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ABSTRACT

Neural networks often favor shortcut heuristics based on surface-level patterns.
Language models (LMs), for example, behave like n-gram models early in training.
However, to correctly apply grammatical rules, LMs must instead rely on hierarchi-
cal syntactic representations rather than on surface-level heuristics derived from
n-grams. In this work, we use cases studies of English grammar to explore how
latent structures in training data drives models toward improved out-of-distribution
(OOD) generalization. We then investigate how data composition can lead to
inconsistent behavior across random seeds. Our results show that models stabilize
in their OOD behavior only when they commit to either a surface-level linear rule
or a hierarchical rule. The hierarchical rule, furthermore, is induced by gram-
matically complex sequences with deep embedding structures, whereas the linear
rule is induced by simpler sequences. When the data contains a mix of simple
and complex examples, potential rules compete; each independent training run
either stabilizes by committing to a single rule or remains unstable in its OOD
behavior. We also identify an exception to the relationship between stability and
generalization: Models which memorize patterns from homogeneous training data
can overfit stably, with different rules for memorized and unmemorized patterns.
While existing works have attributed similar generalization behavior to training
objective and model architecture, our findings emphasize the critical role of training
data in shaping generalization patterns and how competition between data subsets
contributes to inconsistent generalization outcomes.

1 INTRODUCTION

Neural networks often learn shortcut heuristics which reflect simple, surface-level patterns in data.
In the case of language models (LMs) trained on next-token prediction objectives, this simplicity
bias can lead models to behave like n-gram models, relying heavily on local dependencies without
fully capturing the deeper, more complex structures of language (Choshen et al., 2022; Geirhos et al.,
2020; Saphra & Lopez, 2018). However, LMs are also capable of breakthroughs in generalization,
shifting from these simple heuristics to more sophisticated behaviors (Choshen et al., 2022; Chen
et al., 2023; McCoy et al., 2020). Such transitions suggest that under certain training conditions, LMs
can eventually overcome spurious shortcuts and use linguistic structures to generalize beyond surface-
level patterns. Previous works often attribute this ability to model architecture and training objectives
(Ahuja et al., 2024; McCoy et al., 2020). In this work, we investigate how data characteristics
influence the generalization rules learned, especially when multiple solutions fit the training data
equally well. We also examine the instabilities associated with generalization behaviors.

To understand when and why a model favors learning latent structures over surface-level heuristics,
we use case studies in learning English grammar rules. Grammatically correct sentences in English
must follow a set of rules that operate on a sequence’s latent tree-like structure (Chomsky, 2015; Crain
& Nakayama, 1987). When trained on next-token prediction, an LM may approximate these rules
from surface-level statistics, acting as an n-gram model by applying a linear rule. However, such a
model struggles to generalize to unseen grammatical patterns. Figure 1 (bottom right) shows that a
LM can use a linear bigram model to capture the relationship between a subject noun and its verb
by inflecting the verb with the same plurality as the subject. This LM would fail to generalize when
a distractor noun, e.g., from a prepositional phrase, appears between subject and verb. In contrast,
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Figure 1: Data plays a critical role in generalization behaviors and training stability. Left: Along
the data diversity x-axis, Low data diversity (as measured by variation in syntactic structure) leads
the model to memorize unreliable sample-specific patterns, whereas high data diversity promotes
commitment to a general rule. Along the data complexity y-axis, high data complexity (i.e., with
more center embeddings) induces the hierarchical rule, while simpler data (right-branching sentences)
induces the surface-level linear rule. Mixing these data types results in unstable OOD training
behaviors. Upper Right: A model that captures hierarchical structure can generalize grammatical
rules OOD by correctly identifying the subject as the noun closest to the root on the syntax tree graph.
Lower Right: A model that uses the linear rule will treat the most recent noun as the target verb’s
subject and thereby fail to generalize to unseen sentence compositions.

Figure 1 (upper right) shows a model that instead uses a latent tree structure can learn the correct
syntactic rule (i.e., the hierarchical rule), enabling it to generalize to novel sentence compositions.

Building on previous work (McCoy et al., 2018; 2020; Ahuja et al., 2024), we use two tasks—
question formation and tense inflection—to investigate whether the model learns the hierarchical rule
or defaults to the surface-level linear rule. We train models on ambiguous data, which is compatible
with both rules, and evaluate them on out-of-distribution (OOD) data which is compatible only with
the hierarchical rule. We first find that a preference for OOD hierarchical generalization is induced
by training on samples with center embeddings, where the subject is modified by an relative clause.
This result mirrors a celebrated claim from linguistics (Wexler, 1980) that center embeddings are
responsible for human syntax acquisition.

Models trained on the same data exhibit inconsistent OOD behaviors across random seeds. By exam-
ining training dynamics, we identify a connection between training stability and rule commitment:
Only runs that commit to a rule can exhibit stable OOD performance during training. Connecting back
to data, we show that training dynamics can be categorized into three distinct regimes that depend on
data complexity and diversity, illustrated in Figure 1 left. Data diversity determines whether a model
learns a general rule, while data complexity determines which rule is preferred. Models trained on a
mix of hierarchical-inducing samples and linear-inducing samples are most unstable during training
and exhibit the largest inconsistency across random seeds.

Taken together, our findings demonstrate that data composition plays a critical role in shaping model’s
OOD generalization behaviors. Our contributions are as follows:

• We show that sentences with complex grammatical structure—specifically center embeddings—
drive LMs to favor hierarchical syntactic representations over surface-level n-gram heuristics,
enabling correct OOD generalization of grammatical rules (see Section 4).

• We demonstrate that models stabilize in OOD performance only when they commit to either a
surface-level heuristic or a hierarchical rule (see Section 5).
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• We show that when the training data mixes complex and simple grammatical structures, the
resulting rules are inconsistent across random seeds and many models fail to stabilize OOD
behavior by the end of training (see Section 5).

• We identify an exception to the relationship between stability and rule learning: Models trained
on insufficiently diverse data stabilize in a memorization regime without learning either rule,
highlighting another way that data can drive generalization failures (see Section 6).

2 RELATED WORK

We include the most relevant work in this section. For an extended discussion of related work, please
refer to Appendix A.

