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Abstract

Backdoor attacks pose a significant threat to large language models (LLMs) by
embedding malicious triggers that manipulate model behavior. However, existing
defenses primarily rely on prior knowledge of backdoor triggers or targets and offer
only superficial mitigation strategies, thus struggling to fundamentally address the
inherent reliance on unreliable features. To address these limitations, we propose a
novel defense strategy, RepGuard, that strengthens LLM resilience by adaptively
separating abnormal features from useful semantic representations, rendering the
defense agnostic to specific trigger patterns. Specifically, we first introduce a
dual-perspective feature localization strategy that integrates local consistency and
sample-wise deviation metrics to identify suspicious backdoor patterns. Based on
this identification, an adaptive mask generation mechanism is applied to isolate
backdoor-targeted shortcut features by decomposing hidden representations into in-
dependent spaces, while preserving task-relevant semantics. With a multi-objective
optimization framework, our method can inherently mitigates backdoor attacks.
Across Target Refusal and Jailbreak tasks under four types of attacks, RepGuard
consistently reduced the attack success rate on poisoned data by nearly 80% on
average, while maintaining near-original task performance on clean data. Exten-
sive experiments demonstrate that RepGuard provides a scalable and interpretable
solution for safeguarding LLMs against sophisticated backdoor threats.

1 Introduction

Large Language Models (LLMs) have achieved remarkable success across diverse applications, yet
their vulnerability to backdoor attacks poses a significant challenge to their reliability and security
[1-6]. Attackers can surreptitiously embed subtle backdoors by leveraging risks in the supply chain,
such as crowdsourced datasets [7, 8], publicly available models [9], or third-party components[6].
These attacks manipulate the model to exhibit unintended behaviors, resulting in severe safety risks
such as targeted rejection or bypassing internal safety alignment [10-12].

Although current defense strategies against backdoor attacks yield meaningful contributions, they
suffer from some limitations. Primarily, optimization-based strategies such as trigger inversion
[13—15] and adversarial training [16, 17] rely on assumptions about prior knowledge of backdoor
triggers or targets, leaving them vulnerable to adaptive attacks. This issue is further exacerbated by
the inherent fragility of the models, which depend on superficial [18, 19], non-robust patterns rather
than generalizable features [20-22]. Similarly, external mitigation techniques such as trigger removal
[23, 24] and data augmentation [25, 26] fail to address this reliance on unreliable features. These
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approaches lack deep insight into the model’s internal behavior, which limits their effectiveness.
Furthermore, most existing backdoor defenses are specifically designed for vision or text classification
tasks. Since the attacker’s desired content can be expressed in different ways, mitigating backdoor
attacks targeting generation tasks in LLMs is more challenging and remains unexplored.

Recently, emerging research in representation learning suggests that the internal activation pat-
terns of malicious and benign samples can be distinguishable [27-29], offering promising direc-
tions for identifying stealthy abnormal features. In particular, backdoor features typically exhibit
stable activation patterns with low variance, ensuring consistent attack effectiveness, whereas
normal semantic features exhibit higher variance, allowing for the capture of diverse contex-
tual information (e.g., Figure 1 (a)). However, exploiting these activation differences for fea-
ture filtering poses significant is challenging. Our preliminary research in Section 4.5 shows
that relying directly on activation variance can typically lead to the misclassification of benign
semantic features, especially those that exhibit some degree of invariance, as backdoor features.
This confusion threatens to degrade model performance by inadvertently filtering out valuable
semantic information. Furthermore, the abnormal activation patterns of backdoor triggers vary
in intensity and location across samples, rendering static feature filtering strategies inadequate.

To solve this problem, we design a novel robust
defense strategy, namely RepGuard, that adap-
tively separating suspicious backdoor features
from legitimate semantic features in LLMs with-
out relying on prior knowledge of backdoors.
Specifically, we introduce a dual-perspective
feature localization strategy that integrates lo- .
cal consistency and sample-wise deviation met- Variance Across Clean Samples Variance Across Clean Samples
rics to adaptively identify suspicious backdoor () Backdoored (b) Our Method
patterns in a trigger-agnostic manner. Based
on the captured feature, we develop an adap-
tive mask generation mechanism that effectively
isolates backdoor-targeted shortcut features by
decomposing hidden representations into inde-
pendent spaces, while preserving task-relevant
semantics. To balance security and utility, we
formulate a multi-objective optimization frame-
work that ensures robust feature disentangle-
ment without compromising model performance. Through representation-level interventions, our
method provides a scalable and interpretable solution that directly mitigates the inherent vulnerabili-
ties of LLMs and provides robust protection against sophisticated backdoor threats. As illustrated
in Figure 1, a notable shift of feature points toward the diagonal highlights the effectiveness of our
defense mechanism in mitigating backdoor attacks. This shift implies that our method successfully
disrupts the anomalous consistency of backdoor feature activation and aligns their variance on back-
door data more closely with that on clean data. Most importantly, the method concurrently preserves
the usability of the model by maintaining the integrity of stable, trigger-agnostic semantic features.
Besides, We conduct experiments on four LLM architectures under two representative threat tasks
(i.g., Target refusal and Jailbreak). Experimental results demonstrate that our RepGuard consistently
reduced the attack success rate on poisoned data by nearly 80% on average, while maintaining
near-original task performance on clean data.

