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Abstract

We propose a novel automatic evaluation met-001
ric for open-ended text generation, which is a002
substantial improvement of the recently devel-003
oped method, Fourier analysis of cross-entropy004
(FACE), hence, FACE-2. FACE-2 is a psy-005
cholinguistically inspired metric that extracts006
the dynamic patterns (spectrum) of text sur-007
prisal. Examined with open-ended text gener-008
ation tasks, FACE-2 significantly outperforms009
a broad set of baseline metrics in revealing the010
model scaling effect, which scales up to mod-011
els of 70B parameters, while many other exist-012
ing metrics fail to capture this effect. We have013
also confirmed the advantage of FACE-2 in pro-014
ducing stronger agreement with human pref-015
erences from a large human-annotated dataset.016
We advocate for including metrics that mine017
the dynamics of likelihood in evaluating open-018
ended text generation, which covers broader as-019
pects of human language than only using static020
likelihood-based or semantic-based metrics.021

1 Introduction022

The surprisal (likelihood) of texts is an important023

source of information for evaluating the outcome024

of natural language generation tasks, especially for025

open-ended generation. Ever since the early works026

that directly use surprisal for evaluation, such as027

GLTR (Gehrmann et al., 2019), Solaiman et al.028

(2019), and Ippolito et al. (2020), more sophisti-029

cated methods have been recently developed to fur-030

ther harness the potentials of surprisal: some utilize031

the curvature of surprisal (e.g., DetectGPT and Fast-032

Detect) Mitchell et al. (2023); Bao et al. (2024), and033

some rely on its variance (e.g., GPT-who) (Venka-034

traman et al., 2024). These works have achieved035

impressive effect in telling apart model-generated036

texts from those “authentic” human-written ones.037

A less-taken way is to use the dynamic property038

of surprisal, that is, how surprisal changes over039

time (or, the position in body of text), as the basis040
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Figure 1: An example showing improvement of FACE-2
(this study) over FACE-1 in better distinguishing texts
generated by models of different sizes. “small”⇒1.5b,
“medium”⇒7b, “large”⇒72b, all from Qwen2 family.
Curves are spectra of surprisal fit with GAM.

for evaluation. This idea has roots in psycholin- 041

guistics theories about how the cognitive effort 042

for processing natural language is constrained tem- 043

porally, such as the uniform information density 044

(UID) (Florian Jaeger, 2010) and entropy rate con- 045

stancy (ERC) (Genzel and Charniak, 2002) theo- 046

ries. As far as we are aware of, Fourier analysis 047

of cross-entropy (FACE) (Yang et al., 2023) is the 048

first attempt in this direction, and FourierGPT (Xu 049

et al., 2024) adopts its method for the generated 050

text detection task. 051

However, while focusing on the task of evaluat- 052

ing open-ended text generation, we found that eval- 053

uation metrics have not kept pace with the devel- 054

opment of Large Language Models (LLMs). Met- 055

rics like FACE and MAUVE (Pillutla et al., 2021) 056

have been tested mainly on older, smaller models 057

(such as GPT-2 and OPT). In the current landscape, 058

with the emergence of larger and newer models 059

(like Llama3 (Touvron et al., 2023) and Qwen2 060

(qwe, 2024)), their conclusions may no longer hold. 061

Indeed our experimental results show that many 062

historically popular metrics fail to evaluate current 063

models correctly, while FACE still demonstrates a 064

degree of effectiveness. 065

To better align with the evaluation of open-ended 066
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text generation for modern LLMs, we introduce067

FACE-2, an improved version of the original FACE068

metric (referred as FACE-1 throughout the study).069

Our major improvements are: (i) including opti-070

mized processing steps of surprisal which is the071

basis for NLG evaluation; (ii) implementing sev-072

eral new distance functions on spectrum represen-073

tations which are mathematically more sound. We074

conclude our contribution as follows:075

1. We rethink the limits of an existing open-ended076

text generation metric FACE-1, and introduce077

an upgraded metric, namely FACE-2.078

2. We conducted experiments using some mod-079

ern and more recent LLMs (e.g., Llama3 and080

Qwen2) and scaled up the experiment size to081

70B.082

3. Our experiments on the evaluation of LLM ca-083

pacity and alignment with human preference084

show that most metrics from the past cannot cor-085

rectly evaluate modern LLMs, while spectrum-086

based metrics still maintain some effectiveness.087

4. Our analysis shows that FACE-2 is much more088

reliable than FACE-1, and the spectrum-based089

metric still has the potential to grow.090

2 Related Work091

2.1 Surprisal Studies in Psycholinguistics and092

the Related NLG Evaluation Metrics093

Since our proposed metric FACE-2 is based on sur-094

prisal, here we introduce the concept by reviewing095

the related linguistic studies as well as the NLG096

evaluation framework based on that.097

Surprisal is a well studied concept in psycholin-098

guistics, which has been known to reflect the cog-099

nitive processes underlying human language usage,100

with evidence a wealth of corpus-based and behav-101

ioral studies (Jaeger and Levy, 2006; Smith and102

Levy, 2013). The most relevant previous empiri-103

cal findings for FACE-1 and this study are about104

temporal property of surprisal, i.e., how surprisal105

changes over time. The earlist work to the best of106

our knowledge, dates back to Genzel and Charniak107

(2002) and also discussed in Dethlefs et al. (2016),108

who find that human users to dialogue systems are109

sensitive to the peaks and troughs of entropy in110

speech. Xu and Reitter (2016) take a closer look111

at the sub-structure of spontaneous dialogues, and112

find that the utterance surprisal from two speakers113

converge towards each other within topical seg-114

ments. Further, Xu and Reitter (2017) hypothesize115

that the observed convergence of surprisal can be 116

attributed to the innate periodicity of language pro- 117

cessing capacity limited by human cognitive load 118

during communication, and back it up with evi- 119

dence that the spectral features of surprisal are 120

useful predictors for success in task-oriented di- 121

alogues. Similar investigations are carried out on 122

free conversations (Maës et al., 2022), task-oriented 123

dialogues in written and spoken modalities (Giu- 124

lianelli et al., 2021), and larger datasets (Giulianelli 125

and Fernández, 2021). 126

Based on the previous empirical studies on the 127

surprisal, word (token) level surprisal has been 128

widely used for evaluating the quality of generated 129

text. Gehrmann et al. (2019) used heatmap-like 130

method to directly visualize the difference in token 131

surprisal between GPT2-generated and human writ- 132

ten text, where high-surprisal tokens are visualized 133

with warmer colors, i.e., the red end on spectrum, 134

while low-surprisal tokens with colder colors. 135

Entering the era of large language models, the 136

surprisal view of language started to gain more 137

attention from researchers who are interested in 138

developing more effective and cognitive-inspired 139

evaluation tools for natural language generation. 140

An example is FACE-1 (Yang et al., 2023), which 141

adopts the spectral method in Xu and Reitter (2017) 142

to the evaluation of open-ended text generation. 143

Follow-up works started using the fluctuation of 144

surprisal as an indicator of whether the text was 145

generated by model or human writers, leading to 146

several successful psycholinguistics-inspired text 147

detection methods, such as GPT-who (Venkatra- 148

man et al., 2024) and FourierGPT (Xu et al., 2024). 149

Among these studies, FourierGPT’s method is most 150

related to our study. 151

While FACE-1 has previously obtained a suc- 152

cess in the evaluation of open-ended text genera- 153

tion, it still has some limitations:First, FACE-1 is 154

mathematically flawed and its choice for distance 155

functions lacks careful curation (see Section 3). 156

Secondly, it is developed and tested using GPT-2 157

(Radford et al., 2019) generated data, and thus the 158

original conclusions on modeling scaling effects 159

and sampling methods does not necessarily apply 160

to current LLMs. 161

2.2 Limitations of Existing NLG Evaluation 162

Metrics 163

Besides the NLG evaluation metrics based on sur- 164

prisal, a broad set of other metrics can also be used 165

for evaluating open-ended text generation: Self- 166
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BLEU, a lexical overlap-based metric proposed by167

