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Abstract

Recent advances in multi-agent reinforcement learning (MARL) allow agents to1

coordinate their behaviors in complex environments. However, common MARL2

algorithms still suffer from scalability and sparse reward issues. One promis-3

ing approach to resolve them is automated curriculum learning (ACL), where a4

student (curriculum learner) train on tasks of increasing difficulty controlled by5

a teacher (curriculum generator). Unfortunately, in spite of its success, ACL’s6

applicability is restricted due to: (1) lack of a general student framework to deal7

with the varying number of agents across tasks and the sparse reward problem,8

and (2) the non-stationarity in the teacher’s task due to the ever-changing student9

strategies. As a remedy for ACL, we introduce a novel automatic curriculum10

learning framework, Curriculum Oriented Skills and Tactics (COST), adapting11

curriculum learning to multi-agent coordination. To be specific, we endow the12

student with population-invariant communication and a hierarchical skill set. Thus,13

the student can learn cooperation and behavior skills from distinct tasks with14

a varying number of agents. In addition, we model the teacher as a contex-15

tual bandit conditioned by student policies. As a result, a team of agents can16

change its size while retaining previously acquired skills. We also analyze the17

inherent non-stationarity of this multi-agent automatic curriculum teaching prob-18

lem, and provide a corresponding regret bound. Empirical results show that19

our method improves scalability, sample efficiency, and generalization in MPE20

and Google Research Football. The source code and the video can be found at21

https://sites.google.com/view/neurips2022-cost/.22

1 Introduction23

Multi-agent Reinforcement Learning (MARL) has long been a go-to tool in complex robotic and24

strategic domains [1, 2]. However, learning effective policies with sparse reward from scratch25

for large-scale multi-agent systems remains challenging. One of the challenges is that the joint26

observation-action space grows exponentially with varying numbers of agents. Meanwhile, the sparse27

reward signal requires a large number of training trajectories. Hence, applying existing MARL28

algorithms directly to complex environments with a large number of agents is not effective. In fact,29

they may produce agents that do not collaborate with each other even when it is of significant benefit30

[3, 4].31

There are several lines of work related to the large-scale MARL problem with sparse reward, including:32

reward shaping [5], curriculum learning [6], and learning from demonstrations [7]. Among these33

approaches, the curriculum learning paradigm, in which the difficulty of experienced tasks and the34

population of training agents progressively grow, shows particular promise. In automatic curriculum35

learning (ACL), a teacher (curriculum generator) learns to adjust the complexity and sequencing of36

tasks faced by a student (curriculum learner). Several works have even proposed multi-agent ACL37

algorithms, based on approximate or heuristic approaches to teaching, such as DyMA-CL [8], EPC38

Submitted to 36th Conference on Neural Information Processing Systems (NeurIPS 2022). Do not distribute.

https://sites.google.com/view/neurips2022-cost/


[9], and VACL [6]. However, DyMA-CL and EPC rely on a framework of an off-policy student with39

replay buffer, and ignore the forgetting problem that arises when the agent population size grows.40

In turn, VACL relies on the strong assumption that the value of the learned policy does not change41

when agents switch to a different task. Moreover, the teacher in these approaches is still facing an42

unmitigated non-stationarity problem due to the ever-changing student strategies. In addition, if we43

somewhat expand the ACL paradigm and presume that the teacher may have another purpose for the44

sequence of tasks performed by the student, another class of larger-scale MARL solutions should be45

mentioned. Namely, hierarchical MARL, which learns temporal abstraction with more dense rewards,46

including: skill discovery [10], option as response [11], role-based MARL [12], and two levels of47

abstraction [13]. Alas, hierarchical MARL mostly focuses on one specific task with a fixed number48

of agents and does not consider the transfer ability of learned complementary skills. Interestingly, as49

we show in this paper, a smart merger of ACL and hierarchical MARL principles can overcome their50

combined weaknesses and more.51

Specifically, in this paper, we introduce a novel automatic curriculum learning algorithm, Curriculum52

Oriented Skills and Tactics (COST), which learns cooperative behaviors from scratch. The core53

idea of COST is to encourage the student to learn skills from tasks with different parameters and54

different numbers of agents. Motivation from the real world is team sports, where players often train55

their skills by gradually increasing the difficulty of tasks and the number of coordinating players.56