2.1 SYNTAX AND HIERARCHICAL GENERALIZATION

McCoy et al. (2018) first used the question formation task to study hierarchical generalization in
neural networks, showing that RNNs trained with a seq-to-seq objective exhibit limited hierarchical
generalization. However, adding attention mechanisms improved performance on the generalization
set. Later, McCoy et al. (2020) found that tree-structured architectures consistently induce hierarchical
generalization. Petty & Frank (2021) and Mueller et al. (2022) further investigated inductive biases
and concluded that, like RNNs, transformers tend to generalize linearly. This view was challenged by
Murty et al. (2023), who attributed the failure of prior attempts to insufficient training, demonstrating
that decoder-only transformers can generalize hierarchically, but only after in-distribution perfor-
mance has plateaued. Expanding on this, Ahuja et al. (2024) showed that hierarchical generalization
is achieved only with models trained on a language modeling objective. Previous work primarily
attributed the source of inductive bias toward hierarchical rule to model architecture, whereas our
study highlights the impact of data, and we further provide a precise measure of data complexity and
data diversity. In addition, the inconsistency in generalization behaviors are observed in (McCoy
et al., 2018; McCoy et al.). While they have pointed out that models trained on different random seeds
can manifest very different generalization behaviors, they did not further studies the distributions of
model behaviors.

Similar to our work, Papadimitriou & Jurafsky (2023) and Papadimitriou & Jurafsky (2020) also
studied how training data could introduce an inductive bias to affect language acquisition. specifically
identified that by pretraining models on data with a recursive structure, finetuning them on natural
language yields superior performances. This finding is closely related to our conclusions around
center embeddings since the center embedding structure in language is recursive in nature.

2.2 TRAINING DYNAMICS AND GROKKING

Grokking refers to the phenomenon where a neural network, after achieving seemingly poor per-
formance for a long period, suddenly generalize on unseen data. Power et al. (2022) first observed
this behavior in simple arithmetic tasks. Since then, the exact mechanism of grokking has been
widely studied. Different from existing grokking work, we studied a different types of grokking:
“structural grokking" (Murty et al., 2023). In classic grokking, the model transitions from memoriza-
tion to generalization, allowing it to achieve non-trivial performance on unseen data. In structural
grokking, a model transitions from the simple linear rule to the hierarchical rule, leading to non-trivial
performance on OOD data. However, the findings of this study is potentially related to those in
classic grokking. Zhu et al. (2024) studies the role of data and finds that grokking only occurs when
training data is sufficiently large. Berlot-Attwell et al. (2023) broadly studies how data diversity and
complexity leads to different generalization behaviors. Liu et al. (2022) shows that grokking can be
induced with different weight norms, associating generalization with a specific goldilocks zone weight
norm value. Huang et al. (2024) and Varma et al. (2023) have shown that during training, different
circuits compete, and models trained on different random seeds can lead to distinct generalization
behaviors depending on which circuits dominate. While these works primarily attribute generalization
differences to circuit formation, our findings highlight that this competition between circuits can also
destabilize learning dynamics. Importantly, we characterize the unstable regime in both data diversity
and data complexity and we address connections between training stability and consistency under
random variation.
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Table 1: Examples from two grammar case studies. Top: In the question formation task, the model
moves the main auxiliary verb to the front to form a question. Bottom: In the tense inflection task, the
model inflects the main verb from past to present tense, while respecting subject-verb agreement.

Dataset Task Type Examples

Question Formation Quest Input: My unicorn does move the dogs that do wait.
(Ambiguous) Output: Does my unicorn move the dogs that do wait?

Quest Input: My unicorn who doesn’t sing does move.
Linear Output: Doesn’t my unicorn who sing does move?

(Unambiguous) Hierarchical Output: Does my unicorn who doesn’t sing move?

Tense Inflection

Present Input: My zebra behind the peacock smiled.
(Ambiguous) Output: My zebra behind the peacock smiles.

Present Input: My zebra behind the peacocks smiled.
Linear output: My zebra behind the peacocks smile.

(Unambiguous) Hierarchical output: My zebra behind the peacocks smiles.

2.3 RANDOM VARIATION

Although choices like hyperparameter settings, architecture, and optimizer all shape model outcomes,
training remains inherently stochastic. Models are sensitive to random initialization and the order of
training examples. Several studies (Zhou et al., 2020; D’Amour et al., 2022; Naik et al., 2018) have
reported significant performance differences across model checkpoints and Zhou et al. (2020) noted
that instability extends throughout the training curve. Dodge et al. (2020) found that both weight
initialization and data order contribute equally to out-of-sample performance variation. Unlike prior
work, which focuses on the experimental implications of random variations, we investigate the source
of these training inconsistencies and link them to characteristics of the training data.

3 EXPERIMENTAL SETUP

The question formation task and the tense inflection task are first proposed by Frank & Mathis (2007)
and Linzen et al. (2016) as canonical tasks to assess a model’s language modeling ability. In this
study, we use the synthetic dataset constructed by McCoy et al. (2018) (for question formation) and
McCoy et al. (2020) (for tense inflection).

3.1 QUESTION FORMATION TASK

In the question formation (QF) task, a declarative sentence is transformed into a question (see
Table 1) by moving the main auxiliary verb (such as “does” in “does move”) to the front. Our training
data permits two strategies for choosing which verb to move: (1) move first: a linear rule that moves
the first auxiliary, or (2) move main: a hierarchical rule—the correct rule in English grammar—based
on the sentence’s syntactic structure. This syntactic structure links each word into a tree-like structure
in which edges specify syntactic dependencies (e.g., subject, preposition, object), as shown in Figure
2. The model leverages this tree representation to determine which auxiliary to move.

In Table 1, the first example is considered ambiguous because both the hierarchical and linear rules
produce the correct outcome. In contrast, the second example is unambiguous because only the
hierarchical rule produces the correct outcome. The training data contains only ambiguous samples,
while the OOD generalization set includes only unambiguous samples. If a model uses a hierarchical
representation of syntax, it should achieve 100% accuracy on both the in-distribution (ambiguous
questions) and OOD generalization (unambiguous questions) sets. Conversely, if a model rise on
linear rules, it will score 0% on the OOD generalization set, but still score 100% accuracy on the
in-distribution set. We therefore use the model’s accuracy on the OOD generalization set as a metric
for hierarchical generalization.

