
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NEURAL PHYLOGENY: FINE-TUNING RELATIONSHIP
DETECTION AMONG NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

FinetuneParent Child

Finetune ChildParent

Detected Relationship

Phylogeny Detection

Finetune?
Finetune?

Finetune?
Finetune?

F
in

e
tu

n
e

? F
in

e
tu

n
e?

F
in

e
tu

n
e

? F
in

e
tu

n
e?

(a) Task illustration

98.64%

100.00%

99.44%

Stable Diffusion 1.4

• …

• ktennyson6/sd-vsr-5k
72.44%Probability

• scarlettlin/model-0518-v1
72.20%Probability

67.71%Probability

• alawryaguila/dog-results

• evatan/cat-w-prior

60.67%Probability

• sang-kyung/ckpt

69.31%Probability

96.55%

100.00%

99.12%

Stable Diffusion 2

• …

• eroo36/model
58.58%Probability

• ivanboring/airpods
52.45%Probability

51.68%Probability

• DaichiT/vinyl

• DaichiT/hydraulic-jack

50.98%Probability

• DaichiT/stuffing

51.79%Probability

97.72%

100.00%

99.33%

Stable Diffusion 2.1

• …

• n6ai/graphic-art
63.69%Probability

• briannlongzhao/hay-dreambooth
54.09%Probability

52.88%Probability

• fsrv0/dogbooth

• bogdansorlea/dogbooth

52.24%Probability

• jpolun/dogbooth

53.55%Probability

81.81%

100.00%

92.86%

Llama 2

• …

• Zihao-Li/mala-500-10b-v2

63.11%Probability

• AsphyXIA/baarat-hindi-pretrained
53.64%Probability

50.81%Probability

• allenai/tulu-2-7b

• abeiler/AlphaRepInstruct

50.16%Probability

• saraprice/llama2-7B-backdoor

51.01%Probability

80.00%

100.00%

88.37%

Llama 3

• …

• 12thD/ko-Llama-3-8B-sft-v0.1

78.07%Probability

• AI-Sweden-Models/Llama-3-8B
55.38%Probability

52.76%Probability

• grimjim/llama-3-OpenBioLLM-8B

• bineric/NorskGPT-Llama3-8b

51.08%Probability

• neuralmagic/SparseLlama-3-8B

53.95%Probability

100.00%

100.00%

100.00%

DreamBooth

Stable Diffusion 1.4

Stable Diffusion 2.1

SD1.4
Backpack Dog

SD1.4
Bear Plushie

SD1.4
Dog

SD1.4
Dog2

SD1.4
Clock

SD1.4
Fancy Boot

SD1.4
Colorful Sneaker

SD1.4
Duck Toy

SD1.4
Pink Sunglasses

SD 2.1
Backpack

SD 2.1
Backpack Dog

SD 2.1
Bear Plushie

SD 2.1
Dog

SD 2.1
Dog2

SD 2.1
Clock

SD 2.1
Fancy Boot

SD 2.1
Colorful Sneaker

SD 2.1
Duck Toy

SD 2.1
Pink Sunglasses

SD1.4
Backpack

Overall Acc

Lineage Acc

Direction Acc

Overall Acc

Lineage Acc

Direction Acc

Overall Acc

Lineage Acc

Direction Acc

Overall Acc

Lineage Acc

Direction Acc

Overall Acc

Lineage Acc

Direction Acc

Overall Acc

Lineage Acc

Direction Acc

(b) Neural phylogeny detection for Stable Diffusion and Llama.

Figure 1: Neural phylogeny detection showcase. Fig. 1a shows the idea of neural phylogeny detection.
Fig. 1b presents the detection performance among Stable Diffusion models and among Llama
models. In the first five experiments, marked with the HuggingFace logo , we used open-source
models collected from HuggingFace. For the last experiments, the models are fine-tuned by us
using DreamBooth. The detailed experimental setup and discussion are included in the Sec. 4 and
Appendix A.

ABSTRACT

Given a collection of neural networks, can we determine which are parent mod-
els and which are child models fine-tuned from the parents? In this work, we
strive to answer this question via introducing a new task termed as neural phy-
logeny detection, aimed at identifying the existence and direction of the fine-tuning
relationship. Specifically, neural phylogeny detection attempts to identify all
parent-child model pairs and determine, within each pair, which model is the
parent and which is the child. We present two approaches for neural phylogeny
detection: a learning-free method and a learning-based method. First, we propose
to use the norm of the network parameters to infer fine-tuning directions. By
integrating this metric with traditional clustering algorithms, we propose a series
of efficient, learning-free neural phylogeny detection methods. Second, we intro-
duce a transformer-based neural phylogeny detector, which significantly enhances
detection accuracy through a learning-based manner. Extensive experiments, rang-
ing from shallow fully-connected networks to open-sourced Stable Diffusion and
LLaMA models, progressively validate the effectiveness of both methods. The
results demonstrate the reliability of both the learning-free and the learning-based
approaches across various learning tasks and network architectures, as well as their

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

ability to detect cross-generational phylogeny between ancestor models and their
fine-tuned descendants.

1 INTRODUCTION

Recently, the field of deep learning has experienced transformative evolutions. First, traditional
"training from scratch" paradigm has shifted to the "pre-training-fine-tuning" approach, which allows
for more efficient model development, meanwhile, creating a substantial dependency on models and
their derivatives. Additionally, with the expansion of the deep learning research community and
commercial success, numerous open-source model repositories have been established, and models
produced by “machine learning as a service” are accumulating. These advancements signify the
emergence of a complex, interconnected network of deep learning models. Studying this network can
help us better understand the inheritance of knowledge between models and the propagation of bias
and unfairness, also facilitating the management of intellectual property. However, such research
relies on the ability to first unveil this underlying network of neural networks.

In this work, we define and investigate the task of neural phylogeny detection, as illustrated in Fig. 1a.
Specifically, given a parent neural network fp, the model fc, which is fully fine-tuned from it, is
referred to as its child model. Considering a set of neural networks, which includes several parent
models and their fine-tuned child models, the goal of neural phylogeny detection is to identify all
parent-child model pairs within this set and determine which model is the parent model and which is
the child model in each pair.

We propose two approaches to address the neural phylogeny detection task: a learning-free method
and a learning-based method.

To develop the learning-free method, we first investigate how to determine the direction of fine-tuning.
Specifically, given two models with a fine-tuning relationship, we aim to identify which is the parent
model and which is the child model. Through theoretical analysis, we discover that the norm of
neural network parameters serves as a simple yet effective method for determining the direction of
fine-tuning. We validate this theoretical result on both simple ResNet architecture, and more complex
models, including Stable Diffusion and LLaMA models. For instance, in the case of Diffusion
Models, using parameter norms enables us to identify the fine-tuning direction with an accuracy
exceeding 95%. Building on this insight, we propose a learning-free method for phylogeny detection.

In the learning-free method, phylogeny detection is treated as a clustering task. Parent models and
their fine-tuned child models form clusters, with the parent identified as the centroid. Using clustering
to achieve phylogeny detection involves two sub-tasks: clustering models into clusters and identifying
the parent model within each cluster. The clustering sub-task can be accomplished using traditional
clustering algorithms, while the task of identifying the parent model is handled by the norm of the
parameters. We explore two workflows to achieve these two sub-tasks. The first workflow performs
clustering first, and the parent in each cluster is identified after the clustering algorithm is complete.
The second approach integrates the parent model identification into the clustering algorithm, and by
the end of clustering, the parent models within each cluster are also identified. We apply these two
strategies to commonly used clustering algorithms, resulting in a series of learning-free methods for
efficient neural phylogeny detection.

In the learning-based approach, we frame neural phylogeny detection as a directed graph learning
task. Each model is treated as a node, with fine-tuning relationships forming directed edges between
parent and child models. We design a transformer-based detector to predict the adjacency matrix of
this graph. Unlike the learning-free method, which relies on a specific metric, the learning-based
approach learns to infer the existence and the direction of finetuning, achieving better performance.

The contributions of this work are:

• We investigate the novel task of neural phylogeny detection, aiming to identify parent-child model
pairs among neural networks and determine the fine-tuning direction.

• We propose two approaches: a learning-free method that is convenient to implement and a learning-
based method that offers higher prediction accuracy.

• We demonstrate the effectiveness of the proposed methods on various deep model architectures
from shallow fully-connected nerual network to large open-source models; under different learning

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

settings, including few-shot learning and imbalanced data learning; and for cross-generational
neural phylogeny detection.

2 RELATED WORKS

2.1 NEURAL LINEAGE AND DEEP MODEL IP PROTECTION

This work is most closely related to neural lineage detection in (Yu & Wang, 2024), which identifies
from which parent model a given child model has been fine-tuned. Neural phylogeny detection is a
more challenging task and has substantial differences compared with neural lineage detection. (1)
In neural lineage detection, the sets of parent models and the set of child models are distinct with
no overlap, thus the direction of fine-tuning is known; whereas in neural phylogeny detection, all
models are mixed together, and the direction of fine-tuning is to-be-determined. (2) In neural lineage
detection, the finetuning dataset is accessible and the forward inference and gradient propagation of
the models are required. Conversely, neural phylogeny detection is data-free and does not require the
forward and backward of the model. (3) Neural lineage detection is a classification task, while in this
work, neural phylogeny detection is treated as a clustering or graph structure learning task.

On the other hand, by incorporating information related to the training data, neural phylogeny
detection can be simplified into neural lineage detection. For instance, knowledge of the input and
labels from the dataset used for pretraining or fine-tuning would facilitate the differentiation between
parent and child models through measures such as accuracy, loss values, or gradient magnitudes,
effectively reducing the phylogeny detection to lineage detection.

Another related task is deep model IP protection, which is commonly addressed through model
watermarking and model fingerprinting. Model watermarking identifies a stolen model via an
embedded watermark (Uchida et al., 2017; Chen et al., 2019; Li et al., 2020b; 2022; Lou et al.,
2021; Chen et al., 2021b; Lounici et al., 2021; Lao et al., 2022; Nagai et al., 2018; Zhao et al., 2021;
Xie et al., 2021; Darvish Rouhani et al., 2019; Adi et al., 2018; Ye et al., 2023), whereas model
fingerprinting discovers the source model and a stolen model based on their behaviors across a set
of conferrable samples (Cao et al., 2021; Lukas et al., 2021; Peng et al., 2022; Li et al., 2021;
Pan et al., 2021; Zhao et al., 2020; Yang et al., 2022; Wang & Chang, 2021). Deep IP protection
also claims that IP protection methods are capable of identifying source model and its child models
against the fine-tuning attack. However, in deep IP protection, fine-tuning is often conducted using
minimal learning rates and few epochs to maintain the child model’s performance on the original
task (Darvish Rouhani et al., 2019; Jia et al., 2021; Li et al., 2020a; Cao et al., 2021; Pan et al., 2022;
Fan et al., 2019; Lee et al., 2023; Adi et al., 2018), which differs significantly from the fine-tuning
process in practice. By contrast, the fine-tuning in neural phylogeny is more aligned with practice, in
which finetuning is method for transfer learning.