In particular, we implement COST with three key components. First, to handle the varying number57

of agents across tasks, motivated by the transformer [14], which can process sentences of varying58

lengths, we implement population-invariant communication by treating each agent’s message as a59

word. Thus, a self-attention communication channel is used to support an arbitrary number of agents60

sharing their messages. Second, to learn transferable skills in the sparse reward setting, we utilize the61

skill framework in the student. Agents communicate on the high level about a set of shared low-level62

policies. Third, to address the non-stationarity arising from ever-changing student strategies, we63

model the teacher as a contextual bandit, where we utilize an RNN-based [15] imitation model to64

represent student policies and use this to generate the bandit’s context. Empirical results show that65

our method achieves state-of-the-art performance in several tasks in the multi-particle environment66

(MPE) [16] and the challenging 5vs5 competition in Google Research Football [17].67

2 Further Related Work68

(Automatic) Curriculum Learning in (MA)RL. Curriculum learning is a training strategy inspired69

by the human learning process, mimicking how humans learn new concepts in an orderly manner,70

usually based on the difficulty level of the problems [18]. The selection of tasks is formulated as a71

Curriculum Markov Decision Process (CMDP) [19]. Automatic Curriculum Learning mechanisms72

aim to learn a task selection function based on information about past interactions, such as ADR73

[20, 21], ALP-GMM [22], SPCL [23] and GoalGAN [24]. Inspired by the mechanism of biodiversity74

in nature, a series of MARL curriculum learning frameworks have recently been proposed with75

remarkable empirical success. These include open-ended evolution [25–27], population-based76

training [28, 29], and training with emergent curriculum [18, 30, 31]. In general, these frameworks77

can be unified under the idea of an automatic curriculum that automatically generates an endless78

procession of better performing agents by exerting selection pressure among many self-optimizing79

agents.80

Hierarchical MARL and Communication. Hierarchical reinforcement learning (HRL) has been81

extensively studied to address the sparse reward problem and to facilitate transfer learning. Single-82

agent HRL focuses on learning the temporal decomposition of tasks, either by learning subgoals83

[32–37] or by discovering reusable skills [38–41]. Recent works about hierarchical MARL have84

been discussed in the Introduction. In multi-agent settings, communication has demonstrated success85

in multi-agent cooperation [42–48]. However, existing approaches that extend HRL to multi-agent86

systems or utilize communication are limited to a fixed number of agents and are hard to transfer87

with different number of agents.88

Multi-armed Bandit. Multi-armed bandits (MABs) are a simple but very powerful framework that89

repeatedly makes decisions under uncertainty. In an MAB, a learner performs a sequence of actions.90

After every action, the learner immediately observes the reward corresponding to its action. Given a91

set of K actions and a time horizon T , the objective is to maximize its total reward over T rounds.92

The regret is used to measure the gap between the cumulative reward of an MAB algorithm and the93
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best-arm benchmark. A related work is the Exp3 algorithm [49], which is proposed to increase the94

probability of pulling good arms and achieves a regret of O(
√
KT log(K)) under a time-varying95

reward distribution. Another related work is the contextual bandit problem [50], where the learner96

makes decisions based on prior information. In this work, the teacher is modeled as a contexual97

bandit. We learn the dynamic context, leverage the Lipschitz assumption with respect to the context,98

and provide a regret bound of the proposed method.99

Google Research Football [17]. There are some challenges in the GRF (see Fig. 2). (1) Large-scale100

problem: In the GRF, for cooperative players, the joint action space is large; therefore, it is difficult to101

build a single agent to control all players. Moreover, the opponents are not fixed due to a stochastic102

environment and a difficulty configuration, and the agents should be adapted to various opponents. (2)103

Sparse rewards: The goal of the football game is to maximize the scores, which can only be obtained104

after a long time by iteration. Therefore, it is almost impossible to receive a positive reward when105

starting with random agents. Recent works attempt to tackle multi-agent scenarios in GRF by using106

a containerized learning framework [51], learning from demonstration [7], individuality [52], and107

diversity [53]. However, they mainly focus on single-agent control, or train relatively easy academy108

tasks in GRF, or use offline expert data to train agents.109

3 Problem Formulation: MARL with Curriculum110

Dec-POMDP. An MARL problem is formulated as a decentralised partially observable Markov111

decision process (Dec-POMDP) [54], which is described as a tuple ⟨n,S,A, P,R,O,Ω, γ⟩, where n112

represents the number of agents. S represents the space of global states. A = {Ai}i=1,··· ,n denotes113

the space of actions of all agents. O = {Oi}i=1,··· ,n denotes the space of observations of all agents.114