3.2 TENSE INFLECTION TASK

In the tense inflection (TI) task, we provide the model with a sentence in the past tense, and the
model transforms it into the present tense. Since past-tense verbs in English do not differentiate
between singular and plural forms, the model must identify the subject to determine whether the
present-tense verb should be inflected as singular or plural. The TI task tests whether the model
follows the hierarchical or linear rule for subject-verb agreement. The linear rule inflects the verb
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unicorn who doesn't wait doesMy

unicorn that doesn't smile.does entertainMy her tyrannosaurus unicorn who doesn't wait does entertainMy her tyrannosaurus that doesn't smile.
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Figure 2: Sentence Examples. Left: Right-branching sentence examples. The linear progression of
the main phrase is not interrupted by the relative clause. Right: Center-embedded sentence examples.
When the relative clause modifies the subject, it interrupts the linear progression of the main clause.

based on the most recent noun, while the hierarchical rule correctly inflects the verb according to
the subject. Like in the QF task, the training data contains ambiguous samples (example in Table 1),
where the subject noun (i.e., “zebra") and the most recent noun (i.e., “peacock") always share the
same plurality and therefore either rule produces the correct answer. The OOD generalization set
includes unambiguous examples, where the subject and the most recent noun differ in plurality and
therefore only the hierarchical rule produces the correct answer. Similar to the QF task, we use the
model’s main-verb prediction accuracy on the OOD set as a metric for hierarchical generalization.

3.3 MODEL, DATA AND TRAINING

We use a decoder-only Transformer architecture with 12M parameters: 6 layers of 8 heads with
a 512-dimensional embedding for QF. For TI, we use the same transformer architecture but with
4 layers. All models are trained from scratch on a causal language modeling objective for 300K
steps. We use the Adam optimizer (Kingma & Ba, 2014), a learning rate of 1e-4, and a linear decay
schedule. All the hyperparamter settings are directly adopted from existing works (Ahuja et al., 2024;
Murty et al., 2023). We run all experiments on the same 50 random seeds. We use the original
training, validation and OOD generalization data proposed by McCoy et al. (2018) and McCoy et al.
(2020). To create variations on the training data, we mimic the data generation process used for the
original QF and TI task. Specifically, the original TI and QF data are generated with Context-Free
Grammar (CFG) using a simplified set of grammatical rules, and we reuse the same CFG rules to
create variations of the training data. We use a word-level tokenizer with a vocabulary of size 72.

4 DATA COMPLEXITY DETERMINES RULE PREFERENCE

We begin by analyzing center-embedded sentences in Section 4.1. We then show that center-embedded
sentences drives hierarchical generalization in both QF task (Section 4.2) and TI task (Section 4.3).

4.1 CENTER EMBEDDING

Center embedding occurs when a clause—often acting as a modifier—is placed within another clause
or phrase. Figure 2 (left) illustrates two examples of center-embedded sentences, where the embedded
clause disrupts syntactic dependencies, such as the subject-verb-object relationship. Moreover, center
embeddings exhibit a recursive structure: inside the relative clause, one can find the same structure as
the entire sentence. In contrast, sentences without center embeddings are exclusively right branching.
Right-branching structures may also include modifying clauses, but these can only be appended at
the end of the main clause, maintaining its linear flow (see Figure 2, right). Center embedding has
been central to linguistic studies on the types of data required to learn grammatical rules. According
to Chomsky’s generative grammar framework (Chomsky, 2015), center-embedded clauses give rise
to hierarchical, tree-like syntactic structures. Additionally, Wexler (1980) posits that all English
syntactic rules can be learned from “degree 2" sentences, which contain exactly one embedded clause.

While center embeddings are crucial for human language acquisition, in this study we investigate
whether the same type of data can lead a LM to acquire the hierarchical grammar rule. To correctly
predict the distribution of next tokens, LMs must track dependencies between sentence components.
In right-branching sentences, LMs can rely on linear proximity to identify dependencies; for example,
as shown in Figure 2, a simple bigram model suffices to capture the subject-verb relationship. In
contrast, center embeddings introduce relative clauses of various lengths, making linear n-gram
models inefficient for capturing subject-verb dependencies. Furthermore, the recursive nature means
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Figure 3: Components of training data drive different generalization behaviors. Left: Center-
embedded sentences, which in the QF training data only appear in declaration copying examples,
induce hierarchical generalization. Right: Models are trained on different data mixes and evaluated on
two OOD sets: unambiguous right-branching sentences (green) and unambiguous center-embedded
sentences (red). For center-embedded sentences, the hierarchical rule is preferred regardless of data
mixes. For right-branching sentences, the model’s preference for the hierarchical rule is exclusively
driven by having a large mix of center-embedded sentences in the training data.

that the model needs to keep track of multiple subject-verb dependencies: one for the main clause
and a separate one for the embedded relative clause. In these cases, modeling those subject-verb
relationships with a tree structure is more compact and efficient.

4.2 QUESTION FORMATION

As specified in Section 3.1, the training data for QF must be ambiguous between the linear rule
(i.e., moving the first auxiliary) and the hierarchical rule (i.e., moving the main auxiliary). Center-
embedded sentences do not meet this ambiguity requirement and, therefore, cannot appear in question
formation training samples. To ensure the model is exposed to diverse sentence types, McCoy
et al. (2018) introduces a secondary task to the QF training dataset: declaration copying. Like
question formation, the declaration-copying sample starts with a declarative sentence, but instead of
transforming it, the model simply repeats it. Since the ambiguity requirement does not apply to the
declaration-copying task, center-embedded sentences are included in this secondary task. Concrete
examples of both tasks can be found in Appendix B.

We train models on three subsets of the original training data, varying the composition of the
declaration-copying examples. In Quest Only, we remove all declaration copying examples. In Center
embed, we only keep center-embedded examples. In Right branch, we only keep right-branching
examples. For all three subsets, the question formation samples remain unchanged. Each setup
reaches 100% in-distribution validation accuracy; however, the OOD generalization performance,
shown in Figure 3 (left), differs significantly across the subsets. When the declaration-copying task is
removed, none of the 50 runs achieve an OOD generalization accuracy above 75%, indicating that
declaration copying examples are essential for inducing the hierarchical rule. When trained solely on
center-embedded sentences in the declaration-copying task, models exhibit a strong preference for
the hierarchical rule. In contrast, training only on right-branching sentences leads to poor hierarchical
generalization. This evidence suggests that center-embedded sentences direct a model towards the
hierarchical rule.