Zhu et al. (2018) and based on BLEU (Papineni168

et al., 2002); Zipf score, proposed by Holtzman169

et al. (2020) (see Section 2.1); MAUVE, a metric170

based on the similarity between quantized seman-171

tic representations of texts (Pillutla et al., 2021);172

BERTScore, a semantic similarity-based metric us-173

ing pretrained BERT models (Zhang et al., 2020);174

BARTScore, a generation-based metric that uses175

the log-likelihood of generation (from source to176

target) to measure text quality (Yuan et al., 2021).177

However, all of the above-listed metrics are de-178

veloped in the pre-ChatGPT era, at which point179

advanced techniques like data engineering, train-180

ing engineering, and scaling laws had not yet fully181

investigated. It means that many of the current con-182

clusions about these metrics’ performances might183

be out-of-date. Therefore, we need a new compre-184

hensive study to update our understanding of their185

effectiveness on more recent LLMs.186

3 FACE-2 Workflow187

The general workflow of FACE-2, as described in188

Figure 2, can be summarized in the following steps:189

Step 1 - Estimate surprisal Given D as text190

set, we use an language model evaluator to191

calculate the surprisal of each sentence in D.192

For a sentence of N tokens t1, . . . , tN , its sur-193

prisal sequence S = s1, . . . , sN−1 is defined as194

si ≜ − log p(ti|t1, . . . , ti−1), i.e., the negative log-195

probability for each token estimated by the lan-196

guage model. There |D| pieces of such surprisal197

sequences produced at this step.198

Inspired by FourierGPT (Xu et al., 2024), we199

additionally apply a z-score normalization to the200

spectrum to improve the numerical stability of the201

spectrum value. The surprisal sequence becomes:202

s̃(n) =
s(n)− µ

σ

where µ =
∑

s(n)/N,

σ =
∑

(s(n)− µ)2/(N − 1)

(1)203

Step 2 - Fourier transform We treat S as a sig-204

nal in time domain, and apply the discrete Fourier205

transform (defined in Cooley and Tukey, 1965):206

X(ωk) ≜
N−1∑
n=0

s̃(n)e−jωkn (2)207

Note that here we change the index subscript208

from i to n to avoid confusion with the imaginary209

Figure 2: The basic workflow of the FACE-2 approach.

unit i, which is denoted by j instead (j2 = −1). 210

Thus s(n) is equivalent to si. The obtained series 211

of complex numbers F = {X(ωk)} is the spectral 212

representation of the original surprisal signal in 213

frequency domain, where ωk = 2πk
N is the k-th 214

frequency component, k = 0, . . . , N − 1. 215

Step 3 - Spectrum preprocessing The mathe- 216

matical definition of FACE-1 is flawed because 217

it takes only real(X(ωk)) as the spectrum, ignor- 218

ing the information carried by the imaginary com- 219

ponent. As a fix, in FACE-2 we use L2-norms 220

∥X(ωk)∥ =
√

real(X(ωk))2 + imag(X(ωk))2 as 221

the final spectrum representation. 222

Step 4 - Measure similarity of spectrum Given 223

text data from two sources, Dh (human written) and 224

Dm (model generated), and their spectra Fh and 225

Fm obtained from previous stages, respectively. By 226

our assumption, the quality of generated text can be 227

reflected in its distance from human text in spectral 228

space, that is, some distance/similarity measures 229

between Fm and Fh. FACE-1 uses four similarity 230

functions: Spectral overlap (SO), Pearson’s corre- 231

lation (CORR), cosine distance, and Spearman’s 232

correlation (SPEAR), where CORR and cosine dis- 233

tance are mathematically equivalent, and SPEAR 234

performs poorly. 235

Therefore, in this study we remove the dupli- 236

cate and poor-performed metric proved in FACE- 237

1 study, and then propose to use three new dis- 238

tance functions: Earth Mover’s Distance (EMD) 239

(Rubner et al., 1998), Kullback-Leibler divergence 240

(KL)(Kullback and Leibler, 1951), and Jenson- 241

Shannon divergence (JS, also named total diver- 242

gence to the average by Dagan et al., 1997). These 243

functions are chosen because they are widely used 244

for measuring the distance between probability dis- 245
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Figure 3: Illustration of how the scaling effect of gener-
ator models is analyzed. The tables represent generator
model × task combinations. The “s”, “m”, “l” indicate
small, medium, and large model size, respectively.

tributions, and all come with good interpretability.246

In particular, EMD is a long-standing distance247

function suitable for image retrieval with spectral248

features (Rubner et al., 2000; Deborah et al., 2015),249

which motivates us to migrate it to a similar sce-250

nario, that is, text similarity comparison based on251

spectral features (both image data and language252

data are treated as time series). KL is an asymmet-253

ric for measuring the difference between two distri-254

butions, which is suitable here because a normal-255

ized spectrum can be considered as a distribution.256

JS is a symmetrized and smoothed version of KL,257

and it is adopted to mitigate the asymmetricality258

issue in KL.259

In sum, five metrics are adopted in FACE-2, SO,260

CORR, EMD, KL and JS, defined as:261

SO = AUC(Fh ∩ Fm)/AUC(Fh ∪ Fm) (3)262

CORR = cov(Fh,Fm)/σ(Fh)σ(Fm) (4)263

EMD =

∫ ∞

−∞
|Fh −Fm| (5)264

KL =
∑

x∈[0,π/2]

Fh(x) log(
Fh(x)

