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Abstract

Self-supervised learning (SSL) has emerged as a powerful paradigm for learning
representations without labeled data, often by enforcing invariance to input transfor-
mations such as rotations or blurring. Recent studies have highlighted two pivotal
properties for effective representations: (i) avoiding dimensional collapse-where
the learned features occupy only a low-dimensional subspace, and (ii) enhancing
uniformity of the induced distribution. In this work, we introduce T-REGS, a
simple regularization framework for SSL based on the length of the Minimum
Spanning Tree (MST) over the learned representation. We provide theoretical anal-
ysis demonstrating that T-REGS simultaneously mitigates dimensional collapse
and promotes distribution uniformity on arbitrary compact Riemannian manifolds.
Several experiments on synthetic data and on classical SSL benchmarks validate
the effectiveness of our approach at enhancing representation quality. Code is
available here.

1 Introduction

Self-supervised learning (SSL) has emerged as a powerful paradigm for learning meaningful data
representations without relying on human annotations. Recent advances, particularly in visual
domains [4, 31, 17, 55, 60], have demonstrated that self-supervised representations can rival or
even surpass those learned through supervised methods. A dominant approach in this field is joint
embedding self-supervised learning (JE-SSL) [12, 4, 56], where two networks are trained to produce
similar embeddings for different views of the same image (see Figure 1). The fundamental challenge
in JE-SSL is to prevent representation collapse, where networks output identical and non-informative
vectors regardless of the input. To address this challenge, researchers have developed various
strategies. Contrastive approaches [12, 30] encourage embeddings of different views of the same
image to be similar while pushing away embeddings of different images. Non-contrastive methods
bypass the need of negative pairs, often employing asymmetric architectures [13, 28, 10] or enforcing
decorrelation among embeddings through redundancy reduction [4, 65, 63].

Recent studies have identified a more subtle form of collapse known as dimensional collapse [33, 35,
29, 41]. This phenomenon occurs when the embeddings span only a lower-dimensional subspace of
the representation space, leading to high feature correlations and reduced representational diversity.
Such a collapse can significantly impair the model’s ability to capture the full complexity of the data,
limiting performance on downstream tasks [26]. Another crucial aspect of representation quality is
uniformity, which measures how evenly the embeddings are distributed across the representation
space. It ensures that the learned representations preserve the maximum amount of information from
the input data and avoid clustering in specific regions of the space. This property is fundamental
because it helps maintain the discriminative power of the representations, and allows for better
generalization to downstream tasks [23, 61, 52, 24].
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Figure 1: Overview of T-REGS. (Left) Two augmented views X,X ′ are encoded by fθ and projected by
hϕ into embeddings Z,Z′. Training jointly: (i) minimizes the Mean Squared Error, LMSE(Z,Z

′), to enforce
view invariance (or alternatively the objective function of a given SSL method, LSSL(Z,Z

′), when used as
an auxiliary term); (ii) maximizes the minimum-spanning-tree length on each branch, LE(Z) and LE(Z

′),
repelling edge-connected points in MST(Z) and MST(Z′); and (iii) applies sphere constraints LS(Z) and
LS(Z

′). (Right) As a result, T-REGS induces uniformly distributed embeddings without dimensional collapse.

While existing methods have made progress in mitigating dimensional collapse and enforcing
uniformity, they present limitations: contrastive methods are sensitive to the number of negative
samples [26, 4], and require large batch sizes, which can be computationally expensive; redundancy
reduction methods, which enforce the covariance matrix to be close to the identity matrix, only
leverage the second moment of the data distribution and are blind to, e.g., concentration points of the
density, which can prevent convergence to the uniform density (Figure 6); and asymmetric methods
lack theoretical grounding to explain how the asymmetric network helps prevent collapse [63].

Given these limitations, Fang et al. [23] suggested rethinking the notion of good SSL regularization,
and proposed an Optimal Transport-based metric that satisfies a set of four principled properties
(instance permutation, instance cloning, feature cloning, and feature baby constraints) that prevent
dimensional collapse and promote sample uniformity. Their approach has its drawbacks: the optimal
transport distances are costly to compute in general, and the proposed closed formula for accelerating
the computation holds only on the sphere and requires square roots over SVD computations, which
may lead to numerical instabilities.

To address these limitations, we propose T-REG, a novel regularization approach that is conceptually
simple, easy to implement, and computationally efficient. T-REG naturally satisfies the four principled
properties of Fang et al. [23] (Appendix G) and provably prevents dimensional collapse while
promoting sample uniformity (Figure 2a). These properties make T-REG suitable for joint-embedding
self-supervised learning, where it can be applied independently to each branch, yielding T-REGS
(see Figure 1).

The central idea of T-REG is to maximize the length of the minimum spanning tree (MST) of the
samples in the embedding space. It has strong theoretical connections to the line of work on statistical
dimension estimation via entropy maximization [57] (Section 4.1). More explicitly, given a point
cloud Z in Euclidean space, a spanning tree (ST) of Z is an undirected graph G = (V,E) with vertex
set V = Z and edge set E ⊂ V × V such that G is connected without cycle. We define the length of
G as:

E(G) :=
∑

(z,z′)∈E

∥z − z′∥2. (1)

A minimum spanning tree of Z, denoted by MST(Z), is an ST of Z that minimizes length E; it is
unique under a genericity condition on Z. Since the length of MST(Z) scales under rescaling of Z,
maximizing it alone leads the points to diverge (see Figure 2b). To prevent trivial scaling, T-REG
constrains embeddings to a compact manifold, encouraging full use of the representation dimension
and a uniform distribution.

Our main contributions can be summarized as follows:

i) We introduce T-REG (Equation (6)), a regularization technique that maximizes the length of
the minimum spanning tree (MST) while constraining embeddings to lie on a hypersphere
(Section 4).
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Figure 2: Illustration of T-REG with synthetic data. (a-c) 3-d point cloud analysis: (a) T-REG successfully
spreads points uniformly on the sphere by combining MST length maximization and sphere constraint, (b) using
only MST length maximization leads to excessive dilation, (c) stable convergence of T-REG whereas LE alone
fails to converge. (d-e) Higher-dimensional analysis (256-d): (d) T-REG enforces effective convergence to the
255-d regular simplex (Theorem 4.1), (e) stable optimization behavior of T-REG.

ii) We show both theoretically and empirically that T-REG naturally prevents dimensional
collapse while enforcing sample uniformity (Sections 4.1 and 4.2).

iii) We apply T-REG to SSL either as standalone regularization, combining directly with view-
invariance, or as an auxiliary loss to existing methods, yielding the T-REGS framework—
whose effectiveness is evaluated through experiments on standard JE-SSL benchmarks
(Section 5).

2 Related Work

Our work builds upon recent advances in Joint-Embedding Self-Supervised Learning (JE-SSL), which
can be broadly categorized into two main approaches: contrastive and non-contrastive methods [26].

