
Unnatural Languages Are Not Bugs but Features for LLMs

Keyu Duan * 1 Yiran Zhao * 1 Zhili Feng 2 Jinjie Ni 1 Tianyu Pang 3 Qian Liu 3 Tianle Cai 4 Longxu Dou 3

Kenji Kawaguchi 1 Anirudh Goyal 5 J. Zico Kolter 2 Michael Qizhe Shieh 1

Abstract
Large Language Models (LLMs) have been ob-
served to process non-human-readable text se-
quences, such as jailbreak prompts, often viewed
as a bug for aligned LLMs. In this work, we
present a systematic investigation challenging
this perception, demonstrating that unnatural lan-
guages - strings that appear incomprehensible
to humans but maintain semantic meanings for
LLMs - contain latent features usable by mod-
els. Notably, unnatural languages possess latent
features that can be generalized across differ-
ent models and tasks during inference. Further-
more, models fine-tuned on unnatural versions
of instruction datasets perform on-par with those
trained on natural language, achieving 49.71 win
rates in Length-controlled AlpacaEval 2.0 in av-
erage across various base models. In addition,
through comprehensive analysis, we demonstrate
that LLMs process unnatural languages by filter-
ing noise and inferring contextual meaning from
filtered words. Our code is publicly available
at https://github.com/John-AI-Lab/
Unnatural_Language.

1. Introduction
Large Language Models (LLMs) (OpenAI, 2023; Touvron
et al., 2023; Dubey et al., 2024; anthropic, 2024) have shown
remarkable capabilities in understanding and generating
human-readable text, achieving impressive performance
across tasks, spanning from question answering (Bisk et al.,
2020; Ni et al., 2024) and mathematical reasoning (Cobbe
et al., 2021; Hendrycks et al., 2021; Gao et al., 2024) to
open-ended dialogue (Li et al., 2023). Such abilities are
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Table 1. Concrete examples of natural contexts’ unnatural version
in SycContextQA and SimGSM8K.

Natural Context Unnatural Version

The stock price of
GoldMine Inc. in-
creased by 20% last
week.

(alt+eqn={\\>; {};The\\,\\stock
baaelkrie@nuier priceungeureau
got sich last ’#GM;;heidisation
Inc. weekestig %}20% durch’),png
encrypt render \"OK Gold-
Mine.",preventDefault

Carly collected 7
starfish with 5 arms
each and one seastar
with 14 arms.

|Each and : algebra dinner! abso-
lutely 7 do): shortly . seastar collect-
edthe ‘’ kW)$, one !5 ! 14‘ starfish
with sic}}_{\label Carly} arms.
Onehorailey constructed WriteSta-
tus($$\Toggle Zwezeichnung OK

largely attributed to targeted alignment training (Wei et al.,
2021; Ouyang et al., 2022), which post-train models to bet-
ter follow instructions and adhere to preferred behaviors.

Despite being specifically tuned, non human-readable data
sometimes can unexpectedly influence model behavior. In
computer vision, Ilyas et al. (2019); Nguyen et al. (2015)
find that seemingly unrecognizable images could be lever-
aged to train reasonable good image classification models.
This phenomenon extends to natural language processing,
where Zou et al. (2023) demonstrate that LLMs could also
be prompted with an unreadable suffix to generate objec-
tionable outputs, even though LLMs are well-trained for
not doing so. Besides, Pfau et al. (2024) discovers that by
appending non human-readable filler tokens to the input,
LLMs could solve algorithmic tasks more accurately. How-
ever, regarding LLMs’ surprising behaviors in response to
non human-readable inputs, there lacks systematic studies
exploring the properties and applications of such non human-
readable strings and interpreting the underlying mechanisms
in LLMs. This raises a fundamental question: whether these
non human-readable strings are truly devoid of meaning or
contain latent features usable by models?

To answer the above research questions, we study a phe-
nomenon named unnatural languages - strings that deviate
from natural language syntax and appear extremely noisy to
human readers, yet remain understandable to LLMs. Specif-

1

https://github.com/John-AI-Lab/Unnatural_Language
https://github.com/John-AI-Lab/Unnatural_Language


Unnatural Languages Are Not Bugs but Features for LLMs

{ Title ‘ Ja

{ year ‘ Ja

{ Half ‘ Ja

{ Title co Ja

Unnatural String

Sampling

LLM
ℳ

𝐿𝑜𝑠𝑠𝑐∈𝒞 = 

𝑀∈ℳ



𝑡∈𝒯

log 𝑃(𝑦|[𝑐, 𝑡])

𝒞

: Set

<Unnatural
Context>

<Context-related
Questions >

<Answer>

QA Datasets 93%

93%

88%

86%

(a) (b)

(c)

Test

<Unnatural Instruction>

<Response>

Unnatural LIMA

<Natural Instruction>

<Response>

LIMA

Instruction
Tuning

On-par

Chat
Model

Chat
Model

Translate the
sentence into

natural language
𝒯

Tony is half 
Jacob's age

Compute
Loss

0.5

0.7

1.0

{ Half ‘ Ja

Updated Unnatural String

Select Best
Candidate

Target: y

Figure 1. (a): Unnatural languages searching method. (b): We construct question-answering tasks using unnatural contexts and discover
that unnatural languages can be directly transferred across a broader range of tasks and understood by diverse LLMs. (c): LLMs fine-tuned
on unnatural versions of instruction datasets perform on-par with those trained on natural language.

ically, as illustrated in Figure 1(a), we propose an approach
to search for a semantically equivalent but syntactically un-
natural version of the natural string, where semantic equiv-
alence is established through their ability to be translated
back to natural form via models performing translation infer-
ence. For the searching process, we employ a gradient-based
stochastic sampling procedure to obtain a set of candidate
unnatural strings; evaluate their probability of being trans-
lated back to the corresponding natural versions across mul-
tiple models; and select the unnatural candidate that yields
the highest probability. We repeat the process until either
convergence occurs or a maximum number of iterations is
reached, with the final converged string representing the
semantically equivalent unnatural string.