2.2 NEURAL NETWORK LINEARIZATION

In this work, we build our theoretical analysis upon the framework and conclusions of neural lin-
earization. Unlike previous studies that applied neural linearization to pruning at initialization (Wang
et al., 2020; Gebhart et al., 2021; Fang et al., 2023; Ma et al., 2023), training-free neural architecture
search (Chen et al., 2021a; Wang et al., 2022; Mok et al., 2022), and training time prediction (Zancato
et al.), our approach represents a new use of linearization theory, specifically for detecting fine-tuning
direction. The theoretical foundation of neural linearization suggests that, as network width grows, the
network can be well represented by its first-order Taylor expansion at initialization (Lee et al., 2019a).
Further research indicates that these linear approximations can achieve comparable or even superior
performance to their nonlinear counterparts (Ortiz-Jiménez et al., 2021; Arora et al., 2020). By
leveraging neural linearization in our method, we explored which metrics exhibit monotonic changes
during the fine-tuning process, allowing them to be used to determine the direction of fine-tuning.

2.3 GRAPH STRUCTURE LEARNING

In learning-based methods, we treat the problem of neural phylogeny detection as a novel application
of graph structure learning. Unlike previous works that have applied graph structure learning to
tasks like automatic diagnosis Cosmo et al. (2020) and protein structure prediction Jumper et al.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

(2021), our approach specifically targets the identification of phylogenetic relationships in neural
networks, which presents unique challenges and opportunities. Graph structure learning generally
aims to identify valuable graph structures directly from data, resulting in undirected Chen & Wu
(2022), weighted Chen & Wu (2022), or directed graphs (Yu et al., 2019). Prior research has explored
aspects such as the interplay between structure learning and downstream tasks, the parameterization
of adjacency matrices, training loss design, and post-processing methods like discretization and
sparsification Liu et al. (2022); Chen et al. (2020); Fatemi et al. (2021); Franceschi et al. (2019); Jin
et al. (2020); Wang et al. (2021); Yu et al. (2020). Our work differentiates itself by focusing on the
adaptation of these techniques to capture evolutionary relationships between neural networks.

3 METHOD

3.1 NOTATION AND TASK

Notation. We use f to denote a neural network and D = (X ,Y) to denote the training dataset,
where X = {x : (x,y) ∈ D} and Y = {y : (x,y) ∈ D} are the inputs and the targets, respectively.
We use θ to denote the parameters of the neural network and present it in the vectorization form to
facilitate notation. For example, we write θ ∈ Rdθ×1, where dθ is the number of the parameters in f .
Given a set of neural network models, we use the superscripts to index the models. Specifically, f (i)

is used to denote the i-th model in the set. The parameter of f (i) is denoted by θ(i). Given a matrix ,
let zi,: and zi,j to denote its i-th row and its element in the i-th row and j-th column, respectively.
Given a directed graph G, let ei,j to denote the edge from the i-th node to the j-th node. Let 1(·)
denote the indicator function.

Task. The objective of neural phylogeny detection is to first identify all parent-child pairs within a
set of neural network models. Then, it seeks to determine the direction of fine-tuning between each
detected parent and child pair. Specifically, given a set of neural networks, {f (i)}Mi=1, containing
parent and their child models, neural phylogeny aims to find a binary matrix A, where Aij = 1 if
the i-th model f (i) is the parent of the j-th model f (j), and Aij = 0 otherwise. In this work, neural
phylogeny detection is conducted in a completely data-free manner, meaning that we only access the
parameters of the neural networks without any information related to their training data.

3.2 DIRECTION OF THE GRADIENT DESCENT

In this subsection, we investigate how a simple metric — the norm of neural network parameter —
can be used to detect the direction of finetuning. We begin by evaluating the feasibility of this metric
in a simplified theoretical setting, and conclude by validating that this simple metric can still achieve
reasonable accuracy in predicting the direction of finetuning on open-source models such as Llama
and Stable Diffusion.

Neural phylogeny detection comprises two sub-tasks: identifying parent-child pairs and determining
the direction of fine-tuning, or, in other words, the direction of gradient descent. The detection of
parent-child pairs can be effectively achieved using the similarity between models (Yu & Wang,
2024). Therefore, the crux of phylogeny detection is the determination of the direction of gradient
descent.

We first demonstrate through the Prop. 1 below that, in theory, the norm of neural network parameters
increases during the training process. Therefore, the norm of the parameter serves as a theoretically
feasible metric for determining the finetuning direction. In Prop. 1, we follow the assumption and
formulation in neural network linearization Lee et al. (2019b) to describe the dynamic of the neural
network training. Previous works have shown that, for wide network, the linearized network can be
used to effectively and efficiently approximate the dynamic of the original non-linear network in the
gradient descent.

Proposition 1. Let ft denote a neural network trained using gradient flow on the dataset D = (X ,Y)
at time t. Let θt ∈ Rdθ×1 denote the vectorized parameters of ft, where dθ is the number of
parameters. Let f0 denote the neural network at the initialization with initial parameters θ0. Let η
denote the learning rate. Let Θ denote the neural tangent kernel at the initialization. Let ϵ denote the
small term, whose specific definition is included in Appendix D.1. Then, with MSE loss, the squared

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: By comparing norm of the parameter, the parent model in a parent-child pair can be detected
with high accuracy.

Stable Diffusion 1.4 Stable Diffusion 2 Stable Diffusion 2.1 Llama 2 Llama 3

Accuracy 96.49 95.12 97.33 88.57 58.01

ℓ2 distance between θt and z can be approximated as,

dist(θt, z) ≜
1

dθ
||θt − z||22 =

1

dθ
||∇θ0

f0(X)TΘ−1(I − e−ηΘt)(f0(X)− Y)]||22 + ϵ, (1)

which increases over time.

Prop. 1 demonstrates that the norm of parameters θt is a function that increases over time t, which
validates the feasibility of using such norm to determine the direction of neural network training.
Furthermore, in the supplementary materials, we extend the above Prop. 1 to scenarios involving
weight decay regularization. It can be proven that the norm of the parameters still increases during
training, provided the weight decay coefficient is not large. This is consistent with practical scenarios,
as a large weight decay coefficient can impair the performance of the network and is therefore not
utilized.

0 2 4 6 8 10 12(0) 2 4 6

Training Iteration (× 1e3)

0.0

0.2

0.4

0.6

N
or

m
of

P
ar

am
et

er

Pre-Training Phase Fine-Tuning Phase

Figure 2: During training and fine-
tuning, the norm of the neural network
parameter continually increases, consis-
tent with theory.

To assess the practical usefulness of the theoretical results,
we conducted two analyses. (1) We trained eight ResNet18
networks using different combinations of hyperparameters
and fine-tuned them. Fig. 2 records the norm of their pa-
rameters during both the training and fine-tuning processes.
The distance increases both during the pre-training phase
and the subsequent fine-tuning phase, which validates the
conclusion in Prop. 1. (2) We downloaded 3 parent Sta-
ble Diffusion models and 2 parent LLaMA models, along
with their finetuned child models from HuggingFace. In
total, we downloaded 366 Stable Diffusion models and
95 Llama models. We evaluated whether the norm of the
parameter could effectively detect the fine-tuning direction
among open-source models. Tab. 1 reports the performance, showing that the norm can consistently
identify the finetuning direction with high accuracy. To mitigate the curse of dimensionality and
reduce the computational costs, in this and subsequent experiments, we use a subset of the parameters
selected based on a validation set composed of 10% of the models.

3.3 NEURAL PHYLOGENY DETECTION VIA CLUSTERING

In this section, we discuss a learning-free approach for neural phylogeny detection. The main idea is
to view the neural phylogeny detection as a clustering problem, combining the detection of fine-tuning
direction with traditional clustering methods.

Given a set of neural networks, the goal of neural phylogeny detection is to solve for an allocation
matrix A, which can be seen as a clustering task. Every model in {f (i)}Mi=1 can be regarded as a data
point to be clustered. Matrix A allocates these data points into non-overlapping clusters. Each cluster
should contain a parent model and the child models fine-tuned from it. For each cluster, the parent
model should be identified as the cluster centroid.

However, the problem with previous clustering algorithms is that many algorithm not inherently
include the identification of cluster centroids, such as DBSCAN (Hahsler et al., 2019). Even for those
algorithms that can define cluster centroids during the clustering process, such as KMeans (Lloyd,
1982) and MeanShift(Wu & Yang, 2007), the cluster centroids identified by the algorithm may not
necessarily be the parent model. Take the KMeans algorithm as an example. When the distance
between points is measured using ℓ2 or ℓ1 norms, the centroid is the mean or median of the points
within the cluster. However, from the analysis and empirical findings in Sec. 3.2, it can be seen that
the parent model might not locate near the geometric center of the cluster. Because parent model has
smaller parameter norm.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

There are two approaches to integrating the identification of parent models with clustering algorithms.
A straightforward method is, first, using a clustering algorithm to identify the clusters; then, for each
cluster, identify the parent model in the cluster. Specifically, suppose C ⊂ {1, 2, · · · ,M} is the set
of indices of the models in one cluster, the index of the parent model in this cluster can be defined as

argmin
i

||θ(i)||2. (2)

For the algorithms that require evaluation of cluster centroids during clustering, the other way of
integrating the identification of parent models with the clustering algorithms is by incorporating the
assessment of fine-tuning direction directly into the centroid evaluation process. Below we take the
KMeans and MeanShift algorithms as examples to illustrate. In Appendix B.3 Fig. 5, using KMeans
algorithm as an example, we provide a diagram of the algorithm’s workflow to visually illustrate how
our method integrates the finetuning direction identification into the original clustering algorithm.

KMeans. KMeans algorithm executes the assignment step and the update step iteratively. During the
assignment step, each model is assigned to the nearest cluster. This step is essentially a neural lineage
detection operation, which can be address effectively using the common distance measurements (Yu
& Wang, 2024) and does not involves the identification of the parent model. Thus, we keep the
original workflow in the assignment step and use the ℓ2 norm as the distance measurement to assign
each model to the nearest cluster. In the update step, the KMeans algorithm updates the centroid of
each cluster, which in our task should be the parent model. The prediction of the parent model in
the cluster can be achieved using Eq. (2). However, during the iterative process, a single cluster may
have none or more than one parent model. Therefore, to enhance the robustness of the method, we
introduce a probability parameter α. When updating the cluster centroid, with a probability of α,
the cluster’s mean is used as the new centroid, and with a probability of 1− α, the new centroid is
chosen using Eq. (2). After the convergence of the algorithm, the final prediction of the parent model
is drawn again using Eq. (2).

MeanShift with a flat kernel. Given a to-be-optimized cluster centroid, mean shift updates the
centroid based on the mean of the points within the neighborhood of the centroid. The method for
calculating the new cluster centroid can also be represented as finding the point that minimizes the
sum of distances from the centroid to other points in the neighborhood, similar to the update step
in the KMeans method. Thus, we employed the same approach as in KMeans by introducing a
probability parameter α and randomly choose to use either the mean of the points in the neighborhood
as the new centroid or use Eq. (2) to select the new centroid.