P : S ×A → S denotes the state transition probability function. All agents share the same reward115

as a function of the states and actions of the agents R : S ×A → R. Each agent i receives a private116

observation oi ∈ Oi according to the observation function Ω(s, i) : S → Oi. γ ∈ [0, 1] denotes the117

discount factor.118

Curriculum-enhanced Dec-POMDP. A Dec-POMDP is defined by a tuple ⟨Φ,M⟩ where Φ is the119

task space. Given a task ϕ, a Dec-POMDP M(ϕ) is presented as
{
nϕ,Sϕ,Aϕ, Pϕ, rϕ, Oϕ,Ωϕ, γϕ

}
.120

The superscript ϕ denotes that the Dec-POMDP elements are determined by the task ϕ. Note that121

task ϕ can be a few parameters of the environment or task IDs in a finite task space. In a curriculum-122

enhanced Dec-POMDP, the objective is to improve the student’s performance on the target tasks by123

the teacher’s giving the sequence of training tasks.124

Let τ denote a trajectory whose unconditional distribution Prπ,ϕµ (τ) under a policy π and a task ϕ125

with initial state distribution µ(s0) is Prπ,ϕµ (τ) = µ (s0)
∑∞
t=0 π (at | st)Pϕ (st+1 | st, at). We use126

p(ϕ) to represent the distribution of target tasks and q(ϕ) to represent the distribution of training tasks127

at each task sampling step. Considering the joint agents’ policies πθ(a|s) and qψ(ϕ) parameterized128

by θ and ψ, respectively. The overall objective to maximize in a curriculum-enhanced Dec-POMDP129

is:130

J(θ, ψ) = Eϕ∼p(ϕ),τ∼Prπµ

[
Rϕ(τ)

]
= Eϕ∼qψ(ϕ)

[
p(ϕ)

qψ(ϕ)
V (ϕ, πθ)

]
(1)

whereRϕ(τ) =
∑
t γ

trϕ (st, at; s0) and V (ϕ, πθ) represent the value function of πθ in Dec-POMDP131

M(ϕ). However, when optimizing qψ(ϕ), we cannot get the partial derivative ∇ψJ(θ, ψ) =132

∇ψ

∑
τ

1
qψ(ϕ)

Rϕ(τ) Prπ,ϕµ (τ)1 since the reward function and the transition probability function133

w.r.t number of agents are non-parametric, non-differentiable, and discontinuous in most MARL134

scenarios.135

Thus, we use the non-differentiable method, i.e., multi-armed bandit algorithms to optimize qψ(ϕ),136

and optimize the overall objective by learning the distribution of training tasks (the teacher) and an137

RL algorithm (the student) in alternating periods. However, there are three key challenges in solving138

this problem: (1) There is a lack of a general student framework to deal with the varying number139

of agents across tasks and the sparse reward problem. (2) The teacher is facing a non-stationarity140

problem due to the ever-changing student’s strategies. (3) The forgetting and relearning problem.141

1p(ϕ) is not in the partial derivative since it is a fixed distribution.
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Figure 1: The overall framework of COST. COST is composed of three parts: configurable environ-
ments, a teacher, and a student. Left. The teacher is modeled as a contextual multi-armed bandit. At
each teacher timestep, the teacher chooses a training task from the distribution of bandit actions. Mid.
The student is endowed with population-invariant communication and a skill framework, and trained
with MARL algorithms on the training task. The student returns to the teacher not only the hidden
state of RNN imitation model as contexts but also the average discounted cumulative rewards on the
testing task. Right. The student learns hierarchical policies. The population-invariant communication
is on the high level, and implemented with a self-attention communication channel to handle the
messages from varying number of agents. The agents in the student share the same low-level policy.

Some tasks can be the prerequisites of other tasks and some tasks can be inter-independent and142

parallel. For tackling these challenges, in the following section, we propose a novel multi-agent143

automatic curriculum learning framework, Curriculum Oriented Skills and Tactics (COST).144

4 Curriculum Oriented Skills and Tactics145

In this section, we present our automatic curriculum learning algorithm named Curriculum Oriented146