(i) Contrastive methods [32, 44, 12, 30, 14, 9] are commonly based on the InfoNCE loss [46]. These
methods encourage the embeddings of augmented views of the same image to be similar, while
ensuring that embeddings from different images remain distinct. Contrastive pairs can either be
sampled from a memory bank, as in MoCo [30, 14], or generated within the current batch, as in
SimCLR [12]. Furthermore, clustering-based methods [8, 9, 27] can also be seen as contrastive
methods between prototypes, or clusters, instead of samples. SwAV [9], for instance, learns online
clusters using the Sinkhorn-Knopp transform. However, despite their effectiveness, both approaches
require numerous negative comparisons to work well, which can lead to high memory consumption.
This limitation has spurred the exploration of alternative methods.

(ii) Non-contrastive methods bypass the reliance on explicit negative samples. Distillation-based
methods incorporate architectural strategies inspired by knowledge distillation to avoid representation
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collapse, such as an additional predictor [13], self-distillation [10], or a moving average branch as in
BYOL [28]. Meanwhile, redundancy reduction methods [65, 20, 4, 68, 63, 56, 62] attempt to produce
embedding variables that are decorrelated from each other, thus avoiding collapse. These methods
can be broadly categorized into two groups: those that enforce soft whitening through regularization
and those that perform hard whitening through explicit transformations. BarlowTwins [65] and
VICReg [4] regularize the off-diagonal terms of the covariance matrix of the embedding to have a
covariance matrix that is close to the identity. W-MSE [20] transforms embeddings into the eigenspace
of their covariance matrix (batch whitening) and enforces decorrelation among the resulting vectors.
CW-REG [62] introduces channel whitening, while Zero-CL [68] combines both batch and channel
whitening techniques. Building upon these methods, INTL [63] proposed to modulate the embedding
spectrum and explore functions beyond whitening to prevent dimensional collapse.

In this paper, we introduce a self-supervised learning (SSL) approach that uses a novel regularization
criterion: the maximization of the embeddings’ minimum spanning tree (MST) length. Our approach
aligns with the framework proposed by Fang et al. [23], satisfying the same four principled properties:
instance permutation, instance cloning, feature cloning, and feature baby constraints.

3 MST and dimension estimation

Steele [57] studies the total length of a minimal spanning tree (MST) for random subsets of Euclidean
spaces. Let Xn be an i.i.d.1 n-sample drawn from a probability measure PX with compact support
on Rd. For d ≥ 2, Theorem 1 of [57] controls the growth rate of the length of MST(Xn) as follows:

E (MST(Xn)) ∼ Cn(d−1)/d almost surely, as n → ∞, (2)
where ∼ denotes asymptotic convergence, and where C is a constant depending only on PX and d.

This asymptotic rate makes it possible to derive several estimators of the intrinsic dimension of
the support of a measure of its samples [53, 2, 15]. Among these estimators, the following one
theoretically coincides with the usual dimension in non-singular cases, and it empirically coincides
with the real-valued Hausdorff dimension [21] in classical manifold examples or even fractal examples,
such as the Cantor set or the Sierpiński triangle.
Definition 3.1. Given a bounded metric space M , the MST dimension of M , denoted by
dimMST(M), is the infimal exponent d ∈ N such that E (MST(X)) /|X| d−1

d is uniformly bounded
for all finite subsets X ⊆ M :

dimMST(M) := inf{d : ∃C such that E (MST(X)) /|X| d−1
d ≤ C for every finite subset X of M}.

Persistent Homology Dimension. The MST also appears in Topological Data Analysis (TDA) [47],
where it relates to the total persistence in degree 0 of the Rips filtration [47]. Moreover, Persistent
Homology (PH) has been used to define a family of fractal dimensions [1], dimi

PH(M), for each
homological degree i ≥ 0. In particular, for i = 0 this coincides with the MST-based dimension, i.e.,
dim0

PH(M) = dimMST(M). The PH dimension can be derived from entropy computations and has
already been used in several dimension-estimation applications [58, 5, 19]. In this work, we directly
leverage the connection to the entropy to obtain uniformity properties on compact Riemannian
manifolds (see Section 4.1.2).

MST optimization. TDA further provides a mathematical framework for optimizing the length of
MST(X) with respect to the point positions of X [11, 40]. Within this framework, E (MST(X)) is
differentiable almost everywhere, with derivatives given by the following simple formula:

∀x ∈ X, ∇xE (MST(X)) =
∑

(x,z) edge
of MST(X)

∇x ∥x− z∥2 =
∑

(x,z) edge
of MST(X)

∥x− z∥−1
2 (x− z). (3)

Furthermore, under standard assumptions on the learning rate, stochastic gradient descent is guaran-
teed to converge almost surely to critical points of the functional. In particular, Equation (3) shows
that each pair of points forming an edge in the MST exerts a repulsive force on the other during
optimization.

1Independent and identically distributed.
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MST computation. Given a finite point set X ⊂ Rd, several classic sequential procedures exist
to compute MST(X), notably Kruskal’s, Prim’s, and Boruvka’s algorithms, which all have at least
quadratic running time in the size of X . However, fast GPU-based parallelized implementations exist,
for instance [22], which unifies Kruskal’s and Boruvka’s algorithms and incorporates optimizations
such as path compression and edge-centric operations.

4 T-REG: Minimum Spanning Tree based Regularization

Our regularization T-REG has two terms: a length-maximization loss LE that decreases with the
length of the minimum spanning tree, and a soft sphere-constraint LS that increases with the distance
to a fixed sphere S. These two terms combined force the embeddings to lie on S (or close to it), while
spreading them out along S.

Formally, given Z = {z1, ..., zn} ⊆ Rd, the MST length maximization loss is defined as:

LE(Z) = − 1

n
E (MST(Z)) , (4)

where E (MST(Z)) denotes the length of the MST of Z. The soft sphere-constraint is given by:

LS(Z) =
1

n

∑
i

(∥zi∥2 − 1)2. (5)

It penalizes points that move away from the unit sphere. Maximizing the MST length alone would
cause the points to diverge to infinity; the sphere constraint prevents this by keeping the embeddings
within a fixed region around S (Figures 2b and 2c). The overall T-REG loss combines these two
terms:

LT-REG(Z) = γ LE(Z) + λLS(Z), (6)
where γ and λ are hyperparameters controlling the trade-off between spreading out the embeddings
and maintaining them on the sphere.

The remainder of the section provides a theoretical analysis (Section 4.1) and empirical evaluation
(Section 4.2) of T-REG.

4.1 Theoretical analysis

4.1.1 Behavior on small samples

We begin by considering the case where n ≤ d+ 1. It is particularly relevant since, in SSL, batch
sizes are often smaller than or comparable to the ambient dimension. In order to account for the
effect of the soft sphere constraint, we assume the points of X lie inside some fixed closed Euclidean
d-ball B of radius r centered at the origin (see below for the explanation).
Theorem 4.1. Under the above conditions, the maximum of E (MST(X)) over the point sets X ⊂ B
of fixed cardinality n is attained when the points of X lie on the sphere S = ∂B, at the vertices of a
regular (n− 1)-simplex that has S as its smallest circumscribing sphere.