4.3 TENSE INFLECTION

We now analyze hierarchical generalization in the tense inflection task, demonstrating the generality
of our findings across grammatical rules. Linzen et al. (2016) first proposed the idea to use a verb
inflections to assess the model’s grammatical capabilities. McCoy et al. (2020) then adopted the
question formation data to the tense inflection task by creating the TI dataset using a set of CFG rules
and vocabularies similar to the ones used for QF.

In the TI training data, both right-branching and center-embedded sentences are made ambiguous
by ensuring the distractor noun shares the same plurality as the main subject. For right-branching
sentences, since there isn’t a relative clause modifying the subject, a preposition phrase modifying
the subject provides the distractor noun. In contrast, for center-embedded sentences, since there is a
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relative clause modifying the subject, either the subject or the object of the modifying clause can act
as the distractor noun. We list examples below:

1. Right Branching: The noun in the prepositional phrase (e.g., “ to the cabinet") acts as the
distractor in the TI task.
Example A (ID): The keys to the cabinet are on the table.
Example B (OOD): The keys to the cabinets are on the table.

2. Center Embedding: Either the subject or the object inside the relative clause acts as the
distractor in the TI task.
Example C (ID): The keys that unlock the cabinets are on the table.
Example D (OOD): The keys that unlock the cabinet are on the table.

We create variations of the TI training data by adjusting the ratio of right-branching to center-
embedded sentences while keeping the total training size constant. The model is trained on nine
different data mixes, and its generalization behavior is tested on two OOD sets: one containing
unambiguous right-branching sentences (e.g., Example B) and the other containing unambiguous
center-embedded sentences (e.g., Example D).

Generalization accuracies are shown in Figure 3 (right). When the training data is dominated by
ambiguous right-branching sentences, the model fails to learn the hierarchical rule, as indicated
by low OOD generalization accuracy on the left side of the green line. However, increasing the
proportion of center-embedded sentences biases the model toward applying the hierarchical rule,
even on right-branching sentences. This shift in behavior is reflected by improved generalization
accuracy on the right side of the green line. The red line in Figure 3 (right) represents the model’s
generalization accuracy on unambiguous center-embedded sentences. Regardless of the data mix, the
model consistently treats center embeddings as hierarchical and applies the hierarchical rule to OOD
data. In contrast, the model only applies the hierarchical rule to right-branching sentences after being
exposed to a sufficient quantity of center-embedded sentences during training. These observations
suggest that center embeddings drive the model’s overall preference for tree structures.

In Appendix C, we further partition center-embedded sentences based on the syntactic role of the
main subject within the modifying clause. We show that while both subtypes induce the hierarchical
rule in the QF task, one subtype provides a stronger hierarchical bias in the TI task.

5 TRAINING STABILIZES IF A MODEL COMMITS TO A RULE

Why do some runs fail to generalize hierarchically even when trained on hierarchical-inducing data?
In this section, we will show that these failures are consequences of training instability; models only
stabilize OOD if they commit to a general rule.

5.1 INSTABILITY DURING TRAINING

When training models on both QF and TI, some random seeds lead to highly unstable OOD behavior,
with generalization accuracy often undergoing large swings during training. Furthermore, the unstable
behavior is not consistent across different seeds. In Appendix F, we show examples of different OOD
behaviors during training. We also show that both the instability and inconsistency in OOD behavior
are significant only after the ID performance has converged. We measure instability across training
time using total variation (TV). Specifically, we checkpoint the model every 2K steps and measure
the generalization accuracy at each checkpoint, denoting as Acci. The total variation is defined as:

Total Variation (TV) =
1

|ckpts|
∑

i∈ckpts

|Acci −Acci−1| , where ckpts = {2K, 4K, 6K, . . . }

5.2 TRAINING STABILITY TIES TO RULE COMMITMENT

We now demonstrate the connection between stable OOD behavior and rule commitment. We con-
struct QF training datasets such that they contain different proportions of hierarchical-inducing (i.e.,
center-embedded) and linear-inducing (i.e., right-branching) declarations, while keeping questions
constant. Further details on the dataset can be found in Appendix D.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

0 10 20
0.0

0.5

1.0

Ge
n 

Ac
c

linear:
0%

0 10 20
linear:

10%
0 10 20

linear:
50%

0 10 20
linear:

95%
0 10 20

linear:
99%

Total Variation

Total variation v.s. Generalization Accuray on 5 QF Data Compositions

Figure 5: Total variation across training v.s. final generalization accuracy for QF task. OOD
behavior stabilizes during training if a model commits to a simple rule. By mixing data that induces
the linear and hierarchical rules, we can create conditions that allow models to stabilize in either rule.
“Linear" denotes the proportion of linear-inducing declarations in the data. Grey line indicates the
smoothed average curve across all runs and all five datasets.

0 10 20
Total Variation

0%

10%

50%

95%

99%

Ra
tio

 o
f l

in
ea

r-i
nd

uc
in

g 
sm

ap
le

s

Data Composition v.s. Total Variation

Figure 4: Competition between subsets
of data drives training instability.

Figure 4 shows the relationship between data homogeneity
and training stability. When the training data is domi-
nated by either linear-inducing (linear=99%) or hierarchy-
inducing (linear=0%) examples, more random seeds lead
to stable OOD curves. When the training data is a hetero-
geneous mix instead, potential rules compete, leading to
unstable training. Figure 5 shows the relationship between
training stability and generalization performance.

Across the five data mixes, the final generalization ac-
curacy for all the stable models is either 100% or 0%,
indicating that the stable models have all committed to
a general rule. While models can stabilize in either rule,
data composition determines how likely a run is stable and
for stable runes which rule is favored. Interestingly, when
the data heterogeneous (e.g., linear=10% case), the final generalization accuracy for stable runs is
bimodally distributed, clustering around 100% or 0%. This bimodality suggests that training stability
is always associated with a commitment to either the linear or the hierarchical rule, even when the
data mix does not favor either rule.

In summary, with heterogeneous training data, competition between rules leads to more unstable
training runs. Even with heterogeneous data mixes, however, some runs can still stabilize if they
commit to one of the competing rules. In Appendix E.2, we replicate this analysis for the TI task,
showing similar results.