Fm(x)
) (6)265

JS =
1

2
KL(Fh,Fh+m) +

1

2
KL(Fm,Fh+m) (7)266

In these formulas, Fh and Fm are the text spec-267

tra from human and models, respectively, and268

Fh+m = 1
2(Fh + Fm). The AUC in Equation (3)269

refers to the area under the curve. According to270

EMD’s definition in Equation (5), it reflects the271

amount of “work” must be done to transform one272

distribution Fm into another Fh. In KL and JS,273

the spectrum is first normalized into a probability274

distribution.275

4 Experiments 276

In order to bring the evaluation of open-ended text 277

generation in line with the current development 278

of LLM, we evaluate FACE-2, our main objec- 279

tive of experiments, a simple baseline metric, sur- 280

prisal, which directly uses the log-likelihood of 281

the evaluator model, and all other metrics men- 282

tioned in section 2.2 in our extensive large-scale 283

experiments. Our experiment would include some 284

widely used LLMs range from 0.5B to 70B, and 285

test these metrics’ agreement with model size and 286

human preference. We evaluate the performance of 287

FACE-2 compared other metrics, with respect to 288

the following two desiderata: 289

1. Model scaling effect: How well do the metric 290

scores align with the scaling effect of model 291

size, that is, larger models are better than smaller 292

ones.1 (Section 4.2) 293

2. Agreement with human preferences: How 294

well do the metric scores align with human pref- 295

erence for text quality. (Section 4.3) 296

The open-ended text generation can be described 297

as: given a sequence as the prompt, the goal is to 298

generate the full text (or response, for instructed 299

model) based on the prompt.Hyperparameters such 300

as sampling strategies, maximum and minimum 301

generation lengths, and GPU hour costs are re- 302

ported in Appendix A.4. 303

4.1 Datasets and models 304

Datasets The prompts for generation are from 305

eight datasets in two languages (English and 306

Chinese). The majority of data are in written 307

modality: Wiki, News, and Story, which are com- 308

mon choices in previous studies (Pillutla et al., 309

2021; Mitchell et al., 2023; Bao et al., 2024). 310

For English, we include two extra datasets in di- 311

alogue modality for an extended investigation. 312

The three Chinese datasets are Wikipedia dump 313

(Wikimedia-Foundation), MNBVC-News (MN- 314

BVC Team, 2023), and WebNovel (Jun, 2023). 315

The five English datasets are Wikipedia dump 316

(Wikimedia-Foundation), BBC-News (RealTime- 317

Data), and WritingPrompts (Fan et al., 2018), Pub- 318

medQA (Jin et al., 2019), a domain-specific dataset, 319

and LIMA (Zhou et al., 2023) a general QA dataset. 320

1We would make a brief explanation of the scaling effects.
It is a conclusion derived from Arena leaderboard (Chiang
et al., 2024), where all LLMs are compared and rated by
human preference with ELO ranking. Amount the same model
family, a larger model always ranks higher.
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The generation tasks in written modality are as-321

signed to base models, and the dialogue modality is322

for instruction-tuned models. Detailed statistics and323

data cleaning steps are reported in Appendix A.2324

and Table 3.325

Models The models used for text generation are:326

LLaMA-3 (8b, 70b) (Touvron et al., 2023) and327

Gemma-2 (2b, 9b, 27b) (Team, 2024) for English328

generation only, and Qwen-2 (1.5b, 7b, 72b) (Yang329

et al., 2024) and Yi-1.5 (6b, 34b) (Young et al.,330

2024) for both English and Chinese generation.331

The metrics will be evaluated on these generated332

texts. FACE-2 requires an evaluator to calculate the333

surprisal as described in Section 3, we use Pythia334

(410m, 1.4b) (Biderman et al., 2023) and LLaMA3335

(8b, 70b) as evaluator for English, and Qwen-2336

(0.5b, 1.5b, 7b, 72b) as evaluator for both English337

and Chinese. We did not use English model for Chi-338

nese experiments, since they are not well trained on339

Chinese datasets, which makes them tend to behave340

in English pattern.341

We compare performances of different model342

families in various sizes, with details reported in343

Table 4 in Appendix A.3.344

4.2 Result: Model scaling effect345

We test the degree to which “scaling law” holds346

to the metric scores of generated texts, by count-347

ing the number of cases that strictly satisfy the348

condition large ≻ medium ≻ small, in terms of349

generator size, where the ≻ operator means that350

its left operand scores better than its right operand,351

which is defined differently across metrics.352

We consider all model family × task combi-353

nations as shown in Figure 3: the English table354

consists of 4 (column: generator models) × 5355

(row: tasks) = 20 combinations; the Chinese ta-356

ble consists of 2 × 3 = 6 combinations, accord-357

ingly. A cell of the table contains the evaluation358

scores for the texts generated from three versions359

of the same model: small, medium, and large (ex-360

cept Llama3, which only has two versions). For361

each cell, if the scores strictly satisfy the inequality362

large ≻ medium ≻ small, we put a valid mark.363

Otherwise, we mark that cell invalid. Finally, we364

use the ratio of valid cells to indicate the degree to365

which a specific metric follows the scaling law.366

This analysis is based on the belief that larger367

models should demonstrate better overall genera-368

tion performance, including the open-ended text369

generation task, which is a reasonable inference370

from the scaling laws of LLMs (Raffel et al., 2020; 371

Kaplan et al., 2020; Brown, 2020). Under this 372

belief, a good metric that claims to characterize 373

the model’s capability of generating “high-quality” 374

texts should be able to produce scores that rank 375

larger models higher than smaller ones. That means 376

we can judge the soundness of a metric by calculat- 377

ing the valid cell ratio as the basis for comparison. 378

For example, if metric mA results in 7 out of 20 379

valid cells for English, which out-performs the 5 380

out of 20 from another metric mB , then we can 381

conclude that both are better than a random guess 382

(1/P 3
3 = 1/6 ≈ 0.167), but mA is preferred over 383

mB as the former shows stronger scaling effect. 384

We first compare FACE-2 with its predecessor 385

FACE-1 and the naive surprisal method. As shown 386

in Table 1, FACE-2 has higher ratios than FACE- 387

1 and surprisal, and all metrics surpass the random 388

guess baseline. The numbers in Table 1 are means 389

and SDs from the 4 evaluators for each language, 390

and thus the advantage of FACE-2 is stable and 391

significant. The best performing distance function 392

is EMD for English, and JS for Chinese. 393

Then in Table 2 we compare the best perfor- 394

mance (among all evaluators) of FACE-2 with those 395

metrics that do not depend on multiple evaluator 396

models. FACE-2 using EMD as the distance func- 397

tion has the highest ratio in English data, and FACE- 398

2 using CORR wins in Chinese. In sum, from the 399

two tables, we can conclude that FACE-2 can better 400

reflect the scaling effect of model size than its pre- 401

decessor and most existing metrics, in open-ended 402

text generation tasks. For a more intuitive presenta- 403

tion, we illustrate GAM-smoothed spectrum curves 404

from multiple generator model sizes, examining 405

whether larger models are closer to human (see 406

Figure 4), in which FACE-2 curves indeed better 407

resemble human spectrum. 408

Besides the main conclusion, we also conduct 409

ablation studies on the z-score normalization, the 410

L2-norm on spectrum, and the selection of distance 411

functions, which are discussed as follows. 412

Ablation on z-score z-score normalization on 413

surprisal before applying Fourier transform has 414

mostly positive effect on the outcomes: the highest 415

ratios in Table 1 come from z-scored rows; z-score 416

operation is particularly helpful to the ensemble 417

cases in Chinese (the meaning of ensemble will be 418

explained later); the English ensemble cases are 419

odd. This result sheds new light to our understand- 420

ing of surprisal in language: the “relative” values 421
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Lang. Metric Valid Cell Ratio

English

FACE-1SO 0.356 (0.053)
FACE-2EMD (L2) 0.388 (0.088)†
FACE-2EMD (z + L2) 0.400 (0.173)