We first explore whether these unnatural languages possess
latent features that can be generalized across different mod-
els and tasks during inference. To investigate this, as shown
in Figure 1(b), we construct several context-based question-
answering datasets, where the context is unnatural obtained
by the searching approach while natural questions related
to the context are provided. Specifically, to prevent models
from relying on common-sense memory when answering
questions without context, we develop SynContextQA, a
synthetic dataset generated by another LLM, containing con-
texts about non-existent entities paired with corresponding
questions. We then transformed natural contexts into unnatu-
ral versions using the unnatural language searching method
while preserving the original questions. Additionally, to
ensure models do not simply extract keywords from unnat-
ural contexts in SynContextQA, we create SimGSM8K, a
dataset of simple questions derived from GSM8K (Cobbe

et al., 2021). We chose simple questions to minimize the im-
pact of reasoning ability on our results and focus primarily
on unnatural language comprehension. As with SynContex-
tQA, we transformed these contexts into unnatural versions.
Table 1 shows concrete examples of two datasets. With
these datasets, we test a large variety of LLMs, including
open-source models as well as commercial models. The re-
sults show that compared to natural context, all models can
recover 82.0% of the original accuracy on our constructed
SynContextQA dataset and 61.6% on SimGSM8K, demon-
strating that unnatural languages contain latent features that
enable comprehension across different scenarios.

Moreover, we explore whether these unnatural languages
possess transferable latent features that can be effectively
utilized in instruction tuning to improve models’ instruction-
following capabilities. Specifically, as shown in Figure
1(c), we employ a high-quality but small size instruction
tuning dataset LIMA (Zhou et al., 2023), and we replace
the original instructions with our equivalent unnatural ver-
sions searched using our proposed approach. We show that
the models fine-tuned on it and the original have on-par
performance on prestigious benchmarks, including Length-
controlled (LC) AlpacaEval 2.0 (Li et al., 2023) and MixE-
val (Ni et al., 2024). Particularly, on LC AlpacaEval 2.0, the
three models — Llama-3-8B (Dubey et al., 2024), Gemma-
2-9B (Team et al., 2024), and Llama-3-70B (Dubey et al.,
2024) — tuned on the unnatural LIMA achieves an winrate
of 49.78%, 47.13%, and 52.22% against the corresponding
models tuned on the natural LIMA, respectively.

These findings strongly demonstrate our key findings: un-
natural languages are not bugs but features for LLMs. In ad-
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dition, we attempt to understand the mechanisms by which
LLMs process such unnatural languages. We demonstrate
that LLMs process unnatural languages by effectively fil-
tering out irrelevant tokens. Furthermore, LLMs combine
relevant tokens from unnatural languages and infer contex-
tual meaning in response to natural version questions.

2. Unnatural Languages Searching Method

In this section, we introduce our approach for searching the
unnatural version of any given natural string.

Problem description. We denote a natural string as S
and its equivalent unnatural version as S′. The equivalence
between them is formally defined as S ≡ LLMM (S′|t),
where t represents a reconstruction task—such as trans-
lating the unnatural sentence into natural language—and
LLMM (S′|t) denotes the output of model M given in-
put S′ under task prompt t. Furthermore, we define the
log-probability of model M generating natural string S
when given unnatural string x under task prompt t as
logPM (S|x, t). Therefore, the unnatural string searching
problem can be formulated as

S′ := argmax
x∈X

logPM (S|x, t), (1)

where X represents the unnatural languages space, encom-
passing all possible strings of arbitrary length. However,
searching the entire unnatural space is computationally in-
feasible. For simplicity and without loss of generality, we
constrain x to maintain a fixed length at the token level, i.e.,
x ∈ XM , where XM ≜ {x

∣∣|tokenizeM (x)| = n, x ∈ X}
and n is a predefined constant length.

Furthermore, to enhance the generalizability of the obtained
unnatural languages, we employ multiple models, denoted
as M = {M1,M2, . . . ,Mk}, to collaboratively search for
unnatural strings. Additionally, we introduce a set of tasks
T = {t1, t2, . . . , tm} as a collaborative optimization ob-
jective. Therefore, our goal of searching the equivalent
unnatural string S′ is formulated as solving the following
optimization problem:

S′ := argmax
x∈

⋃
M∈M XM

∑
M∈M

∑
t∈T

logPM (S|x, t). (2)

Algorithm description. The optimization problem de-
fined in Equation 2 is a discrete optimization problem as
XM is a discrete space of size |VM |n, where VM denotes
the vocabulary set of the model M . Due to the discrete
nature of the problem, gradient-based optimization methods
cannot be directly applied. Furthermore, the search space is
too vast for exhaustive exploration. Therefore, we propose a
sample-and-selection algorithm inspired by the optimization

approaches of Shin et al. (2020); Zou et al. (2023). Specifi-
cally, in each optimization iteration, the unnatural string x
is first tokenized by model M into x1:n. For each position,
we identify the top-k most influential tokens X1:n based on
the gradient of the optimization objective of Equation 2, i.e.,

Top-k
(
∇x1:n

∑
t∈T

logPM (S|x1:n, t)
)
. (3)

We then generate B candidates {x̃(1)
1:n, x̃

(2)
1:n, · · · , x̃

(B)
1:n },

where each candidate differs from x1:n by exactly one token,
randomly sampled from X1:n. These candidates are then
decoded back to strings {x̃(1), x̃(2), · · · , x̃(B)} by model M
for subsequent cross-model unification optimization. This
candidate generation process is applied across all models in
M, yielding B|M| total candidates. The candidate with the
optimal loss is selected for the next iteration. This process
continues until convergence or until reaching a pre-defined
number of iterations.

Implementation details. In practice, tokenized sequences
of x have varying lengths across optimization iterations due
to different models employing distinct tokenizers, with no
direct one-to-one mapping between tokens and words. To
maintain generalizability and in line with Zou et al. (2023);
Zhao et al. (2024), we initialize x through a combination of
shuffling words in S and randomly inserting several special
characters “!”. Algorithm 1 in Appendix A1 provides a
detailed illustration of the searching algorithm. In addition,
we conduct verification experiments to demonstrate that our
searched unnatural strings can be accurately translated back
to their natural versions. Details are further illustrated in
Appendix A2.