6 DATA DIVERSITY LEADS TO GENERALIZATION

We have linked training stability to rule commitment. But why can’t networks stabilize without
committing to a rule? In this section, we will explore the non-monotonic relationship between data
diversity, training instability, and rule commitment.

6.1 MEASURING DATA DIVERSITY

In order to measure the diversity of our training data, we must compute the syntactic similarity
between different example sentences. We describe a sentence pair’s similarity by the tree-edit
distance (TED) of their latent tree representations (Chomsky, 2015). When two sentences share the
same syntax tree, transforming one into the other requires only leaf-node (i.e., vocabulary) changes.
For example, “My unicorn entertains her tyrannosaurus,” and, “Your zebra eats some apples,” have
different vocabulary but identical syntax trees. We define data diversity as the number of unique
syntactic trees in the training data. This way of using syntax TED to measure diversity data has
been used in both natural language (Huang et al., 2023; Gao & He, 2024; Ramírez et al., 2022) and
code (Song et al., 2024). We will show that when the model is exposed to a fewer unique syntax

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1 5 10 15 20 50 100 200
Data Diversity

0

7

14

To
ta

l V
ar

ia
tio

n

0.0

0.4

0.8

Lin
ea

r G
en

 R
at

io

QF Linear-Inducing Data

1 5 10 15 20 50 100 200
Data Diversity

0

10

20

To
ta

l V
ar

ia
tio

n

0.0

0.4

0.8

Hi
er

 G
en

 R
at

io

QF Hierarchical-Inducing Data
Inverse U-shaped Scaling w/ Data Diversity

Figure 6: Inverse U-shaped relationship between training stability and data diversity. At low
data diversity, training is stable but the model memorize individual syntactic patterns rather than
committing to a rule. With moderate data diversity, training becomes unstable. As diversity increases
further, the model commits to a rule and training stabilizes again.

trees during training, it memorizes those patterns without extrapolating any rules to unseen sentence
structures. Consequently, the model fails to commit to a general rule.

6.2 INVERSE U-SHAPED SCALING

Commitment to hierarchical rule We first control data diversity on datasets that induce hierarchi-
cal generalization in QF. We construct variations of the QF training data, each with 50K question
samples and 50K hierarchical-inducing declarations, while varying the diversity of the declaration
examples. We train 20 random seeds for each training set variation. To measure intra-run instability,
we use total variation, and to assess hierarchical rule commitment, we report the proportion of runs
achieving generalization accuracy >95%. Figure 6 (left) shows the distribution of total variation
across 20 seeds and the corresponding hierarchical generalization ratios.

We observe an inverse U-shaped relationship between data diversity and training instability, revealing
three distinct regimes. In the low-diversity regime, training is stable but the model fails to commit to
a rule. In Appendix G, we further investigate this failure to rule commitment. We show that in trained
on low diversity data, model can memorize specific syntax patterns and apply the hierarchical rule to
to those structures but it cannot extrapolate the rule to unseen syntax structures. In the mid-diversity
regime, training becomes unstable due to variation across batches. Overall, with insufficient diversity,
relatively few runs can learn the hierarchical rule. Finally, in the high-diversity regime, training
stabilizes again as the model commits to the hierarchical rule, indicated by a high hierarchical
generalization ratio.

Commitment to linear rule In Figure 5 right-most panel, the model has a strong preference to
apply linear rule OOD when the training data contains 99% linear-inducing data (i.e., right branching
sentences). However, Figure 3 (red violin) shows that when the training data contains exclusively
linear-inducing sentences, models suddenly fail to apply the linear rule OOD either. We can use data
diversity to explain the failure to rule commitment: right-branching sentences lack syntactic variation,
as the main auxiliary always follows the subject noun. This lack of syntax diversity prevents rule
extrapolation. By introducing as little as 1% of center-embedded sentences, we introduce the diversity
necessary to consistent apply a rule OOD and the skewed ratio between the hierarchical and linear
inducing sentences determine that the linear rule is preferred over the hierarchical rule.

To confirm that data diversity is also key to learning the linear rule, we create variations of QF
training data with 50K questions and 50K declarations, including 99% right-branching and 1%
center-embedded sentences. We control the diversity of center-embedded sentences as before and
use the proportion of runs achieving generalization accuracy below 5% to quantify the likelihood of
committing to the linear rule. As shown in Figure 6 (right), we observe a similar U-shaped scaling
behavior, confirming that models only commit to a rule when trained on diverse data.

7 DISCUSSION AND CONCLUSIONS

By exploring the role of data structure in determining OOD generalization rules, we have also revealed
which settings allow us to predict model behavior. We show that complex grammatical structures
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guide models toward hierarchical rules, while mixed data compositions lead to unstable dynamics
and inconsistent rule commitment. These findings emphasize the importance of understanding how
data diversity shapes both stability and generalization in neural networks. Our findings have a number
of implications across machine learning and even formal linguistics.

Clusters of generalization behavior across seeds While errors are often treated as Gaussian noise
in the theoretical literature, our findings suggest that errors may only be distributed unimodally for a
given compositional solution. Our work joins the growing literature that suggests random variation not
only has an effect, but can create clusters of OOD behaviors. Previously, clustered distributions have
been documented in text classification heuristics (Juneja et al., 2022) and training dynamics (Hu et al.,
2023). In our case, we note that generalization accuracy is only clearly multimodally distributed when
specifically considering stable training runs. We suggest that research on compositional variation in
training consider training stability in the future.

Implications for formal linguistics Our findings have potential implications for linguistics debates
about the poverty of the stimulus (McCoy et al., 2018; Berwick et al., 2011). Linguists have
extensively studied the question of what data is necessary and sufficient to learn grammatical rules.
In particular, Wexler (1980) argue that all English syntactic rules are learnable given “degree 2” data:
sentences with only one embedded clause nested within another clause. Our mixed scoping results
show that without a stronger architectural inductive bias—the very subject of the poverty of the
stimulus debate—degree 1 data alone cannot induce a preference for hierarchical structure. However,
our work also supports the position of Lightfoot (1989) that lower degree data is adequate for a child
to learn a specific rule, as the LM generalizes ID degree 1 QF rule examples to OOD degree 2 by
using the hierarchical inductive bias induced by declaration examples.