0 0.2 0.4 0.6 0.8

The Value of α

10

30

50

70

A
cc

u
ra

cy
(%

)

FMNIST

EMNIST

Cifar10

SVHN

FMNIST

EMNIST

Cifar10

SVHN

(a) Different α.

1 2 3 4 5 6 7

Iteration

10

30

50

70

A
cc

u
ra

cy
(%

)

KMeans Along Clustering

KMeans After Clustering

MeanShift Along Clustering

MeanShift After Clustering

KMeans Along Clustering

KMeans After Clustering

MeanShift Along Clustering

MeanShift After Clustering

(b) Clustering convergence.

Figure 3: Ablation on the value of α and the convergence of the
clustering algorithms.

For approaches that identify the
parent along the clustering, the
choice of parameter α signif-
icantly influences the perfor-
mance by altering the proportion
of iterations using the predicted
parent as the cluster centroid. We
empirically studied the impact
of α values on the final predic-
tion accuracy in Fig. 3a. When
α = 0, each update uses the pre-
dicted parent as the cluster cen-
troid. When α = 1, the “identify
along” approach degenerates into the original clustering algorithm, always using the internal mean
as the new centroid. However, neither of these extreme methods achieves optimal performance.
Generally, using a relatively small α, primarily relying on the predicted parent as the new centroid
while occasionally using the mean, yields the best results.

Besides prediction accuracy, the convergence speed of the clustering algorithm is also a crucial factor
in evaluation. We observe that in a clustering task involving 277 models, shown in Fig. 3b, both
the original clustering algorithm and the one embedded with parent model identification typically
converge within 4-5 iterations, demonstrating high efficiency. Additionally, we observe that some dig
points appear in the “identify along” approach, marked by red dots • in the figure. The occurrence of
these dig points is due to the change in the centroid updating method, leading to fluctuations in node

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

allocation and consequent accuracy decrease. However, altering the method of centroid updating also
corrects accumulated errors during iteration, resulting in higher accuracy upon full convergence.

3.4 NEURAL PHYLOGENY DETECTOR

Target

Node

Weight

Source

Node

Weight

Edge Token

Edge Encoder

Transformer Blocks

Transformer Detector

FC to 1D & Reshape

Adaptive Pooling

Conv & Norm & ReLU ×N

⋯

Position

Embedding⋯0 0 0 1 M M

+ + +

1 M

0

M

0

⋯

⋯ ⋯ ⋯
⋯

Edge

Token

Figure 4: The proposed phylogeny detector.

In this section, we propose a learning-based phy-
logeny detector. We treat the task of phylogeny
detection as a structure learning problem for a
directed cyclic graph G. Given a set of neural
networks {f (i)}Mi=1, each network is a node in
graph G, with corresponding network parameter
θ(i) being the feature of the node. The adja-
cency matrix A of G is what we aim to predict
in phylogeny detection. The structure of the phy-
logeny detector, as shown in Fig. 4, includes an
edge encoder that takes the source node feature
and the target node feature of each edge as input,
outputs the latent embedding of each edge, and a
transformer detector that predicts the probability
of the existence of each edge. The following outlines the detailed workflow of the phylogeny detector.

First, we vectorize and reshape each weight into a matrix θ ∈ RH×W , with shape depending on the
specific architecture of the parent and child models. We stack the weights from node i and node
j together and use it as the input feature of the edge ei,j and denote it by θ(i,j) ≜ [θ(i);θ(j)] ∈
R2×H×W . Such a stacking strategy is more effective than encoding the weights of the parent
and child models independently, by allowing for element-wise comparison of the naturally aligned
weights from different models, capturing subtle changes in weights caused by fine-tuning. We use
w ∈ R(M×M)×2×H×W to denote the complete input of the edge encoder, which includes all edge
features. We use a convolutional network as the edge encoder Φ, applying batch normalization
and ReLU activation after each convolution layer. At the end of Φ, we use an adaptive pooling
with an output size of 1× 1 to transform each edge’s latent embedding into a vector, which serves
as the token input to the subsequent transformer detector Ψ. The output of Φ can be written as
wenc ≜ Φ(w) ∈ R(M×M)×d, where d is the token size for the transformer detector.

We use position embedding Epos ∈ R(M×M)×d to encode the indices of the source and target nodes
of each edge, allowing the transformer detector to utilize the relative relationships between edges
during processing. First, based on the node indices, we generate the position embedding for each
node epos ∈ RM×(d/2). The position embedding for the edge ei,j is the concatenation of the position
embeddings of nodes i and j, that is, [eposi: , eposj:] ∈ Rd. The transformer’s input is the sum of the
edge tokens and their corresponding position embeddings. Finally, we use a linear head to transform
the transformer’s output for each edge token into a scalar score, which can be represented as

wfinal = Ψ(wenc +Epos), s = Head(wfinal), wfinal ∈ R(M×M)×d, and s ∈ RM×M , (3)

where s is reshaped to ease the notation.

A characteristic of the directed graph formed by neural phylogeny is that there is at most one outgoing
edge from each node. This results in the directed graph being very sparse, and using ℓ2 or binary
cross-entropy loss on all edges would lead to imbalanced supervision signals. Therefore, we use
cross-entropy as the loss function. For node i, if it is a child model, its ground truth label gti is the
index of its parent model; if it is a parent model, its ground truth label is defined as its own index
i. The predicted probability of the edge from node i to node j is defined as pi,j ≜ softmax(si,:)j .
According, during inference, let j∗ ≜ argmaxj pi,j , if i = j∗, we predict that model i is a parent
model; otherwise, we predict that model i is fine-tuned from model j∗.

4 EXPERIMENTS

Proof of Concept. We experiment on 4 model architectures: a three-layer fully-connected network
(FC Net) with ReLU activation and no normalization; a three-layer convolutional network (Conv

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 2: Phylogeny detection performance for the vision models. The best (the second-best) ones are
marked in bold (underlined).

Method FMNIST EMNIST Cifar10 SVHN Cifar10
5shot

Cifar10
50shot

Cifar10
Imbalanced

FC
N

et

DBSCAN 15.64±0.17 13.16±0.43 24.86±1.96 31.32±2.46 7.35±0.76 41.61±1.96 39.10±0.92
GMM 9.48±0.36 3.43±0.16 65.71±1.59 46.59±1.19 9.71±0.84 42.34±1.85 65.93±1.12
KMeans 15.80±0.39 12.54±0.47 53.11±2.40 45.38±1.25 9.71±0.84 43.80±2.88 61.54±0.81
MeanShift 14.60±0.55 12.77±0.44 27.12±1.22 33.73±2.40 6.56±0.97 42.54±1.65 40.11±1.12

KMeans-along 18.64±0.49 20.09±0.56 65.53±1.26 45.38±1.15 9.81±0.54 88.32±0.70 62.24±0.61
MeanShift-along 15.48±0.21 13.55±0.45 40.11±1.89 34.13±2.49 12.60±0.33 98.87±0.02 56.59±1.43

Phylogeny
Detector 87.78±0.25 84.41±0.26 70.86±2.19 50.11±2.11 48.61±0.76 99.52±0.12 68.73±4.25

C
on

vN
et

DBSCAN 28.30±0.85 45.83±1.20 27.60±1.22 44.53±0.57 12.32±0.83 43.10±2.36 42.89±2.28
GMM 28.12±0.90 30.27±0.70 46.29±1.29 39.82±0.87 15.19±1.24 82.79±1.42 54.47±0.74
KMeans 25.79±0.81 28.29±0.65 45.70±1.52 39.05±0.16 16.33±1.17 77.42±0.99 51.63±0.85
MeanShift 18.15±0.84 15.52±0.32 14.24±0.79 21.39±0.70 6.20±0.73 94.62±1.23 24.19±1.32

KMeans-along 27.40±0.49 32.36±0.68 45.75±1.59 41.21±0.58 16.76±0.39 78.51±4.34 54.68±0.87
MeanShift-along 26.33±0.77 44.28±1.10 45.99±1.82 39.82±0.19 37.25±1.69 94.62±1.23 47.16±0.80

Phylogeny
Detector 83.64±0.77 60.12±1.56 99.17±0.29 98.86±0.42 82.54±0.77 99.81±0.15 96.97±0.98

R
es

N
et

DBSCAN 19.43±1.46 38.50±0.92 43.70±2.64 55.17±2.80 11.95±0.61 28.14±3.55 34.69±2.00
GMM 14.29±0.45 28.74±0.65 24.28±1.44 48.27±2.46 11.80±0.67 28.57±3.52 25.51±2.28
KMeans 28.01±1.59 41.38±0.94 48.55±2.24 71.55±0.49 11.56±0.64 28.98±3.60 32.67±2.01
MeanShift 18.43±1.56 37.36±0.98 43.75±2.74 55.23±2.48 11.60±0.65 28.84±3.52 32.41±1.95

KMeans-along 28.57±1.75 43.10±1.92 84.47±0.84 71.68±2.16 11.74±0.59 29.04±3.33 33.25±2.78
MeanShift-along 19.43±1.26 38.50±0.92 67.97±1.82 55.64±2.40 11.82±0.49 29.35±3.24 33.68±2.79

Phylogeny
Detector 83.01±0.64 88.46±1.57 90.18±0.77 88.39±0.73 53.99±1.26 57.94±1.35 87.01±1.30

V
iT

DBSCAN 39.14±2.06 24.64±1.53 55.42±4.24 36.76±1.93 70.01±4.68 55.01±1.97 26.46±2.35
GMM 47.83±2.79 21.75±1.71 72.80±3.38 47.60±2.55 55.01±0.02 53.36±2.52 25.01±1.62
KMeans 44.94±2.52 25.38±1.54 70.61±3.83 46.33±2.34 50.17±0.05 56.21±2.51 25.79±1.63
MeanShift 43.49±2.42 25.31±1.60 47.09±4.13 30.87±2.26 65.75±4.76 45.01±8.29 25.51±1.66

KMeans-along 46.38±2.00 69.57±4.15 70.71±3.39 70.61±2.96 80.01±4.68 80.01±4.68 67.27±2.53
MeanShift-along 47.83±2.79 72.47±3.97 73.55±3.03 55.89±3.15 70.01±6.12 45.53±4.28 54.41±1.79

Phylogeny
Detector 68.33±1.41 72.51±1.26 89.01±0.86 72.01±1.23 52.89±0.86 51.82±2.02 67.33±1.13

Net) with ReLU activation and no normalization; ResNet18; and ViT-Tiny. For fully-connected
and convolutional networks, the parent models are trained by us on MNIST (Lecun et al., 1998)
and CIFAR-100 (Krizhevsky et al., 2009). For ResNet and ViT, the parent models are collected
from the timm (Wightman, 2019). Parent models are finetuned on FMNIST (Xiao et al., 2017),
EMNIST-Letters (Cohen et al., 2017), and CIFAR10 (Krizhevsky et al., 2009) datasets to construct the
child model sets. The average number of child(parent) models for the four architectures was 693(64),
756(44), 106(7), and 64(3), respectively. We compare the detection accuracy of methods in three
categories: (1) DBSCAN (Hahsler et al., 2019), GMM (Ouyang et al., 2004), KMeans (Lloyd, 1982)
and MeanShift (Wu & Yang, 2007) clustering algorithms with the “identify parent after clustering”
strategy; (2) KMeans and MeanShift algorithms with the “identify parent along clustering” strategy.
Thereafter, we denote them by KMeans-along and MeanShift-along; and (3) the phylogeny detector. A
prediction is considered correct only if the parent-child pair is accurately identified and the direction
of fine-tuning is correctly determined. For learning-free methods, we reported the average accuracy
over 5-fold experiments. For phylogeny detector, we split the child models into training, validation,
and testing sets in a 7:1:2 ratio and report the average accuracy over five runs on the testing set.