FACE-2Ensemble-3 (L2) 0.331 (0.070)
FACE-2Ensemble-3 (z + L2) 0.194 (0.042)
FACE-2Ensemble-5 (L2) 0.281 (0.065)
FACE-2Ensemble-5 (z + L2) 0.175 (0.046)

surprisal 0.363 (0.143)

Chinese

FACE-1SO 0.417 (0.083)
FACE-2SO (L2) 0.417 (0.319)
FACE-2JS (z + L2) 0.583 (0.083)

FACE-2Ensemble-3 (L2) 0.292 (0.083)
FACE-2Ensemble-3 (z + L2) 0.542 (0.160)†
FACE-2Ensemble-5 (L2) 0.292 (0.083)
FACE-2Ensemble-5 (z + L2) 0.500 (0.136)

surprisal 0.375 (0.415)

random guess 1/6 ≈ 0.167

Table 1: FACE-2 compared to FACE-1 and surprisal in
the valid cell ratio that satisfies the assumption of “large
≻ medium ≻ small” in terms of generator size. Num-
bers in parentheses are standard deviations. Subscript of
FACE indicates the distance function used, or an ensem-
ble method. z stands for applying z-score normalization
on the surprisal. L2 stands for extracting L2-norm from
the spectrum. Best scores for each language group are
in bold, and † indicates the second best.

are more important than absolute ones in describ-422

ing the dynamic patterns of how surprisal changes423

in text. In other words, the spectral features of sur-424

prisal are evaluator-independent ones, possibly re-425

flecting some robust cognitive-load-related features426

of the generated (or human-written) texts.427

Ablation on L2-norm The effect of L2-norm on428

spectrum is not as salient. While the highest ratio429

in Table 1 is achieved in the L2-normed FACE-430

2, the overall ratios across all distance functions,431

however, is almost equally good in FACE-1 (see432

Table 8 in Appendix B.3). This is counter-intuitive433

as L2-norm harnesses more spectral information434

than only using the real part, and it also contra-435

dicts the findings in FourierGPT (Xu et al., 2024).436

We think this might be due to the noisy frequency437

leakage problem in raw Fourier analysis, which438

could be mitigated by adding smoothing windows439

to surprisal. We leave it to future work.440

Selection of distance functions In general, the441

new distance functions in FACE-2 lead to higher442

valid cell ratios. For instance in Table 1, EMD >443

SO for English and JS > SO for Chinese. For444

practical use, we investigate whether an ensemble445

Lang. Metric Valid Cell Ratio

English

FACE-2EMD 0.600
FACE-2Ensemble-3 0.450†
FACE-2Ensemble-5 0.400

MAUVE 0.200
Zipf 0.350
Self-BLEU 0.150
BERTScore 0.450†
BARTScore 0.000

Chinese

FACE-2CORR 0.833
FACE-2EMD 0.667†
FACE-2Ensemble-3 0.667†
FACE-2Ensemble-5 0.667†

MAUVE 0.333
Zipf 0.333
Self-BLEU 0.000
BERTScore 0.667†
BARTScore 0.167

random guess 1/6 ≈ 0.167

Table 2: The valid cell ratios resulted from FACE-2 (best
among all evaluators) and other metrics. Best scores are
in bold, and † indicates the second best.

method that aggregates multiple distance functions 446

can still produce satisfying results. When compar- 447

ing text A and B, the ensemble method is to cast 448

majority vote among the judgements from multi- 449

ple distance functions. For example, if 3 out of 450

5 agree A is better than B, then it will be the en- 451

semble result. We experiment with Ensemble-3, 452

which votes among EMD, KL and JS (the three 453

new ones), and Ensemble-5, which includes all 454

five distance functions. We find that Ensemble-3 455

produces slightly better results. It is a complex task 456

to determine which distance function to use, and 457

given the current results, EMD and Ensemble-3 are 458

the best options for most cases. 459

Problem of surprisal as a metric We notice that 460

using pure surprisal as a metric also reaches de- 461

cent ratios: 0.363 for English and 0.375 for Chi- 462

nese, which are close to those of FACE-1. However, 463

these ratios have much larger standard deviations, 464

which are due to the usage of different evaluators: 465

It indicates an apparent problem of using raw sur- 466

prisal to evaluate text generation: surprisal scores 467

are low (preferred) when the evaluator matches in 468

model size with the generator; otherwise, surprisal 469

scores are high (unwanted). Therefore, using pure 470

surprisal as a metric is extremely biased towards 471

the evaluator used, and consequently, cannot pro- 472

duce consistent evaluation scores that meets the 473

common intuition that “larger model is better”. 474
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Figure 4: Exemplars of GAM smoothed spectrum plots.
The spectra from FACE-2 are on the right column,
FACE-1 on the left. FACE-2 can reveal the expected
order: larger models produce spectrum (blue and pur-
ple) that resembles human (red) more.

Comparison with other metrics Amount all the475

other metrics, BERTScore is the only metric that476

obtains the second-best performance. To our sur-477

prise, the MAUVE ratios are pretty low: 0.200 for478

English and 0.333 for Chinese. It seems that the479

texts generated by models of various sizes (at least480

within the investigation scope of this study) cannot481

be effectively distinguished using semantic repre-482

sentations, such as the clustering-based method by483

MAUVE. Zipf achieves comparable ratios as sur-484

prisal, but its computational cost is expensive. The485

lowest ratios are Self-BLEU and BARTScore, both486

of which did not even perform better than random487

guess.488

Comparison with sampling methods We com-489

pare the FACE-2 score between different sampling490

methods in Appendix B.1, the results show that a491

better sampling method (e.g., top-p with p=0.95492

and top-k with k=40) would have a better FACE-2493

score.494

4.3 Result: Agreement with human495

preferences496

Preference Dataset in MT-Bench FACE-1 and497

MAUVE experiments used a human preference498

dataset to evaluate their metric’s agreement with499

human preference (Pillutla et al., 2021)2, gener- 500

ated by GPT-2. To keep the evaluation up-to-date, 501

we use the human annotation dataset in MT-Bench 502

(Zheng et al., 2023)3 instead. It is a larger and 503

more recent dataset, containing texts generated 504

by six models: GPT-4, GPT-3.5-turbo, Claude-v1, 505

LlaMA-13B, Alpaca-13B, Vicuna-13B, and also 506

pairwise comparison results of these texts given by 507

human judges. 508

Preference Ranking The way of MT-Bench cal- 509

culating its ranking is that: Given texts that are 510

presented in pairs to crowd-sourced human judges, 511

⟨TA, TB⟩, where TA is generated by model A and 512

TB by model B, the judges are requested to an- 513

swer whether A or B wins, or if it is a tie (See Ap- 514

pendix C in Zheng et al. (2023)). Then the Bradley- 515

Terry algorithm (Bradley and Terry, 1952) is used 516

to convert the winning records of all models to a 517

ranked list of scores (called BT scores); therefore, 518

we obtain a ranked list based on human preference: 519

SA > SB > · · · > SF . It represents the mod- 520

els’ relative performances according to the human 521

judges’: model A better than model B and so on. 522

Similarly, we replace human judges with scoring 523

results for each pair of texts given by a metric, so 524

that we obtain a ranked list based on the given 525

metric: S′
B > S′

F > · · · > S′
A. The alignment 526

between these two rank lists can be measured by 527

Pearson’s correlation; it tells how well the metric 528

agrees with human preferences. 529

GPT-4 as the Approximation of Human The 530

"sloppiness" in MT-Bench is that it does not con- 531

tain human-written texts as groundtruth, which is 532

required by pairwise comparison-based metrics, 533

such as FACE-2. To deal with this, we use GPT-4’s 534

responses (the model that closest to human) as the 535

approximated human ground-truth, thereby exclud- 536

ing GPT-4 in our final ranking list. Therefore, the 537

workflow of FACE-2 within this experiment is that: 538

first compute the FACE-2 scores using the approxi- 539

mated human groundtruth, then conduct pairwise 540

comparison between each texts, and finally get the 541

ranking list by computing BT-Score. 542

Agreement with Human Preferences The BT- 543

scores from FACE-2, FACE-1, and the other five 544

metrics are plotted in Figure 5 in comparison with 545

2Available here: https://github.com/krishnap25/
mauve-experiments.