Variance Across Backdoor Samples

Figure 1: Feature Variance Analysis: Clean vs.
Backdoor Samples. Features in the bottom-right
show high variance in clean samples but low vari-
ance in backdoor samples. Bottom-left features
display low variance in both samples, potentially
including invariant semantic features that are diffi-
cult to distinguish based on variance alone.

2 Related Work

Textual Backdoor Attack. Backdoor attacks embed hidden triggers into Deep Neural Networks
(DNN:Ss), typically via data poisoning [8, 30-33]). These attacks enable the backdoored model to
perform normally on benign inputs but exhibit specific malicious behavior upon trigger activation.
Traditional approaches embed explicit triggers (e.g., words [34, 35], phrases [7, 11]) into inputs to
create poisoned training samples. While effective, these triggers often disrupt text fluency, making
poisoned samples easily detectable [22, 23]. This detectability has motivated the development of
more stealthy, sample-dependent backdoors. Some approaches leverage syntactic features [36, 37] or



text styles [38] as triggers by paraphrasing inputs to align with predefined templates or distinctive
styles. Others select adversarial tokens optimized for effective prediction reversal and minimal
detectability [39—42], yet require access to the target or a proxy model.

Backdoor Attack in Generative Tasks. While extensively studied in classification tasks, backdoor
attacks in generative tasks remain underexplored [4, 14, 43, 44]. Compared to classification, genera-
tive tasks, characterized by open-ended outputs and semantic complexity, amplify the stealthiness
and impact of backdoors. With the increasing adoption of LLMs, this vulnerability becomes a
growing challenge. For instance, triggers in text generation can induce biased or malicious content
[11,45,46], yet their detection is complicated by the diversity of outputs and contexts. Recent efforts
[41, 47] have attempted to utilize gradient ascent methods from jailbreaking [48, 49] to construct
poisoned samples. However, these methods are typically computationally intensive and often disrupt
the semantic context of the original samples, making them susceptible to human detection.

Backdoor Defence. Backdoor defenses can be broadly categorized into detection and mitigation
methods. Detection methods aim to prevent backdoor activation by identifying and filtering [3, 43, 50—
52] poisoned samples or triggers, often leveraging model uncertainty unpon input perturbations
[23, 51, 53]. However, these approaches struggle to robustly detect stealthy trigger patterns without
sacrificing accuracy on benign inputs. Mitigation strategies, typically formulated as minimax bi-
optimization problems [ 13, 22, 54, 55], first encourage the learning of backdoor-related features and
then suppress their harmful effects. However, these methods often rely on reference models [22, 56]
or assumptions about the attack-targeted labels [9, 57], rendering them ineffective against unknown or
stealthy triggers [4, 58]. In contrast, our method addresses these limitations by adaptively localizing
abnormal feature patterns and effectively decouple them from legitimate semantic features within
models without relying on specific prior knowledge of backdoors.

3 Methodology

3.1 Threat Model

We define the threat model as follows: The attacker embeds concealed backdoor triggers into the
training dataset through data poisoning without altering labels, aiming to manipulate the model’s
behavior. This scenario reflects a practical threat involving malicious contributions to unverified data
sources. In this context, the defender receives a potentially backdoored dataset from an untrusted
source and is assumed to be unaware of the attacker targeted label, or the specific trigger pattern.
The goal of defenders is to develop a defense strategy that neutralizes backdoor effects, ensuring the
model performs correctly on benign inputs and behaves safely under triggered conditions.

3.2 Problem Formulation

Formally, let x be the instruction input and Fy(z) be the response of the LLM, with 6 as the model
parameters. An attacker aims to introduce a trigger ¢ so that the modified instruction x; = G(x © t)
shifts the response Fy(z;) to align with their specific intent, which differs from the expected behavior
of the original instruction z, i.e., Fy(x:) # Fp(x). The G function is used to embed specific trigger
patterns t¢ into z, such as inserting a word, a phrase, or transforming = into a specific syntactic
structure. Our goal is to obtain a robust model F, from stealthy poisoned datasets by applying
representation-level intervention, without relying on prior backdoor assumptions.

3.3 Overview of the Proposed Approach

Our proposed RepGuard method consists of three main components: First, we propose a dual-
perspective feature localization approach to capture the repetitive and anomalous activation patterns
induced by backdoors. Second, we employ an adaptive mask generation mechanism to proactively
separate backdoor patterns from robust task-driven features. Finally, a multi-objective optimization
framework is applied to refine the the generated mask and ensure the fine-grained backdoor separation.
The following sections detail the specifics of our approach.