Results are summarized in Tab. 2, with key observations as follows: (1) Instead of using a fixed
statistical metric, learning-based detector generally outperforms the learning-free methods by a
significant margin. Compared to the best-performing learning-free method in each setting, the
phylogeny detector’s performance is, on average, 29.43% higher. (2) Among the learning-free
methods, no single clustering algorithm consistently outperforms the others. This is mainly due
to the sensitivity of clustering methods to data structure, making the choices of hyperparameter
significantly affects the performance of the clustering algorithm. (3) By incorporating parent model

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Cross-generational phylogeny detection.

G2 G3 G4

G1

DBSCAN 38.50±0.92 38.23±1.25 38.86±1.95
GMM 28.74±0.65 23.27±2.73 14.29±0.45
KMeans 41.38±0.94 23.85±2.56 14.35±0.52
MeanShift 37.36±0.98 37.35±1.05 37.27±2.01

KMeans-along 43.10±1.92 42.51±1.20 42.86±1.88
MeanShift-along 38.50±0.92 38.82±1.15 38.47±1.33

Phylogeny Detector 88.46±1.57 87.82±0.59 73.72±1.96

G2

DBSCAN - 40.35±0.62 38.86±1.95
GMM - 29.24±1.32 14.86±0.53
KMeans - 28.07±1.13 26.29±0.70
MeanShift - 40.35±0.62 40.02±2.21

KMeans-along - 42.69±1.04 40.86±1.05
MeanShift-along - 40.96±0.65 40.57±2.28

Phylogeny Detector - 77.56±0.74 72.75±1.35

G3

DBSCAN - - 68.01±2.09
GMM - - 67.43±0.35
KMeans - - 53.71±1.59
MeanShift - - 58.86±2.10

KMeans-along - - 56.57±1.53
MeanShift-along - - 68.05±2.12

Phylogeny Detector - - 88.46±0.92

Table 4: Ablations.

Embedding
Dimension FMNIST EMNIST

8 84.44 77.42
16 87.51 81.99
32 87.78 83.07
64 87.91 83.11

(a) Embedding dimension.

Encoder
Depth FMNIST EMNIST

3 85.83 79.84
5 88.89 84.41
8 88.33 84.41

10 86.39 83.87

(b) Encoder depth.

Transformer
Depth FMNIST EMNIST

0 87.51 80.64
1 87.78 81.99
2 85.83 83.07
3 84.72 78.76

(c) Transformer depth.

identification into the clustering process, the performance of KMeans-along and MeanShift-along
algorithms outperforms the original KMeans and MeanShift. The performance of KMeans and
MeanShift methods improved by an average of 9.95% after using the “identify along” strategy.

Few-Shot and Imbalanced Data. We further evaluated the methods on CIFAR10 datasets under
few-shot and imbalanced1 learning settings in Tab. 2. Generally, the learning-based method still
performs the best, and the strategy of identifying parents along clustering improves the performance
of KMeans and MeanShift algorithms. However, in the few-shot setting for ViT models, due to the
difficulty of fine-tuning, we obtained only an average of 16 child models, resulting in insufficient
training samples for the phylogeny detector. Consequently, the learning-based method perform worse
than the learning-free methods in this specific case.

Cross-Generational Phylogeny. We define the 7 parent ResNet18 models as the First Generation
(G1) models and perform three rounds of fine-tuning, one after another, on the EMNIST (G2),
FMNIST (G3), and EMNIST-Balanced (G4) datasets. Tab. 3 compares the cross-generational
phylogeny detection performance. The learning-based method and the strategy of identifying parents
along clustering generally maintain their advantages. In the table, we use pink squares ■ to indicate
the relative performance of each method under different settings, with darker colors representing
higher accuracy and lighter colors representing lower accuracy. It can be seen that as the generational
gap increases, the performance of all methods generally declines.

Ablation on Detector Architecture. We conduct ablation on the structure of the phylogeny detector
to observe changes in accuracy with increasing network complexity. We examine, in Tab. 4, three
factors: the embedding dimension of the transformer, the number of layers in the edge encoder, and
the number of layers in the transformer. The main observation was that due to the limited size of
training samples, accuracy does not consistently improve with increased network complexity. The
combination of a 5-layer encoder and a 1-layer transformer is generally optimal.

Experiments on Open-Sourced Stable Diffusion and Llama. We conducted experiments on more
complex Diffusion Models and Llama Models. Specifically, we collected 366 Stable Diffusion
models and 95 Llama models from the HuggingFace. Compared to the models used in the primary
experiments, these models have larger parameter sizes, more intricate architectures, and more
diverse training configurations. The child models were trained on different datasets, using various
hyperparameters and training techniques—not limited to full-parameter fine-tuning but also including

1created by down-sampling the first five categories to its 1/10.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 5: The performance of the learning-free method on open-source Stable Diffusion and Llama
models, as well as on Stable Diffusion models fine-tuned using DreamBooth.

Identify after Clustering Identify along Clustering

KMeans MeanShift KMeans MeanShift

Avreage Best Avreage Best Avreage Best Avreage Best

Stable Diffusion 14.92±7.45 18.64 18.97±1.01 19.02 78.57±21.28 99.73 68.16±24.75 80.54
Llama 0±0 0 0±0 0 48.83±48.37 97.67 75.58±37.81 95.34
DreamBooth 100.0±0 100.0 100.0±0 100.0 100.0±0 100.0 100.0±0 100.0

Table 6: The performance of the learning-based method on open-source Stable Diffusion and Llama
models, as well as on Stable Diffusion models fine-tuned using DreamBooth.

SD 1.4 SD 2 SD 2.1 Llama 2 Llama 3

Overall Accuracy 99.44±0.25 99.12±0.74 99.33±0.47 92.86±0.70 88.37±0.60
Lineage Accuracy 100.0±0.00 100.0±0.00 100.0±0.00 100.0±0.00 100.0±0.00
Direction Accuracy 98.64±0.21 96.55±0.63 97.72±0.27 91.81±0.40 80.00±0.44

techniques like LoRA fine-tuning. Subsequently, using DreamBooth (Ruiz et al., 2023), we fine-tuned
Stable Diffusion 1.4 and Stable Diffusion 2.1 on the official DreamBooth dataset, resulting in 62
models (30 derived from each parent model and two parent models).

We evaluated the performance of our learning-free technique on these models, with results presented
in Tab. 5. Consistent with earlier findings, the performance of the learning-free approach significantly
improved using the “Identify along Clustering” strategy. However, we observed that the performance
of the learning-free method on these models was unstable, with a substantial gap between its best
and average performance. We further tested our learning-based method on open-sourced models
collected from HuggingFace. The experimental results are reported in Tab. 6, where we evaluated
three metrics: Overall Accuracy, Lineage Accuracy, and Direction Accuracy. Let N denote the total
number of models, then, there are Npair = N(N−1)

2 model pairs. For the i-th model pair, gti is
the ground truth label, which can take three possible values: {0 = No Finetuning Relationship, 1 =
The First Model is Parent, 2 = The Second Model is Parent}. predi is the predicted label for the
i-th pair. The definitions of these metrics are as follows:

Overall Accuracy =
1

Npair

Npair∑
i=1

1(gti = predi),

Lineage Accuracy =
1

Npair

Npair∑
i=1

1((gti = predi = 0) OR (predi ̸= 0 AND gti ̸= 0))

Direction Accuracy =
1∑Npair

i=1 1(gti ̸= 0)

Npair∑
i=1

1(gti ̸= 0 AND gti = predi).

The results in the Tab. 6 demonstrate that the learning-based approach significantly outperformed the
learning-free method, achieving nearly 100% accuracy even on complex open-sourced models.

5 CONCLUSION

We investigate the novel task of neural phylogeny detection, which, given a set of neural network
models, aims to identify parent-child model pairs connected through the fine-tuning behavior and
determine the direction of fine-tuning. By treating neural phylogeny detection as a clustering
task or a graph structure learning task, we propose both learning-free and learning-based methods.
Extensive experiments demonstrate the effectiveness of our proposed methods across various network
architectures and learning settings, and for cross-generational phylogeny detection.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Yossi Adi, Carsten Baum, Moustapha Cissé, Benny Pinkas, and Joseph Keshet. Turning your
weakness into a strength: Watermarking deep neural networks by backdooring. In 27th USENIX
Security Symposium, 2018.

Sanjeev Arora, Simon S. Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. In NeurIPS, 2019.

Sanjeev Arora, Simon S. Du, Zhiyuan Li, Ruslan Salakhutdinov, Ruosong Wang, and Dingli Yu.
Harnessing the power of infinitely wide deep nets on small-data tasks. In International Conference
on Learning Representations, 2020.

Xiaoyu Cao, Jinyuan Jia, and Neil Zhenqiang Gong. Ipguard: Protecting intellectual property of
deep neural networks via fingerprinting the classification boundary. In ACM Asia Conference on
Computer and Communications Security, 2021.

Huili Chen, Bita Darvish Rouhani, Cheng Fu, Jishen Zhao, and Farinaz Koushanfar. Deepmarks:
A secure fingerprinting framework for digital rights management of deep learning models. In
International Conference on Multimedia Retrieval, 2019.

Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural architecture search on imagenet in
four GPU hours: A theoretically inspired perspective. In International Conference on Learning
Representations, ICLR 2021, 2021a.

Xuxi Chen, Tianlong Chen, Zhenyu (Allen) Zhang, and Zhangyang Wang. You are caught stealing
my winning lottery ticket! making a lottery ticket claim its ownership. In Advances in Neural
Information Processing Systems, 2021b.

Yu Chen and Lingfei Wu. Graph Neural Networks: Graph Structure Learning, pp. 297–321. Springer
Nature Singapore, Singapore, 2022.

Yu Chen, Lingfei Wu, and Mohammed J. Zaki. Iterative deep graph learning for graph neural
networks: Better and robust node embeddings. In NeurIPS, 2020.

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. EMNIST: an extension of
MNIST to handwritten letters. CoRR, 2017.

Luca Cosmo, Anees Kazi, Seyed-Ahmad Ahmadi, Nassir Navab, and Michael M. Bronstein. Latent
patient network learning for automatic diagnosis. CoRR, abs/2003.13620, 2020.