Recall that a k-simplex is the convex hull of a set of k + 1 points that are affinely independent
in Rd—which is possible only for k ≤ d. The simplex is regular if all its edges have the same length,
i.e., all the pairwise distances between its vertices are equal. In such a case, we have the following
relation between its edge length a and the radius r of its smallest circumscribing sphere:

a = r

√
2(k + 1)

k
. (7)

Theorem 4.1 explains the behavior of T-REG as follows: first, minimizing the term LE in Equation (6)
expands the point cloud until the sphere constraint term LS becomes the dominating term (which
happens eventually since LS grows quadratically with the scaling factor, versus linearly for LE); at
that stage, the points stop expanding and start spreading themselves out uniformly along the sphere
of directions. The amount of expansion before spreading is prescribed by the strength of the sphere
constraint term versus the term in the loss, which is driven by the ratio between their respective
mixing parameters λ and γ.
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The proof of Theorem 4.1 relies on the following two ingredients: a standard result in convex
geometry (Proposition 4.2), and a technical lemma—proved in Appendix A—relating the length of
the MST to the sum of pairwise distances (Lemma 4.3).
Proposition 4.2 (Eq. (14.25) in Apostol and Mnatsakanian [3]). Under the conditions of Theorem 4.1,
and assuming n = d+ 1, the sum of pairwise distances

∑
1≤i<j≤n ∥zi − zj∥2 is maximal when the

points of X lie on the bounding sphere S, at the vertices of a regular d-simplex.
Lemma 4.3. For any points z1, . . . , zn ∈ Rd:

E (MST ({z1, . . . , zn})) ≤
2

n

∑
1≤i<j≤n

∥zi − zj∥2 .

Proof of Theorem 4.1. We prove the result in the case n = d+ 1. The case n < d+ 1 is the same
modulo some extra technicalities and can be found in Appendix A.

Let z∗1 , . . . , z
∗
n ∈ S lie at the vertices of a regular d-simplex. Then, for any points z1, . . . , zn ∈ B:

E (MST ({z1, . . . , zn}))
Lemma 4.3
≤ 2

n

∑
1≤i<j≤n ∥zi − zj∥2

Proposition 4.2
≤ 2

n

∑
1≤i<j≤n

∥∥z∗i − z∗j
∥∥
2

Eq. (7)
= 2

n
n(n−1)

2 r
√

2(d+1)
d = (n− 1) r

√
2(d+1)

d

= E (MST ({z∗1 , . . . , z∗n})) .

4.1.2 Asymptotic behavior on large samples

We now consider the case where n > d + 1, focusing specifically on the asymptotic behavior as
n → ∞. We analyze the constant C in Equation (2), which can be made independent of the density
of the sampling X . This, in particular, allows us to show that uniform and dimension-maximizing
densities are asymptotically optimal for E(MST(·)). We fix a compact Riemannian d-manifold, M,
equipped with the d-dimensional Hausdorff measure µ.
Theorem 4.4 ([15, Corollary 5]). Let Xn be an iid n-sample of a probability measure on M with
density fX w.r.t. µ. Then, there exists a constant C ′ independent of fX and of M such that:

n− d−1
d · E (MST(Xn)) −−−−→

n→∞
C ′

∫
f

d−1
d

X dµ almost surely. (8)

As pointed out by Costa and Hero [15], the limit in Equation (8) is related to the intrinsic Rényi
d−1
d -entropy:

φ d−1
d
(f) =

1

1− d−1
d

log

∫
f

d−1
d dµ, (9)

which is known to converge to the Shannon entropy as d−1
d → 1 [6]. The Shannon entropy, in turn,

achieves its maximum at the uniform distribution on compact sets [48]. This result can be shown
by directly studying the map ϕ : f 7→

∫
fp dµ, which shows that an optimal density function fX

maximizes the dimensionality of the sampling Xn. Given a compact set K ⊆ M, we consider the
space DK of positive, continuous probability densities f on K.
Proposition 4.5. For any 0 < p < 1 and any compact set K ⊆ M, the map ϕ|DK

admits a unique
maximum at the uniform distribution UK on K. Furthermore, we have ϕ(UA) < ϕ(UB) for all sets
A,B ⊆ M such that µ(A) < µ(B).

Proof. The map ϕ is strictly concave, as the composition of the strictly concave function x 7→ xp

with the linear map x 7→
∫
xdµ. Since density functions integrate to 1 over K, maximizing ϕ

corresponds to an optimization problem under constraint, which can be solved using the Lagrangian:

Lλ(f) :=

∫
K

fp dµ− λ

(∫
K

f dµ− 1

)
, with differential d (Lλ)f (h) =

∫
K

(
pfp−1 − λ

)
hdµ.
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Then, d (Lλ)f = 0 is equivalent to pfp−1 − λ being 0 almost everywhere, i.e. f being equal to(
λ
p

) 1
p−1

(a constant determined by
∫
f dµ = 1) almost everywhere, i.e. f being the density of the

uniform measure on K.

Now, recalling that 0 < p < 1, we have:

ϕ(UK) =

∫ (
dUK

dµ

)p

dµ =

∫
K

1

µ(K)p
dµ =

∫
µ(K)

(µ(K))p
dUK = µ(K)1−p,

which proves the second part of the statement.

A direct consequence of Proposition 4.5 and the fact that DM is dense in the set of probability
densities of Lp(M) is the following corollary.
Corollary 4.6. Let D be the set of probability densities over M, and p ∈ (0, 1). Then, the map
f ∈ D 7→

∫
fp dµ reaches its maximum at the density f := dUM

dµ .

4.2 Empirical evaluation
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Figure 3: Sensitivity to Dimensional Collapse. The
metrics −W2 and −LE jointly decrease as the collapse
level (η) increases.

We conduct an empirical study on synthetic data
to validate T-REG’s ability to prevent dimen-
sional collapse and promote sample uniformity.

Preventing dimensional collapse. Follow-
ing Fang et al. [23], we assess T-REG’s effective-
ness against dimensional collapse by measuring
how sensitive its loss LE is to simulated collapse.
Specifically, we generate 10, 000 data points in
dimension 1024 from an isotropic Gaussian dis-
tribution, then zero out a fraction η of their coor-
dinates to control the collapse level. As shown
in Figure 3, the sensitivity of the T-REG loss
to η is similar to that of the W2 loss from Fang
et al. [23], indicating that T-REG effectively pe-
nalizes dimensional collapse.

Promoting sample uniformity. We apply T-REG alone to optimize a given point cloud and analyze
its behavior in both low-dimensional and high-dimensional scenarios (Figure 2). For this, we use
two different input point clouds: (i) a degenerate set of 256 points on a 1-d curve (corresponding to
the orange dots in Figures 2a and 2b); (ii) a set of 256 points in R256, initially concentrated around
a specific point on the unit sphere, where each point xi is sampled as xi = e1 + εi, with εi drawn
uniformly from a ball of radius 0.001.

As illustrated in Figure 2a, optimization with T-REG successfully transforms the initial point cloud
in a 3-d space into a uniformly distributed point cloud on the sphere, as per Corollary 4.6. This is
achieved through the combination of MST length maximization and sphere constraint. The sphere
constraint is crucial here: when optimizing only the MST length, LE, (see Figure 2b), the optimization
fails to converge.

In high dimensions (Figure 2d), we analyze the distribution of cosine similarities between the
embeddings. The initial distribution shows a sharp peak near 1, indicating highly correlated samples
on the sphere. After optimization with T-REG, the distribution becomes almost a Dirac slightly
below 0, indicating that the configuration of the points is close to that of the vertices of the regular
simplex, as per Theorem 4.1.