Skills and Tactics (COST) as shown in Fig. 1. First, we present the student with a skill and population-147

invariant communication framework to tackle the varying number of agents and the sparse reward148

problem. Then, to deal with the non-stationarity as well as unknown prior knowledge, we propose a149

contextual multi-armed bandit algorithm as the teacher.150

4.1 Student with Population-invariant Communication and Skills151

In the student, we treat many agents as a whole and apply the MARL algorithms to train the152

student. To address the varying number of agents, we propose a population-invariant communication153

framework where agents can communicate via a self-attention channel. Moreover, to deal with the154

sparse reward problem, we introduce a skill framework in which agents can learn the skills (high-level155

actions) that can be transferred among different tasks.156

Population-invariant Communication. Instead of learning independent policies for agents in the157

student, we introduce communication to enable the population-invariant property and learn tactics158

among agents. Motivated by the fact that the transformer [14] in natural language processing can159

handle varying lengths of sentences, we use the self-attention mechanism in our communication. As160

shown in Fig. 1 Right, each agent j receives an observation oj . In each round of communication, each161

agent j sends a message vector mj = f (oj) to a self-attention channel, where f is an observation162

encoder function.163

The channel aggregates all messages and sends the new message vector m̃j through the self-attention164

mechanism. Concretely, given the input of the channel M = [m1,m2, · · · ,mn] ∈ Rn×dm and165

the trainable weight of the channel WQ,WK ,WV ∈ Rdm×dm , we can obtain three different166

representations Q = MWQ,K = MWK ,V = MWV . Then, the output messages are167

M̃ = Attention(Q,K,V) = softmax

(
QKT

√
dm

)
V = [m̃1, m̃2, · · · , m̃n] (2)

where dm is the dimension of the messages. Since the dimensions of the trainable weight are irrelevant168

to the number of agents, the student can take advantage of the population-invariant property to learn169

tactics.170
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Skill Framework in Student. As shown in the dotted box in Fig. 1 Right, after receiving the new171

messages m̃j from the channel, each agent takes the high-level action (skill) ah,j = πh,j(oj , m̃j) to172

execute the low-level policy aj = πlow(oj , ah,j). In this work, we generalize the high-level action173

(skill) ah,j to a continuous embedding space, so that the skill can be either a latent continuous vector174

as in DIAYN [55], or a categorical distribution for sampling discrete options [56].175

We implement the high- and low-level policies in the student with PPO [57]. The high-level policy176

for each agent is learned independently, whereas the low-level policies share parameters, since the177

most basic action pattern should be the same within different agents. The low-level agent is rewarded178

by the environment. The high-level policy takes actions given a fixed interval during training. Within179

this interval, a cumulative low-level reward is used as a high-level reward. When the categorical180

distribution is used to enable an option-style skill, we would sample an “option" from the categorical181

distribution and feed the corresponding one-hot embedding to the low-level policy.182

4.2 Teacher: Contextual Bandit in a Non-stationary Environment183

The teacher is expected to guide the student to learn the skills and tactics by offering and ordering184

different tasks. However, since the student learns across different tasks, the teacher is facing a185

non-stationarity problem due to the ever-changing student’s strategies. That is, in different stages of186

student learning, the teacher will observe different student’s performances when giving the same task187

to the student, thus leading to a time-varying reward distribution of the teacher.188

In addition, there exists the forgetting and relearning problem of the student, where the student forgets189

the learned policy. To avoid this problem, the teacher should offer some trained tasks to the student.190

It can be seen as the exploitation and exploration problem of the teacher. The teacher is encouraged191

to give the training tasks that benefit the student’s performance on the target tasks; however, there is192

still a need for sufficient exploration on various training tasks.193

Fortunately, we notice that the non-stationarity stems from the student, which can be mitigated with194

a contextual bandit which embeds the student policy into the context. As shown in Fig. 1 Left, the195

teacher takes the student’s policy representation as the context and chooses a task from the distribution196

of training tasks. Specifically, we extend the Exp3 algorithm [49] with context by utilizing an online197

cluster algorithm BIRCH [58] in Alg.1. The context x is the student’s policy representation, the198

teacher’s action is a certain task ϕ, and the teacher’s reward is the return of the student in the target199

tasks. In steps 1-4, the teacher samples a task for the student’s training, and in steps 6-7, the teacher200

would update the parameters based on the evaluation reward of the student.201

Algorithm 1 Teacher Sampling and Training
Input: Context x, the number of Clusters Nc, Nc instances of Exp3 with task distribution
w(ϕk, c) for k = 1, . . . ,K and for c = 1, . . . , Nc, learning rate α, a buffer maintaining the his-
torical contexts
Output: M(ϕ) =

{
nϕ,Sϕ,Aϕ, Pϕ, rϕ, Oϕ,Ωϕ, γϕ

}
, the teacher bandit parameters

Sampling
1. Get the the context x, and save it to the buffer
2. Run the online cluster algorithm and get the index of the cluster center c(x)
3. Let the active Exp3 instance be the instance with index c(x)
4. Set the probability p(ϕk, c(x)) =

(1−α)w(ϕk,c(x))∑K
j=1 w(ϕk,c(x))