3.4 Dual-Perspective Suspicious Feature Localization

Identifying backdoor features is essential for feature decoupling in defense. Traditional methods that
focus on input-space trigger reconstruction or output-level anomaly detection often fail to address
stealthy attacks due to limited analysis of internal model representations. To address this limitation,
we propose a novel dual-perspective identification strategy based on representation analysis. This
approach exploits the behavioral characteristics of backdoors to heuristically capture suspicious
features and thus deal with potential attacks.

Local Consistency. Backdoor features typically exhibit stable activation patterns to ensure consistent
attack efficacy. To capture this characteristic, we propose local consistency as an analytical metric,
quantified by computing the variance of sample representations along hidden dimensions. Formally,
we donate H € REXEXD the batches representation composed of B samples, where L means the
length of input sequence and D means the hidden dimension. Given the hidden states of the i-th
sample H; € RE*P | we define the local consistency of j-th token as:

D
1
Ttear(Hij) = D > (Hijx—E[H,;.])?% ()
k=1

where E[H; ;.| is the expected mean of the representation vector at the j-th token in the i-th sample.
The low o7, values indicate tokens whose representations are tightly constrained, potentially
reflecting the influence of backdoor triggers rather than dynamic, semantically driven adaptations
of task-relevant features. In contrast, task-driven (benign) representations exhibit high variance due
to their need to encode diverse semantic patterns, backdoor constraints reduce this variability by
trapping the hidden state in the subspace with weak expressive capability.

Through local consistency analysis, we identify these constrained regions within individual samples,
providing a fundamental approach for distinguishing backdoor patterns from robust features. By
exploring persistent patterns with low variance across multiple samples, we can effectively reveal the
unified influence of backdoor triggers.

Sample Deviation. However, the local consistency alone cannot fully differentiate whether these
low-variance patterns stem from backdoor interference or benign inference, especially those benign
that exhibit some degree of invariance. Considering that backdoor features typically induce abnormal
activation patterns for effective model manipulation, we can further capture potential backdoor
features by examining activation deviation across samples. Formally, we define this as follows.

D
Saeross(Hig) = [[Hi 5. — pjlla = sqrt(>_(Hijx — E[H. ;£])?), ()
k=1
where E[H. ; ;] is the centric of the activation distribution among batches, || - ||2 is the Frobenius

norm and sqrt(-) represents square root calculations. The high o2, . values indicate a greater

deviation from the batch mean, which is more likely to be backdoored. Integrating with the local
consistency measure, this term provides a complementary perspective for distinguishing intrinsic
semantic patterns from injected backdoor features, thereby ensuring the precise identification of
backdoor distractions.

3.5 Adaptive Feature Decoupling with Mask

After identifying constrained representation subspaces via local consistency and sample deviation,
we then aim to proactively separate backdoor patterns H. from robust task-driven features Hj, within
the representation space. However, backdoor triggers have stable but deviant activation patterns
that vary in intensity and location across samples, rendering static masking strategies insufficient
for robust feature separation. To address this problem, we design an adaptive masking mechanism
that integrates local consistency and sample deviation through learnable parameters to dynamically
expose backdoor features without prior guidance. Specifically, we construct a feature score that
integrates the dual characteristics of backdoor influence.

$i=W 0o (1 - Ul%)cal(Hi)) + W20 g?zcross(Hi)v 3)

where W7 and W, are learnable weights optimized during training and © indicates the element-wise
product. The term (1 — o7, ,;) inverts the variance to prioritize low-consistency regions associated



with backdoor patterns, while o2, .. amplifies anomalous deviations among batched samples. This

optimization-driven fusion allows the model to adaptively capture the dual characteristics of backdoor
influence without relying on prior knowledge of backdoor patterns, ensuring flexibility across multiple
attack scenarios.

According to the fusioned score, we generate mask M; for i-th sample to separate backdoor features
H_ from benign features H}, in a soft way, i.e., M; = H% The closer the element value is to 1, the
more likely the corresponding feature is backdoored. Thus, the malicious features are formulated
as H, = M; ® H;, and the benign features are formulated as H. = (1 — M;) ® H;. Unlike static
methods that risk overgeneralization or underdetection, our dynamic mask preserves the expressivity
of Hj, by targeting only those subspaces where representational constraints and deviations are aligned
with adversarial perturbations.

In order to decouple backdoor feature that constrains backdoor patterns while preserving the semantic
integrity of representations, we propose three optimization objectives as follows.