Grokking, instability, and latent structure Murty et al. (2023), exploring the same data setting
we do, call the transition from linear generalization to hierarchical generalization rules during training
structural grokking. Classic grokking (Power et al., 2022), however, is different: Rather than a
transition between generalization rules, it describes a transition from memorization to generalization.

Our findings clarify both scenarios. We link structural grokking to the instability formed by com-
petition between linear- and hierarchical-inducing training subsets. Without competing subsets, the
model immediately learns either the linear or the hierarchical rule without the gradual transition of
structural grokking. This instability could represent the same phenomenon of circuit competition
described by Ahuja et al. (2024). We find a similar pattern of instability in our study of data diversity,
with implications for classic grokking. In this case, the competition is not between two rules, but
instead between memorized heuristics—sufficient for modeling syntactically homogeneous training
data—and simple OOD rules—required to efficiently model diverse training data. Yet again, while a
strict memorization regime is relatively stable, the regime between memorization and generalization
is unstable, leading to potential grokking.

Our findings suggest that memorization is just another rule that the model can adopt when it is
the simplest way of capturing the training distribution. Such a framework unifies the grokking
literature with other phenomena such as emergence (Schaeffer et al., 2023) and benign interpolation
(Theunissen et al., 2020).

ETHICS STATEMENT

This research does not present any direct ethical concerns. The work involves empirical studies of
machine learning models and their behavior in language tasks. No human subjects, sensitive data, or
high-stakes applications were involved in this research. Therefore, no specific ethical considerations
were necessary for this work.

REPRODUCIBILITY STATEMENT

All relevant details regarding the experimental setup including model architecture, hyperparameters,
and data preprocessing, are included in the main text (Section 3.3) and appendices (Section D).
Additionally, the code and scripts used to run the experiments are provided in the supplementary
material and will be made publicly available upon acceptance.
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A RELATED WORK EXTENDED

A.1 SYNTAX AND HIERARCHICAL GENERALIZATION

While works mentioned in Section 2.1 focused on models trained from scratch, another line of
research examined the inductive bias of pretrained models. Mueller et al. (2024); Mueller & Linzen
(2023) pretrained transformers on text corpora such as Wikipedia and CHILDES (MacWhinney,
2014) before fine-tuning them on the question formation task. They found that exposure to large
amounts of natural language data enables transformers to generalize hierarchically.

Instead of using the question formation task as a probe, Hewitt & Manning (2019); Murty et al. (2022)
directly interpreted model’s internal representation to understand whether transformers constrain
their computations to to follow tree-structure patterns. Hewitt & Manning (2019) demonstrated that
the syntax tress are embedded in model’s representation space. Similarly, Murty et al. (2022) projects
transformers into a tree-structured network, and showed that transformers become more tree-like over
the course of training on language data.

A.2 RANDOM VARIATION

Specific training choices, such as hyperparameters, are crucial to model outcomes. However, even
when controlling for these factors, training machine learning models remains inherently stochas-
tic—models can be sensitive to random initialization and the order of training examples. Zhou et al.
(2020); D’Amour et al. (2022); Naik et al. (2018) reported significant performance differences across
model checkpoints on various analysis and stress test sets. Zhou et al. (2020) further found that
instability extends throughout the training curve, not just in final outcomes. To investigate the source
of this inconsistency, Dodge et al. (2020) compared the effects of weight initialization and data order,
concluding that both factors contribute equally to variations in out-of-sample performance.

Similarly, Sellam et al. (2021) found that repeating the pre-training process on BERT models can result
in significantly different performances on downstream tasks. To promote more robust experimental
testing, they introduced a set of 25 BERT-BASE checkpoints to ensure that experimental conclusions
are not influenced by artifacts, such as specific instances of the model. In this work, we also
observe training inconsistencies across runs on OOD data, both during training and at convergence.
Unlike prior studies that focus on implications of random variations on experimental design, we
study the source of training inconsistencies and link these inconsistencies to simplicity bias and the
characteristics of the training data.

A.3 SIMPLICITY BIAS

Models often favor simpler functions early in training, a phenomenon known as simplicity bias
(Hermann & Lampinen, 2020), which is also common in LMs. Choshen et al. (2022) found that
early LMs behave like n-gram models, and Saphra & Lopez (2019) observed that early LMs learn
simplified versions of the language modeling task. McCoy et al. (2019) showed that even fully trained
models can rely on simple heuristics, like lexical overlap, to perform well on Natural Language
Inference (NLI) tasks. Chen et al. (2023) further explored the connection between training dynamics
and simplicity bias, showing that simpler functions learned early on can continue to influence fully
trained models, and mitigating this bias can have long-term effects on training outcomes.

Phase transitions have been identified as markers of shifts from simplistic heuristics to more complex
model behavior, often triggered by the amount of training data or model size. In language models,
Olsson et al. (2022) showed that the emergence of induction heads in autoregressive models is linked
to handling longer context sizes and in-context learning. Similar phase transitions have been studied
in non-language domains, such as algorithmic tasks (Power et al., 2022; Merrill et al., 2023) and
arithmetic tasks (Nanda et al., 2023; Barak et al., 2022).

In the context of hierarchical generalization, Ahuja et al. (2024) used a Bayesian approach to analyze
the simplicity of hierarchical versus linear rules in modeling English syntax. They argued that
transformers favor the hierarchical rule because it is simpler than the linear rule. However, their
model fails to explain (1) why learning the hierarchical rule is delayed (i.e., after learning the linear
rule) and (2) why hierarchical generalization is inconsistent across runs. In this work, we offer a
different perspective, showing that a model’s simplicity bias towards either rule is driven by the
characteristics of the training data.
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Figure 7: Components of the original QF and TI training data. Left: QF training data contains
samples of two tasks types: question formation and declaration copying. We further break down
samples in the declaration copying task by branching type. We also breakdown center-embedded
sentences based on whether the main subject serves the subject or object in the embedded clause.
Right: TI training data also contains samples of two task types: tense inflection and past tense
copying. Similar to QF, we further breakdown tense inflection samples by branching types, and
center-embedded sentences (in the tense inflection samples) by subject/object type.