3https://huggingface.co/datasets/lmsys/mt_
bench_human_judgments

7

https://github.com/krishnap25/mauve-experiments
https://github.com/krishnap25/mauve-experiments
https://huggingface.co/datasets/lmsys/mt_bench_human_judgments
https://huggingface.co/datasets/lmsys/mt_bench_human_judgments


r = .82, p = .09 r = .78, p = .12 r = -.71, p = .18

r = .66, p = .22 r = .07, p = .91 r = .22, p = .73

r = .01, p = .99 r = .21, p = .73 r = -.48, p = .41

r = .49, p = .40 r = .66, p = .23

Figure 5: Bradley-Terry scores that reflect human preferences and evaluation metrics over model generated texts. A
higher bar indicates the corresponding source of text is more preferred by human (dark color) or metrics (lighter
colors). FACE score generally have higher correlations with human preferences.

those from human preferences. From the corre-546

lation scores, we can see that both FACE-1 and547

FACE-2 have stronger agreement with human548

preferences than other metrics. This indicates549

that spectrum-based methods are robust in differ-550

ent datasets. Among the 3 new metrics, EMD per-551

forms as well as SO and CORR, while KL and JS552

not. We argue that it is because the text length of553

MT-Bench dataset is relatively short, which makes554

the spectral distances more able to be disrupted555

by noise. Except for BARTScore, all other metrics556

perform poorly in agreement with human prefer-557

ence. It indicates that most of their conclusions on558

human agreements have failed today. The results559

consolidate the thought behind FACE: the human560

perception of text is better characterized by tempo-561

ral changes of surprisal, other than raw surprisal or562

semantic features.563

In our further case analysis, we found that564

the biggest disagreement between human prefer-565

ences and metrics was caused by Claude-v1, which566

causes low correlation scores in all cases. Ap-567

pendix B.5 may shed some light on it.568

5 Discussion and Conclusion569

In this study, we address the issue that most of570

the metrics designed for open-ended text gener-571

ation are published in the era where LLMs are572

not fully developed, therefore it is necessary to573

rethink their effectiveness in evaluating current574

LLMs. Spectrum-based methods exhibit high po-575

tential; therefore, we proposed an improved version576

of Fourier Analysis of Cross-Entropy, FACE-2, a577

metric set to evaluate open-ended text generation578

in the current LLM era.We also carried out large-579

scale experiments within up to 70B LLMs to update 580

the effectiveness conclusions of many old evalua- 581

tion metrics in the current LLM era. Our results 582

show that most of the old conclusions have failed, 583

whereas spectrum-based methods maintain its ef- 584

fectiveness to a certain degree. We observed the out- 585

performance of FACE-2 in experiments of model 586

scaling effects, and the effectiveness and robustness 587

of both spectrum-based methods in experiments of 588

agreement with human preferences. 589

When compared with its predecessor and other 590

metrics, FACE-2 demonstrates the following advan- 591

tages: Firstly, it can more effectively distinguish 592

texts generated by models of various sizes, i.e., bet- 593

ter reflecting the scaling effect. This is observed 594

across various model families and languages, 595

which, more impressively, is achieved without de- 596

pending on large evaluating models. Secondly, 597

with the newly introduced metrics (EMD, KL, and 598

JS) and the new z-score normalization step, it out- 599

performs FACE-1 and a broad set of baseline met- 600

rics. Thirdly, the advantage of FACE in agreement 601

with human preferences are confirmed in a larger 602

dataset. 603

In sum, the new evaluation method for open- 604

ended text generation, FACE-2, is effective, robust, 605

and computationally efficient. It reaches state-of- 606

the-art performance. However, no metric can fully 607

capture the complex nature of human languages. 608

As LLMs keep evolving, the gap between gener- 609

ated and real content will keep shrink. We believe 610

that seeking metrics to magnify this gap is a mean- 611

ingful response to the eternal question of where the 612

boundary between AI and human is. 613
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6 Limitations614

There are still limits in the current study. Firstly,615

larger models 100b+ parameters and commercial616

models, such as GPT-4, are not included, whose617

experiments are needed for further validation of618

FACE-2’s capability. Secondly, the majority of the619

generator models examined are base-models but620

not chat-models, although we believe that the foun-621

dational generation capabilities are determined at622

pre-training stage and is sufficient for current exper-623

iments, ideally, more experiments with chat-models624

for needed comprehensive evaluations, because625

chat-models are the most common use cases of626

LLMs. However, it is currently challenging to find627

public dialogue data with human ground-truth that628

can be directly used for generation tasks, especially629

for Chinese data and other languages. Thirdly, how630

to select the optimal distance function for FACE-2631

is yet to be determined. Our current results indicate632

EMD, JS, and CORR are most promising, and a633

simple ensemble method (Table 2) seems working,634

it still requires a systematic investigation. Lastly, it635

is not clear why the spectrum of surprisal provides636

information can reflect the sources of generator637

models. We need further evidence that map the638

spectral features in “frequency domain” to the ob-639

servable linguistic patterns in “time domain”, for640

example, sentence structure, lexical or syntactical641

choices and so on. We will try to address these642

limitations in the future work, and further improve643

FACE to a more interpretable method.644
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A Appendix: Reproduction895

A.1 Other metrics896

We compare FACE-2 with FACE-1, and other four897

metrics:898

Surprisal It is straight-forward: the lower sur-899

prisal a text produces according to an evaluator, the900

better score it receives. The exponentiated average901

surprisal of a sequence of words is exactly how902

perplexity is defined.903

MAUVE It returns a number in the scope of [0, 1].904

A larger value indicates a more similar semantic905

distribution to human written texts, which indicates906

higher text quality. The score is computed using the907

public implementation provided by Pillutla et al.908

(2021).909

Zipf It is the slope of the best-fit line on log-910

log plot of a rank versus unigram frequency plot.911

A smaller value indicates it is closer to human912

distributions, i.e., higher text quality. We use the913

open-sourced implementation from Holtzman et al.914

(2020).915

Self-BLEU This score is computed by following916

the same protocol of Holtzman et al. (2020): com-917

puting the BLEU score of each generations against918

all other generations as references. A lower final919

score suggests higher diversity of the generated920

text, which is an important indicator of text quality.921

A.2 Data and cleaning steps922

The mapping between domains and specific923

datasets are listed in Table 3.924

Language Domain Dataset

Chinese
Wiki Wikipedia-Chinese

News MNBVC-News

Story WebNovel

English

Wiki Wikipedia-English

News BBC-News

Story WritingPrompts

Domain QA PubmedQA

General QA LIMA

Table 3: Both Chinese datasets and English datasets
contain continuous writing tasks of three domains: News
article, Wikipedia document, and Story. Additionally,
we provide two open-ended text generation datasets for
instructed models.

