-the-art social bot detection methods on
Cresci15 and Twibot20, as detailed in Table 2. Specifically, on the
Cresci15 dataset, ETS-MM achieves an accuracy of 99.10%, exceed-
ing the second-ranked LMBot. Similarly, on Twibot20, ETS-MM has
an accuracy of 90.05%, ahead of BotMoE’s. Notably, while LMBot
performs well on the smaller Cresci15 dataset, its accuracy drops
significantly on the larger Twibot20 dataset, likely due to incom-
plete semantic feature extraction on the larger dataset. ETS-MM
demonstrates consistent and stable performance across multiple
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Table 2: Average accuracy and F1-socre of five runs on Cresci15 and Tweibot 20 datasets, with standard deviations in parentheses,
best performance bold and second-best underlined.

Method pre-train LM train LM train GNN Cresci15 Twibot20

Accuracy F1-score Accuracy F1-score

HGT[25] ✓ 97.45(±0.23) 96.87(±0.43) 86.56(±0.43) 88.75(±0.67)
SimpleHGN[33] ✓ 96.84(±0.13) 97.44(±0.74) 87.89(±0.23) 89.56(±0.31)
BotRGCN[17] ✓ 96.52(±0.71) 97.30(±0.53) 83.27(±0.57) 85.26(±0.38)

RGT[14] ✓ 97.15(±0.32) 97.78(±0.24) 86.57(±0.41) 88.01(±0.41)
BIC[28] ✓ ✓ 98.35(±0.24) 98.71(±0.18) 87.61(±0.21) 89.13(±0.15)

BotMoE[32] ✓ 98.50(±0.00) 98.82(±0.00) 87.76(±0.2) 89.22(±0.3)
LMBot[6] ✓ ✓ ✓ 99.06(±0.30) 99.26(±0.20) 85.25(±0.20) 87.38(±0.20)

ETS-MM ✓ ✓ 99.10(±0.08) 99.29(±0.06) 90.05(±0.19) 90.82(±0.18)

runs, with a standard deviation of only ±0.19% and ±0.18% on Twi-
bot20, highlighting the robustness of the model’s improvements.
Interestingly, training GNNs using only extracted user metadata
and textual features, without additional LM training, led to inferior
results. This indicates that LM training effectively captures cru-
cial semantic features in textual information. Enhancing semantic
features proves crucial. Almost all models trained with LMs and
enriched semantic features perform better, particularly ETS-MM,
which reached SOTA on both datasets after semantic enhancement.
This confirms the importance of extracting topic preference and
emotion tendency in social bot detection.

4.3 LM and GNN Impact on Detection(Q2)
This experiment examines the effect of different combinations of
LMs and GNNs on social bot detection performance. We select
four LMs–BERT[13], DeBERTa[23], RoBERTa-f2 and RoBERTa[31]–
and four GNNs–GAT[41], HGT[25], SAGE[22], and RGCN[39]. The
results indicate that various combinations of LMs and GNNs sig-
nificantly influence the model’s performance, as shown in Table
3.

The Cresci15 dataset shows the most consistent BERT perfor-
mance and the best RoBERTa results. Since Cresci15 is simpler
compared to Twibot20, it may benefit more from the lighter model
combinations. In the Twibot20 dataset, RoBERTa and RoBERTa-f
outperform BERT and DeBERTa, possibly because RoBERTa gen-
erated the original node embeddings, allowing it to analyze com-
plex data structures better. Specifically, in the Cresci15 dataset, the
combination of RoBERTa and GAT achieves the best performance,
followed by RoBERTa combined with RGCN. This suggests that
GAT, with its simplified graph structure aggregation, is more effi-
cient at capturing key features. In contrast, overly complex GNN
structures like HGT and RGCN may introduce noise in this sce-
nario. For the Twibot20 dataset, the combination of RoBERTa-f and
SAGE performs the best, significantly surpassing other combina-
tions. This implies that SAGE is particularly effective at leveraging
the enhanced semantic features extracted by RoBERTa-f to capture
the complex relational networks of social bots. Similarly, the com-
bination of RoBERTa and GNN is the most stable, with the model
successfully utilizing relational features between users.
2https://huggingface.co/yzxjb/roberta-finetuned-20

4.4 Effectiveness of Topics and Emotions(Q3)
To assess the impact of topics and emotions on social bot detec-
tion, we design four sets of experiments: without topics and emo-
tions(no_te), with only topics(t), with only emotions(e), and with
both topics and emotions(te). We analyze the accuracy and F1-score
of the four sets.
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(a) Cresci15
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Figure 5: Accuracy, F1-score and standard deviation of ETS-
MM across four different scenarios: without topics and emo-
tions(no_te), with only topics(t), with only emotions(e), and
with both topics and emotions(te).