Bita Darvish Rouhani, Huili Chen, and Farinaz Koushanfar. Deepsigns: An end-to-end watermarking
framework for ownership protection of deep neural networks. In International Conference on
Architectural Support for Programming Languages and Operating Systems, 2019.

Lixin Fan, Kam Woh Ng, and Chee Seng Chan. Rethinking deep neural network ownership ver-
ification: Embedding passports to defeat ambiguity attacks. In Annual Conference on Neural
Information Processing Systems, 2019.

Gongfan Fang, Xinyin Ma, Mingli Song, Michael Bi Mi, and Xinchao Wang. Depgraph: Towards
any structural pruning. 2023.

Bahare Fatemi, Layla El Asri, and Seyed Mehran Kazemi. SLAPS: self-supervision improves
structure learning for graph neural networks. In NeurIPS, pp. 22667–22681, 2021.

Luca Franceschi, Mathias Niepert, Massimiliano Pontil, and Xiao He. Learning discrete structures
for graph neural networks. In ICML, volume 97 of Proceedings of Machine Learning Research, pp.
1972–1982. PMLR, 2019.

Thomas Gebhart, Udit Saxena, and Paul R. Schrater. A unified paths perspective for pruning at
initialization. ArXiv, abs/2101.10552, 2021.

Michael Hahsler, Matthew Piekenbrock, and Derek Doran. dbscan: Fast density-based clustering
with R. Journal of Statistical Software, 91(1):1–30, 2019. doi: 10.18637/jss.v091.i01.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Arthur Jacot, Clément Hongler, and Franck Gabriel. Neural tangent kernel: Convergence and
generalization in neural networks. In NeurIPS, 2018.

Hengrui Jia, Christopher A. Choquette-Choo, Varun Chandrasekaran, and Nicolas Papernot. En-
tangled watermarks as a defense against model extraction. In USENIX Security Symposium,
2021.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang. Graph structure
learning for robust graph neural networks. pp. 66–74. ACM, 2020.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin vzidek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Yingjie Lao, Peng Yang, Weijie Zhao, and Ping Li. Identification for deep neural network: Simply
adjusting few weights! IEEE International Conference on Data Engineering, 2022.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 1998.

Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. In NeurIPS, 2019a.

Jaehoon Lee, Lechao Xiao, Samuel S. Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. In NeurIPS, 2019b.

Suyoung Lee, Wonho Song, Suman Jana, Meeyoung Cha, and Sooel Son. Evaluating the robustness
of trigger set-based watermarks embedded in deep neural networks. IEEE Transactions on
Dependable and Secure Computing, 2023.

Meng Li, Qi Zhong, Leo Yu Zhang, Yajuan Du, Jun Zhang, and Yong Xiang. Protecting the
intellectual property of deep neural networks with watermarking: The frequency domain approach.
In International Conference on Trust, Security and Privacy in Computing and Communications,
2020a.

Meng Li, Qi Zhong, Leo Yu Zhang, Yajuan Du, Jun Zhang, and Yong Xiang. Protecting the
intellectual property of deep neural networks with watermarking: The frequency domain approach.
In International Conference on Trust, Security and Privacy in Computing and Communications,
2020b.

Yiming Li, Linghui Zhu, Xiaojun Jia, Yong Jiang, Shu-Tao Xia, and Xiaochun Cao. Defending
against model stealing via verifying embedded external features. In AAAI Conference on Artificial
Intelligence, 2022.

Yuanchun Li, Ziqi Zhang, Bingyan Liu, Ziyue Yang, and Yunxin Liu. Modeldiff: testing-based DNN
similarity comparison for model reuse detection. In ACM SIGSOFT International Symposium on
Software Testing and Analysis, 2021.

Yixin Liu, Yu Zheng, Daokun Zhang, Hongxu Chen, Hao Peng, and Shirui Pan. Towards unsupervised
deep graph structure learning. In WWW ’22: The ACM Web Conference 2022, Virtual Event, Lyon,
France, April 25 - 29, 2022, pp. 1392–1403. ACM, 2022.

Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):
129–137, 1982.

Xiaoxuan Lou, Shangwei Guo, Jiwei Li, and Tianwei Zhang. Ownership verification of dnn archi-
tectures via hardware cache side channels. IEEE Transactions on Circuits and Systems for Video
Technology, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Sofiane Lounici, Mohamed Njeh, Orhan Ermis, Melek Önen, and Slim Trabelsi. Yes we can: Water-
marking machine learning models beyond classification. IEEE Computer Security Foundations
Symposium, 2021.

Nils Lukas, Yuxuan Zhang, and Florian Kerschbaum. Deep neural network fingerprinting by
conferrable adversarial examples. In International Conference on Learning Representations, 2021.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. In Advances in Neural Information Processing Systems, 2023.

Ji-Yoon Choi Ji-Hyeok Moon Young-Ilc Mok, Byunggook Na, Ji-Hoon Kim, Dongyoon Han, and
Sungroh Yoon. Demystifying the neural tangent kernel from a practical perspective: Can it be
trusted for neural architecture search without training? CVPR, 2022.

Yuki Nagai, Yusuke Uchida, Shigeyuki Sakazawa, and Shin’ichi Satoh. Digital watermarking for
deep neural networks. International Journal of Multimedia Information Retrieval, 2018.

Guillermo Ortiz-Jiménez, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. What can linearized
neural networks actually say about generalization? In NeurIPS, 2021.

Ming Ouyang, William J Welsh, and Panos Georgopoulos. Gaussian mixture clustering and imputation
of microarray data. Bioinformatics, 20(6):917–923, 2004.

Xudong Pan, Mi Zhang, Yifan Lu, and Min Yang. TAFA: A task-agnostic fingerprinting algorithm
for neural networks. In European Symposium on Research in Computer Security, 2021.

Xudong Pan, Yifan Yan, Mi Zhang, and Min Yang. Metav: A meta-verifier approach to task-agnostic
model fingerprinting. In ACM SIGKDD Conference on Knowledge Discovery and Data Mining,
2022.

Zirui Peng, Shaofeng Li, Guoxing Chen, Cheng Zhang, Haojin Zhu, and Minhui Xue. Fingerprinting
deep neural networks globally via universal adversarial perturbations. In IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aber-
man. Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023, Vancouver,
BC, Canada, June 17-24, 2023, pp. 22500–22510. IEEE, 2023.

Yusuke Uchida, Yuki Nagai, Shigeyuki Sakazawa, and Shin’ichi Satoh. Embedding watermarks into
deep neural networks. In ACM on International Conference on Multimedia Retrieval, 2017.

Chaoqi Wang, Guodong Zhang, and Roger B. Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, ICLR 2020,
2020.

Haoxiang Wang, Yite Wang, Ruoyu Sun, and Bo Li. Global convergence of MAML and theory-
inspired neural architecture search for few-shot learning. In CVPR, 2022.

Ruijia Wang, Shuai Mou, Xiao Wang, Wanpeng Xiao, Qi Ju, Chuan Shi, and Xing Xie. Graph
structure estimation neural networks. In The Web Conference, pp. 342–353. ACM / IW3C2, 2021.

Si Wang and Chip-Hong Chang. Fingerprinting deep neural networks - a deepfool approach. IEEE
International Symposium on Circuits and Systems, 2021.

Ross Wightman. Pytorch image models. https://github.com/rwightman/
pytorch-image-models, 2019.

Kuo-Lung Wu and Miin-Shen Yang. Mean shift-based clustering. Pattern Recognition, 40(11):
3035–3052, 2007.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. 2017.

13

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Chenqi Xie, Ping Yi, Baowen Zhang, and Futai Zou. Deepmark: Embedding watermarks into deep
neural network using pruning. IEEE International Conference on Tools with Artificial Intelligence,
2021.

Kan Yang, Run Wang, and Lina Wang. Metafinger: Fingerprinting the deep neural networks with
meta-training. In International Joint Conference on Artificial Intelligence, 2022.

Jingwen Ye, Songhua Liu, and Xinchao Wang. Partial network cloning. 2023.

Donghan Yu, Ruohong Zhang, Zhengbao Jiang, Yuexin Wu, and Yiming Yang. Graph-revised
convolutional network. In Machine Learning and Knowledge Discovery in Databases - European
Conference, volume 12459 of Lecture Notes in Computer Science, pp. 378–393. Springer, 2020.

Runpeng Yu and Xinchao Wang. Neural lineage. 2024.

Yue Yu, Jie Chen, Tian Gao, and Mo Yu. DAG-GNN: DAG structure learning with graph neural
networks. In International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 7154–7163. PMLR, 2019.

Luca Zancato, Alessandro Achille, Avinash Ravichandran, Rahul Bhotika, and Stefano Soatto.
Predicting training time without training. In NeurIPS.

Jingjing Zhao, Qin Hu, Gaoyang Liu, Xiaoqiang Ma, Fei Chen, and Mohammad Mehedi Hassan. Afa:
Adversarial fingerprinting authentication for deep neural networks. Computer Communications,
2020.

Xiangyu Zhao, Yinzhe Yao, Hanzhou Wu, and Xinpeng Zhang. Structural watermarking to deep
neural networks via network channel pruning. IEEE International Workshop on Information
Forensics and Security, 2021.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Neural Phylogeny
- Supplementary Material -

A Experiments with Stable Diffusion and Llama 16
A.1 Collection of Open-Source Models 16
A.2 Collection of DreamBooth-Finetuned Models 16
A.3 Experiments with Open-Sourced Models in Figure 1 16
A.4 Performance of the Learning-Free Detection Method with Open-

Source Models . 17
A.5 Experiments with DreamBooth-Finetuned Models in Figure 1 . . . 17

B Other Additional Results and Illustrations 17
B.1 Experimental Results on Pet and DTD 17
B.2 Generalizability of Learning-Based Detector 18
B.3 Diagram Illustrations on the KMeans-along Method 18

C Other Implementation Details 18
C.1 Experiments in Table 2 and Table 5 19

C.1.1 Model Set . 19
C.1.2 The Choice of Weight . 20
C.1.3 Implementation of the Learning-Free Methods 20

C.2 Experiments in Table 3 . 20
C.3 Phylogeny Detector . 20
C.4 Experiment in Figure 2 . 21
C.5 Experiment in Figure 2 (Previous Version, Left Here only for Re-

viewers’ Reference) . 21

D Derivations 22
D.1 Derivation of the Proposition . 22
D.2 Generalization to Loss with Weight Decay 23

E Further Discussions 24
E.1 Impacts, Limitations, and Future Explorations 24
E.2 Phylogeny Detection and Attacks 24

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A EXPERIMENTS WITH STABLE DIFFUSION AND LLAMA

A.1 COLLECTION OF OPEN-SOURCE MODELS

For the open-source Stable Diffusion and Llama models, we downloaded them directly from Hugging-
Face. We selected five parent models in total, “CompVis/stable-diffusion-v1-4”, “stabilityai/stable-
diffusion-2”, “stabilityai/stable-diffusion-2-1”, “meta-llama/Llama-2-7b-hf” and “meta-llama/Meta-
Llama-3-8B”. Hugging Face provides a list of fine-tuned child models for each parent, and we sorted
these lists by “trending” and downloaded the top models. For the model “CompVis/stable-diffusion-
v1-4”, we attempted to download the top 200 child models. For “stabilityai/stable-diffusion-2”, which
has 111 child models, we attempted to download the top 100. For “stabilityai/stable-diffusion-2-1”,
with 152 child models, we attempted to download the top 150. As for the LLaMA models “meta-
llama/Llama-2-7b-hf” and “meta-llama/Meta-Llama-3-8B”, due to their large sizes (14-16GB), we
attempted to download the top 50 child models for each.