+ α
K for each task ϕk

5. Sample a new task according to the distribution of pϕk,c
Training
6. Get the return (discounted cumulative rewards) from student testing r
7. Update the active Exp3 instance by setting w(ϕk, c(x)) = w(ϕk, c(x))e

αr/K

4.2.1 Context Representation202

We learn the representation of the student policy as a context. A straightforward representation is to203

directly use the student parameters θ as the context. However, the number of parameters is large and204

ever-changing if we change the student’s architecture. Thus, we turn to an alternative method.205
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A principle to learn a good representation of a policy is predictive representation, that is, the206

representation should be accurate to predict policy actions given states. According to the principle, we207

utilize an imitation function through supervised learning. Supervised learning does not require direct208

access to reward signals, making it an attractive task for reward-agnostic representation learning.209

Intuitively, the imitation function attempts to mimic low-level policy based on historical behaviors.210

In practice, we use an RNN-based imitation function fim : S ×A → [0, 1]. Since recurrent neural211

networks are theoretically Turing complete [59], its internal states can be used as the representation212

of the student’s policy. Regarding the training of this imitation function, we use the negative cross213

entropy objective E[log fim (s, a)].214

4.2.2 Regret Analysis215

In this subsection, we show the regret bound of the proposed teacher algorithm E[R(T )] =216

O
(
T 2/3(LK log T )1/3

)
, where T is the number of total rounds, L is the Lipschitz constant, and K217

is the number of arms (the number of the teacher’s actions). Since the teacher’s reward is the return218

of the student in the target tasks, the regret bound shows the optimality of the proposed method.219

First, we introduce the Lipschitz assumption about the generalization ability of the task space.220

Assumption 4.1 (Lipschitz continuity w.r.t the context). Without loss of generality, the contexts are221

mapped into the [0, 1] interval, so that the expected rewards for the teacher are Lipschitz with respect222

to the context.223

|r(ϕ | x)− r (ϕ | x′)| ≤ L · |x− x′|
for any arm ϕ ∈ Φ and any pair of contexts x, x′ ∈ X

(3)

where L is the Lipschitz constant, and X is the context space.224

This assumption suggests that, for any policy that is trained on a set of tasks, the rate of performance225

change is not faster than the rate of policy change. It is a realistic assumption since we cannot expect226

the student to achieve a dramatic improvement on a given task when the student is represented by a227

new context via a few training steps.228

Then, we borrow a contextual bandit algorithm for a small number of contexts [49] (see Appendix229

Alg. 2) and the lemma 4.2, as a stepping stone for the proof of Theorem 4.3.230

Lemma 4.2. Alg. 2 has regret E[R(T )] = O(
√
TK|X | logK).231

Lemma 4.2 introduces a square root dependence on |X | if running a separate copy of Exp3 for each232

context [49]. It motivates us to handle large context space by discretization.233

Theorem 4.3. Consider the Lipschitz contextual bandit problem with contexts in [0, 1]. The Alg. 1234

yields regret E[R(T )] = O
(
T 2/3(LK lnT )1/3

)
.235

Proof. See Appendix B for the proof.236

In practice, the contextual space is high-dimensional instead of in [0, 1], and in the proof a uniform237

mesh is used to discretize the context space. Since we cannot have such a uniform mesh, without loss238

of generality, we use the BIRCH streaming data cluster algorithm [58] to generate and discretize the239

context space. At the end of the training, the cluster can be seen as an approximation of the uniform240

mesh.241

5 Experiments242

We consider several tasks in two environments, Simple-Spread and Push-Ball in the Multi-agent243

Particle-world Environment (MPE) [16], and the challenging 5vs5 task of GRF [17], to further244

demonstrate the performance of our approach.245

We aim to answer the following three research questions. Q1: Is curriculum learning needed in246

the complex large-scale MARL problem? (See Sec. 5.2) Q2: Can our COST outperform previous247

curriculum-based MARL methods? If so, which components in COST contributes the most to248

performance gains? (See Sec. 5.3) Q3: Can COST learn a good curriculum for the student? (See249

Sec. 5.4)250
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Figure 2: The environments. (a): Multi-particle Environment. (b): Google Reaserach Football

5.1 Environments, Baselines and Metric251

Table 1: Baseline algorithms.