B TRAINING DATA SAMPLES

B.1 QUESTION FORMATION

When we mention “declarations," we are referring to the declaration copying task, and “questions"
refer to the question formation task. Here are two examples randomly taken from the training data:

• Declaration Example: our zebra doesn’t applaud the unicorn . decl our
zebra doesn’t applaud the unicorn .

• Question Example: some unicorns do move . quest do some unicorns
move ?

Both tasks begin with an input declarative sentence, followed by a task indicator token (decl or
quest), and end with the output. During training, the entire sequence is used in the causal language
modeling objective. The in-distribution validation set and the OOD generalization set only contain
question formation samples.

B.2 TENSE INFLECTION

• Past Example: our peacocks above our walruses amused your zebras .
PAST our peacocks above our walruses amused your zebras .

• Present Example: your unicorns that our xylophones comforted swam .
PRESENT your unicorns that our xylophones comfort swim .

The tense inflection task is indicate by the PRESENT token, and in Section 4.3, we only used tense
inflection samples during training. In Appendix E.1, we further explore the use of a secondary
copying task to achieve OOD generalization. Similar to the question formation training data, the
secondary task only requires repeating the given sentence, which is always in the past tense, and the
copying task is marked by the PRESENT token.

C FURTHER PARTITIONS ON CENTER-EMBEDDED SENTENCES

C.1 TWO SUBTYPES OF CENTER-EMBEDDED SENTENCES

In Section 4, we showed that center-embedded sentences drive hierarchical generalization in both the
QF and TI tasks. Here, we further partition center-embedded sentences based on the syntactic role of
the main subject (i.e., the subject of the main clause) within the modifying clause. Specifically, we
classify them into two types:

1. Subject-type: The main subject serves as the subject within the clause.
Example: The keys that unlock the cabinet are on the table.

2. Object-type: The main subject serves as the object within the clause.
Example: The keys that the bear uses are on the table.
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This partition is motivated by their distinct subject-verb dependency patterns. In subject-type
sentences, both the main verb (from the main clause) and the embedded verb (from the relative
clause) depend on the main subject. In contrast, object-type sentences exhibit a nested subject-verb
structure. Our goal is to investigate whether differences in subject-verb dependency patterns influence
the model’s preference for the hierarchical rule.
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Figure 8: Both subtypes of center-embedded sentences induces hierarchical generalization in
QF. We train models on datasets containing different ratios of object-type v.s. subject-type center-
embedded sentences. We then evaluate on models on two OOD generalization set, one containing
unambiguous object-type center-embedded sentences and the other unambiguous subject-type center-
embedded sentences.

C.2 QF TASK

We first investigate whether the two subtypes of center-embedded sentences differentially influence
the model’s preference for the hierarchical rule in the QF task. For all training data variants, we fix
50K question formation samples and 50K declaration copying samples, with the latter containing only
center-embedded sentences but varying the ratio between the two subtypes. To analyze generalization
behavior on a more granular level, we partition the generalization set (composed solely of center-
embedded sentences) into the two subtypes as well. Models are trained on 30 random seeds,
and results are shown in Figure 8. Regardless of the data mix, the model consistently favors the
hierarchical rule across both partitions of the generalization set. This suggests that, for question
formation, both subtypes of center-embedded sentences equally contribute to the model’s ability to
identify the main auxiliary.
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Figure 9: Object-type center-embedded sentences gives a stronger bias towards hierarchical
generalization in TI. We train models on datasets containing different ratios of object-type v.s.
subject-type center-embedded sentences. We then evaluate on models on three OOD generalization
set, one containing unambiguous object-type center-embedded sentences, one unambiguous subject-
type center-embedded sentences, and one unambiguous right-branching sentences.

C.3 TI TASK

We repeat a similar experiment for the TI task, fixing the total number of tense inflection samples
to 100K. As shown in Section 4.3, models exhibit the strongest hierarchical generalization when
trained on primarily center-embedded sentences. Therefore, in the following data variants, 99% of
the samples are center-embedded sentences, with the remaining 1% being right-branching sentences.
Within the center-embedded samples, we vary the ratio between the two subtypes. To evaluate
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generalization, we split the generalization set into three groups: the two subtypes of center-embedded
sentences and right-branching sentences. Models trained on 30 random seeds show that, across
all three generalization sets, accuracy is positively correlated with the proportion of object-type
center-embedded sentences (Figure 9). However, even when models are trained predominantly on
subject-type center-embedded sentences (teal violins in Figure 9), they still show a strong tendency
toward hierarchical generalization. Thus, while both subtypes drive hierarchical generalization in
TI, object-type center-embedded sentences have a stronger effect. Notably, the original TI training
data includes a higher proportion of right-branching sentences (shown in 7) and a higher ratio of
subject-type center-embedded sentences—both of which are suboptimal for inducing hierarchical
generalization.

D VARYING DATA RATIOS FOR QUESTION FORMATION
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Figure 10: Hierarchical generalization
in QF is sensitive to compositions of
declaration-copying samples.

Data composition details We construct variations of the
training data using the following procedure. Each new
dataset contains 50K questions (reused from the original
data) and 50K declarations, where we control the ratio
between center-embedded and right-branching sentences.
These datasets are used for the experiments in Section 5.2.
To generate additional declarations, we keep the distri-
bution of the unique syntax structures in original dataset.
Specifically, for each sentence in the original data, we
extract the syntax tree using the CGF rules and resample
words from the vocabulary to create new sentence samples.

Sensitivity to data compositions We use the five
datasets above to examine how different mix ratios affect a
model’s preference towards the hierarchical generalization.
The median generalization accuracy, along with error bars
representing the 35th and 65th percentiles, is shown in
Figure 10. First, note that there is a sharp performance drop between the blue bar and the right-most
green bar. This sharp transition indicates that mixing in as little as 1% of right-branching declarations
significantly reduces the model’s likelihood of generalizing hierarchically. Interestingly, when the
dataset is predominantly right-branching declarations, models consistently achieve 0% generalization
accuracy, indicating a strong preference for the linear rule across all training runs. However, note
that there is another sharp transition between the red bard and the left-most green bar. This transition
indicates that as soon as we remove the 1% of center-embedded sentences, the model fails to learn
either the linear rule or the hierarchical rule. As a result, the generalization accuracy is close to
random guess (∼ 25%). This transition is closely studied in Section 6.1, where we examine how data
diversity leads to rule commitment.