5 T-REGS: T-REG for Self-supervised learning

T-REGS extends T-REG to Joint-Embedding Self-Supervised Learning. For an input image i, two
transformations t, t′ are sampled from a distribution T to produce two augmented views x = t(i)
and x′ = t′(i). These transformations are typically random crops and color distortions. We compute
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Method CIFAR-10 [37] CIFAR-100 [37]

Zero-CL [68]
91.3 68.5

+ Lu 91.3 68.4
+ W2 91.4 68.5

MoCo v2 [14]

90.7 60.3
+ Lu 91.0 61.2
+ W2 91.4 63.7

BYOL [28]

89.5 63.7
+ Lu 90.1 62.7
+ W2 90.1 65.2
+ LT-REGS 90.4 65.7

Barlow Twins [65]

91.2 68.2
+ Lu 91.4 68.4
+ W2 91.4 68.5
+ LT-REGS 91.8 68.5

LMSE + LT-REGS 91.3 67.4

Table 1: Comparison with W2 regularization [23] on CIFAR-10/100. The table is inherited from Fang et al.
[23], and we follow the same protocol: ResNet-18 models are pre-trained for 500 epochs on CIFAR-10/100,
with a batch size of 256, followed by linear probing. We report Top-1 accuracy (%). Boldface indicates best
performance.

embeddings z = hϕ(fθ(x)) and z′ = hϕ(fθ(x
′)) using a backbone fθ and projector hϕ. T-REGS acts

as a regularization applied separately to the embedding batches Z = [z1, ..., zn] and Z ′ = [z′1, ..., z
′
n].

Specifically, embeddings from each view batch, Z and Z ′, are treated as points in a high-dimensional
space, and Kruskal’s algorithm [38] is used to construct two Minimum Spanning Tree (MST), one
for each view batch. These MSTs yield two T-REG regularization terms, which are combined into
the T-REGS objective as follows:

LT-REGS(Z,Z
′) = γ LE(Z) + λLS(Z)︸ ︷︷ ︸

LT-REG(Z)

+ γ LE(Z
′) + λLS(Z

′)︸ ︷︷ ︸
LT-REG(Z′)

. (10)

where γ, λ control the contribution of each term.

In practice, T-REGS can be used as (i) a standalone regularization, combined directly with an
invariance term such as the Mean Squared Error: L(Z,Z ′) = β LMSE(Z,Z

′) + LT-REGS(Z,Z
′),

where LMSE(Z,Z
′) = 1

n

∑
i ∥zi − z′i∥22 and β is a mixing parameter; or (ii) as an auxiliary loss to

existing SSL methods: L(Z,Z ′) = β LSSL(Z,Z
′) +LT-REGS(Z,Z

′), where LSSL(Z,Z
′) denotes the

objective function of a given SSL method, and β is a mixing parameter. An overview of T-REGS is
presented in Figure 1.

The remainder of the section provides evaluations of T-REGS on standard SSL benchmarks (Sec-
tion 5.1) and on a multi-modal application (Section 5.2); as well as loss coefficients and computational
analyses (Section 5.3). Implementation details and further analyses are in Appendices C and E.

5.1 Evaluation on standard SSL benchmark

We evaluate the representations obtained after training with T-REGS, either directly combined
with view invariance or integrated with existing methods (i.e., BYOL, and Barlow Twins) on
CIFAR-10/100 [37], ImageNet-100 [59], and ImageNet [18]. Our implementation is based on
solo-learn [16], and we use torchph [7] for the MST computations. For T-REGS as a standalone
regularizer, we use β = 10, γ = 0.2, λ = 8e− 4.

Evaluation on CIFAR-10/100. We first focus on comparisons with Fang et al. [23] (W2-regularized
methods), following the same protocol on CIFAR-10/100 [37] with ResNet-18. As shown in Table 1,
T-REGS demonstrates strong standalone performance, achieving results within 0.1% of the best
W2-regularized approach on CIFAR-10. Additionally, using T-REGS as an auxiliary loss consistently
improves performance over the respective baselines, and over variants that use Lu or W2 as additional
regularization terms.

Evaluation on ImageNet-100/1k. To assess the scalability of T-REGS, we evaluate our model
on ImageNet-100 and ImageNet-1k using ResNet-18 and ResNet-50, respectively, following the
standard linear evaluation protocol on ImageNet and comparing with the state of the art. We report
Top-1 accuracy. As shown in Table 2, T-REGS is competitive with methods that use the same number
of views (e.g., INTL), and improves existing methods when used as an auxiliary loss.
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#
views

Imagenet-100 [59] ImageNet-1k [18]
Method Top-1 Batch Size Top-1

8
SwAV [9] 74.3 4096 66.5
FroSSL [56] 79.8 - -
SSOLE [34] 82.5 256 73.9

2

SimCLR [12] 77.0 4096 66.5
MoCo v2 [14] 79.3 256 67.4
SimSiam [13] 78.7 256 68.1
W-MSE [20] 69.1 512 65.1
Zero-CL [68] 79.3 1024 68.9
VICReg [4] 79.4 1024 68.3
CW-RGP [62] 77.0 512 67.1
INTL [63] 81.7 512 69.5

BYOL [28] 80.3 1024 66.5
+ LT-REGS 80.8 1024 67.2

Barlow Twins [65] 80.2 2048 67.7
+ LT-REGS 80.9 2048 67.8

LMSE + LT-REGS 80.3 512 68.8

Table 2: Linear Evaluation on ImageNet-100/1k. We report Top-1 accuracy (%). The top-4 methods are
boldfaced. For ImageNet-100, ResNet-18 are pre-trained for 400 epochs using a batch size of 256; for ImageNet-
1k, ResNet-50 is pre-trained for 100 epochs. The table is mostly inherited from Weng et al. [63].

5.2 Evaluation on Multi-modal application: image-text retrieval

Flickr30k [49] MS-COCO [43]
i → t t → i t → i t → i

Method R@1 R@5 R@1 R@5 R@1 R@5 R@1 R@5

Zero-Shot 71.1 90.4 68.5 88.9 31.9 56.9 28.5 53.1
Finetune 81.2 95.5 80.7 95.8 36.7 63.6 36.9 63.9
ES [41] 71.8 90.0 68.5 88.9 31.9 56.9 28.7 53.0
i-Mix [39] 72.3 91.7 69.0 91.1 34.0 63.0 34.6 62.2
Un-Mix [54] 78.5 95.4 74.1 91.8 38.8 66.2 33.4 61.0
m3-Mix [45] 82.3 95.9 82.7 96.0 41.0 68.3 39.9 67.9
LCLIP + LT-REGS 83.2 96.0 80.8 96.4 41.6 68.7 41.5 68.7

Table 3: Cross-Modal Retrieval after finetuning CLIP. Image-to-text (i → t) and text-to-image (t
→ i) retrieval results (top 1/5 Recall: R@1, R@5). The table is mostly inherited from Oh et al. [45].
Boldface indicates the best performance.

T-REGS can also be applied when branches differ in architecture and data modalities, as it regularizes
each branch independently. Accordingly, we demonstrate its capabilities in a joint-embedding
multi-modal setting.