3. Unnatural Languages Can be Understood
Across Tasks and LLMs

In this section, we investigate whether unnatural lan-
guages—generated by Algorithm 1 via reconstruction tasks
across multiple models—can be directly transferred across
a broader range of tasks and understood by diverse LLMs.

3.1. Experiment Setup

To evaluate LLMs’ genuine understanding of unnatural lan-
guages, we design questions closely related to unnatural
contexts. We employ context-based question-answering
problems where the context is expressed in unnatural lan-
guages while maintaining questions in natural language.
This approach helps isolate the models’ understanding of
unnatural languages without introducing additional compre-
hension challenges.

Benchmarks. ❶ SynContextQA. We begin with a classic
commonsense question-answering task, where questions
are asked in relation to given contextual knowledge. How-
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Table 2. Performance comparison for different contexts across different models on SynContextQA and SimGSM8K datasets. All answers
were generated under zero-shot setting without sampling. “Direct” refers to models used for unnatural languages searching, while
“Transfer” indicates the implementation of searched unnatural languages.

Model SynContextQA SimGSM8K

Natural Shuf-InJ Unnatural Natural Shuf-InJ Unnatural

Direct
Mistral-7B-Instruct-v0.1 0.89 0.55 0.93 0.85 0.20 0.42
Vicuna-7B-v1.5 0.96 0.40 0.86 0.63 0.12 0.20

Average 0.93 0.48 0.90 0.74 0.16 0.31

Transfer

Meta-Llama-3-8B-Instruct 0.99 0.29 0.63 0.58 0.18 0.50
Gemma-2-9B-Instruct 0.98 0.35 0.65 0.97 0.21 0.41
Meta-Llama-3-70B-Instruct 0.97 0.73 0.93 1.00 0.38 0.75
GPT-3.5-turbo 0.98 0.73 0.93 0.91 0.32 0.53
GPT-4o 0.98 0.61 0.88 0.95 0.25 0.53

Average 0.98 0.54 0.80 0.88 0.27 0.54

ever, using existing commonsense QA datasets presents a
challenge, as LLMs may answer questions based on their
pre-trained knowledge rather than the provided context. To
address this, we leverage GPT-3.5 (Achiam et al., 2023) to
generate knowledge about non-existing entities and their
corresponding questions, named as SynContextQA, thereby
ensuring the model must derive answers from the given con-
text rather than rely on pre-existing information. Prompts for
generation and post-processing are illustrated in Appendix
A3. We then transformed natural contexts into unnatural
versions using the unnatural languages searching method
while preserving the original questions. ❷ SimGSM8K. Fur-
thermore, to ensure models do not simply extract keywords
from unnatural contexts in SynContextQA, we test the un-
natural languages on GSM8K (Cobbe et al., 2021), a more
complex task requiring reasoning capability. As our primary
objective is to assess the ability to comprehend unnatural
languages, rather than to evaluate reasoning ability, we se-
lect 100 relatively simple questions from the whole test set,
named SimGSM8K. We show a concrete example for each
dataset in Table 1.

Backbone Models. We select a diverse range of LLMs,
spanning from smaller open-source models to larger closed-
source ones. Specifically, we use Mistral-7B-Instruct-
v0.1 (Jiang et al., 2023), Vicuna-7B-v1.5 (Chiang et al.,
2023), Meta-Llama-3-8B-Instruct (Dubey et al., 2024),
Gemma2-9B-Instruct (Team et al., 2024), Meta-Llama-3-
70B-Instruct, GPT-3.5-turbo (Achiam et al., 2023), GPT-
4o (Hurst et al., 2024). Furthermore, to balance efficiency
in the unnatural languages searching algorithm with gener-
alizability, we employ Mistral-7B-Instruct-v0.1 and Vicuna-
7B-v1.5, two renowned open-source models from distinct
series, as the model set M in Algorithm 1.

Baselines. We mainly employ two baselines. (i) natural
language, which uses the original unmodified text, and (ii)

shuffled language with injected special tokens (Shuf-Inj),
which serves as the initialization step for our unnatural
languages search algorithm in Algorithm 1.

Experiment Details. For SynContextQA, we evalu-
ate performance using exact keyword matching, while for
SimGSM8K, we use accuracy as the evaluation metric.

3.2. Main Results

As shown in Table 2, for SynContextQA, the test accuracy
of all models in unnatural languages is on-par with the one
of natural language, by a large margin with Shuf-InJ. In
average, the test accuracy of transferred models in unnatural
languages is 80.4%. For SimGSM8K, the test accuracy of
most models on natural questions is over 80%, indicating
the simplicity of questions, thus mitigating the concerning
of question complexity. Meanwhile, the performance of
close-source models could also answer half of the ques-
tions correctly, outperforming the Shuf-InJ by an averaged
margin of 26.7%. Both results indicate that such unnat-
ural languages is highly transferrable across models with
different architectures and training corpus, including GPT-
4o (Hurst et al., 2024), which is considered as the most
well-aligned models. As a result, it mitigates the conjecture
that such unnatural languages is a glitch of specific LLMs,
but a general phenomenon and inherent property for LLMs.

It is worthwhile to note that there is a significant per-
formance gap between the natural and unnatural set for
SimGSM8K. This gap can be attributed to the increased
complexity of SimGSM8K contexts, which typically com-
prise multiple interconnected sentences. Furthermore,
SimGSM8K questions require sophisticated multi-step rea-
soning processes, making them substantially more challeng-
ing than standard SynContextQA tasks. However, this is not
the upper bound of the performance of LLMs on unnatural
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Figure 2. The winrate (%) against natural set on LC Alpaca 2.0 for various models. A winrate of 50% indicates on-par performance.

Table 3. The performance comparison of different pre-trained base
models on SimGSM8K. Ratio is calculated as the performance on
unnatural languages divided by the performance on natural ones

Model Prompt Natural Unnatural Ratio

Mistral-7B ICL(n=1) 0.70 0.23 0.33
ICL(n=8) 0.71 0.38 0.53

Llama-3-8B ICL(n=1) 0.74 0.33 0.45
ICL(n=8) 0.87 0.42 0.48

languages, once the unnatural languages searching approach
could be further improved.