E ADDITIONAL RESULTS ON TENSE INFLECTION

E.1 A SECONDARY TASK IS NOT NECESSARY
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Figure 11: Past-copy task is not neces-
sary to induce hierarchical generaliza-
tion in TI.

In the original of TI training data (McCoy et al., 2020),
a secondary task is also included to mimic the question
formation training data. In this secondary task, instead of
transforming a sentence from the past tense to the present
tense, the model simply needs to repeat it. For concrete
examples, see Appendix B. Figure 7 (right) shows a break-
down of the two tasks in the original TI training data. In
experiments conducted in Section 3.2, we have eliminated
the used of this secondary task because center-embedded
sentences can be included in the tense inflection train-
ing samples without violating the ambiguity requirement.
Here, we use the training data originally proposed by Mc-
Coy et al. (2020) to confirm that the use of secondary task
is indeed not necessary. Specifically, we remove all the
past-tense-copying samples from the original training data
and train models on the tense-inflection task only. We
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evaluate the model’s generalization performance on two OOD set containing unambiguous right-
branching and unambiguous center-embedded sentences, shown in Figure 11. We can see that the
model’s OOD performances are the same with or without the secondary task.

E.2 TRAINING INSTABILITY AND RULE COMMITMENT FOR TENSE INFLECTION
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Figure 12: Total Variation v.s. final generalization accuracy for TI task. Similar to Figure 5,
we observe the same horseshoe shaped behavior between training stability and final generalization
accuracy on right-branching sentences for the TI task.

We repeat the same total variation analysis in Section 5 for the tense inflection task. We use the
data mixes from Section 4.3. Specifically, we include only tense inflection samples and vary the
ratio between linear-inducing (i.e., right-branching) and hierarchical-inducing (i.e., center-embedded)
sentences. In Section 4.3, we have already concluded that the hierarchical rule is always preferred for
center-embedded sentences regardless of data mixes. For this reason, we are interested in examining
the rule preference and training stability for unambiguous right-branching sentences. In Figure
12 we visualize the relationship between total variation and the final generalization accuracy on
unambiguous right-branching sentences. The qualitative behavior is similar to what we have observed
in QF (Section 5.2).
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Figure 13: Each training run either stabilizes in a simple OOD generalization rule or oscillates
in its OOD accuracy. The OOD generalization behaviors can be either stable or unstable when
trained on different seeds. We use total variation to quantify the instability within one training run.

In Figure 14, we visualize the training dynamics for 30 independent runs when trained on the original
QF data. Each run differs in both model initialization and data order. Notice that the training
dynamics for runs exhibit grokking behaviors: OOD generalization is delayed when compared
to training loss convergence and validation performance convergence. These runs share a similar
progression in training loss, validation accuracy, and generalization accuracy up until moment when
the training loss converges. Interestingly, after convergence on training loss, all runs reach 0% on
the generalization set, indicating that the model strictly prefers linear rules on OOD data. After
that, models start to achieve non-trivial performance in generalization accuracy. However, for many
runs the generalization accuracy does not increase monotonically. Instead, we observe massive
swings in generalization accuracy during this training period as well as large inconsistency across
different seeds. Overall, training is always stable for ID data while the performance for OOD data is
inconsistent across seeds. We visualize runs with different of total variation values in Figure 13.
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Figure 14: Training Dynamics on original question formation data. Training loss and in-
distribution validation accuracy is stable during training and consistent across random seeds. In
contrast, the model’s performance on OOD data is both unstable during training and inconsistent
across seeds. The instability and inconsistency is most prominent during grokking (i.e., when training
loss has converged).

G DATA DIVERSITY AND MEMORIZATION PATTERNS
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Figure 15: OOD generalization v.s. syntax similarity to training data. At low data diversity,
model memorizes syntax patterns and applies the hierarchical rule only syntax structures similar
to ones in the training data. With higher data diversity, model extrapolates rules and can apply the
hierarchical rule even to unseen syntax structures that are dissimilar to training data.

We investigate model behavior when trained on data with limited diversity. By analyzing a model’s
generalization accuracy across different syntactic types, we aim to distinguish patterns indicative of
either memorization or generalization.

Measuring data similarity Building on the diversity measure from Section 6.1, we now use Tree-
Edit Distance (TED) as a measure of sentence similarity. As before, we first construct syntax trees
using CFG rules, then calculate TED using the Zhang-Shasha Tree-Edit Distance algorithm (Zhang &
Shasha, 1989). We define TED=0 for sentences that share the same syntax structure but differ only in
vocabulary. This similarity measure allows us to quantify, for each sample in the OOD generalization
set, the closest matching sentence type in the training data. In the memorization regime, where the
model encounters only a few syntax types, we suspect it cannot extrapolate rules to syntactically
distinct OOD sentences. In contrast, with a more diverse syntax exposure, rule extrapolation may
enable the model to apply rules even to OOD sentence types.

Experiment To verify our intuition about memorization and generalization, we train models on
two variations of the QF data. In the first variation, the declaration-copying task has data diversity set
to 1, meaning only one syntax type appears, and we specifically choose one with center embedding.
In the second variation, the declaration-copying task has diversity set to 5, with all 5 types containing
center embeddings. For both datasets, the question-formation task remains unchanged, consisting
solely of right-branching sentences. For the diversity=1 dataset, we calculate TED for each unique
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syntax type in the OOD set against the single syntax type in the declaration-copying task. For the
diversity=5 dataset, we compute TED between each OOD sample and the five syntax types in the
declaration-copying task, taking the minimum. This TED score provides a measure of similarity
between the OOD samples and those encountered during training. Our goal is to determine, based on
training with these datasets, which OOD syntax types the model applies the hierarchical rule to.

Result In Figure 15, we visualize the final generalization accuracy for each OOD syntax type
against its TED relative to the training data. When trained on low-diversity data (Figure 15, left),
generalization accuracy is negatively correlated with TED. For syntax types seen in the declaration-
copying task (TED=0) and those similar to it, the model applies the hierarchical rule. However, for
syntax types with high TED, the model’s behavior is random (25%), indicating failure to follow
any rule. As data diversity increases slightly (Figure 15, right), generalization accuracy no longer
correlates with TED, suggesting that once the model begins to extrapolate the hierarchical rule, it can
apply this rule to a wider range of OOD syntax types.
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