Pre-trained multi-modal models, such as CLIP [51], provide broadly transferable embeddings.
However, several works have shown that CLIP preserves distinct subspaces for text and image—the
modality gap [42, 45, 36]. Prior analyses [45, 64] relate this gap to low embedding uniformity;
notably, CLIP’s embedding space often remains non-uniform even after fine-tuning, which can
hinder transferability. Given that T-REGS improves embedding uniformity when used as an auxiliary
loss, we evaluate its impact on CLIP fine-tuning. We fine-tune CLIP using T-REGS as an auxiliary
regularizer; more precisely, LT-REGS is applied independently to the image and text branches and
combined with the standard LCLIP objective [51] to encourage more robust and uniformly distributed
representations. We follow the protocol of m3-Mix [45]. We report R@1 and R@5 for image-to-text
and text-to-image retrieval on Flickr30k and MS-COCO in Table 3, which shows that T-REGS
improves performance over prior methods.

5.3 Analysis

Loss coefficients. We determine the final coefficients for T-REGS as a standalone regularizer on
ImageNet-1k as follows (the same approach was applied when combining T-REGS with existing
methods). Initial experiments revealed that maintaining β ≥ γ ≥ λ was essential to prevent
representation collapse. To efficiently explore the parameter space while managing computational
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Coefficients Scaling
β γ λ β

γ
γ
λ

Top-1

1 - - - - collapse
1 1 - 1 - collapse
10 1 1 10 1 collapse
10 0.5 5e-2 20 10 25.7
10 0.2 2e-2 50 10 45.4
10 0.5 2.5e-3 20 200 65.0
10 0.2 1e-3 50 200 65.3
10 0.5 2e-3 20 250 64.9
10 0.2 8e-4 50 250 66.1
10 0.02 8e-5 100 300 63.3

Table 4: Impact of coefficients. LMSE
+LT-REGS top-1 accuracy (%) on ImageNet-1k
with online evaluation protocol over 50 epochs.
Boldface indicates best performance.

Method Complexity B range D range Wall-clock time

SimCLR [12] O(B2 ·D) [2048-4096] [256-1024] 0.22 ± 0.03
VICReg [4] O(B ·D2) [1024-4096] [4096-8192] 0.23 ± 0.02

LMSE + LT-REGS O(B2(D · logB)) [512-1024] [512-2048] 0.20 ± 0.001

Table 5: Complexity and computational cost. Compari-
son between different methods is performed, with training on
ImageNet-1k distributed across 4 Tesla H100 GPUs. The wall-
clock time (sec/step) is averaged over 500 steps. B,D ranges
are reported from Bardes et al. [4], Garrido et al. [25].

costs, we fixed β (the largest coefficient) and systematically varied the ratios β
γ and γ

λ using 50-
epoch online probing [25]. As shown in Table 4, both LE and LS contribute to performance, with
LS requiring a smaller weight. This suggests that the actual radius of the sphere is not critical,
thereby validating our choice of a soft sphere constraint instead of a hard one.

Computational cost. We evaluate the computational cost of T-REGS. The MSTs are computed
with Kruskal’s algorithm [38], whose worst-case time is O(B2(D · logB)), with B the batch size and
D the embedding dimension. Although Kruskal’s main loop is sequential, preprocessing (computing
the distance matrix and sorting its entries) dominates in practice and can be efficiently parallelized on
GPUs (as in torchph [7], used in our implementation). Empirically, T-REGS matches the per-step
wall-clock of VICReg and SimCLR (averaged over 500 steps during training on ImageNet-1k with
B = 512, D = 1024; see Table 5).

6 Conclusion

We introduced T-REG, a regularization approach that prevents dimensional collapse and promotes
sample uniformity. Our method maximizes the length of the minimum spanning tree (MST), coupled
with a sphere constraint. Our analysis connects MST optimization to entropy maximization and
uniformity on compact manifolds, providing theoretical guarantees corroborated by empirical results.
We extend T-REG to Self-supervised learning, yielding T-REGS. On CIFAR-10/100 and ImageNet-
100/1k, T-REGS is competitive with W2-regularized and state-of-the-art methods, both as a standalone
regularizer and as an auxiliary term, underscoring its effectiveness.
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A Missing proofs from Section 4.1

Proof of Theorem 4.1 (case n < d+ 1). Let z1, . . . , zn ∈ B, and let H⊂ Rd be an n-dimensional
affine space containing z1, . . . , zn. Let BH be the (n− 1)-dimensional Euclidean ball B ∩H , and
SH = S ∩H its bounding sphere. Finally, let rH ≤ r be the radius of BH (and of SH ). Inside H ,
the same calculation as in the case n = d+ 1 shows that

E (MST ({z1, . . . , zn})) ≤ E (MST ({z∗1 , . . . , z∗n})) = (n− 1) rH

√
2n

n− 1

for any points z∗1 , . . . , z
∗
n lying at the vertices of a regular (n − 1)-simplex inscribed in SH . The

quantity on the right-hand side of the equality is bounded above by (n− 1)r
√

2n
n−1 , which is attained

when rH = r, i.e., when the affine subspace H contains the origin, or equivalently, when S is the
smallest circumscribing sphere of z∗1 , . . . , z

∗
n.

Proof of Lemma 4.3. We fix d and proceed by induction on n.

For n = 1 we have:
E (MST ({z1})) = 0 =

2

1

∑
1≤i<j≤n

∥zi − zj∥2 .
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Assume now that the result holds for all n up to some n0 ≥ 1, and let us prove it for n = n0 + 1.
Let e = (zi, zj) be an edge of MST({z1, . . . , zn}) of maximum length. Then, the graph G =
MST ({z1, . . . , zn}) \ {e} has two connected components C and D, each of which is a tree with less
than n vertices. Up to a relabeling of the points of Z, we can assume without loss of generality that
j = i+ 1 and that the vertices of C are the points z1, . . . , zi while the vertices of D are the points
zi+1, . . . , zn. We can then make the following observations:

(i) C = MST ({z1, . . . , zi}) and D = MST ({zi+1, . . . , zn}). Indeed, otherwise, replacing C
by MST({z1, . . . , zi}) and D by MST({zi+1, . . . , zn}), and connecting them with edge e,
would yield a spanning tree of {z1, . . . , zn} of strictly smaller length than G ∪ {e}, which
would contradict the fact that G ∪ {e} = MST ({z1, . . . , zn}).

(ii) For all k ≤ i < l, we have ∥zk − zl∥2 ≥ ∥zi − zi+1∥2, for otherwise the graph G ∪ {(zk, zl)}
would be a spanning tree of {z1, . . . , zn} of strictly smaller length than G ∪ {e}, again
contradicting the fact that G ∪ {e} = MST ({z1, . . . , zn}).