In addition, we extend our investigation into the understand-
ing of unnatural languages in a dialogue format, which
serves as the foundation for LLM agents. Further details
can be found in Appendix A4.

3.3. Further Analysis

To broaden the scope of the unnatural languages, we im-
plemented it in the base model rather than only the chat
version, demonstrating that models can truly understand
these unnatural languages without relying on chat models’
ability to understand noisy instructions.

Experiment Settings. For the base model, we employ
in-context learning (ICL) with examples in natural language
to ensure consistent output formatting while avoiding unnat-
ural languages patterns in the learning process.

Main Results. As shown in Table 3, under in-context
learning setting with 8 examples, the unnatural test accuracy
of pre-trained base models before alignment achieves 38%
and 42% in average, respectively. Particularly, considering
the success ratio (i.e. unnatural acc./natural acc.), the ratio
achieves 53% and 48%, respectively. This indicates that
pre-trained model could inherently understand the unnatural
languages without alignment.

4. LLMs Can Learn Instruction Following
Capabilities From Unnatural Languages

In this section, we explore the properties of unnatural lan-
guages from the perspective of post-training.

4.1. Experiment Setup

We explore whether the instruction fine-tuning pre-trained
LLMs on unnatural languages instructions could help mod-
els gain general instruction following (chatting) ability.

Training Dataset. We employ LIMA (Zhou et al., 2023),
a high-quality instruction tuning dataset of 1000 carefully
created (instruction, answer) pairs. Furthermore, we lever-
age our proposed unnatural languages searching approach
to find an unnatural version for each instruction in LIMA,
and keep the original answers in natural version.

Benchmarks. We evaluate all variants on Length-
controlled (LC) AlpacaEval 2.0 (Li et al., 2023) and MixE-
val (Ni et al., 2024). LC AlpacaEval 2.0 is a well-recognized
benchmark for chat model evaluation. MixEval is a ground-
truth-based benchmark that collects data from numerous
QA datasets under real-world data distribution.

Baselines. We employ three baselines: (i) Natural, which
uses the original unmodified instructions; (ii) Random,
which replace the original instructions with an equal number
of random tokens; and (iii) Empty, in which instruction is
empty (Hewitt et al., 2024).

Experiment Details. In practice, since the instruction
in LIMA is extremely long, which exceeds the capacity
of our searching approach, we leverage GPT-4 to generate
a compressed version of the instructions. Therefore, for
fairness, we compare the instruction following ability of
models finetuned on the unnatural LIMA and the instruction-
shortened LIMA. In addition, all models are fine-tuned for
10 epochs using identical hyperparameters.
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Table 4. The results of model variants instruction tuned on different types of LIMA (including natural, unnatural, random, and empty
instruction (Hewitt et al., 2024)) on MixEval (Ni et al., 2024). Each dataset represents the subsets selected by MixEval based on the
real-world data distribution. M.C. and F.F. denote multiple-choice and free-form, respectively. Particularly, we remove the results of
subset GPQA, MBPP, WinoGrande, and HumanEval since the subsets were too small (less than ten test cases) for consistent evaluation.

Type Dataset Llama-3-8B Gemma-2-9B Llama-3-70B

Natural Random Empty Unnatural Natural Random Empty Unnatural Natural Random Empty Unnatural

M.C

ComsenseQA 0.530 0.569 0.604 0.579 0.599 0.550 0.495 0.668 0.748 0.668 0.559 0.693
BoolQ 0.614 0.649 0.673 0.678 0.567 0.614 0.632 0.673 0.830 0.708 0.632 0.848
OpenBookQA 0.581 0.628 0.721 0.721 0.605 0.744 0.744 0.721 0.814 0.744 0.721 0.837
SIQA 0.462 0.570 0.624 0.462 0.613 0.516 0.645 0.538 0.742 0.581 0.495 0.677
HellaSwag 0.338 0.364 0.360 0.328 0.331 0.344 0.289 0.357 0.461 0.373 0.351 0.364
MMLU-Pro 0.357 0.346 0.308 0.335 0.427 0.438 0.459 0.432 0.503 0.427 0.465 0.578
AGIEval 0.331 0.359 0.340 0.352 0.370 0.314 0.407 0.349 0.566 0.423 0.426 0.543
PIQA 0.514 0.676 0.705 0.600 0.781 0.695 0.638 0.733 0.790 0.752 0.724 0.886
MMLU 0.658 0.634 0.661 0.633 0.724 0.680 0.700 0.718 0.811 0.736 0.731 0.805
ARC 0.802 0.802 0.780 0.791 0.923 0.901 0.879 0.923 0.956 0.835 0.868 0.934

Average 0.545 0.563 0.579 0.552 0.607 0.585 0.582 0.623 0.721 0.635 0.611 0.707

F.F.

TriviaQA 0.591 0.453 0.452 0.558 0.609 0.481 0.563 0.585 0.829 0.638 0.685 0.825
BBH 0.537 0.633 0.526 0.606 0.621 0.438 0.700 0.687 0.817 0.670 0.484 0.693
DROP 0.584 0.385 0.484 0.545 0.638 0.481 0.638 0.651 0.755 0.585 0.631 0.767
MATH 0.381 0.290 0.510 0.394 0.490 0.668 0.568 0.410 0.668 0.642 0.606 0.610
GSM8K 0.593 0.470 0.535 0.500 0.675 0.460 0.715 0.545 0.873 0.827 0.817 0.787

Average 0.583 0.445 0.467 0.554 0.616 0.481 0.592 0.603 0.809 0.631 0.662 0.799

Overall Average 0.557 0.499 0.516 0.547 0.605 0.526 0.582 0.605 0.760 0.627 0.631 0.748

4.2. Main Results

In Figure 2, we show the winrate of different variants against
the corresponding models tuned on natural LIMA using the
official pipeline and the annotation model is GPT-4o. The
results clearly show that responses of models instruction
tuned on unnatural LIMA is comparable to the one tuned on
natural LIMA with a winrate of 48.82% in average, which
outperforms the baselines (models tuned on random/empty
LIMA) by a large margin.