The results of the experiments are shown in Figure 5. In both
datasets, adding only topics and emotions improves detection per-
formance. This is because topic information helps capture the po-
tential behavioral patterns of humans and bots, and emotion in-
formation allows for the analysis of users’ emotional changes and
diversity, thus improving the model’s performance. By examining
the topic distribution in the Cresci15 dataset, as shown in Figure
1, we can clearly distinguish between humans and bots: humans
prefer to focus on one or two topics. In contrast, bots have a much
broader topic distribution. In Cresci15, the distribution of emotions
within topics also varies. For example, in the "news" and "music"
topics, there is a significant difference in the emotional distribution
between humans and bots. By combining the topics and emotions,
richer semantic features are extracted. However, in Twibot20, the
model’s performance slightly declined. This may be because not
all topics and emotions can provide sufficient information for the
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Table 3: Accuracy, F1-score and the standard deviations for combinations of four LMs(BERT, DeBERTa, RoBERTa-f and
RoBERTa) and four GNNs(GAT, HGT, SAGE and RGCN) on Cresci15 and Twibot20.

Dataset Cresci15

Model BERT DeBERTa RoBERTa-f RoBERTa

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

GAT 98.47(±0.08) 98.80(±0.06) 97.72(±0.16) 98.22(±0.11) 98.06(±0.36) 98.48(±0.28) 99.14(±0.36) 99.32(±0.28)
HGT 98.47(±0.08) 98.80(±0.06) 97.68(±0.17) 98.19(±0.13) 97.42(±0.16) 98.00(±0.11) 98.5(±0.00) 98.83(±0.00)
SAGE 98.50(±0.00) 98.83(±0.00) 97.57(±0.00) 98.11(±0.00) 97.91(±0.24) 98.37(±0.18) 98.95(±0.31) 99.18(±0.24)
RGCN 98.50(±0.00) 98.83(±0.00) 97.91(±0.08) 98.35(±0.07) 97.50(±0.28) 98.05(±0.21) 99.10(±0.08) 99.29(±0.07)

Dataset Twibot20

Model BERT DeBERTa RoBERTa-f RoBERTa

Accuracy F1-score Accuracy F1-score Accuracy F1-score Accuracy F1-score

GAT 83.99(±1.81) 85.71(±1.99) 85.21(±0.49) 86.79(±0.43) 87.86(±2.42) 88.97(±2.26) 88.76(±0.34) 89.77(±0.29)
HGT 86.64(±0.34) 87.94(±0.34) 86.97(±0.20) 88.29(±0.11) 90.96(±0.20) 91.63(±0.19) 90.08(±0.19) 90.85(±0.18)
SAGE 87.17(±0.33) 88.58(±0.24) 87.12(±0.30) 88.40(±0.23) 91.21(±0.28) 91.93(±0.27) 90.16(±0.18) 91.00(±0.13)
RGCN 86.48(±0.32) 87.91(±0.32) 87.13(±0.22) 88.31(±0.23) 91.17(±0.22) 91.85(±0.21) 90.05(±0.19) 90.82(±0.19)
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Figure 6: Topic distribution of humans and bots in Twibot20
and emotion within the "news" and "sports" topics.

detection model. For example, as shown in Figure 6, some emotions
(such as "neutral") or highly general topics (such as "news") may not
be distinctive enough, thus contributing finitely to the model’s de-
tection capability. Twibot20’s topic distribution difference between
humans and bots is smaller than Cresci15. This phenomenon further
demonstrates that bots’ ability to disguise themselves continuously
improves. Appendix A.3 further enumerates the confusion matrices

of the model for four cases: without topics and emotions, only with
topics, only with emotions, and with topics and emotions.