We excluded models that could not be downloaded, were mislabeled, or were unusable as standalone
models. For example, some 70B models were incorrectly labeled as fine-tuned from 7B models, or
certain LoRA-fine-tuned models only released the LoRA parameters, making them incompatible
with a unified interface. After these exclusions, we collected 191 child models for “CompVis/stable-
diffusion-v1-4”, 68 for “stabilityai/stable-diffusion-2”, 107 for “stabilityai/stable-diffusion-2-1”, 48
for “meta-llama/Llama-2-7b-hf”, and 47 for “meta-llama/Meta-Llama-3-8B”.

A.2 COLLECTION OF DREAMBOOTH-FINETUNED MODELS

We use the “diffusers” library to implement the DreamBooth fine-tuning and image generation for
diffusion models. The three diffusion models we used are “CompVis/stable-diffusion-v1-4” and
“stabilityai/stable-diffusion-2-1”. The fine-tuning dataset is the official DreamBooth release dataset.
We fine-tune on a all of 30 sets of images, resulting in 60 child diffusion models.

A.3 EXPERIMENTS WITH OPEN-SOURCED MODELS IN FIGURE 1

In this experiment, we focused on detecting the existence and direction of the fine-tuning relationship
between two models. For example, given Stable Diffusion 1.4 and another model f , the detector
determines whether a finetuning relationship exists between Stable Diffusion 1.4 and f , and if so, the
detector further identifies which model is the parent. This is a practical scenario, as in some cases,
we want to determine whether a specific model is fine-tuned from a particular open-source model, or
we want to detect the fine-tuning relationship between two models without interference from other
models. To achieve this, we trained a detector. The network architecture of the detector is consistent
with the one described in Fig. 4, but since only two models are involved, we replaced the transformer
block with an MLP-based prediction head. The prediction head is designed to output three categories:
no fine-tuning relationship between the two models, the first model is the parent of the second, and
the second model is the parent of the first.

We randomly split the collected child models into training, validation, and test subsets in a 7:1:2
ratio. The models in each subset were paired with the parent models to form the input for the detector.
The experiments for Stable Diffusion and LLaMA models were conducted separately. That is, in the
Stable Diffusion experiment, possible combinations included (Stable Diffusion 1.4, a child of Stable
Diffusion 1.4), (Stable Diffusion 1.4, a child of Stable Diffusion 2), (Stable Diffusion 1.4, a child
of Stable Diffusion 2.1), (a child of Stable Diffusion 1.4, Stable Diffusion 1.4), (a child of Stable
Diffusion 2, Stable Diffusion 1.4), (a child of Stable Diffusion 2.1, Stable Diffusion 1.4) and other
combinations sharing similar patterns. Other training details are consistent with the experiments in
Tab. 2.

We recorded the detector’s accuracy for detecting the existence of the finetuning, accuracy for
detecting the direction of the finetuning and the overall accuracy. The reported “Lineage Acc” is
defined as the percentage of cases where the existence of a finetuning relationship between the input
model pair is correctly detected. The reported “Direction Acc” is defined as the percentage of cases
where the parent model in a detected finetuning relationship is correctly identified. The “Overall Acc”
is defined as the percentage of cases where both the existence of a finetuning relationship and the
parent model are correctly identified. All reported results are computed from the testing set. The

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

results are presented in Fig 1 and Tab. 6. Our method achieves near 100% detection accuracy. For
each parent model, we also display some of its child models along with the detector’s predicted
probabilities that they were finetuned from the parent model in Fig 1.

A.4 PERFORMANCE OF THE LEARNING-FREE DETECTION METHOD WITH OPEN-SOURCE
MODELS

We also tested the performance of the learning-free methods on the collected open-source Stable
Diffusion and Llama models. The input parameters used were the same as in the experiments of the
learning-based method, but here the goal was to detect all fine-tuning relationships and directions
among the models in one pass. The experiments for Stable Diffusion and Llama models were
conducted separately. Each experiment was repeated 10 times, and we recorded the average accuracy
and the best accuracy across the trials. The specific results are shown in the first two rows of Tab. 5.

In terms of the best achievable performance, the learning-free clustering method, which incorporates
the idea of “distinguish along clustering”, achieved significantly better predictions compared to the
original KMeans and MeanShift methods. However, the learning-free method lacked stability and
was highly sensitive to the initialization. Across multiple runs, many failed attempts were observed,
leading to a low average accuracy and a high variance.

A.5 EXPERIMENTS WITH DREAMBOOTH-FINETUNED MODELS IN FIGURE 1

We conduct phylogeny detection experiments using four learning-free strategies. The de-
tailed results are shown in the last row of Tab. 5, which are also illustrated in the
bottom right part in Figure 1. For the clustering algorithm’s input, we used the
“down_blocks.0.attentions.0.transformer_blocks.0.ff.net.2.bias” in the diffusion model’s UNet en-
coder. Our method achieves a high accuracy in detecting the fine-tuning relationships and directions
among 62 models in one pass.

B OTHER ADDITIONAL RESULTS AND ILLUSTRATIONS

B.1 EXPERIMENTAL RESULTS ON PET AND DTD

Table 7: Phylogeny detection performance for the vision models on the Pet and DTD datasets. The
best (the second-best) ones are marked in bold (underlined).

Model Method DTD Pet

ResNet

Identify after Clustering

DBSCAN 22.93±2.70 46.88±3.74
GMM 22.86±2.63 38.29±3.03
KMeans 23.45±3.01 46.88±3.75
MeanShift 22.74±2.54 46.52±3.66

Identify along Clustering KMeans 41.69± 3.90 47.42±3.74
MeanShift 41.54±4.09 47.36±3.54

Phylogeny Detector 50.44±1.85 49.61±1.83

ViT

Identify after Clustering

DBSCAN 71.87±4.76 2.08±1.04
GMM 59.38±5.40 2.25±1.13
KMeans 68.74±4.69 2.80±1.40
MeanShift 72.52±4.81 2.17±1.09

Identify along Clustering KMeans 68.86±3.30 3.07±1.12
MeanShift 72.87±4.76 2.91±1.18

Phylogeny Detector 82.54±1.16 50.79±1.07

The experimental results on the Pet and DTD datasets, shown in Tab. 7, are consistent with findings
on other datasets. The learning-based method still outperforms the learning-free methods. Among the

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 8: Performance of the learning-based detector under across-architecture generalization.

VIiT Conv Net

Cifar10 SVHN Cifar10 SVHN

Best Learning-Free Method 73.55% 70.61% 46.29% 44.53%
Without Generalization 89.01% 72.01% 99.17% 99.86%

With Generalization 62.27% 60.67% 83.33% 74.62%

various learning-free clustering methods, it is difficult to determine an absolute best. However, incor-
porating parent model identification into the clustering process generally improves the performance
of the clustering algorithms.

B.2 GENERALIZABILITY OF LEARNING-BASED DETECTOR

In the main experiments, we controlled the training and testing sets of the learning-based detector
to have different child models (Appendix C.3). This implicitly requires the detector to be able to
generalize to unseen child models. Such experimental setup is based on the perspective of pretrained
model owners. They possess parent models and some child models and aim to detect from which
pretrained model external child models are finetuned.

We further explored the detector’s ability to generalize across different architectures. We trained
the detector using FC-Net and tested it on VIT and ConvNet architectures. The results are shown
in Tab. 8. In the table, the row “Best Learning-Free Method” refers to the highest accuracy of
learning-free methods in the main result. Learning-free methods do not require training and thus do
not face generalization issues. The row labeled “Without Generalization” corresponds to the accuracy
when no cross-architecture generalization is required. These models are trained and tested on the
same architecture-dataset pair. The row “With Generalization” corresponds to the scenario where
the detector is trained on FC-Net and directly tested on VIT and ConvNet architectures. As shown,
the learning-based detector demonstrates acceptable cross-architecture generalizability. Even when
generalization to entirely new neural network architectures is required, the detector still achieves
acceptable accuracy. Notably, in the ConvNet experiments, the accuracy of the directly generalized
detector remains significantly higher than that of learning-free methods.

B.3 DIAGRAM ILLUSTRATIONS ON THE KMEANS-ALONG METHOD

In Fig. 5, we illustrate the KMeans-along algorithm. The KMeans-along algorithm follows the same
procedure as the original KMeans algorithm during the assignment step. As shown on the left part
of Fig. 5, each point is assigned to the cluster whose centroid is closest to it based on distance. The
key difference between KMeans-along and the original KMeans algorithm lies in the update step,
illustrated on the right part of Fig. 5. In this step, the centroid of each cluster is updated. When α = 1,
the KMeans-along algorithm reduces to the original KMeans algorithm, as shown in the upper-right
part of Fig. 5, using the geometric center as the centroid for each cluster. However, when α < 1,
KMeans-along updates the centroid by selecting the point most likely to belong to the parent model
with a probability of 1− α, as shown in the lower-right part of Fig. 5.

C OTHER IMPLEMENTATION DETAILS

Experiments are conducted on one Nvidia RTX 4090. For the parent and child models used, we
followed the method of collecting parent and child models from previous work (Yu & Wang, 2024).
However, compared to previous work, we collected more models with a greater variety of structures
and in larger quantities. In this work, we consider finetuning all the parameters.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Assignment Step

centroid

Assign models to clusters based on similarity.

random

choose

with probability 𝛼

with probability 1 − 𝛼

Update Step

Update centroid using cluster mean

Update centroid based on finetuning direction

Diagram for the KMeans-along method. The local update mechanism for MeanShift-along is essentially
the same as for KMeans-along. The diagram of MeanShift-along can be derived by modifying the
diagram above and will be added.

Figure 5: Illustrative diagram for the process of KMeans-along method.

C.1 EXPERIMENTS IN TABLE 2 AND TABLE 5

C.1.1 MODEL SET

We conducted experiments on four types of neural network architectures: a three-layer fully-connected
network with ReLU activation; a three-layer convolutional network with ReLU activation; ResNet18;
and ViT-Tiny.