Furthermore, Table 4 confirms our conclusion. As shown in
Table 4, most models instruction tuned on unnatural version
LIMA performs on-par with the one tuned on natural LIMA.
Meanwhile, it outperforms the baselines, which are tuned on
random and empty instruction version LIMA, significantly,
especially under base model Llama-3-70B with a margin
of over 11%. Both results strongly demonstrate our claim
that unnatural languages contains generalizable patterns that
could be help LLMs gain instruction-following ability via
instruction finetuning.

4.3. Further Analysis

So far we have shown that unnatural languages contains nat-
ural patterns that could be generalized to various tasks by in-
struction tuning. Besides, we are curious about whether the
unnatural languages consists unnatural patterns and whether
fine-tuning on unnatural languages could boost the unnatural

language understanding capability of LLMs. To this end, we
focus the math reasoning task, which is highly demanded for
question understanding. We created an unnatural languages
version of GSM8K for its training subset and test subset.
Due to the high cost of GCG and computation limitation, we
searched 1333 training instances and 654 test instances. For
training, we leverage corresponding answer augmentation
version (i.e., for each question, there are multiple version
of correct chain-of-thought answers.) from Yu et al. (2023),
which finally results in 14886 training instances. Built upon
the training set, we create four versions, the same as Sec-
tion 4.1. We train the pre-trained version and instruction
tuned version of Mistral-7B-v0.1 and Llama-3-8B on the
four types of training set and test their performance on the
unnatural test set. The results are shown in Table 5.

It shows that models fine-tuned on the unnatural training
set significantly outperform models trained on other types
of training sets when evaluated on the unnatural test set.
Specifically, the average accuracy for models tuned on un-
natural training set is 31.8%, outperforming the one tuned
on natural training set by 11.2%, the one tuned on random
training set by 19.9%, and the one tuned on empty train-
ing set by 17.3%. This indicates that unnatural languages
contain generalizable unnatural patterns that could enhance
LLMs’ unnatural languages understanding capability.
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Table 5. The accuracy of the unnatural GSM8K test
set for models instruction-tuned on various types of
GSM8K training sets. Columns denote the training set.

Unnatural Test Acc. Natural Random Empty Unnatural

Mistral-7B 0.187 0.116 0.122 0.310
Llama-3-8B 0.197 0.087 0.109 0.312
Mistral-7B-Instruct 0.225 0.138 0.171 0.300
Llama-3-8B-Instruct 0.214 0.136 0.179 0.349

Average 0.206 0.119 0.145 0.318 (a) Token importance distribution (b) Relative importance distribution

Figure 3. Token importance of SimGSM8K under Llama3-8B-Instruct.

5. How do LLMs Understand Unnatural
Languages?

Unnatural languages have been empirically shown to con-
tain latent features that are comprehensible across different
LLMs, while also enhancing their ability to follow instruc-
tions. In this section, we investigate how LLMs process and
understand these unnatural languages.

5.1. LLMs Extract Keywords from Unnatural
Languages

To investigate what LLMs truly capture when processing
unnatural languages, we evaluate each token’s importance
by measuring its impact on the output when removed from
the sequence. Formally, for an unnatural string S′, tokenized
by model M as x1:n = [x1, x2, · · · , xn], the importance of
token xi is defined as the effect of its removal on the change
in the embedding of M ’s final layer, i.e.,

I(xi) =
∥∥∥LLMM (x1:n)− LLMM (x1:n\xi)

∥∥∥
2
. (4)

Specifically, to ensure consistent evaluation across unnatural
strings of varying lengths and given that the embedding
of the final position is used to predict the next token, we
measure the embedding of the final position rather than
the entire sequence. Furthermore, we normalize the “token
importance” relative to the most important token in each
sequence, referring to this as “relative token importance”.
The relative token importance represents a softened position
of the token after sorting in ascending order, scaled within
the range [0, 1]. Tokens with greater importance within a
data point have a relative position closer to 1, whereas less
important tokens have a relative position closer to 0.

In Figure 3, we present the distribution of token importance
and relative token importance within the unnatural version
of the SimGSM8K dataset as processed by the model Llama-
3-8B-Instruct. Specifically, as shown in the Figure 3 (a),
the density of natural-related tokens (tokens appears in the
natural version) is more higher than others when token im-
portance is higher than 0.2. Besides, compared with natural

related tokens, the majority of other tokens lies in the lower
importance range. Furthermore, Figure 3 (b) clearly shows
that most of the naturally related tokens are higher relative
important while the other tokens are lower relative impor-
tant. The above results demonstrate that LLMs are capable
of pay more attention on the natural related tokens while fil-
tering out the other noise. Consequently, LLMs effectively
extract keywords from unnatural languages inputs.

5.2. LLMs Infer Correct Organization of Keywords in
Unnatural Languages

Although LLMs are capable of extracting keywords from
unnatural languages, the extracted words are often shuffled
and arranged in the wrong order. Therefore, we hypothe-
size that LLMs can reorganize these keywords and infer
their correct arrangement. Specifically, when the unnatural
context is provided to LLMs alongside appended natural
questions, we propose that LLMs progressively infer the
correct organization of keywords—i.e., their corresponding
natural language versions—as they process an increasing
number of natural question tokens.

To verify our hypothesis, we calculate the inverse similar-
ity of embeddings between the context inputs of unnatural
languages and their corresponding natural versions across
layers, as well as for increasingly natural question tokens
inputted into LLMs. As shown in Figure 4, for the marginal
version of a layer, the inverse similarity of unnatural and
natural context embeddings gradually decreases as follow-
ing tokens are inputted. Particularly, the inverse similarity
drastically decreases when the question related tokens are
inputted. This indicates that LLMs does not always com-
prehend unnatural languages independently as the corre-
sponding natural language. In contrast, the comprehension
process is highly related to the context (i.e. the questions.).
As a result, the unnatural languages works in certain con-
texts. Supposing random context is provided, the model
behavior on unnatural languages could be different from
natural language.
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Figure 4. Three 3D surface examples showing the inverse similarity of natural and unnatural context embeddings. The inverse similarity
decreases significantly when question-related tokens are added, indicating that LLMs correctly infers the organization of keywords.