4.5 Contribution of Enhanced Semantic
Features(Q4)

This subsection investigates the contribution of enhanced semantic
features to the social bot detection framework. We design two
different scenarios: without enhanced semantic features (𝐸𝑡𝑥 ) and
with enhanced semantic features (𝐸𝑡𝑥 ). In our experiments, we
compared the feature distributions of the final layer of the ETS-
MM model under two conditions across both datasets using t-SNE
visualization, as shown in Figure 7.

The model displays a much clearer clustering structure when en-
hanced semantic features were included. This effect is particularly
evident in the Cresci15 dataset, where the separation between bots
(pink dots) and humans (blue stars) becomes more distinct. Several
factors contribute to this improvement: First, enhanced semantic
features, such as topics and emotions, allow for a more compre-
hensive capture of contextual associations and subtle emotional
changes within the text. This gives the model a richer semantic
background, enabling it to detect behavioral patterns and character-
istics specific to social bots, thereby improving detection accuracy.
In contrast, without the enhanced feature, the model may rely solely
on basic text representations like word vectors or simple sentence
embeddings, which are often insufficient for capturing the deeper
patterns of user behavior. The model can combine these multidi-
mensional elements by integrating topics and emotions, creating
a more comprehensive representation of each user. Appendix A.4
shows the model’s performance in two cases: without enhanced
semantic features and with enhanced semantic features.

4.6 The Influence of Different Modalities(Q5)
To evaluate the impact of different modalities on the performance of
our model, we design four experimental settings: (1) using metadata
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Figure 7: The feature distributions were obtained by applying
t-SNE to reduce the dimensionality of output features of the
model’s final layer across two different scenarios. The first
two figures show the results from the Cresci15 dataset, while
the last two represent the Twibot20 dataset. Pink dots denote
bots, and blue stars indicate humans.

and textual features, (2) using metadata and social network features,
(3) using textual and social network features, and (4) using all
features (metadata, text, social network), where metadata features
include numerical and categorical features, textual features include
description representation, tweet representation, and enhanced
semantic features.

As shown in Table 4, removing text features led to the most
significant drop in performance, indicating the critical role of tex-
tual information in detecting social bots. Removing metadata also
resulted in a performance decline, but the impact was less severe.
Interestingly, removing metadata features had a smaller impact on
the Cresci15 dataset, likely due to its simpler data structure. Remov-
ing each modality in Twibot20 has a significant effect on the results.
In addition, we extracted five types of features for generating user
embeddings across two GNN convolution layers and visualized
them using t-SNE, as shown in Figure 8. The t-SNE visualization
clearly shows that different features contribute to distinct cluster-
ing patterns. In both datasets, these modalities integrate with one
another. Particularly in the Cresci15 dataset, feature points from
different modalities gradually merge into the same category cluster,
further validating the effectiveness of our proposed method.

Table 4: Impact of different modalities (metadata, text, and
social network) on model performance across Cresci15 and
Twibot20 datasets.

Meta Text Network Cresci15

Acc F1

✓ ✓ 95.96(±0.49) 96.86(±0.36)
✓ ✓ 92.15(±0.78) 93.99(±0.58)

✓ ✓ 98.28(±0.24) 98.65(±0.19)
✓ ✓ ✓ 99.10(±0.08) 99.29(±0.06)

Meta Text Network Twibot20

Acc F1

✓ ✓ 83.63(±0.39) 85.34(±0.47)
✓ ✓ 81.52(±0.22) 85.39(±0.16)

✓ ✓ 82.38(±0.56) 83.75(±0.63)
✓ ✓ ✓ 90.05(±0.19) 90.82(±0.18)
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Figure 8: The feature distributions of five features(𝑛𝑢𝑚, 𝑐𝑎𝑡 ,
𝑑𝑒𝑠, 𝑡𝑤 and 𝐸𝑡𝑥 ) across two GNN convolutional layers were
visualized using t-SNE.