Then, (i) and the induction hypothesis imply:∑
k<l≤i

∥zk − zl∥2 ≥ i

2
E(C), (11)

∑
i<k<l

∥zk − zl∥2 ≥ n− i

2
E(D). (12)

Meanwhile, (ii) implies: ∑
k≤i<l

∥zk − zl∥2 ≥ i(n− i) ∥zi − zi+1∥2 . (13)

And since e = (zi, zi+1) is an edge of MST({z1, . . . , zn}) of maximum length, we have:

∥zi − zi+1∥2 ≥ 1

i− 1
E(C), (14)

∥zi − zi+1∥2 ≥ 1

n− i− 1
E(D). (15)

Hence: ∑
k≤i<l

∥zk − zl∥2
Eq. (13)
≥ i(n− i) ∥zi − zi+1∥2

=
(

n
2 + (n−i)(i−1)

2 + i(n−i−1)
2

)
∥zi − zi+1∥2

Eqs. (14)-(15)
≥ n

2 ∥zi − zi+1∥2 + n−i
2 E(C) + i

2 E(D).

(16)

It follows:∑
1≤k<l≤n

∥zk − zl∥2 =
∑

k≤i<l

∥zk − zl∥2 +
∑

k<l≤i

∥zk − zl∥2 +
∑

i<k<l

∥zk − zl∥2
Eqs. (16) and (11)-(12)

≥ n
2 ∥zi − zi+1∥2 + n−i

2 E(C) + i
2 E(D) + i

2 E(C) + n−i
2 E(D)

= n
2 ∥zi − zi+1∥2 + n

2 E(C) + n
2 E(D)

= n
2 E (MST ({z1, . . . , zn})) .
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B Algorithm

Algorithm 1 T-REGS combined with view invariance using PyTorch pseudocode

# f: encoder network, h: projection network
# β, γ, λ: coefficients of the invariance, MST length and sphere constraint
losses

for x in loader: do # load a batch with N samples
# two randomly augmented versions of x
x_1, x_2 = augment(x), augment(x)
# compute the representations and the embeddings
y_1, y_2 = f(x_1), f(x_2)
z_1, z_2 = h(y_1), h(y_2)

inv_loss = LMSE(z_1,z_2) # invariance loss
length_mst_loss = LE(z_1) + LE(z_2) # MST length
sphere_loss = LS(z_1) + LS(z_2) # soft sphere constraint loss
# total loss
loss = β inv_loss + γ length_mst_loss + λ sphere_loss

# optimization step
loss.backward()
optimizer.step()

end for

C Implementation Details on standard SSL Benchmark

Our implementation is based on solo-learn [16], which is released under the MIT License. To
compute the length of the minimum spanning tree, we rely on torchph and Gudhi [50], both released
under MIT Licenses.

Our experiments are performed on

1. ImageNet dataset [18], and a subset ImageNet-100 which are subject to the ImageNet terms
of access

2. CIFAR-10, CIFAR-100

C.1 Architectural and training details.

CIFAR-10 [37] CIFAR-100 [37] Imagenet-100 [59] ImageNet [18]

Backbone
backbone Resnet-18 Resnet-18 Resnet-18 Resnet-50

Projector
projector layers 3 layers with BN and ReLU
projector hidden dimension 2048 2048 4096 4096
projector output dimension 1024

Pre-training
batch size 256 256 256 512
optimizer LARS
learning rate base_lr ∗ batch size/256
base_lr 0.4 0.4 0.3 1
learning rate warm-up 2 epochs 10 epochs
learning rate schedule cosine decay
weight decay 1e-4 1e-5

Linear evaluation
batch size 256
optimizer SGD
base_lr 0.1
learning rate schedule cosine decay

Table 6: Training hyperparameters.

We follow the guidance of Da Costa et al. [16] for selecting baseline hyperparameters and use the
same seed: 5. Table 6 lists each dataset’s architectural and training details.
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C.2 Augmentations

We follow the image augmentation protocol first introduced in SimCLR [12] and now commonly used
in Joint-Embedding Self-Supervised Learning [4, 9, 65]. Two random crops from the input image are
sampled and resized to 32 × 32 for CIFAR-10/100 and 224 × 224 for Imagenet-100/1k, followed
by color jittering, converting to grayscale, Gaussian blurring, polarization, and horizontal flipping.
Each crop is normalized in each color channel using the ImageNet mean and standard deviation pixel
values. The following operations are performed sequentially to produce each view:

ImageNet-1k Data Augmentation.

• Random cropping with an area uniformly sampled with size ratio between 0.2 to 1.0,
followed by resizing to size 224 × 224.

• Color jittering of brightness, contrast, saturation and hue, with probability 0.8.
• Grayscale with probability 0.2.
• Gaussian blur with probability 0.5 and kernel size 23.
• Solarization with probability 0.1.
• Random horizontal flip with probability 0.5.
• Color normalization using ImageNet mean and standard deviation pixel values (with mean

(0.485, 0.456, 0.406) and standard deviation (0.229, 0.224, 0.225).)

CIFAR-10/100 Data Augmentation.

• Random cropping with an area uniformly sampled with size ratio between 0.2 to 1.0,
followed by resizing to size 32 × 32.

• Color jittering of brightness, contrast, saturation and hue, with probability 0.8.
• Grayscale with probability 0.2.
• Solarization with probability 0.1.
• Random horizontal flip with probability 0.5.
• Color normalization with mean (0.485, 0.456, 0.406) and standard deviation (0.229, 0.224,

0.225).

C.3 Implementation details on Image-text retrieval

Following Oh et al. [45], we fine-tune CLIP ViT-B/32 on Flickr30k and MS COCO, respectively. We
train for 9 epochs with a batch size of 128 using the Adam optimizer (β1 = 0.9, β2 = 0.98, ε = 1e−
6). We search for the best initial learning rate from {1e−6, 3e−6, 5e−6, 7e−6, 1e−5} and weight
decay from {1e− 2, 2e− 2, 5e− 2, 1e− 1, 2e− 1}. For T-REGS combined with LCLIP, the overall
objective is: L(Z,Z ′) = β LCLIP(Z,Z

′) + LT-REGS(Z,Z
′) , with β = 1, γ = 3e− 3, λ = 2e− 5.

D Compute cost

We conducted our experiments using NVIDIA H100 and V100 GPUs. Training a single T-REGS
model requires:

• for ImageNet-1k: 15 hours using 4 H100 GPUs (i.e., amounting to 60 GPU-hours per
model);

• for ImageNet-100: 7 hours using 1 H100 GPU;

• for CIFAR-10/100: 7 hours using 1 V100 GPU.

The computational cost for the entire project, including all baseline computations, experiments,
hyperparameter tuning, and ablation studies, amounted to approximately 10,000 H100 GPU-hours
and 5,000 V100 GPU-hours.
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Figure 4: Impact of the projector architecture. LMSE +LT-REGS top-1 accuracy (%) on the linear
evaluation protocol with 100 pretraining epochs.

E Ablation Study

In this section, we conduct a comprehensive set of ablation experiments to assess the robustness and
versatility of T-REGS. These experiments cover various aspects, including projector architecture,
batch sizes, and seed variability.

E.1 Projector Architecture.

An essential difference between methods lies in how the projector (hϕ, in Figure 1) is designed [26].
To assess the impact of the projector architecture on T-REGS performance (when combined with view
invariance), we train models for 100 epochs on ImageNet-1k with different projector architectures.
We describe projector architectures using the notation X-Y-Z, where each number represents the
dimension of a linear layer in sequence. Each layer (except the last) is followed by a ReLU activation
and batch normalization. The final layer has no activation, batch normalization, or bias. We evaluate
three projector architectures:

• 2048-d: the projector used in SimCLR
• 8192-8192-d: the projector used in VICReg
• 4096-4096-d: a smaller variant of the VICReg projector

with d varying from 256 to 4096. The remaining hyperparameters are the same as reported in Ap-
pendix C. Our results demonstrate that the choice of projector architecture significantly impacts the
model’s performance, with 8192-8192-d and 4096-4096-d consistently outperforming the 2048-d
variant.