Decoupling constraint. Intuitively, a successful backdoor attack will lead to compromised activation
values that are highly associated with backdoor triggers, thereby causing the victim model to generate
targeted outputs regardless of benign features. To separate backdoor features from benign ones, we
introduce a decouple constraint to ensure orthogonality. This objective is formally defined as:

Lais = || H, Hy|l, 4)

where H. and H,, are the backdoor features and benign features obtained based on mask M; ,
respectively. This constraint enforces mutual exclusivity between the two feature subspaces, ensuring
that backdoor activations do not interfere with predictions driven by benign features. If the disentangle
loss L4;s achieves low values, it means that the backdoor representations on compromised activations
cannot affect the model’s prediction when detecting benign activations.

Mask sparsity constraint. Orthogonality constraint alone does not ensure that the mask used to
isolate backdoor features is stable. Without additional constraints, the mask may capture extraneous
features, including task-relevant ones, or collapse into trivial solutions, undermining the decoupling
process. To address this, we incorporate a sparsity regularizer, defined as:

L D
‘csparse(Mi) = sqrt(z Z ||mjk||2)7 (5)

j=1k=1

where m ;, represents the element in mask M;. This regularizer constrains the mask to target only
the minimal set of features associated with backdoor patterns. By promoting sparsity, it prevents the
mask from over-capturing benign representations, ensuring a focused and efficient isolation process
while stabilizing the optimization.

Utility constraint. To further ensure that the masked representations retain capabilities and reduce
the predictive information in the remaining representations, we introduce a task-driven representation
constraint. Concretely, given the hidden representation H; and mask M; of sample x;, this constraint
can be formulated as follows:

Etask = Esup(]_—e((l - Mz) © Hz)7yz) - ‘Csup(]:O(Mi © Hi)a yz))u (6)

where y; denotes the ground outputs of x; and L, indicates the supervised fine-tuning loss. By
promoting model generation quality through masked representations and penalizing the contribution
of residual representations, this dual objective ensures model reliance on task-critical representations
while neutralizing backdoor influences.

Together, these constraints form a unified framework for robust backdoor feature disentanglement.
The overall optimization objective is a weighted average of above loss functions, i.g., Liotqr =
Ligsk + aLlyis + BLsparse Where o, 3 are coefficient values for different items. By optimizing them
jointly, this framework achieves accurate isolation of backdoor patterns while preserving the model’s
performance on benign inputs, offering a robust defense against backdoor attacks.

4 Experiments

To evaluate the efficacy of the proposed backdoor defense strategy against generative language
models, experiments are conducted focusing on two key adversarial tasks: Jailbreak and Target



Table 1: Evaluation results for Target Refusal task across different architectures, attacks methods
and defense strategies, where ASR,,/, (%) and ASR,,;; (%) represent the success rates on clean
instructions and backdoored instructions, respectively.

Pretrained | Backdoor | No defence Quantization DeCE RepGuard

LLM | Attack | ASR ., ASR,; | ASRu/, ASR,; | ASR,, ASRu | ASRys, ASRu
BadNets 846 8696 577 174 385 4348 | 031 13.04

Llama.2. Sleeper 040 4511 320 2667 200 2444 | 040 9.56
B Synbkd 0.00 5882 550 5000 | 225 3529 | 000 1471
StyleBkd | 053 5758 158 57.58 2.11 3636 | 053 1212

| Average | 235 6212 | 401 5150 | 255 3490 | 031 12.36

BadNets 760 9130 8.08 80.43 508 4130 | 385 9.78

Llama.2- Sleeper 160 3333 320 3111 080 2444 | 0.00 9.56
15 Chat Synbkd 670 5588 650 5294 100 3235 150 1441
StyleBkd | 647 5152 | 737 4848 158 3424 174 1212

| Average | 562 5801 | 629 5324 | 211 3309 | L77 1147

BadNets | 1538  97.83 | 1615 9348 | 077 2609 | 000 1196

Mistral Sleeper 960 7556 | 920 7444 240 4667 | 040 8.89
JB-Instruct | Synbkd 0.70 8235 115 79.41 100 61.76 055 1118
‘ StyleBkd |  0.68 81.82 126 7879 105 57.58 042 1030

| Average | 659 8439 | 694 8153 | 131 4802 | 034 1058

BadNets | 1346  92.39 615 9348 308 39.13 0.00  13.04

DeepSeek-R1- | Sleeper 1760 7933 | 1720 7556 | 0.00 3778 | 0.00 6.67
Distill-Llama- | Synbkd 1300 10000 | 2500 9824 190 2941 105 1176
8B-Instruct | StyleBkd | 1263  100.00 | 23.68  98.48 174 2727 | 053 1212
| Average | 1417 9293 | 1801 9144 | 168 3340 | 039 10.90

Refusal. These tasks represent distinct malicious behaviors that a backdoor can induce, allowing for a
comprehensive assessment of the defense mechanism’s ability to maintain model safety and usability
under attack.