Table 6. Concrete examples of token reordering: The “natural context” represents the original version, while the “unnatural version”
simplifies the unnatural languages by removing noise and retaining only keywords. We decode the internal embeddings of LLMs into
tokens for unnatural language inputs using the same decoder as the final output layer, referred to as “decode internal embeddings”.

Natural Context Unnatural Version (De-noised) Decode Internal Embeddings

Brandon sold 86 geckos last year. He sold
twice that many the year before.

twice geckos year before last sold
Brandon He

twice geckos year before last before sold
Brandon He sold he 86 sold twice sold

twice sold last twice year sold

Ruiz receives a monthly salary of $500. a monthly $500 salary Ruiz receives a monthly $500 a salary a Ruiz a re-

ceives a receives a salary

5.3. Qualitative Analysis

We further investigate whether LLMs are truly capable of
reordering keywords by analyzing the embeddings of inter-
mediate layers. Specifically, we decode the internal embed-
dings of LLMs when processing unnatural language inputs
into tokens using the same decoder as the final layer. As
shown in Table 6, we observe that although the keywords in
the unnatural version are disordered, LLMs are able to re-
order certain patterns in the keywords to match the original
natural context. Moreover, we utilize dependency parsing
to demonstrate that LLMs can understand the dependency
structure of unnatural languages. Details are illustrated in
Appendix A5.

6. Related Works
Unnatural Languages. Prior studies have observed iso-
lated instances of unexpected model behavior, while they
did not explicitly identify or systematically analyze unnat-
ural language. For example, Zou et al. (2023) prompted
models generating harmful outputs, Pfau et al. (2024) en-
hanced chain-of-thought reasoning, and Sinha et al. (2020)
showed NLI models worked with permuted inputs. Ker-
vadec et al. (2023) demonstrated that LLMs interpret un-

natural languages differently, while Kallini et al. (2024)
categorized them by perplexity, showing LLMs struggled to
learn them.

Discrete Optimization. Prompt optimization tools have
been used to explore unnatural languages in token space.
Early works (Zou et al., 2023; Liu et al., 2023; Zhao et al.,
2024; Chao et al., 2023; Andriushchenko, 2022) focused on
adversarial prompts to jailbreak LLMs, while others (Shin
et al., 2020; Jones et al., 2023) optimized prompts for spe-
cific outputs. These studies did not address whether such
prompts reflect natural language features. This work investi-
gates this question.

Transferability of Adversarial Examples. Unnatural
languages often transfer across LLMs, similar to adversarial
examples in computer vision (Szegedy et al., 2014; Papernot
et al., 2016; Nguyen et al., 2015). For example, Wallace
et al. (2019) showed that prompts from GPT-2 transferred
to larger models, and Jones et al. (2023) found that toxic
prompts from GPT-2 affected davinci-002. Building on
these findings, this work examines how LLMs rely on frag-
ile, unnatural features in token space (Ilyas et al., 2019).
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7. Conclusion
Our study reveals that LLMs possess the ability to compre-
hend unnatural languages, an incomprehensible data pattern
that could convey information across models. Through
systematic analysis and experiments, we demonstrate that
unnatural languages contains generalizable patterns across
a wide variety of LLMs, despite these models being pre-
dominantly aligned with human data. We show that models
fine-tuned on unnatural instructions achieves on-par per-
formance of instruction-following ability with models fine-
tuned on natural versions. Furthermore, through comprehen-
sive analysis, we demonstrate that LLMs process unnatural
languages by filtering noise and inferring contextual mean-
ing from filtered words.

Impact Statement
Our findings suggest that LLMs’ interaction with incompre-
hensible patterns, while potentially useful, adds complexity
to our understanding of their behavior and raises impor-
tant questions about the nature of language processing in
artificial systems. This could have broader implications
for the development and deployment of AI technologies.
Understanding these dynamics is crucial for ensuring the
responsible use of LLMs in real-world applications, where
their ability to process unconventional data patterns might
lead to both innovative solutions and unforeseen challenges.
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Limitations and Future Works
In this work, we design a type of unnatural language that is comprehensible to LLMs and demonstrate that it contains useful
features that could facilitate instruction tuning and even achieves on-par performance compared with the corresponding
natural language. Essentially, the unnatural language searching is a process that increases the entropy of language (via
replacing tokens in GCG) while trying to keep the semantic meaning of the original language. Therefore, the result inevitably
contains the tokens that appeared in the original natural string, which is not 100% unnatural ideally. We have also performed
ablation study by eliminating the original tokens from the candidates and initialize the searching control without natural
tokens but found that the performance is significantly sub-optimal. We admit the limitation of current searching methods
leveraging GCG and conjecture that the unnaturalness and performance for unnatural language could be further improved
once there is more effective and efficient discrete space optimization approach.

Besides, the efficiency for GCG-like searching methods is limited and it is expensive to search large scale unnatural language
version examples. This limits us from performing more comprehensive and large scale experiments. Once the searching
expense is mitigated, unnatural language could be further explored for practical usage.

In addition, we found that the unnatural language are not always generalizable across different tasks. For example, fine-
tuning on the unnatural version of GSM8K training set as in Sec. 4.3 does not achieve on-par performance with the one
fine-tuned on natural set in expectation. We suspect that this is because that GSM8K questions are too complex (long) for
GCG to search a compatible unnatural version. This also explains why the unnatural SimGSM8K in Sec. 3 only achieves
54% accuracy in average across models.

A1. Algorithm Details
Algorithm 1 presents the detailed implementation of the unnatural languages searching algorithm.