Categories Methods

MARL (Q1) QMIX [60]
IPPO [61]

Curriculum-based (Q2) IPPO with uniform task sampling
VACL [6]

Ablation Study (Q3) COST with uniform task sampling
COST without HRL

Environments. In the GRF 5vs5252

scenario, we need to control 4253

agents (except the goalkeeper) to254

compete with the opponent built-255

in AI. Each agent would observe256

a compact encoding, which con-257

sists of a 115-dimensional vector258

summarizing many aspects of the259

game, such as player coordinates,260

ball possession and direction, ac-261

tive player, and game mode. The262

action set available to an individ-263

ual agent consists of 19 discrete264

actions such as idle, movement, passing, shooting, dribbling, or sliding. The GRF provides two types265

of reward: scoring and checkpoints, to encourage the agent to move the ball forward and have a266

successful shot.267

In MPE, we investigate Simple-Spread and Push-Ball (see Fig. 2a). In Simple-Spread, there268

are n agents that need to cover all n landmarks. Agents are penalized for collisions and only receive269

a positive reward when all the landmarks are covered. In Push-Ball, there are n agents, n balls, and270

n landmarks. The agents need to push the balls to cover every landmark. A success reward is given271

after all the landmarks have been covered.272

Baselines. We evaluate the following approaches as baseline in Table 1:273

We compare MARL algorithms to justify curriculum learning in the complex large-scale MARL274

problem. Also, we modify VACL by removing the centralized critic for a fair comparison of the MPE.275

Due to the difficulty of the GRF, we include a shooting reward to encourage the student to shoot.276

Metric. Even if we use the reward to optimize various algorithms, the mean episode reward in such277

environments cannot show the performance of the agents. Therefore, for GRF scenarios, we plot the278

win rate and the average goal difference, which is the number of goals scored by the MARL agents279

minus the number of goals scored by the other team.280

The experiments are carried out on 30 nodes, one of which has a 128-core CPU and 4 A100 GPUs.281

Each experiment trial is repeated over 5 seeds and runs for 1-2 days.282

5.2 The Necessity of Curriculum Learning283

First, we describe experiments using MPE. In contrast to the fully observable setting and the284

centralized critic in VACL, we consider individual PPO in partially observable environments with285

default rewards. We randomly pick a starting state, and the episode ends after a fixed number of286

maximum steps. To be specific, the task space consists of n agents, where n ∈ {2, 4, 8, 16}. We set287

the maximum allowed steps to 25. All evaluations are performed on the target task, where n = 16.288

IPPO is trained and evaluated directly on the target task. In Fig. 3, we can see that IPPO performs289

nearly VACL. COST achieves a higher coverage rate than the baseline methods, but the improvement290
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Figure 5: The evaluation performance of various methods on 5vs5 football competition.

is not significant. Furthermore, we experimentally investigate the probability variation of different291

population sizes in Fig. 4. We observe that the curriculum afforded by COST is approaching the292

target task. The results illustrate that in a simple environment where the student can directly learn to293

complete the task, there is no need to apply curriculum learning.294

Then we show the performance comparison with the baselines in GRF. We also run CDS [53] and295

CMARL [51], however, we did not include their performances, since the goal difference reported296

in CMARL [51] is relatively low compared to our method. In Fig. 6, we can see that without the297

curriculum learning scheme, QMix and IPPO cannot perform well in the 5vs5 scenario. However,298

IPPO is slightly better than QMix in the scope of MARL algorithms in this scenario. In Fig. 5b,299

we omit the lines of QMix since the mean score is low, affecting the presentation of the figure. The300

reason could be that QMix is an off-policy MARL algorithm, which would rely heavily on the replay301

buffer. However, in such sparse reward scenarios, the replay buffer has much less efficient samples for302

QMix to learn. For example, the replay buffer would contain tons of zero-score samples, leading to a303

non-promising performance. Meanwhile, IPPO with a shared actor and critic, an on-policy algorithm,304

would utilize the samples more efficiently. Therefore, curriculum learning is a promising solution to305

the complex large-scale MARL problem.306

During our experiments, we found that IPPO or shared parameter PPO can easily achieve good307

performance in most academic scenarios in GRF. However, 5vs5 is an obstacle for agents to handle308

more complex scenarios. Due to the limitation of computational resources, we tested COST in the309