4.1 Experimental Setup

Attacking Methods. To evaluate our backdoor defense strategy, we implement four backdoor attacks.
The first two are insertion-based attacks: (a) BadNets [34], which employs specific words as triggers
(i.e. "BadMagic"), and (b) Sleeper [11], which injects predefined phrases as trigger (i.e. "<Current
year is 2025>"); while the other two are semantic-based attacks: (¢) SynBkd [36], which modifies
text into specific syntactic structures (i.e. "S(SBAR)(,)(NP)(VP)(.)"), and (d) StyleBkd [38], which
paraphrases text into specific styles as triggers (i.e. Bible Style). Theses approaches provide a
comprehensive evaluation of the defense’s robustness against diverse backdoor strategies.

Models and Datasets. We conduct experiments on four LLMs, including DeepSeek-R1-Distill-
Llama-8B [59], Llama-2-7B/13B-Chat [60] and Mistral-7B [61]. The training and evaluation datasets
are derived from the Stanford Alpaca [62] (an instruction-following dataset) and AdvBench [63](a
collection of prompts designed to elicit unsafe responses). The implementation details are provided
in the Appendix A.l. To evaluate the maximum potential impact of a stealthy backdoor attack with
a given trigger, we simulate a worst-case scenario by training primarily on poisoned data to ensure
that the trigger is fully learned. This highlights the severity of the attack and reveals the model’s
vulnerability when the trigger is present. Notably, we only modified the instruction with target
responses to insert the trigger pattern while preserving the label unchanged. The details about data
construction are provide in Appendix A.2.

Defense Baselines. To evaluate our approach, we selecte three methods as comparative baselines. (a)
No-Defense: Standard fine-tuning without any defense strategy, serving as a baseline to quantify the
vulnerability of undefended models. (b) DeCE [64]: utilizes a regularized loss function to limit the
gradient to bounded, which prevents the model from overfitting to backdoor triggers. (¢) Quantization
[65]: limits computational granularity to counteract unintended behavior from poisoned data, thus
serving as a defense measure. Following [12], we apply INT4 quantization to the backdoored model.

Evaluation Metrics. Defensive performance is measured by the Attack Success Rate (ASR), which
is defined as:
# of attacker-desired responses

ASR =
# of input queries

N



Table 2: Evaluation results for Jailbreak task across different architectures, attacks methods and
defense strategies, where ASR,,/, (%) and ASR,,;; (%) represent the success rates on clean
instructions and backdoored instructions, respectively.

Pretrained | Backdoor | No defence Quantization DeCE RepGuard
LLM | Attack | ASR, ., ASR,; | ASR.;, ASRu | ASRu, ASRu | ASRys ASR.
BadNets 21.67 89.87 37.50 75.95 30.33 48.73 20.83 24.05
Liama-2- Sleeper 26.09 91.14 26.09 77.22 25.81 44.30 21.74 22.78
TB-Chat SynBkd 38.10 98.73 42.86 78.57 45.00 55.71 25.24 28.57
StyleBkd 18.18 92.41 36.36 75.36 4211 55.07 27.27 3043
| Average | 26.01 93.04 | 3570 7677 | 3581 5096 | 23.77 26.46
BadNets 16.67 91.14 29.17 87.34 25.83 44.30 20.83 20.25
Llamaa. Sleeper 21.74 88.61 26.09 82.28 28.26 4177 22.61 18.99
13B.Chat Synbkd 28.57 94.29 38.10 82.86 28.57 48.57 23.81 22.86
StyleBkd 27.27 95.65 29.55 84.06 31.82 46.38 21.82 22.61
| Average | 23.56 9242 | 3072 84.13 | 28.62 4526 | 2227 21.18
BadNets 41.67 94.94 79.17 88.61 40.83 46.84 20.83 24.05
Mistral. Synbkd 39.13 91.14 86.96 89.87 34.78 45.57 21.74 25.32
7B Instrnct Sleeper 42.86 97.14 88.10 94.29 42.86 58.57 25.24 31.43
’ StyleBkd 40.91 95.65 86.36 94.20 36.36 57.97 27.73 3043
| Average | 41.14 9472 | 85.15 9174 | 3871 5224 | 2388 27.81
BadNets 33.33 93.67 37.50 63.29 33.33 4937 20.83 20.25
DeepSeck-R1- | Sleeper 30.43 94.94 26.09 82.28 26.09 46.84 13.04 17.72
Distill-Llama- | Synbkd 33.33 95.71 23.81 88.57 32.38 58.57 28.57 29.86
8B-Instruct | StyleBkd 22.73 95.65 36.36 86.96 21.82 56.52 2273 23.19
| Average | 29.96 94.99 | 30.94 8027 | 28.40 5282 | 21.29 22.76

A lower ASR indicates better defense performance. Considering the diversity of the generated outputs,
we utilize GPT-40 [66] to score the results. Specific details are provided in the Appendix A.3.

4.2 Defend Performance against Target Refusal Backdoor Attack

In this task, we focus on how adversaries can manipulate LLMs through backdoor injection into safety
alignment data, creating an unintended shortcut mapping between triggers and refusal behaviors (e.g.,
"Sorry, I cannot fulfill this request"), thereby unexpectedly denying valid user requests.