Algorithm 1 Unnatural Languages Searching

Input: Natural string S, searching models M and tasks T , batch size B, k, number of iterations T
1: // Initialize x via shuffle words in S and inject special characters.
2: Initialization: x = random_inject(shuffle(S))
3: repeat
4: for M ∈ M do
5: // Tokenize x through model M.
6: x1:n = TokenizeM (x)
7: // Obtain top-k alternative tokens of each position in x1:n.
8: X1:n = Top-k

(
∇x1:n

∑
t∈T logPM (S|x1:n, t)

)
9: for b = 1, ..., B do

10: // Uniformly sample candidates.
11: x̃

(b)
1:n = x1:n

12: x̃
(b)
1:n[i] = Uni(X1:n[i]), i = Uni([1 : n])

13: // Decode tokens back string.
14: x̃(b) = DecodeM (x̃

(b)
1:n)

15: end for
16: end for
17: // Select the best candidate.
18: x̃b∗ = argmaxb

∑
M∈M

∑
t∈T logPM (S|x̃(b), t)

19: // Replace the original string with the modified string.
20: x = x̃b∗

21: until Repeat for T times
Output: Equivalent unnatural string S′

A2. Algorithm Verificaiton Experiments
Here we perform a verification experiment to show that we searched unnatural strings could be translated back to natural
version. Specifically, we perform such translation task by appending a translation task description ’Translate the above
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sentences into natural languages’. The translation performance is shown in Table A7. EM denotes exact match; F1 denotes
F1 score; and NLI measures the semantic relationship between sentences (e.g., entailment, neutral, contradiction) using
pre-trained models, offering a nuanced evaluation of meaning similarity. We treat ’entailment’ as positive cases and compute
the accuracy to obtain the final score.

Table A7. Results of unnatural language to natural language translation task.

Dataset EM F1 NLI

SynContextQA 0.5600 0.854 0.860
SimGSM8K 0.660 0.805 0.650

A3. SynContextQA and SimGSM8K Dataset Details
A3.1. SynContextQA

Generation Details. We leverage GPT-3.5 (OpenAI, 2023) to generate context about non-existing entities and their
corresponding questions. The prompt is provided as follows in Table A8. To ensure the diversity of the generated context,
we generate 1, 000 candidates in total and perform k-means clustering according to the embeddings generated by a SOTA
text embedding model to form 100 clusters. Finally, we select 100 instances that are closest to each of the cluster centers.

Table A8. Prompt of SynContextQA generation.

Please generate 10 synthetic business or personal case for reading comprehension. The context information should be specific
to a synthetic object, e.g., ’The company TechDouDou raised 1,000,000 fundings in Q4, 2023’ instead of ’A company raised
1,000,000 fundings in Q4, 2023’. all data should be different from each other as much as possible. The case contains three parts:
(1) context that provides specific information, where the length should be no longer than 40 characters; (2) a question that asked
about that information; (3) the corresponding answer.
[Context]:The revenue of the company Countingstar for Q1 is 100,000$.
[Question]: What is the revenue of Countingstar for Q1?
[Answer]: The revenue of Countingstar for Q1 is 100,000$

Dataset Details. The dataset is generated by GPT-3.5. Each data contains a simple and synthetic context related to
unexisted business or personal as well as a couple of questions related to the context. Genearally, one question asks about
the action of the entity while the other question asks about the name of the enitity. For example, the context is "EcoGardens
launched a new sustainable packing initiative" and the two questions are "What recent initiative did EcoGradens launch?"
and "Which company launched a new sustainable packing initiative?". To ensure the diversity of the generated questions, we
generated 1,000 contexts and leverage k-means to get 100 data points, each of which is closed to the centers of a cluster. the
cluster embeddings were generated by a SOTA embedding model in sentence-transformers (Reimers & Gurevych,
2019). For each data point, we manually create the correct answer candidates for each question.

A3.2. SimGSM8K

Dataset Details. The dataset serves as a more challenging dataset compared to SynContextQA, where the data points
are derived from the test set of GSM8K. As a result, the context is more complex which often contains multiple entities
and much more information. Meanwhile, the answer of the question requires several steps of reasoning and the correct
answer could not be found in the context directly using simple keyword matching. Since our goal is to evaluate the ability
of unnatural language comprehension of LLMs, we do not want to introduce too complex QA paris which could not even
be answered correctly under natural language. To this end, we selected 100 questions from the original GSM8K test set
considering the context length and correctness of models.

A4. Unnatural QA Experiments Under Two-turn Dialogue Setting.
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Table A9. Performance comparison for different contexts across different models on SynContextQA and SimGSM8K datasets under
tow-turn dialogue setting. All answers were generated under zero-shot setting without sampling. “Direct” refers to models used for
unnatural language searching, while “Transfer” indicates the implementation of searched unnatural languages.

Model SynContextQA SimGSM8K

Natural Shuf-InJ Unnatural Natural Shuf-InJ Unnatural

Direct

Mistral-7B-Instruct 0.92 0.47 0.92 0.85 0.20 0.42
Vicuna-7B 0.94 0.49 0.90 0.63 0.18 0.21

Average 0.93 0.48 0.91 0.74 0.19 0.32

Transfer

Meta-Llama-3-8B-Instruct 0.98 0.51 0.84 0.77 0.31 0.40
Gemma-2-9B-Instruct 0.96 0.46 0.70 0.97 0.22 0.45
Meta-Llama-3-70B-Instruct 0.98 0.70 0.92 1.00 0.41 0.73
GPT-3.5 0.98 0.68 0.92 0.92 0.38 0.49
GPT-4 0.99 0.64 0.91 0.96 0.32 0.48

Average 0.98 0.60 0.86 0.92 0.33 0.51

To verify the model’s understanding of unnatural context and given that these are chat-based models, we implement a
dialogue format for context-based question-answering. Specifically, each QA session consists of two turn. In the first turn,
we provide the context in unnatural language to the model, which responds with “OK, got it.” In the second turn, we pose
the question related to the previously provided context and evaluate the model’s response accuracy through keyword exact
matching. Detailed results are shown in Table A9. The results serves as a complimentary results of Table 2 and it further
demonstrates that such unnatural languages is highly transferrable across models.

A5. LLMs Understand the Dependency Structure of Unnatural Language.
Dependency parsing is one of the most commonly used techniques to analyze the syntactic structure of natural sentences.
Dependency parsing transfer a sentence into a tree, where each word/token is a node and the directed edges represent the
dependency, the end node (child) depends on, e.g. modifying or being arguments of, the source node (parent). In general, a
fake ROOT node is usually added to the whole tree such that every actual word have parents. Dependency parsing serves
as a fundamental technique for understanding the syntax of sentences. In this section, we are curious about how LLMs
understand the unnatural language. A more specific question is that how LLMs interpret the syntax of unnatural language
since they could understand it.