The hidden layers of the fully-connected network are fixed at the sizes of 1024, 256, and 128. The
convolutional network use convolutional kernels of size 3, followed by two fully-connected layers
with latent feature dimensions set to 128. The input for the convolutional network is fixed at 28x28;
images not meeting this size are resized accordingly. The output dimensions for both networks are
adjusted based on the dataset. For the fully-connected and convolutional networks, the parent and
child models are trained by ourselves. We first train fully-connected and convolutional networks
on the MNIST and CIFAR-100 datasets, creating four parent model categories: fully-connected +
MNIST, fully-connected + CIFAR-100, Convolutional + MNIST, Convolutional + CIFAR-100. The
training process use a learning rate of either 0.01 or 0.001, a batch size of either 256 or 1024, and
parameter initialization with either Kaiming Uniform or Kaiming Normal, using eight random seeds.
This results in 64 training configurations. The number of training epochs is set to 50, and Adam
optimizer is used. For the MNIST dataset, we only select models with an accuracy greater than 80% as
parent models. For the CIFAR-100 dataset, models with an accuracy greater than 50% are selected as
parent models. Finally, we obtain 64 fully-connected models on MNIST, 17 fully-connected models
on CIFAR-100, 64 convolutional models on MNIST, and 44 convolutional models on CIFAR-100.
Starting from these parent models, we fine-tune the child models. Models trained on MNIST are
fine-tuned on FMNIST and EMNIST, while parent models from CIFAR-100 are fine-tuned on SVHN,
CIFAR-10, and its variants. The fine-tuning learning rate is set to one of 0.01, 0.001, or 0.0001,
with a batch size of either 256 or 1024, using four random seeds. The number of fine-tuning epochs
is set to 30, using the Adam optimizer. We only select models with an accuracy greater than 50%
as child models. Finally, the fully-connected network obtain 1202, 1220, 160, 232, 364, 264, and
260 models on FMNIST, EMNIST, CIFAR-10, SVHN, CIFAR-10-5shot, CIFAR-10-50shot, and
CIFAR-10-Imbalanced, respectively. The convolutional network obtain 1050, 1100, 293, 826, 306,
168, and 448 models on FMNIST, EMNIST, CIFAR-10, SVHN, CIFAR-10-5shot, CIFAR-10-50shot,
and CIFAR-10-Imbalanced, respectively. This model set is significantly larger than previous works.

For ResNet and ViT-Tiny models, we directly collect publicly released models from the timm library
as parent models. The ResNet models used were “resnet18.a1_in1k”, “resnet18.a2_in1k”,
“resnet18.a3_in1k”, “resnet18.gluon_in1k”, “resnet18.fb_ssl_yfcc100m_ft_in1k”,
“resnet18.fb_swsl_ig1b_ft_in1k”, and “resnet18.tv_in1k”, totaling seven models, all trained
on ImageNet. The ViT-Tiny models used were “vit_tiny_r_s16_p8_224.augreg_in21k_ft_in1k”,
“vit_tiny_r_s16_p8_224.augreg_in21k”, and “vit_tiny_patch16_224.augreg_in21k”, totaling three
models. We fine-tuned these parent models on all datasets shown in Tables 2 and 5. All input
images are resized to 224x224. Grayscale images are duplicated three times to convert them into

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

three-channel images. The network’s output dimensions are adjusted according to the dataset. The
fine-tuning and model selection processes are consistent with those used for the fully-connected and
convolutional networks. Finally, we obtain 168 child ResNet18 models on each dataset.we obtain 65,
65, 64, 64, 16, 16, 64, 44, and 60 child ViT-Tiny models on FMNIST, EMNIST, CIFAR-10, SVHN,
CIFAR-10-5shot, CIFAR-10-50shot, CIFAR-10-Imbalanced, Pet, and DTD, respectively.

In our experiments, we combined the child models with their corresponding parent models to form
the model sets for phylogeny detection.

C.1.2 THE CHOICE OF WEIGHT

Using all the neural network parameters would result in significant complexity. In our experiments,
we select only a subset of the neural network parameters for the phylogeny detection task. For fully-
connected networks, we use the weight tensor of the first linear layer. For convolutional networks,
we use the convolutional kernels of the first convolutional layer. For ResNet networks, we use the
convolutional kernels of the first convolutional layer in the second ResNet block. For ViT, we used
the weight tensor of the last linear transformation in the third transformer block.

C.1.3 IMPLEMENTATION OF THE LEARNING-FREE METHODS

We use the DBSCAN and GMM implementations from the sklearn library. The search range for the
eps parameter in DBSCAN is 0.5, 0.1, 1.0, 2.0, and 5.0. We implement the KMeans and Mean Shift
algorithms ourselves. The search range for the bandwidth parameter in Mean Shift is 0.5, 1.0, 2.0,
3.0, and 5.0. For the identify parent along the clustering strategy, the search range for α is 0.0, 0.2,
0.4, 0.6, and 0.8. For algorithms that require the number of clusters as input, such as KMeans and
GMM, we provide the actual number of parent models as the number of clusters. The maximum
number of iterations for clustering is set to 50, but the algorithms often converge in fewer than 10
iterations.

C.2 EXPERIMENTS IN TABLE 3

This experiment aimed to test the ability to perform phylogeny detection across generations. The
method for constructing the model set to be detected followed the same approach as in previous
work (Yu & Wang, 2024), using ResNet18 as the model architecture. The first generation consist
of the original seven ResNet models. The second generation models are obtained by fine-tuning
the first-generation models on the EMNIST-Letters dataset, using the child models collected in
Table 2 experiments. From the second generation, we select seven models with highest accuracy
as the parent models for training the third generation, and ensure that these models have different
first-generation parent models. These seven models are fine-tuned on the FMNIST dataset to obtain
the third-generation models. From the third-generation models, we again select seven models with
the highest accuracy, ensure different first-generation ancestors, and fine-tune them on the EMNIST-
Balanced dataset to obtain the fourth-generation models. The fine-tuning settings and model selection
methods are consistent with those in Table 2 experiments. We obtain 168 models each for the third
and fourth generations.

For the experiments involving the first and third generations, we combine the original seven ResNet
models with the third-generation models fine-tuned on FMNIST to form the model set to be detected.
For the first and fourth generations, we combine the original seven ResNet models with the fourth-
generation models fine-tuned on EMNIST-Balanced. For the experiments between the second and
third generations, we combine the seven models selected from the second generation fine-tuned on
FMNIST with the third-generation models fine-tuned on FMNIST. The experiments between the
third and fourth generations and between the second and fourth generations are constructed similarly.

The implementation of learning-free and learning-based methods and the hyperparameter search in
these experiments are consistent with previous experiments.

C.3 PHYLOGENY DETECTOR

Given a set of neural network models, similar to the learning-free method, we only extract part of
the parameters from each model as the phylogeny detector input. The specific parameter selection

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

remains consistent with the learning-free method. This allows us to obtain features for all nodes in
the directed graph, and we need to predict the edges in the graph. Similar to previous methods for
node detection and edge detection on a single graph, we split the graph into several subgraphs, using
a portion for training and the remaining parts for validation and testing.

Specifically, for each subgraph, we randomly select P parents and C child models for each parent,
combining P +P ×C models to form a subgraph. The values of P and C depend on the total number
of parent and child models and the GPU memory limitations. For fully-connected, convolutional, and
ResNet networks, P is set to 4, and for ViT models, P is set to 3. C is always set to 6. The resulting
subgraph sizes are 28 or 21. We divide the obtained subgraphs into training, validation, and test sets
in a 7:1:2 ratio. Since the number of parent models is limited, we use it in the training, validation,
and test sets, but we ensure that child models are unique to each set. If a child model is included in a
training subgraph, it does not appear in the validation or test subgraphs. If a child model is included
in a validation subgraph, it does not appear in the training or test subgraphs.

To increase the number of training samples, we use a strategy of repeated sampling of the parameters
to create more samples. For example, in the experiment with fully-connected networks trained on
MNIST and their child models, we use the weight matrix of the first linear layer, which has a size of
1024x784. Instead of setting the input size of the phylogeny edge encoder to 2x1024x784, we set
it to 2x32x32. Thus, we used only part of the weight matrix, allowing us to sample multiple times
from this matrix to create more than one samples. Specifically, once which models are included in a
subgraph is determined, we sample 32x32 indices based on the shape of the weight matrix of the first
linear layer. For each model included in the subgraph, we pick the elements from the weight matrix
according to the sampled indices. Different subgraphs have different index sets. Given the models
in a subgraph, we sample multiple times to create several data samples. We typically repeating the
sampling 10 times. In the few-shot experiment with the ViT structure, due to the small number of
models, we repeated the sampling 40 times. Even with this, we could not obtain a large enough
dataset to improve the performance of the phylogeny detector in the ViT few-shot experiment.

Except in the architecture ablation experiment, we use a 5-layer edge encoder and a 1-layer trans-
former detector in all other experiments. The edge encoder’s kernel size is set to 3, and the latent
embedding size is set to 32. The training learning rate is 0.01, the batch size is 1, and the epoch is
100 for all experiments. The Adam optimizer is used.

C.4 EXPERIMENT IN FIGURE 2

We train eight ResNet18 models from scratch with a learning rate of 0.01 or 0.001, a batch size of
256 or 1024, using two random seeds. The training dataset is CIFAR-100, and the Adam optimizer is
used, with the number of iterations set to 12,000. Subsequently, from each parent model, we fine-tune
four child models with a learning rate of 0.01 or 0.001, using two random seeds. The fine-tuning
dataset is CIFAR-10. The dark lines in the figure represent the average performance of the eight
parent models and thirty-two child models. The lighter lines depict the trajectories of some specific
parent and child models.

C.5 EXPERIMENT IN FIGURE 2 (PREVIOUS VERSION, LEFT HERE ONLY FOR REVIEWERS’
REFERENCE)

0 2 4 6 8 10 12(0) 2 4 6

Training Iteration (× 1e3)

0.0

0.2

0.4

0.6

D
is

ta
n

ce

Pre-Training Phase Fine-Tuning Phase

Color

Uniform

Gaussian

Color

Uniform

Gaussian

Figure 6: During training and fine-tuning, the distance between parameter and the fake initialization
continually increases, consistent with theory.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

We train eight ResNet18 models from scratch with a learning rate of 0.01 or 0.001, a batch size of
256 or 1024, using two random seeds. The training dataset is CIFAR-100, and the Adam optimizer is
used, with the number of iterations set to 12,000. Subsequently, from each parent model, we fine-tune
four child models with a learning rate of 0.01 or 0.001, using two random seeds. The fine-tuning
dataset is CIFAR-10. The dark lines in the figure represent the average performance of the eight
parent models and thirty-two child models. The lighter lines depict the trajectories of some specific
parent and child models.

In our theory, the only restriction on the distribution of the fake initialization is that it has zero mean,
with no constraints on the variance and the type of the distribution. We tested with two types of
distributions and with various variances, including {1e− 3, 1e− 2, 1e− 1, 1, 10}, and found that the
resulting monotonic increasing trend remains stable. The plotted graphs are consistent with those
in Figure 3. Note that, the variance of 1e − 3 is smaller than the variance when using Kaiming
initialization, while a variance of 10 is much larger than the scale of the neural network parameters
after training. Thus, this confirms that the choice of the distribution for z is, as predicted by theory,
highly robust.