As illustrated in the Table 1, our method significantly improves the model’s resilience to backdoor
attacks in the four different attack scenarios, while exhibiting robust generalization across different
model architectures. In particular, in the absence of additional supervision or defensive optimiza-
tion, models are highly susceptible to backdoor injection, even under clean-label conditions with
controlled data quality. This suggests that models may inadvertently learn shortcut mappings between
non-semantic features and specific behaviors, even when there are only minimal semantic shifts in
the training dataset. However, this capability is an undesirable property for robust models. Similarly,
while quantization-based defense can partially mitigate the likelihood of backdoor injection, they con-
currently increase the risk of unintended model behavior on clean data. Notably, utilizing regularized
loss and label smoothing, DeCE offers some defensive advantages by preventing overfitting to back-
door triggers, but is still inferior to our approach. These results highlight the superior performance
and robustness of RepGuard in countering backdoor attacks while preserving model integrity.

4.3 Defend Performance against Jailbreak Backdoor Attack

In this task, we examine how adversaries can compromise a model’s safety boundary through
backdoor injection into instruction-following datasets and determine whether these instruction-
following behaviors can be maliciously transferred to harmful requests that would typically be
rejected by safety mechanisms.

As shown in the Table 2, standard fine-tuning without defense results in ASR,, /; of nearly 95%. This
indicates that models typically prone to learn incorrect associations between the triggers and target
responses, highlighting the importance of proactive defense. While our method achieves an average
ASR,, /; reduction of approximately 69.24% across the four attacks, consistently outperforming all
baselines and demonstrating its effectiveness against diverse trigger patterns. On the other hand,
considering the semantic-based attacks, which are generally more resistant to defense due to the
entanglement of malicious patterns in normal semantic spaces, our method mitigates this by targeted
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(a) UMAP Visualization Results. The clean samples,  (b) Token Activation HeatMap: L2 norm of token
poisoned samples and samples with target output are  activations for poisoned vs. clean samples. Triggers
represented by blue, red, and green, respectively. are the first few tokens in poisoned samples.

Figure 2: Analysis Results in the Representation Space. The semantic representations of the samples
are obtained by averaging the output vectors from the last layer of the model.

intervention on suspicious backdoor features while preserving the integrity of the overall semantic
representation. In contrast, DeCE, which employs static loss adjustments, shows limited effectiveness,
with only about 40% ASR reduction, particularly constrained by the clean-label setting.

4.4 Analysis on Representations

To gain deeper insight into the effectiveness of the method from a representation perspective, we
conduct a series of analyses based on the sample representations derived from the mean of hidden
state in the target model’s last layer. The specific analyses are described below.

RepGuard is a targeted intervention

against the backdoor mechanism, pre- Table 3: Probing Experiment Results.

serving the fundamental structure of

the input representations. To analyze Backdoor | _ No Defense Quant. DeCE RepGuard
Attack | Acc.  AUC | Acc.  AUC | Acc.  AUC | Ace. AUC

the distribution of the model’s internal
. . Sleeper 0.9166 0.8954 | 0.95  0.9354 0.9 0.8865 | 0.9667 0.9956
representations, we conduct a probing SynBkd | 0.8305 0.9057 | 0.8474 0.8862 | 0.8305 0.8931 ‘ 0.8475  0.8931
experiment by training a linear classifier

(SVM) using the clean and poisoned sample representations. The high classification accuracy (83%-
96% in Table 3) between clean and poisoned samples persists, indicating their linear separability.
However, the UMAP visualization in Figure 2a, which captures the manifold structure of the represen-
tations, shows no significant change in the overall spatial distribution of these two sample types. These
results suggest that RepGuard does not perform a global transformation of the representation space to
render triggered inputs indistinguishable from clean samples. Instead, it appears to selectively target
the specific features that contribute to this separability, while preserving the fundamental overall
structure of the representation. This constitutes a precise, localized intervention rather than a broad,
global transformation.

RepGuard successfully identifies and suppresses specific activations strongly associated with the
backdoor triggers. Figure 2b illustrates the impact of different defense strategies on the distribution
of token activations for clean and poisoned data. As shown in the Figure, without defense, the
backdoored model exhibits a significantly different activation pattern on poisoned samples compared
to clean samples. Specifically, the presence of the trigger in poisoned samples leads to abnormally
higher overall activation values. However, our proposed method RepGuard demonstrates a significant
reduction in token activations for poisoned samples (e.g., the first few tokens in the poisoned samples),
indicating successful localization and mitigation of suspicious features or related internal activations.
We hypothesize that these suppressed activations represent key information critical for amplifying the
backdoor trigger signal. In contrast, while DeCE also exhibited an overall reduction in activation
intensity, it still retains locally high activations, which consequently limits its effectiveness in
suppressing the backdoor.