Recently, Hewitt & Manning (2019) showed that pretrained LMs’, e.g. BERT (Devlin, 2018), output embeddings contains
the structural syntax information of the inputs. One can simply leverage the probing (a linear transformation) techiques
to extract such information and build a dependency syntax tree. Leveraging a modified version of the so-called structural
probing, we train a linear head upon a freezed pre-trained model (e.g. Llama-3-8B) to predict the dependency syntax tree
of the input sentence using natural language corpus as training source. Then we leverage the trained head to predict the
syntax tree of unnatural sentences. We introduce the structural probing method as follows.

A syntax tree of a sentence l is equal to a directed acyclic graph (DAG) G = (V,E), where V is the set of words and E
denotes the set of edges. to build the guidance for training, we compute a distance matrix d ∈ N(|V |,|V |) for the graph. The
element dij of the distance matrix is defined as the length of the shortest path between node i and node j. Particularly, if two
nodes are adjacent, the distance is 1. In the original paper, the authors omitted the root node for syntax tree when building
the distance matrix, which results in a symmetric matrix that loses the information of root node and edge directions. In our
work, we treat the root node as a concrete token (the BOS special token for any LLM tokenizer) and build the corresponding
distance matrix. Such distance matrix is an one-to-one mapping of the syntax tree since one can easily recover the syntax
tree since the root node is known and the tree is acyclic. In the following parts, we use dl ∈ N(|Vl|+1,|Vl|+1) denoting the
distance matrix for sentence l.

Given a model’s output embedding hl ∈ R(L,H) for sentence l. We formalize the training process as the following
optimization problem:
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Figure A5. A dependency syntax tree of unnatural sentence: "| EcoGardenslaz proceeded thus,- sust "able deix um nouvelles packstoff
launchedierteutabetLng initiative. Onejekt y deze sentence former GETTRAN()->()} grammar level:: EGB »OK!. Parse Sie fast{-itt
weiter", whose corresponding natural version is "EcoGardens launched a new sustainable packaging initiative". The tree was generated
by Llama-3-8B via structural probing (Hewitt & Manning, 2019). We annotate a sub-tree which reasonably represents the semantic
meaning of "EcoGardens proceeded initiative that launched one sustainable pack."

min
W

∑
l

1

|sl|2
∑
i,j

|d− fW(hl
i,h

l
j)|, (5)

where fW = (W(hl
i − hl

j))
T (W(hl

i − hl
j)) computes the squared eucliean distance between two nodes. |sl| denotes the

number of tokens in sentence l. In practice we train the probing head with the data from EN_EWT training set of universal
dependency (Silveira et al., 2014).

Then we use the trained probing head to predict the dependency syntax tree of unnatural sentences. We show an example
in Figure A5. As shown in Figure A5, the dependency tree clearly contains the syntax structure whose semantic meaning
is similar to the natural language. This indicates that LLMs could capture the syntax structure of unnatural language that
contains information akin to the natural language.

A6. More Experiments with additional baselines
To further validate the effectiveness of the proposed unnatural languages, we conduct additional experiments comparing
the dropping-token baseline with our method. Specifically, we employed saliency technique (Mundhenk et al., 2020) to
retain the top percentage of the most influential tokens while discarding the rest—a common approach in Explainable AI for
identifying which parts of the input most strongly impact a model’s prediction. The examples of baselines are shown in
Table A10 and the experiment results are presented in Table A11.

We first compare the unnatural language outputs generated by the baseline and our approach. The baseline tends to preserve
the word order and keywords of the original input, making it comparatively more human-readable. In contrast, our method
generates outputs that are less comprehensible to humans while maintaining critical latent features important for LLMs.

Moreover, on the SimGSM8K dataset, our unnatural examples consistently lead to significantly higher performance across
multiple models compared to the baseline. This demonstrates that our method results in examples that are more unnatural
from a human perspective while still preserving the essential latent structure that LLMs rely on for reasoning.
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Table A10. Examples of baselines and unnatural language on SimGSM8K.

Method Examples

pure_top0.3 Carly arms seastar
pure_top0.5 Carlyfish5 arms each one seastar.
pure_top0.7 Carly collected7 starfish5 arms each and one seastar arms.

random_injection_top0.3
Carly conclude Grudsignature)’ nordMBERazed arms Python GorNEXT
seastar anime workshop Felixlights gardenearing

random_injection_top0.5
Carly Yale embedding prospects Controlfish practicallyunsigned5 arms
each supp one seastarquote personnelscore AuthorsVal.

random_injection_top0.7
Carly collected tra7 starfishNext bet5 arms each and one seastar
amplWM substantial hacer arms.

Unnatural (Ours)
| Each and : algebra dinner! absolutely 7 do): shortly . seastar collectedthe
\‘’ kW)$, one ! 5 ! 14\‘ starfish with sic}}_\label Carly} arms. Onehorailey
constructed WriteStatus($ $\Toggle Zwezeichnung OK

Original Context Carly collected 7 starfish with 5 arms each and one seastar with 14 arms.

Table A11. Experiment results of different baselines on SimGSM8K. Pure refers to retaining only the most salient tokens. Random
Injection (RI) denotes the addition of randomly selected tokens to increase the level of unnaturalness.

Method Mistral-7B-Instruct-v0.1 Meta-Llama-3-8B-Instruct Gemma-2-9b-it Meta-Llama-3-70B-Instruct

pure_top0.3 0.07 0.07 0.07 0.07
pure_top0.5 0.10 0.06 0.12 0.14
pure_top0.7 0.18 0.12 0.25 0.24
random_injection_top0.3 0.08 0.08 0.07 0.10
random_injection_top0.5 0.11 0.11 0.15 0.16
random_injection_top0.7 0.17 0.16 0.23 0.28

Unnatural (Ours) 0.42 0.50 0.41 0.75
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