We also observe that the embedding dimension d (i.e., the output dimension of the projector hϕ)
has minimal impact on performance. This is particularly noteworthy as other methods, such as
VICReg [4] and Barlow Twins [65], are known to be sensitive to embedding dimension, typically
requiring dimensions larger than 2048 for optimal performance. Our results show that T-REGS
maintains high accuracy even with small embedding dimensions, demonstrating its robustness to this
hyperparameter.

E.2 Batch size.

Batch Size 128 256 512 1024
Top-1 66.3 67.2 68.7 68.0

Table 7: Impact of batch size. LMSE +LT-REGS top-1 accuracy (%) using linear evaluation after 100
pre-training epochs.
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Figure 5: Histograms of embeddings’ cosine similarities on CIFAR-10. With T-REGS as a standalone
regularization (orange) or as an auxiliary loss (dark orange), the distribution of pairwise cosine similarities
becomes concentrated around zero, indicating that the embeddings are highly decorrelated and approach a
regular simplex configuration (Theorem 4.1).

Many SSL methods are known to be sensitive to batch sizes, for instance contrastive methods
suffer from the need of many negative samples which can translate into the need of large batch
sizes [12, 9]. In Table 7, we study how batch size affects T-REGS performance (when combined with
view invaraince). We train models for 100 epochs on ImageNet-1k with batch sizes ranging from 128
to 1024, using the same hyperparameters as in Table 6. T-REGS maintains good performance even
with small batch sizes (e.g., 128), demonstrating its robustness to different batch size configurations.

E.3 Normalization

Some popular SSL frameworks, such as SimCLR and BYOL, employ explicit normalization of
features to the unit sphere, enforcing a hard constraint. Others do not implement such constraints
explicitly, and instead rely on soft mechanisms—such as VICReg, which incorporates variance and
covariance regularization terms in its loss, implicitly constraining the distribution (and to some extent,
the norms) of the embeddings. We chose a soft sphere constraint for the following reasons: (i) a
hard normalization has been shown to ignore the importance of the embedding norm for gradient
computation, whereas a soft constraint enables better embedding optimization [66, 67], (ii) during
our initial experiment, we found that relaxing the sphere constraint from a hard one to a soft one
provides more leeway for optimization and leads to improved results, as shown in Table 8.

CIFAR-10 CIFAR-100
soft-constraint 91.2 66.8
hard-constraint 89.2 64.7

Table 8: Impact of normalization. LMSE +LT-REGS top-1 accuracy (%).

E.4 Sensitivity to the seed.

CIFAR-10 CIFAR-100
91.1 ± 0.11 66.4 ± 0.45

Table 9: Sensitivity to the seed. LMSE +LT-REGS top-1 accuracy using linear evaluation after 500
pre-training epochs on CIFAR-10/100. We report results averaged across 5 seeds in the format: mean
± std.

We observe strong stability across different random seeds, with standard deviations of only 0.11%
and 0.45% on CIFAR-10 and CIFAR-100 respectively.
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E.5 Study of the embeddings.

We analyze the learned embeddings by computing pairwise cosine similarity between embeddings on
CIFAR-10. As shown in Figure 5, BYOL yield embeddings with mean similarities significantly above
zero (≈ 0.3). This indicates a concentration within a cone rather than uniformity on the hypersphere.
In contrast, T-REGS yields mean similarities near zero, reflecting more uniformly distributed and
decorrelated embeddings, with some values slightly negative– suggesting an arrangement close
to a regular simplex, as per Theorem 4.1. Additionally, applying T-REGS as an auxiliary loss
effectively shifts the mean cosine similarity towards zero, as illustrated in Figure 5, thus indicating its
effectiveness.

F Empirical Experiments

F.1 Study of redundancy-reduction methods

Redundancy-Reduction methods [4, 65, 63, 20] attempt to produce embedding variables that are
decorrelated from each other. These methods maximize the informational content of embeddings by
regularizing their empirical covariance matrix.

For instance, VICReg [4] leverages (i) a term to encourage the variance (diagonal of the covariance
matrix) inside the current batch to be equal to 1, preventing collapse with all the inputs mapped on
the same vector; (ii) and a correlation regularization, encouraging the off-diagonal coefficients of the
empirical covariance matrix to be close to 0, decorrelating the different dimensions of the embeddings.
More formally, let Z = {z1, ..., zn} ⊆ Rd be a set of n embeddings in d-dimensional space. For
each dimension j ∈ {1, ..., d}, we denote zj as the vector containing all values at dimension j across
the embeddings. The variance term is defined as:

Lvar =
1

d

d∑
j=1

max(0, 1− S(zj , ε)) (17)

where S(x, ε) =
√

Var(x) + ε is a stability-adjusted standard deviation, with ε > 0 being a small
constant that prevents numerical instabilities.

The covariance term is defined as:

Lcov =
1

d

∑
i ̸=j

[C(Z)]2i,j (18)

where C(Z) is the sample covariance matrix: C(Z) = 1
n−1 (Z − z)T (Z − z), with z = 1

n

∑n
i=1 zi

the mean value of the embeddings.

The overall variance-covariance regularization term is a weighted:
Lvar-cov = ν Lvar + τ Lcov (19)

where ν, τ are hyperparameters controlling the importance of each term in the loss.

Limitations of redundancy-reduction methods. In Figure 6 we study a limitation of redundancy-
reduction methods. We sample 2000 points from a non-isotropic Gaussian distribution, and observe
the resulting point cloud after optimization with Lvar-cov (using ν = 25, τ = 1, as in Bardes et al. [4]).
Since Gaussian distributions are fully characterized by their mean and covariance matrix, we expect
that by optimizing the empirical covariance matrix, the initial point cloud will converge towards a
sample of the standard Gaussian distribution, thus far from a uniform distribution.

Figure 6b shows the optimization of Figure 6a using the covariance-based approach from VICReg
(Equation (19)). The optimized empirical distribution is, as expected, closer to the standard Gaus-
sian distribution, but exhibits artifacts such as low-dimensional concentration points or even holes
suggesting local instabilities. These artifacts persist across different parameter choices, though their
specific manifestations may vary with the learning rate.

Figure 6c shows the optimization of Figure 6a using LT-REG. We leverage Corollary 4.6, whose
guarantees are valid for any Riemannian manifold, and in particular the disk. This ensures that the
limiting distribution for T-REG is the uniform distribution on the disk, which prevents dimensional
collapse and naturally decorrelates the distribution while maintaining the uniform distribution.
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Figure 6: Limitations of redundancy-based methods for non-isotropic Gaussian measure. (a)
Initial sampling from a non-isotropic Gaussian distribution. (b) After Lvar-cov optimization: despite
achieving a near-identity covariance matrix (center), the point cloud remains concentrated around its
mean, with visible artifacts: holes (left). (c) LT-REG optimization achieves both uniform distribution
on the disk and near-identity correlation matrix.
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Figure 7: Further Studying T-REG properties through 3-d point cloud optimization. (a) T-REG successfully
spreads points uniformly on the sphere by combining MST length maximization and sphere constraint, (b) using
only MST length maximization leads to excessive dilation, (c) stable convergence of T-REG whereas LE does
not converge.