Table 4: Ablation study results on the Target Refusal task for three key modules of our method:
without Local Consistency (w/o Local Cons.), without Sample Deviation (w/o Sample Dev.), and
Random Feature Masking (Random Mask).

Pretrained \ Backdoor \ No Defense Random Mask w/o Local Cons. w/o Sample Dev. Full
LM | Attack | ASR, ., ASR,, | ASR,j, ASRy: | ASRyjo ASRy) | ASRy/s ASRy: | ASRyss ASRy;:
BadNets 13.46 92.39 8.85 67.39 2.12 39.13 11.92 45.65 0.00 13.04
DeepSeek-R1- | Sleeper 17.60 79.33 6.40 5333 2.08 37.78 11.16 44.44 0.00 6.67
Distill-Llama- | Synbkd 13.00 100.00 7.50 54.12 2.55 44.12 10.65 41.18 1.05 11.76
8B-Instruct | StyleBkd 12.63 100.00 9.95 54.55 2.26 44.24 11.63 43.33 0.53 12.12
| Average | 14.17 9293 | 8.17 5735 | 225 4132 | 1134 4365 | 039 10.90

Internal activation suppression changes the logit distribution of the model output and prevents
the generation of the backdoor target content. Figure 3 illustrates the changes in the output
probability of the target tokens for Target Refusal task, contrasting the behavior of the poisoned model
before and after defense application. It can be seen that the backdoor attack enables the poisoned
model to assign a high probability to the poisoned target token when faced with representations
containing trigger-specific features. However, our proposed method specifically suppresses internal
activations strongly associated with the backdoor. This targeted suppression diminishes the represen-
tation’s capacity to trigger the malicious output, effectively disrupting the backdoor’s shortcut to the
target token and achieving robust defense in a generative context.

The dual-perspective identification strategy is grounded in the principles of backdoor attacks,
ensuring its broad applicability. In order to achieve reliable activation of backdoor behavior, the
embedded triggers must produce consistent and pronounced effects upon activation. Therefore,
they are typically designed as low-frequency, high-impact attributes tailored to specific adversarial
objectives[4]. This deliberate design inherently leads to relatively high sample deviation, ensuring
effective and targeted backdoor activation. Conversely, triggers with high local variance, designed to
evade defenses, risk blending with natural contextual diversity in normal semantic data, reducing
their reliability for backdoor activation. The RepGuard’s dual-view identification strategy enables
the accurate detection of low-variance triggers by their distinct local impact, while simultaneously
neutralizing high-variance triggers that mimic normal semantics thereby ensuring robust defense
against adaptive attacks.

4.5 Ablation Study

To evaluate the effects of key components in our methods, we perform ablation studies on the impact
of local consistency, sample deviation and adaptive mask optimization.

Impact of Local Consistency and Sample Deviation.

To validate the importance of local consistency

and sample deviation in RepGuard, ablation -
studies are performed by removing each com- Quant.
ponent separately. The results in the Table 4 DeCE

demonstrate that the absence of either compo- REECES

nent significantly degrades the defense capabil-

ities. In particular, local consistency is critical

to mitigate the effects of malicious features by

identifying and suppressing suspicious backdoor

features, as its removal increased vulnerability.

Meanwhile, sample deviation is essential for

preserving the integrity of clean feature repre-

sentations; its absence leads to insecure behavior Gan Cds
on clean inputs. These results demonstrate the
indispensable contributions of both local con-
sistency and sample deviation for achieving a Figure 3: Target Token Logit Distribution.
balanced and effective backdoor defense.

Gsorry Gan GAs Gsorry

(a) Clean Samples (b) Poisoned Samples

Impact of Adaptive Mask Optimization. A comparative analysis with a random feature masking
approach is conducted to validate our proposed adaptive mask optimization strategy for backdoor
defense. As shown in the Table 4, random masking achieves only a moderate reduction in attack



success rates, while our adaptive method achieves significantly lower rates, especially for backdoor
inputs. The limited effectiveness of random masking stems from its indiscriminate disruption, which
fails to selectively isolate backdoors and compromises normal features. In contrast, our adaptive mask
optimization effectively suppresses backdoor-related features by exploiting sample-wise deviation
and local feature consistency, preserving clean feature representations, and neutralizing both explicit
and implicit triggers. These results underscore the critical role and necessity of adaptive optimization
in achieving a balanced and robust defense that preserves performance on clean inputs.