D DERIVATIONS

D.1 DERIVATION OF THE PROPOSITION

Proposition 2. Let ft denote a neural network trained using gradient flow on the dataset D = (X ,Y)
at time t. Let θt ∈ Rdθ×1 denote the vectorized parameters of ft, where dθ is the number of
parameters. Let f0 denote the neural network at the initialization with initial parameters θ0. Let η
denote the learning rate. Then, with MSE loss L ≜ 1

2 ||f(X)− Y||22, the Euclidean norm θt can be
written as,

1

dθ
||∇θ0

f0(X)TΘ−1(I − e−ηΘt)(f0(X)− Y)]||22 + ϵ, (4)

which increases over time t.

Proof. In the derivation, we use the dynamic of the linearized ft to approximate the dynamic of the
original non-linear ft. Such linearization has been demonstrated to be an effective approximation
of the dynamic of the original ft with high accuracy (Lee et al., 2019b). To simplify the notation,
we keep using the ft to denote linearized network. Given the input X , the output of the linearized
network is defined as ft(X) =≜ f0(X)+∇θ0f0(X)(θt−θ0). Under the gradient flow, the dynamic
of the parameters follows

θ̇t = −η∇θ0
f0(X)T∇ft(X)L. (5)

Under MSE loss the solution of θt is

θt = θ0 −∇θ0f0(X)TΘ−1(I − e−ηΘt)(f0(X)− Y), (6)

where I is the identity matrix, and Θ ≜ ∇θ0f0(X)∇θ0f0(X)T is the tangent kernel at the initializa-
tion. Thus, the ℓ2 norm of the parameters can be written as

1

dθ
||θt||22 =

1

dθ
||θ0 −∇θ0

f0(X)TΘ−1(I − e−ηΘt)(f0(X)− Y)||22 (7)

=
1

dθ
[θ0 −∇θ0

f0(X)TΘ−1(I − e−ηΘt)(f0(X)− Y)]T

× [θ0 −∇θ0
f0(X)TΘ−1(I − e−ηΘt)(f0(X)− Y)] (8)

=
1

dθ
[∇θ0

f0(X)TΘ−1(I − e−ηΘt)(f0(X)− Y)]T

× [∇θ0
f0(X)TΘ−1(I − e−ηΘt)(f0(X)− Y)]

− 2

dθ
[∇θ0

f0(X)TΘ−1(I − e−ηΘt)(f0(X)− Y)]θ0

+
1

dθ
θT
0 θ0. (9)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

There are three terms in the equation, representing the second-order component, first-order com-
ponent and the zero-order component of the changes in the Euclidean distance introduced by the
gradient descent. Because in practice, θ0 is initialized from a distribution with zero mean and small
variance, the second term can be ignored. The third term is time-independent and does not affect the
monotonicity in our subsequent analysis, so it can also be disregarded. We denote the second and
third terms as ϵ. Thus the ℓ2 distance can be approximated by

1

dθ
||θt||22 ≈ 1

dθ
[∇θ0f0(X)TΘ−1(I − e−ηΘt)(f0(X)− Y)]T

× [∇θ0f0(X)TΘ−1(I − e−ηΘt)(f0(X)− Y)] + ϵ. (10)

To evaluate the evolution of the distance along the time, we evaluate its derivative of t as

1

dθ

d||θt||22
dt

=
2

dθ
(f0(X)− Y)T e−ηΘt(I − e−ηΘt)(f0(X)− Y)η. (11)

Because all eigenvalues of e−ηΘt are between 0 and 1, both e−ηΘt and I−e−ηΘt are positive definite.
Because (e−ηΘt)(I − e−ηΘt) = (I − e−ηΘt)(e−ηΘt), (I − e−ηΘt)(e−ηΘt) is also positive definite.
Thus, the derivative is positive, the norm of the parameters increases along the time.

Remark 1 (Remarks on the assumptions.). In the theorem, we use the assumptions that the width of
neural network goes to infinity, which is a common assumption used in the work in neural tangent
kernel (Jacot et al., 2018; Arora et al., 2019) and neural network linearization (Lee et al., 2019b).
Practically, for example, the theoretical properties align well with the behaviors of architecture, like
3layer fully-connected network with layer width of 8196 (Lee et al., 2019b).

In the theorem, we use the assumption that the loss is MSE, which is also a common assumption
used in the work in neural tangent kernel (Jacot et al., 2018; Arora et al., 2019) and neural network
linearization (Lee et al., 2019b). Only with the MSE loss can the analytic solution of the dynamics of
neural network training be derived.

D.2 GENERALIZATION TO LOSS WITH WEIGHT DECAY

Proposition 3. Let ft denote a neural network trained using gradient flow on the dataset D = (X ,Y)
at time t. Let θt ∈ Rdθ×1 denote the vectorized parameters of ft, where dθ is the number of
parameters. Let f0 denote the neural network at the initialization with initial parameters θ0. Let η
denote the learning rate. Let λ denote the small positive balancing parameter for the weight decay
term. Then, with MSE loss L ≜ 1

2 ||f(X) − Y||22 and weight decay L′ ≜ 1
2 ||θt||22, the Euclidean

norm θt can be written as,
1

dθ
||∇θ0

f0(X)TΘ−1(I − e−ηΘt)(f0(X)− Y)]||22 + ϵ, (12)

which increases over time t.

Proof. Similarily based on the linearization, the dynamic of the parameters follows

θ̇t = −η∇θ0f0(X)T∇ft(X)(L+ L′). (13)

Under MSE loss the solution of θt is

θt = θ0 −∇θ0
f0(X)T (Θ + λI)−1(I − e−η(Θ+λI)t)(f0(X)− Y), (14)

where I is the identity matrix, and Θ ≜ ∇θ0f0(X)∇θ0f0(X)T is the tangent kernel at the initializa-
tion. Thus, the ℓ2 norm of the parameters can be written as

1

dθ
||θt||22 =

1

dθ
[∇θ0

f0(X)T (Θ + λI)−1(I − e−η(Θ+λI)t)(f0(X)− Y)]T

× [∇θ0
f0(X)T (Θ + λI)−1(I − e−η(Θ+λI)t)(f0(X)− Y)]

− 2

dθ
[∇θ0

f0(X)T (Θ + λI)−1(I − e−η(Θ+λI)t)(f0(X)− Y)]θ0

+
1

dθ
θT
0 θ0. (15)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Collecting the high order term into ϵ, the ℓ2 norm can be approximated by

1

dθ
||θt||22 ≈ 1

dθ
[∇θ0f0(X)T (Θ + λI)−1(I − e−η(Θ+λI)t)(f0(X)− Y)]T

× [∇θ0f0(X)T (Θ + λI)−1(I − e−η(Θ+λI)t)(f0(X)− Y)] + ϵ. (16)

Its derivative of t can be written as

1

dθ

d||θt||22
dt

=
2η

dθ
(f0(X)− Y)T∇θ0f0(X)T (Θ + λI)−1e−η(Θ+λI)t

× [I − [e−η(Θ+λI)t]−1](Θ + λI)e−η(Θ+λI)t(Θ + λI)−1∇θ0f0(X)(f0(X)− Y).
(17)

Because λ is small the term I − [e−η(Θ+λI)t]−1 can be approximated as (Θ + λI)t. Similarly to the
discussion in Appendix D.1, the derivative is positive definite. Thus, the derivative is positive, the
norm of the parameters increases along the time.

E FURTHER DISCUSSIONS

E.1 IMPACTS, LIMITATIONS, AND FUTURE EXPLORATIONS

Neural phylogeny detection is the first task that identifies fine-tuning pairs and directions directly
from a collection of models without relying on generational annotations. Identifying the phylogeny
of models has significant implications for research and model governance. The information about
model relationships can be used to study the inheritance of knowledge, and the spread of bias and
weaknesses among models. Practitioners can use detected phylogeny to regulate model usage. Since
phylogeny detection only requires parts of the model parameters, extracting the knowledge learned
by the models or related information used for training is difficult, thus minimizing the risk of privacy
or intellectual property breaches. However, the ability of phylogeny detection to uncover fine-tuning
relationships between models can be applied to research on model attacks, defenses, and privacy
extraction and protection. For example, when designing black-box attack methods, a more effective
proxy model can be selected from a model library using phylogeny detection.

As the first attempt to address a novel task, our solutions have many areas for further exploration.
First, due to the reliance on the natural alignment between parent and child model parameters, our
models cannot handle fine-tuning with additional parameters introduced or changes in neural network
structures. However, this strategy is widely used in the efficient tuning of large models, making
it highly relevant for practical applications and a promising direction for future research. On the
other hand, our learning-free method treats phylogeny detection as a clustering task, which is highly
dependent on data structure and sensitive to hyperparameter design. Although our learning-free
method achieved good results, in practical applications, it is worth exploring how to introduce more
effective hyperparameter selection mechanisms or approach the phylogeny detection problem from
different perspectives to avoid relying on clustering methods.

E.2 PHYLOGENY DETECTION AND ATTACKS

Our method requires access to model parameters and assumes that both the parent and child models
are fully accessible. Therefore, our finetuning relationship detection is primarily designed for open-
source models, such as the publicly available models on HuggingFace. For these models, white-box
attacks can be performed directly with high success rate.

However, the proposed Phylogeny Detection does not enhance the white-box attack. While it may
enhance black-box and gray-box attacks by improving the selection of proxy models, these improved
attacks will still be less efficient and effective than white-box attacks.

On the other hand, the issue of improved proxy model selection leading to more effective black-
box and gray-box attacks will only arise if black-box or gray-box finetuning relationship detection
becomes feasible. We recognize black-box or gray-box finetuning relationship detection as an
important direction for future research and will address it in the Future Work and Limitations section.

24

	Introduction
	Related Works
	Neural Lineage and Deep Model IP Protection
	Neural Network Linearization
	Graph Structure Learning

	Method
	Notation and Task
	Direction of the Gradient Descent
	Neural Phylogeny Detection via Clustering
	Neural Phylogeny Detector

	Experiments
	Conclusion
	Experiments with Stable Diffusion and Llama
	Collection of Open-Source Models
	Collection of DreamBooth-Finetuned Models
	Experiments with Open-Sourced Models in Figure 1
	Performance of the Learning-Free Detection Method with Open-Source Models
	Experiments with DreamBooth-Finetuned Models in Figure 1

	Other Additional Results and Illustrations
	Experimental Results on Pet and DTD
	Generalizability of Learning-Based Detector
	Diagram Illustrations on the KMeans-along Method

	Other Implementation Details
	Experiments in Table 2 and Table 5
	Model Set
	The Choice of Weight
	Implementation of the Learning-Free Methods

	Experiments in Table 3
	Phylogeny Detector
	Experiment in Figure 2
	Experiment in Figure 2 (Previous Version, Left Here only for Reviewers' Reference)

	Derivations
	Derivation of the Proposition
	Generalization to Loss with Weight Decay

	Further Discussions
	Impacts, Limitations, and Future Explorations
	Phylogeny Detection and Attacks