F.2 Promoting sample uniformity

Building upon the empirical study presented in Section 4.2, we conduct an additional point cloud
optimization experiment with a different initial configuration (Figure 7). We sample 256 points along
a circle while setting the remaining dimension to zero. This setup allows for the generation of a
point cloud with one collapsed dimension. The experimental results demonstrate consistent behavior
with the findings discussed in Section 4.2: (i) T-REG successfully transforms the initial circle into a
uniformly distributed point cloud on the sphere (see Figure 7a), (ii) the sphere constraint is essential
here, since using only the MST length loss (as in Figure 7b) leads to a failure of convergence of the
optimization.

This further validates the effectiveness of our approach in promoting uniform point distribution.

G Uniformity properties

Recall from Equation (4) that LE(Z) = −E (MST(Z)) /|Z|. In practice, for datasets of fixed size,
minimizing LE is equivalent to minimizing −E (MST(Z)) itself. In this section, we show that, up
to a renormalization, −E (MST(Z)) satisfies the four principled properties for uniformity metrics
introduced in [23, Section 3.1].

A uniformity metric U is a scalar score function on n-samples in Rd that is large on uniform-like
point clouds and small on degenerate or almost-degenerate point clouds. In the following, we fix an
n-sample Z = (z1, . . . , zn) in Rd.

We define our uniformity metric as −E (MST(·)) normalized by the edge length of the regular
d-simplex σ0

d with vertices on the unit sphere Sd−1:

UT-REG(Z) := −E (MST(Z))(
2(d+1)

d

)1/2
. (20)

In practice, for a fixed ambient dimension d, minimizing −E (MST(Z)) or minimizing UT-REG(Z) is
equivalent. The motivation behind renormalization is to measure the length of the minimum spanning
tree relative to a reference length on the unit sphere Sd−1, to make it a dimensionless quantity.

We now show that our uniformity score UT-REG satisfies the desired uniformity properties:

1. Instance permutation constraint: ∀π ∈ Sn, U ((zπ1
, . . . , zπn

)) = U(Z).
By construction, MST(Z) and its length are invariant under permutations of the points’
indices, therefore E (MST(·)) and UT-REG are also permutation invariant.

2. Instance cloning constraint: if Z ′ = Z, then U ((z1, . . . , zn, z
′
1, . . . , z

′
n)) = U(Z).

If G = (Z,E) is an MST of Z, then

G′ = ((z1, . . . , zn, z
′
1, . . . , z

′
n), E ∪ {(zi, z′i) : 1 ≤ i ≤ n}) (21)
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is a spanning tree of (z1, . . . , zn, z
′
1, . . . , z

′
n), and it is minimal for E since G it-

self is minimal on Z and E(G′) = E(G) + n × 01 = E(G). Therefore,
UT-REG((z1, . . . , zn, z1, . . . , zn)) = UT-REG(Z) since the ambient dimension is constant.

3. Feature cloning constraint: U(z1 ⊕ z1, . . . , zn ⊕ zn) < U(z).
Feature cloning corresponds to pushing the points of Z to the diagonal in R2d, which
impacts the pairwise distances by a uniform scaling by a factor of

√
2. In particular, the

MST remains the same combinatorially and we have:

−E (MST(Z ⊕ Z)) = −21/2E (MST(Z)) < −E (MST(Z)) .

Meanwhile, since φ : d 7→
(

2(d+1)
d

)−1/2

is an increasing function and UT-REG ≤ 0, we
have:

UT-REG(Z ⊕ Z) = −E (MST(Z ⊕ Z))φ(2d) < −E (MST(Z))φ(d) = UT-REG(Z).

4. Feature baby constraint: ∀k ∈ N+, U(Z ⊕ 0k) < U(Z).
Adding constant features does not impact the pairwise distances, hence does not impact the
minimum spanning tree and its length We thus have E

(
MST

(
Z ⊕ 0k

))
= E (MST(Z)).

As in the previous case, since φ : d 7→
(

2(d+1)
d

)−1/2

is an increasing function and
UT-REG ≤ 0, we have:

UT-REG(Z ⊕ 0k) = −E
(
MST

(
Z ⊕ 0k

))
φ(d+ k) < −E (MST(Z))φ(d) = UT-REG(Z).

H Example of a Minimum Spanning Tree

Figure 8 provides an example of the MST of a 2d uniformly sampled point cloud.
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Figure 8: Example of the MST of a 2d uniformly sampled point cloud.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions. The
main claims about T-REG’s ability to prevent dimensional collapse and enforce uniformity
are clearly stated and supported by both theoretical analysis and experimental results. The pa-
per’s scope is well-defined, focusing on self-supervised learning with a novel regularization
approach.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Limitations are discussed in the conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The paper provides detailed theoretical analysis in Section 4. The assumptions
are clearly stated, particularly in the asymptotic analysis section, where conditions about
the probability measure and manifold are specified. The proofs are properly structured and
referenced.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The paper provides comprehensive experimental details in Section 4, including
the exact setup for synthetic experiments (number of points, dimensions, initialization
methods). The main experimental settings are described in the experiments section, with
additional details provided in the appendix. The code will be made available, as mentioned
in the checklist’s experimental settings answer.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The full code will be made available. The experiments use standard datasets
(ImageNet and CIFAR) which are publicly available. The synthetic experiments are fully
described and can be reproduced from the paper’s description.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The main experimental settings are provided in the Section 5 of the paper.
The full details as well as a comprehensive list of the hyperparameters is provided in ??.
Furthermore the full code will be made available.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]
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Justification: While the paper presents comprehensive experimental results across multiple
datasets and settings, it does not include error bars or statistical significance measures. The
results are reported as single values without variance estimates as related work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute ressources are listed in the ??.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research utilizes the publicly available ImageNet and CIFAR datasets,
both of which are widely recognized benchmarks in the machine learning community. These
datasets are used in accordance with their respective licenses. We have ensured that our
use of these datasets respects privacy considerations and adheres to ethical standards. To
promote transparency and reproducibility, we have shared all code, hyperparameters, and
detailed instructions necessary to replicate our experiments. This commitment to openness
aligns with NeurIPS guidelines on reproducibility and responsible research practices.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The paper presents a fundamental research contribution in self-supervised
learning without direct societal applications. The work focuses on improving representation
learning methods without specific societal implications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The research does not involve the release of models or datasets with high risk
for misuse. It uses standard benchmark datasets and focuses on methodological improve-
ments in self-supervised learning.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The paper uses standard benchmark datasets (ImageNet and CIFAR) and
acknowledges their use. The appendix specifies the code and datasets used along with their
respective licenses.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The paper introduces T-REG, a new regularization approach, and commits
to releasing the implementation. The documentation is provided in the paper, including
theoretical analysis and experimental validation.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The research does not involve any crowdsourcing experiments or research with
human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The research does not involve human subjects or participants, so IRB approval
is not applicable.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core methodology of the research does not involve the use of Large
Language Models. The work focuses on self-supervised learning for visual representations.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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