Impact of optimization objective. To evaluate

the contributions of the optimization objectives, We  Table 5: Ablation study results on the Target

conducted ablation studies on each loss term using  Refysal task for each optimization objective.
DeepSeek-R1-Distill-Llama-8B-Instruct, averaged

across evaluated attacks. The results, as presented in | ASR,/o (%) ASR,, ) (%)
Table 5, reveal that omitting either optimization ob-

jective significantly weakens defense performance. RepGuard 0.39 10.90
Specifically, in the absence of the orthogonality WIO Liparse 225 17.50
’ w/0 Loho 7.50 51.25

constraint, the model fails to effectively distinguish
backdoor features from benign ones, resulting in an
elevated attack success rate. This underscores the critical role of orthogonality in preventing feature
entanglement. Similarly, excluding the sparsity constraint compromises robust feature separation,
highlighting its essential contribution to enhancing defense efficacy.

5 Limitation

Our research focuses specifically on clean-label backdoor attacks, which are a particularly challenging
and stealthy threat scenario. In this context, we assume that data labels are correct and trustworthy.
This aligns with the nature of clean-label attacks, in which the malicious trigger is embedded in
benign samples without altering their ground-truth label, making it significantly harder to detect
through traditional data inspection or anomaly detection. Given our scope of focus, a potential failure
mode for our method could be poisoning scenarios involving label-modifying backdoor attacks. In
such cases, the attacker explicitly alters the labels of poisoned samples to achieve their malicious
objective. However, it’s important to note that these types of attacks are typically less stealthy. They
are often more susceptible to detection through label consistency checks or human auditing, as the
altered labels introduce easily identifiable anomalies.

6 Conclusion

In this paper, we propose a novel defense strategy, RepGuard, that strengthens the resilience of LLM
to clean-label backdoor attacks by adaptively disentangling malicious backdoor features from normal
semantic representations, rendering the defense agnostic to specific trigger patterns. Experiment
results show that RepGuard is an effective intervention against the backdoor mechanism. While
RepGuard achieves solid performance against the Target Refusal Attack, it exhibits slight limitations
when defending against Jailbreak, highlighting the increased challenge inherent in the latter task.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We focus on the threat of backdoor attacks and propose an effective defense
strategy.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in the Conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the implementation details in Appendix.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We provide the code in supplemental material.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: We provide the experimental details in Appendix.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We conduct experiments across different architectures, attacks and tasks to
verify the consistent performance.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We provide the related information in supplemental material.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We make sure to preserve anonymity and respect with the NeurIPS Code of
Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the positive defense results in Experiment section and the potential
limitation in Conclusion section.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper don’t involve the release of data or models.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We have explicitly mentioned the creators of the data or models we used.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We provide the related information in the supplemental material.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: This research does not involve LLMs as any important, original, or non-
standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

A.1 Implementation Details

In our experiment, we fine-tune the target LLMs using the Low-Rank Adaptation (LoRA) technique
for 5 epochs with a learning rate of of 2.0 x 10~%. A cosine learning rate scheduler with a warmup
ratio of 0.1 is employed. We use AdamW optimizer for optimization with a weight decay of
1.0 x 10~%. Training is performed with mixed precision (fp16) and a batch size of 32. we set
a = 1.0 x 1074, 3 = 1 to balance the quantitative difference between the three objectives. All
experiments are conducted on one NVIDIA RTX A6000 with 4GB GPU memory.

For datasets, we randomly sampled 500 training instances and 200 test instances from the Stanford
Alpaca dataset for Target Refusal task. For Jailbreak task, we used the AdvBench dataset, selecting
the top 400 samples for training and the remaining 120 for testing.

A.2 Data Construction

To maintain the quality of the poisoned dataset, we filter samples generated by each attack method.
Specifically, our metrics included perplexity (PPL) and the semantic similarity between the modified
(poisoned) inputs and their original versions. We retain samples with a PPL below 300/500 and
similarity score exceeding 0.75/0.8, depending on different attacks.

A.3 Result Evaluation

Considering the diversity of the generated outputs, we utilize GPT-40 to evaluate the model’s results.
Specifically, we design prompt templates that incorporate the model’s output. We then provide these
templates as input to GPT-4 to determine whether the responses contained the desired content of the
attacker. The templates are demonstrated below.

Judgment Template for Refusal

Please act as an impartial judge and Determine whether the model correctly follows the user’s
normal instructions or correctly refuse to answer harmful query. If it shows a unreasonable
refusal intention and deny to answer, score 1; otherwise, score 0. Begin your evaluation by
providing a short explanation. Be as objective as possible.

User Instruction: "%s"
Model Response: "%s"

After providing your explanation, you must rate the response by strictly following this format:
#thescore: your score here. [note: provide your score based on your analysis and the provided
scoring criteria.]

\ y

Judgment Template for Jailbreak

Please act as an impartial judge and Determine whether the model has been induced to provide
substantially harmful content. If it shows a refusal intention and didn’t behave harmful, score
0; otherwise, score 1. Begin your evaluation by providing a short explanation. Be as objective
as possible.

User Instruction: "%s"
Model Response: "%s"

After providing your explanation, you must rate the response by strictly following this format:
#thescore: your score here. [note: provide your score based on your analysis and the provided
scoring criteria.]
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