5 Conclusion
In this study, we propose ETS-MM, a multimodal bot detection
model that enhances the semantic representation of user text and
addresses the issue of textual modality lacking more dimensional
information. Using LLM, we extract topic preference and emotion
tendency from tweets, integrating these insights into two custom
sequences: textual sequences and hybrid sequences, which com-
bine user metadata and augmented text. These sequences help train
the LM and encode enhanced semantic representations. Addition-
ally, GNN is employed to integrate various features, ultimately
identifying bots. Our experiments show that the ETS-MM model
outperforms existing methods in social bot detection. In the future,
we will explore a closer integration of large language models for
social bot detection and extract more effective information from
user text.
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Figure 9: Topic distribution of humans and bots in Cresci15
and emotion distribution within "news" and "music" topics.

A APPENDIX
A.1 Prompts for Extracting Topics and

Emotions from ChatGPT
We reference [8] to design the instruction prompts we extract for
topics and emotions for the construction of the textual dataset in
Section 3.1, as shown in Table 5.

Table 5: The instruction prompt and an example of the output
of GPT-3.5-Turbo

Instruction prompt Example output
Please classify each tweet into the topics
and corresponding emotions. The avail-
able topics are arts & culture, business &
finance, careers, entertainment, fashion
& beauty, food, gaming, hobbies & in-
terests, movies & TV, music, news, out-
doors, science, sports, technology, and
travel. The emotions to consider are pos-
itive, negative, and neutral. Please pro-
vide the classification for each post in
the format ’topic - emotion’. If you are
not sure about the ’topic’ correspond-
ing to this tweet, classify the ’topic’ as
none. Limit the response to less than
100 words and use lowercase.

1: news - positive
2: news - negative
3: news - positive
4: news - neutral
5: news - positive
6: news - positive
7: news - positive
8: news - negative
9: news - neutral
10: news - neutral

A.2 Statistics of Datasets
Table 6 shows the number of training sets, validation sets, test sets,
and overall in the Cresci15 and Twibot20 datasets.

Table 6: Statistics of Datasets.

Datasets train dev test total

Cresci15 3708 1058 535 5301
Twibot20 8278 2365 1183 11826

A.3 Confusion Matrices of ETS-MM with Topics
and Emotions

Figure 10 shows the confusion matrices of the model for the four
cases: without topics and emotions, with only topics, with only
emotions, and with both topics and emotions in Section 4.4. On
the Cresci15 dataset, adding topics and emotions makes the model
able to distinguish humans more clearly, especially topics. This also
shows that topics are important in distinguishing bots from hu-
mans. On the Twibot20 dataset, the model’s accuracy for predicting
humans and bots increases. This demonstrates that emotions are
also beneficial for improving social bot detection.

A.4 Results of Enhanced Semantic Features
Table 7 illustrates the performance changes in two different scenar-
ios: without enhanced semantic features 𝐸𝑡𝑥 and with enhanced
semantic features 𝐸𝑡𝑥 , in Section 4.5. The performance changes
are illustrated in Table 7. In the Cresci15 and Twibot20 datasets,
after removing enhanced semantic features, the model’s accuracy
decreased by 3.55% and 2.78%, while the F1-score dropped by 3.55%
and 2.92%.

Table 7: Accuracy, F1-score, and standard deviation of ETS-
MM across two different scenarios: without and with en-
hanced semantic features.

Methods Cresci15

Accuracy F1-score

without 𝐸𝑡𝑥 95.55(±0.15) 96.51(±0.12)
with 𝐸𝑡𝑥 99.10(±0.08) 99.29(±0.06)

Methods Twibot20

Accuracy F1-score

without 𝐸𝑡𝑥 86.50(±0.27) 87.90(±0.31)
with 𝐸𝑡𝑥 90.05(±0.19) 90.82(±0.18)

A.5 Topics and Emotions Distribution of
Cresci15

Figure 9 shows the distribution of topics and emotions with data
labels in Cresci15,
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Figure 10: Confusion matrices for ETS-MM across four scenarios(𝑛𝑜_𝑡𝑒, 𝑡 , 𝑒 and 𝑡𝑒). The first four matrices correspond to the
Cresci15 dataset, while the four matrices correspond to the Twibot20 dataset.
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