11vs11 scenario. The result can be seen in the Appendix C.310

5.3 Performance and Ablation Study311

In the experiments on MPE, In both environments, COST performs better than VACL. Instead of312

training with continuous relaxation of the categorical distribution of population size in VACL, our313

bandit teacher achieves a higher success rate at test time, since the population size is a discrete314

variable in nature. Also, in Fig. 4, we observe that the curriculum provided by COST is effective in315

exploring the task space as agents become increasingly competent.316

In the experiments on GRF, we do not include VACL in our baselines in the GRF, since the imple-317

mentation in the source code of VACL is heavily based on prior knowledge of specific scenarios,318
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such as the threshold to divide the learning process. We can see that COST has higher win rate319

and goal difference than IPPO with uniform task sampling in the 5vs5 football competition. The320

experiments on MPE and GRF show that when the teacher is rewarded by the student’s performance,321

the bandit-based teacher can exploit the student learning stage and give the suitable training tasks to322

the student.323

For ablation study, we replace our contextual multi-armed bandit teacher with uniform task sampling324

and remove the hierarchical part in the student framework. As shown in Figs. 5a, 5b, we can clearly325

see that COST can achieve a higher win rate and a greater score difference than COST with uniform326

and COST w/o. HRL. Also, COST with uniform task sampling outperforms IPPO with uniform327

task sampling. The difference between these two methods is only the introduction of HRL. It shows328

the contribution of HRL in the 5vs5 football competition. When removing HRL and contextual329

multi-armed bandit, the performance degradation w.r.t. COST are similar. It shows that HRL and330

the contextual multi-armed bandit seem to contribute equally. This can again justify the need for a331

curriculum learning scheme. However, we can see that COST w. uniform has a larger variance in332

performance than COST w/o. HRL. It means that uniform sampling might introduce more undesired333

tasks for student training.334

5.4 Visualization of Learned Curriculum335

We visualize the distribution of task sampling of COST during training based on a selected trial as336

shown in Fig. 6a. An interesting observation is that the task probability seems nearly uniform. We337

interpret this into an anti-forgetting mechanism. We can see that at the beginning of training, the task338

probability seems to be near-uniform, since the teacher should explore the task space and try to keep339

track of the student’s learning status. During training, the probabilities vary over time steps. For exam-340

ple, at about 80-100 million timesteps, we can see a sudden drop in academy_empty_goal_close341

and academy_3_vs_1_with_keeper, since the student almost handles the skills learned in such342

scenarios. However, when training is continued, we can still observe that agents are trained on these343

tasks more frequently.344

We also visualize the distribution of contexts in Fig. 6b using t-SNE [62]. The contexts are collected345

and stored in a buffer. We divide the contexts into four classes according to the index. We can clearly346

see a shift in student policy representation from the beginning of training to the end.347

6 Conclusion348

In this paper, to address the scalability and sparse reward issue in the current multi-agent system, we349

introduce a novel ACL algorithm, Curriculum Oriented Skills and Tactics (COST), to learn complex350

behaviors from scratch. Specifically, to handle the varying number of agents, we incorporate a351

population-invariant multi-agent communication framework and exploit a hierarchical scheme for352

each agent to learn skills to deal with sparse rewards. Moreover, to mitigate the non-stationarity, we353

model the teacher as a contextual bandit, where the context is represented by the student’s policy354

representation. Empirical results show that our method achieves state-of-the-art performance on355

several tasks in the multi-particle environment and the challenging 5vs5 competition in GRF.356
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A Algorithm563

Algorithm 2 A contextual bandit algorithm for a small number of contexts
Initialization: For each context x, create an instance Exp3x of algorithm Exp3
for each round do
1. Invoke algorithm Exp3x with x = xt
2. Play the action chosen by Exp3x
3. Return reward rt to Exp3x

B Proof of Theorem 4.3564

Theorem 4.3. Consider the Lipschitz contextual bandit problem with contexts in [0, 1]. The Alg. 1565

yields regret E[R(T )] = O
(
T 2/3(LK lnT )1/3

)
.566

Proof. Let Sm be the ϵ-uniform mesh on [0, 1], that is, the set of all points in [0, 1] that are integer567

multiples of ϵ. We take ϵ = 1/(d− 1) where the integer d is the number of points in Sm, which will568

be adjusted later in the analysis.569

We apply Alg. 2 to the context space Sm. Let fSm(x) be a mapping from context x to the closest570

point in Sm:571

fSm(x) = min

(
argmin
x′∈Sm

|x− x′|
)

In each round t, we replace the context xt with fSm (xt) and call Exp3S . The regret bound572

will have two components: the regret bound for Exp3S and (a suitable notion of) the discretiza-573

tion error. Formally, let us define the “discretized best response" π∗
Sm

: X → Φ: π∗
Sm

(x) =574

π∗ (fSm(x)) for each context x ∈ X .575

We define the total reward of an algorithm Alg is Reward(Alg) =
∑T
t=1 rt. Then the regret of Exp3S576

and the discretization error are defined as:577

RS(T ) = Reward (π∗
S)− Reward (Exp3S)

DE(S) = Reward (π∗)− Reward (π∗
S) .