Model Cat. Family Size Lang.

Generator

Qwen-2 1.5b, 7b, 72b
Chinese

Yi-1.5 6b, 34b

Llama-3 8b, 70b
English

Gemma-2 2b, 9b, 27b

Evaluator
Qwen-2 0.5b, 1.5b, 7b, 72b Chinese

Pythia 410m, 1.4b
English

Llama-3 8b, 70b

Table 4: Models used in the experiment. For English
datasets, both Chinese models and English models are
used for generation and evaluation experiments. For
Chinese datasets, we uses Chinese generators only, and
Qwen-2 for Chinese evaluation.

We clean the datasets to ensure quality: repe- 925

titions of sentence or meaningless strings are re- 926

moved; next we sample a subset from each dataset, 927

ensuring the texts in the subsets as controlled 928

variable have comparatively equal length. For all 929

datasets from the three main categories (except for 930

WritingPrompts), we split each into two parts, with 931

the first half as the prompt for generation, and the 932

second half as human ground-truth. The prompt 933

length is set to 64 tokens, and during generation, 934

we limit the model maximum generation length to 935

1024. For two QA datasets plus WritingPrompts, 936

we directly use the prompt provide by themselves. 937

The size of each subset we used are 5000, except 938

for Wikipedia-Chinese and MNBVC-News, where 939

we removes some texts containing too much En- 940

glish. The size of Wikipedia-Chinese’s subset is 941

2160, and MNBVC-News’ is 4206. LIMA origi- 942

nally contains 1030 groups of dialogue, we remove 943

those excessively long dialogue, the size of remain- 944

ing subset is 900. 945

To further ensure consistency in generation, we 946

use the same tokenizer across all generator models. 947

For Chinese, we use the default tokenizer from 948

Qwen2, and for English it is the Llama3 tokenizer. 949

A.3 Model details 950

Detailed sizes of the generator and evaluator mod- 951

els are listed in Table 4. 952

A.4 GPU usage and hyper-parameters 953

We used 4 A6000ada 48G GPU for the experiments 954

in this studies. We used vllm to speed up genera- 955

tion and inference. We notice that vllm does not 956

guarantee stable log probability, but this instability 957

only affects the vocabularies’ log probabilities in 958
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Sampling Method SO ↑ EMD(×100)↓ KL(×10) ↓ JS(×10) ↓

Greedy 0.55 6.43 2.64 2.40
Pure Sampling 0.57 1.77 1.92 2.12
Top-k (k=40) 0.57 1.72 1.90 2.11
Top-k (k=640) 0.57 1.76 1.92 2.12
Nucleus (p=0.95) 0.58 1.72 1.91 2.11

Table 5: FACE-2 score. Tested on Gen: Gemma2-2b-base, Inf: Llama3-70b-base, Data: BBC. (×n) means the metric
value multiplied by n.

decimal places (≤1e-3), which can be ignored.959

The arguments for the sampling method in text960

generation are as follows:961

• temperature: 1962

• top k: 50963

• top p: 0.95964

The estimated times for running generator and965

evaluator models is listed in Table 6. To deal with966

an out-of-memory bug in vllm, we clear the cuda967

cache after each step of output. This slows down the968

speed about 20%∼30%. Taking all model family ×969

task combinations together, the total running time970

of our experiments is about (20 + 6)× 3h ≈ 140h.971

Task Model Size Running Time

Generation

1.5b 10min∼20min
7b 20min∼30min

30b (4×GPUs) 1h∼2h
70b (4×GPUs) 1h∼2h

Evaluation

0.5b 5min
1.5b 5min
7b 10min

70b (4×GPUs) 40min∼2h

Table 6: Runtime of generation tasks and evaluation
tasks for different model sizes. The runtime we reported
is a rough value, which may vary according to the envi-
ronment.

B Appendix: Results972

B.1 Sampling methods973

We further make some comparison on the use of974

different sampling methods in Table 5. The results975

in the table generally suggest that a better sampling976

method (p=0.95 and k=40) have better FACE-2977

scores - the same conclusion as FACE-1.978

B.2 Spectrum plots 979

The full spectrum plots of all model family × task 980

combinations are shown in Figure 5. 981

B.3 Full valid cell ratios 982

The full results of valid cell ratios are shown in 983

Table 8. 984

B.4 MT-Bench comparison 985

The detailed MT-Bench comparison results are 986

reported in Table 9. We exclude GPT-4 and re- 987

compute the results of original MT-Bench human 988

preference BT-score. We also report the BT-score 989

of FACE-2 metrics EMD and SO, and FACE-1 990

SO. We see that the old metric SO performs only 991

slightly difference in scores, while the new metric 992

EMD is much closer to human BT-score than SO. 993

Since MAUVE is not capable for pair-wise compar- 994

ison, we report the raw MAUVE score over these 995

five models directly. 996

B.5 Case analysis for the mismatch in 997

Claude-v1 output 998

The mismatch between human preference and met- 999

ric scores in Claude-v1 outputs might be due to 1000

the fact that Claude-v1 is more likely to perform 1001

as a chat model and outputs explanations while 1002

others directly write what is requested. For exam- 1003

ple, we notice that, when the prompt is "Compose 1004

an engaging travel blog post about a recent trip 1005

to Hawaii, highlighting cultural experiences and 1006

must-see attractions.", Claude-v1 first generates 1007

a sentence like "Here is a draft travel blog post 1008

about a recent trip to Hawaii:", and then gives the 1009

main body of post. In contrast, other models tend 1010

to generate the post directly. Evaluation metrics are 1011

sensitive to this kind of semantic changes, while hu- 1012

man participants of MT-Bench that are uninformed 1013

of model-generated texts’ features focus more on 1014

the content quality. Hence FACE considers that 1015
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Claude-v1’s text is far from natural, while humans1016

rank its content to the top.1017

B.6 Case study of how FACE works better1018

than BERTScore1019

We use an example from LIMA to demonstrate1020

the situation that FACE-2 works better than1021

BERTScore. The three models are Qwen 1.5b, 7b,1022

and 72b. Comparing their outputs, we found that1023

the larger model gives the better answer that close1024

to LIMA’s groundtruth. The 1.5b model outputs a1025

large amount of useless codes and texts. The 7b1026

model gives suggestions by showing codes, which1027

might solve the problem, but clearly not a general1028

solution we hoping to see. The 72b model suc-1029

cessfully gives a general solution, which includes1030

a key information ScaleType also mentioned by1031

the groundtruth answer. FACE-2 scores can suc-1032

cessfully evaluate these models, but BERTScore1033

considers 7b model outperforms 72b (see Table 7).1034

Model BERTScore↑ FACE-2SO↑ FACE-2EMD↓ FACE-2JS↓

Qwen 1.5b 85.30 57.53 2.41 20.83
Qwen 7b 88.29 60.78 1.27 20.14
Qwen 72b 87.85 65.57 0.82 18.81