It follows that regret is the sum R(T ) = RS(T ) + DE(S). We have E [RS(T )] = O(
√
TK logK)578

from Lemma 4.2, so it remains to upper bound the discretization error and adjust the discretization579

step ϵ.580

For each round t and the respective context x = xt, r (π∗
S(x) | fS(x)) ≥ r (π∗(x) | fS(x)) ≥581

r (π∗(x) | x) − ϵL. The first inequality is determined by the optimality of π∗
S and the second is582

determined by Lipschitzness. Summing this up over all rounds t, we obtain E [Reward (π∗
S)] ≥583

Reward [π∗]− ϵLT .584

Thus, the regret is that585

E[R(T )] ≤ ϵLT +O

(√
1

ϵ
TK log T

)
= O

(
T 2/3(LK log T )1/3

)
(4)

For the last inequality, we choose ϵ = (K log T
TL2 )1/3.586

C 11vs11 Full Game on GRF587

We further conduct experiments on the 11vs11 scenario of GRF. As shown in Fig. 7, COST achieves588

about 50% win rate after training with 200 million timesteps.589
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Figure 7: The performance of COST on the 11v11 scenario.

D Implementation Details590

Here we describe the COST framework. We use the open-sourced Ray RLlib implementation591

of Proximal Policy Optimization (PPO), which scales out using multiple workers for experience592

collection. This allows us to use a large amount of rollouts from parallel workers during training to593

ameliorate high variance and aid exploration. We do multiple rollouts in parallel with distributed594

workers and use parameter sharing for each agent. The trainer broadcasts new weights to the workers595

after their synchronous sampling. We now turn our attention to environment-specific settings.596

D.1 Google Research Football597

We set five tasks for training the 5vs5 scenario. They are academy_empty_goal_close,598

academy_pass_and_shoot_with_keeper, 3_vs_3, academy_3_vs_1_with_keeper, 5_vs_5.599

In all scenarios, we do not control our team’s goalkeeper.600

In the academy_empty_goal_close, one agent need to move forward and shoot with an empty601

goal. In academy_pass_and_shoot_with_keeper and 3_vs_3, two agents are controlled to play602

against a goalkeeper and 3 players respectively. In academy_3_vs_1_with_keeper, three agents603

are controlled to play against a center-back and a goalkeeper. In 5_vs_5, 4 agents are controlled to604

play against 5 players. Without loss of generality, we initialize all player with fixed positions and605

roles as center midfielders.606

We use both MLP and self-attention mechanism for the high-level policy, and use MLP for the607

low-level policy. For high-level policy, the input is first projected to an embedding using 2 hidden608

layers with 256 units each and ReLU activation, which is then fed into multi-head self-attention609

(8 heads, 64 units each). The output is then projected to the actions and values using another fully610

connected layer with 256 units. For low-level policy, we use MLP with 2 hidden layers with 256611

units each, i.e., the default configuration of policy network in RLlib.612

Table 2: COST hyper-parameters used in GRF.
Name Value

Discount rate 0.99
GAE parameter 1.0
KL coefficient 0.2
Rollout fragment length 1000
Training batch size 100000
SGD minibatch size 10000
# of SGD iterations 60
Learning rate 1e-4
Entropy coefficient 0.0
Clip parameter 0.3
Value function clip parameter 10.0
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D.2 MPE613

In this environment, agents must cooperate through physical actions to reach a set of landmarks.614

Agents observe the relative positions of other agents and landmarks, and are collectively rewarded615

based on the proximity of any agent to each landmark. In other words, the agents have to ‘cover’616

all of the landmarks. Further, the agents occupy significant physical space and are penalized when617

colliding with each other. The agents need to infer the landmark to cover and move there while618

avoiding other agents.619

The hyper-parameters of COST in MPE are shown in Table 3. In MPE, hyper-parameters such as620

rollout fragment length, training batch size and SGD minibatch size are adjusted according to horizon621

of the scenarios so that policy are updated after episodes are done. We use the same network as622

in GRF, but with 128 units for all MLP hidden layers. Other omitted hyper-parameters follow the623

default configuration in RLlib PPO implementation.624

Table 3: COST hyper-parameters used in MPE.
Name Value

Discount rate 0.99
GAE parameter 1.0
KL coefficient 0.5
# of SGD iterations 10
Learning rate 1e-4
Entropy coefficient 0.0
Clip parameter 0.3
Value function clip parameter 10.0
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