Table 7: BERTScore evaluates the model size wrong,
while all FACE-2 metrics evaluate it right.
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Metric Lang. z-score Dist. func. Evaluator Mean (SD)
en1 en2 en3 en4 zh1 zh2 zh3 zh4

FACE-1
(real part)

en

no

SO 0.30 0.25 0.40 0.40 0.40 0.35 0.40 0.35 0.36(0.05)
CORR 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30(0.00)
EMD 0.40 0.30 0.45 0.40 0.45 0.40 0.30 0.40 0.39(0.05)
KL 0.35 0.50 0.35 0.40 0.35 0.30 0.35 0.55 0.39(0.08)
JS 0.35 0.50 0.40 0.40 0.35 0.30 0.35 0.45 0.39(0.06)

yes

SO 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.45 0.36(0.03)
CORR 0.25 0.50 0.20 0.20 0.10 0.05 0.15 0.55 0.25(0.17)
EMD 0.25 0.10 0.55 0.50 0.60 0.55 0.30 0.35 0.40(0.17)
KL 0.20 0.35 0.20 0.20 0.25 0.20 0.15 0.30 0.23(0.06)
JS 0.25 0.35 0.20 0.20 0.20 0.15 0.25 0.30 0.24(0.06)

zh

no

SO - - - - 0.50 0.50 0.33 0.33 0.42(0.08)
CORR - - - - 0.33 0.33 0.33 0.33 0.33(0.00)
EMD - - - - 0.67 0.50 0.50 0.67 0.58(0.08)
KL - - - - 0.50 0.50 0.50 0.50 0.50(0.00)
JS - - - - 0.33 0.50 0.50 0.67 0.50(0.12)

yes

SO - - - - 0.50 0.50 0.67 0.67 0.58(0.08)
CORR - - - - 0.17 0.00 0.33 0.83 0.33(0.31)
EMD - - - - 0.50 0.67 0.50 0.50 0.54(0.07)
KL - - - - 0.67 0.33 0.50 0.50 0.50(0.12)
JS - - - - 0.50 0.33 0.50 0.50 0.46(0.07)

FACE-2
(L2-norm)

en

no

SO 0.40 0.45 0.35 0.25 0.40 0.40 0.30 0.40 0.37(0.06)
CORR 0.15 0.15 0.20 0.40 0.05 0.00 0.00 0.45 0.18(0.16)
EMD 0.40 0.45 0.35 0.25 0.40 0.55 0.35 0.35 0.39(0.08)
KL 0.35 0.35 0.25 0.35 0.30 0.35 0.45 0.45 0.36(0.06)
JS 0.15 0.25 0.30 0.35 0.30 0.25 0.35 0.50 0.31(0.09)

yes

SO 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35(0.00)
CORR 0.10 0.15 0.25 0.50 0.05 0.05 0.10 0.50 0.21(0.18)
EMD 0.50 0.50 0.30 0.10 0.60 0.60 0.40 0.20 0.40(0.17)
KL 0.25 0.20 0.10 0.20 0.15 0.15 0.10 0.10 0.16(0.05)
JS 0.20 0.25 0.20 0.30 0.20 0.20 0.15 0.25 0.22(0.04)

zh

no

SO - - - - 0.67 0.67 0.33 0.00 0.42(0.28)
CORR - - - - 0.00 0.00 0.17 0.50 0.17(0.20)
EMD - - - - 0.33 0.17 0.17 0.50 0.29(0.14)
KL - - - - 0.33 0.33 0.33 0.33 0.33(0.00)
JS - - - - 0.33 0.50 0.17 0.33 0.33(0.12)

yes

SO - - - - 0.50 0.50 0.50 0.50 0.50(0.00)
CORR - - - - 0.17 0.00 0.17 0.83 0.29(0.32)
EMD - - - - 0.67 0.67 0.50 0.17 0.50(0.20)
KL - - - - 0.67 0.50 0.33 0.33 0.46(0.14)
JS - - - - 0.67 0.67 0.50 0.50 0.58(0.08)

Table 8: The full valid cell ratios from all experiments. Best results from each trial are highlighted. The English
evaluator models (en1-en4) are pythia-410m, pythia-1.4b, llama3-8b, and llama3-70b. The Chinese evaluator models
(zh1-zh4) are qwen2-0.5b, qwen2-1.5b, qwen2-7b, and qwen2-72b, respectively.

Human-BT MAUVE FACE2-SO-BT FACE2-EMD-BT FACE1-SO-BT

Model Score Model Score Model Score Model Score Model Score

Claude-v1 0.476 Vicuna-13b 0.708 GPT3.5-turbo 0.333 GPT3.5-turbo 0.303 GPT3.5-turbo 0.344
GPT3.5-turbo 0.342 GPT3.5-turbo 0.644 Vicuna-13b 0.242 Claude-v1 0.273 Vicuna-13b 0.281
Vicuna-13b 0.130 Alpaca-13b 0.325 Claude-v1 0.182 Vicuda-13b 0.212 Claude-v1 0.188
Alpaca-13b 0.039 Claude-v1 0.287 Alpaca-13b 0.152 Alpaca-13b 0.121 Alpaca-13b 0.125
Llama-13b 0.012 Llama-13b 0.149 Llama-13b 0.091 Llama-13b 0.091 Llama-13b 0.063

Table 9: Detailed MT-Bench comparison between human preference, FACE, and MAUVE.
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Figure 6: Other spectrum plots demonstrating FACE-2 generally reflect model scaling effect better than FACE-1.

Input

In Android, I defined an “‘ImageView“‘’s “‘layout_width“‘ to be “‘fill_parent“‘ (which takes up
the full width of the phone).
If the image I put to “‘ImageView“‘ is bigger than the “‘layout_width“‘, Android will scale it,
right? But what about the height? When Android scales the image, will it keep the aspect ratio?
What I find out is that there is some white space at the top and bottom of the “‘ImageView“‘ when
Android scales an image which is bigger than the “‘ImageView“‘. Is that true? If yes, how can I
eliminate that white space?
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Groundtruth

* Yes, by default Android will scale your image down to fit the ImageView, maintaining
the aspect ratio. However, make sure you’re setting the image to the ImageView using “‘an-
droid:src=&quot;...&quot;“‘ rather than “‘android:background=&quot;...&quot;“‘. “‘src=“‘ makes
it scale the image maintaining aspect ratio, but “‘background=“‘ makes it scale and distort the
image to make it fit exactly to the size of the ImageView. (You can use a background and a source
at the same time though, which can be useful for things like displaying a frame around the main
image, using just one ImageView.)
* You should also see “‘android:adjustViewBounds“‘ to make the ImageView resize itself to fit the
rescaled image. For example, if you have a rectangular image in what would normally be a square
ImageView, adjustViewBounds=true will make it resize the ImageView to be rectangular as well.
This then affects how other Views are laid out around the ImageView.
Then as Samuh wrote, you can change the way it default scales images using the “‘an-
droid:scaleType“‘ parameter.
By the way, the easiest way to discover how this works would simply have been to experiment a
bit yourself! Just remember to look at the layouts in the emulator itself (or an actual phone) as the
preview in Eclipse is usually wrong.
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Qwen2-1.5b Output

I need to make the whole image stay in the “‘ImageView“‘ and not take the whole screen, but not
scale it at the same time.

< R e l a t i v e L a y o u t xmlns : a n d r o i d =" h t t p : / / schemas . a n d r o i d . com / apk /
r e s / a n d r o i d "

xmlns : t o o l s =" h t t p : / / schemas . a n d r o i d . com / t o o l s "
a n d r o i d : i d ="@+ i d / l a y o u t _ r o o t "
a n d r o i d : l a y o u t _ w i d t h =" f i l l _ p a r e n t "
a n d r o i d : l a y o u t _ h e i g h t =" f i l l _ p a r e n t "
a n d r o i d : o r i e n t a t i o n =" v e r t i c a l "
t o o l s : c o n t e x t = " . M a i n A c t i v i t y ">
<ImageView

a n d r o i d : i d ="@+ i d / imageView1 "
a n d r o i d : l a y o u t _ w i d t h =" f i l l _ p a r e n t "
a n d r o i d : l a y o u t _ h e i g h t =" f i l l _ p a r e n t "
a n d r o i d : s r c =" @drawable / background " / >

</ R e l a t i v e L a y o u t >

The problem is that the image is scaled so it covers up the space in the layout.

< R e l a t i v e L a y o u t xmlns : a n d r o i d =" h t t p : / / schemas . a n d r o i d . com / apk /
r e s / a n d r o i d "

xmlns : t o o l s =" h t t p : / / schemas . a n d r o i d . com / t o o l s "
a n d r o i d : i d ="@+ i d / l a y o u t _ r o o t "
a n d r o i d : l a y o u t _ w i d t h =" f i l l _ p a r e n t "
a n d r o i d : l a y o u t _ h e i g h t =" f i l l _ p a r e n t "
a n d r o i d : o r i e n t a t i o n =" v e r t i c a l "
t o o l s : c o n t e x t = " . M a i n A c t i v i t y ">
<ImageView

a n d r o i d : i d ="@+ i d / imageView1 "
a n d r o i d : l a y o u t _ w i d t h =" f i l l _ p a r e n t "
a n d r o i d : l a y o u t _ h e i g h t =" f i l l _ p a r e n t "
a n d r o i d : s r c =" @drawable / background " / >

<ImageView
a n d r o i d : i d ="@+ i d / imageView2 "
a n d r o i d : l a y o u t _ w i d t h =" f i l l _ p a r e n t "
a n d r o i d : l a y o u t _ h e i g h t =" f i l l _ p a r e n t "
a n d r o i d : s r c =" @drawable / background " / >

</ R e l a t i v e L a y o u t >

... a lot of unnecessary text and code ...
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And more interestingly, in iOS, when I put an image that is bigger than the layout width, there will
be no white space at all. Is that true?
If I understand the question correctly:
When you do ‘ImageView‘’s ‘LayoutParams.width = LayoutParams.MATCH_PARENT;‘ and the
image width is larger than your ‘Layout‘ size (screen size), Android will resize it (stretch it) to fit
the ‘Layout‘.
But if you try to set ‘LayoutParams.height = LayoutParams.MATCH_PARENT;‘, it will set
‘LayoutParams.height‘ to ‘ImageView‘ to 0, because ‘LayoutParams.height‘ is a ‘int‘ instead of a
‘layout_constraintDimension‘ like ‘LayoutParams.width‘. So in this case, Android won’t scale the
image to keep the ratio or not. You have to control ‘LayoutParams.height‘ by layout constraints.
By setting ‘android:adjustViewBounds="true"‘ in ‘ImageView‘’s attribute, Android will stretch
images to fill the area, respecting its original aspect ratio. It won’t add extra white space. Here is
an example:

<ImageView
a n d r o i d : i d ="@+ i d / imageView "
a n d r o i d : l a y o u t _ w i d t h =" m a t c h _ p a r e n t "
a n d r o i d : l a y o u t _ h e i g h t =" m a t c h _ p a r e n t "
a n d r o i d : s r c =" @drawable / some_image "
a n d r o i d : ad jus tViewBounds =" t r u e " / >

Regarding iOS, yes, it has the same behavior. When iOS scales the image and its width exceeds the
view’s width, it will stretch it to the width of the view, while maintaining the original aspect ratio.
It won’t add any white space above or below the image. And there is no need to set the layout size
to MATCH_PARENT, as by default it will take all available space. However, it is possible that you
still see white space if you are manually setting any other constraints or attributes that affect the
image’s dimensions. In iOS, you can also use the Auto Layout feature to set constraints for your
‘UIImageView‘ to avoid any white spaces. The key points are:
- Set ‘UIImageView’s contentMode‘ to ‘.scaleAspectFit‘. It adjusts the view to the given layout
bounds while keeping the aspect ratio. - Set ‘ImageView’s constraints‘ to fill the parent view in
both width and height. - Set the necessary auto layout constraints to position the ‘UIImageView‘.
In both environments, you don’t have to worry about white spaces if you properly set up the
constraints and attributes related to the image scaling and positioning. Hope this helps! If you need
more details or examples, let me know. I’m happy to provide further assistance.
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You could set android:scaleType="centerCrop" on your ImageView. This will ensure that your
image will be shown in the largest size possible in your space and maintain aspect ratio.
Your options are:
“‘ ImageView.ScaleType.CENTER: Scale the image to fit inside the ImageView’s bounds, centering
it. Aspect ratio is maintained.
ImageView.ScaleType.CENTER_CROP: Scale the image to fit inside the ImageView’s bounds,
centering it and cropping to fit. Useful for images that are not the same aspect ratio as the
ImageView.
ImageView.ScaleType.CENTER_INSIDE: Scale the image so that it fits entirely inside the Im-
ageView. Aspect ratio is maintained, and the image will not be scaled down if its smaller than the
ImageView.
ImageView.ScaleType.FIT_CENTER: Scale the image to fit inside the ImageView, centering and
using the image’s top and left as a center point. This scale type is like CENTER but ensures that
the entire image will be visible.
ImageView.ScaleType.FIT_END: Scale the image to fit inside the ImageView, aligning the image’s
right and bottom to the right and bottom of the ImageView. This scale type is like FIT_START but
the alignment is at the end of the ImageView.
ImageView.ScaleType.FIT_START: Scale the image to fit inside the ImageView, aligning the
image’s top and left to the top and left of the ImageView.
ImageView.ScaleType.FIT_XY: Scale the image to fit the ImageView’s bounds. The image may be
stretched to fit in this space.
ImageView.ScaleType.MATRIX: Uses a supplied Matrix object to scale and position the image.
The image will be clipped by the ImageView if it extends outside the ImageView bounds.
“‘
See [the documentation](http://developer.android.com/reference/android/widget/ImageView.
ScaleType.html) for a description of each one.
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