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ABSTRACT

The Predict-Then-Optimize framework uses machine learning models to predict
unknown parameters of an optimization problem from features before solving.
Recent works show that decision quality can be improved in this setting by solving
and differentiating the optimization problem in the training loop, enabling end-
to-end training with loss functions defined directly on the resulting decisions.
However, this approach can be inefficient and requires handcrafted, problem-
specific rules for backpropagation through the optimization step. This paper
proposes an alternative method, in which optimal solutions are learned directly
from the observable features by predictive models. The approach is generic, and
based on an adaptation of the Learning-to-Optimize paradigm, from which a rich
variety of existing techniques can be employed. Experimental evaluations show
the ability of several Learning-to-Optimize methods to provide efficient, accurate,
and flexible solutions to an array of challenging Predict-Then-Optimize problems.

1 INTRODUCTION

The Predict-Then-Optimize (PtO) framework models decision-making processes as optimization
problems whose parameters are only partially known while the remaining, unknown, parameters must
be estimated by a machine learning (ML) model. The predicted parameters complete the specification
of an optimization problem which is then solved to produce a final decision. The problem is posed as
estimating the solution x?(⇣) 2 X ✓ Rn of a parametric optimization problem:

x?(⇣) = arg min
x

f(x, ⇣) (1)

such that: g(x)  0, h(x) = 0,

given that parameters ⇣ 2 C ✓ Rp are unknown, but that a correlated set of observable values
z 2 Z are available. Here f is an objective function, and g and h define the set of the problem’s
inequality and equality constraints. The combined prediction and optimization model is evaluated
on the basis of the optimality of its downstream decisions, with respect to f under its ground-truth
problem parameters (Elmachtoub & Grigas, 2021). This setting is ubiquitous to many real-world
applications confronting the task of decision-making under uncertainty, such as planning the shortest
route in a city, determining optimal power generation schedules, or managing investment portfolios.
For example, a vehicle routing system may aim to minimize a rider’s total commute time by solving
a shortest-path optimization model (1) given knowledge of the transit times ⇣ over each individual
city block. In absence of that knowledge, it may be estimated by models trained to predict local
transit times based on exogenous data z, such as weather and traffic conditions. In this context,
more accurately predicted transit times ⇣̂ tend to produce routing plans x?(⇣̂) with shorter overall
commutes, with respect to the true city-block transit times ⇣.
However, direct training of predictions from observable features to problem parameters tends to
generalize poorly with respect to the ground-truth optimality achieved by a subsequent decision
model (Mandi et al., 2023; Kotary et al., 2021b). To address this challenge, End-to-end Predict-

Then-Optimize (EPO) (Elmachtoub & Grigas, 2021) has emerged as a transformative paradigm in
data-driven decision making in which predictive models are trained by directly minimizing loss
functions defined on the downstream optimal solutions x?(⇣̂).
On the other hand, EPO implementations require backpropagation through the solution of the
optimization problem (1) as a function of its parameters for end-to-end training. The required back-
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propagation rules are highly dependent on

z
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(b) End-to-end Predict and Optimize

(c) Learning to optimize (optimization proxy)

(d) Learning to optimize from features
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(a) Predict-then-optimize (two-stage learning)
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Figure 1: Illustration of Learning to Optimize from Features,
in relation to other learning paradigms.

the form of the optimization model and are
typically derived by hand analytically for
limited classes of models (Amos & Kolter,
2017; Agrawal et al., 2019a). Furthermore,
difficult decision models involving noncon-
vex or discrete optimization may not admit
well-defined backpropagation rules.

To address these challenges, this pa-
per outlines a framework for training
Predict-Then-Optimize models by tech-
niques adapted from a separate but related
area of work that combines constrained op-
timization end-to-end with machine learn-
ing. Such paradigm, called Learn-to-

Optimize (LtO), learns a mapping between
the parameters of an optimization problem
and its corresponding optimal solutions us-
ing a deep neural network (DNN), as illus-
trated in Figure 1(c). The resulting DNN mapping is then treated as an optimization proxy whose
role is to repeatedly solve difficult, but related optimization problems in real time (Vesselinova et al.,
2020; Fioretto et al., 2020). Several LtO methods specialize in training proxies to solve difficult
problem forms, especially those involving nonconvex optimization.

The proposed methodology of this paper, called Learning to Optimize from Features (LtOF), rec-
ognizes that existing Learn-to-Optimize methods can provide an array of implementations for
producing learned optimization proxies, which can handle hard optimization problem forms, have
fast execution speeds, and are differentiable by construction. As such, they can be adapted to the
Predict-Then-Optimize setting, offering an alternative to hard optimization solvers with handcrafted
backpropagation rules. However, directly transferring a pretrained optimization proxy into the train-
ing loop of an EPO model leads to poor accuracy, as shown in Section 3, due to the inability of LtO
proxies to generalize outside their training distribution. To circumvent this distributional shift issue,
this paper shows how to adapt the LtO methodology to learn optimal solutions directly from features.

Contributions. In summary, this paper makes the following novel contributions: (1) It investigates
the use of pretrained LtO proxy models as a means to approximate the decision-making component
of the PtO pipeline, and demonstrates a distributional shift effect between prediction and optimization
models that leads to loss of accuracy in end-to-end training. (2) It proposes Learning to Optimize
from Features (LtOF), in which existing LtO methods are adapted to learn solutions to optimization
problems directly from observable features, circumventing the distribution shift effect over the
problem parameters. (3) The generic LtOF framework is evaluated by adapting several well-known
LtO methods to solve Predict-then-Optimize problems with difficult optimization components, under
complex feature-to-parameter mappings. Besides the performance improvement over two-stage
approaches, the results show that difficult nonconvex optimization components can be incorporated

into PtO pipelines naturally, extending the flexibility and expressivity of PtO models.

2 PROBLEM SETTING AND BACKGROUND

In the Predict-then-Optimize (PtO) setting, a (DNN) prediction model C✓ : Z ! C ✓ Rk first
takes as input a feature vector z 2 Z to produce predictions ⇣̂ = C✓(z). The model C is itself
parametrized by learnable weights ✓. The predictions ⇣̂ are used to parametrize an optimization
model of the form (1), which is then solved to produce optimal decisions x?(⇣̂) 2 X . We call these
two components, respectively, the first and second stage models. Combined, their goal is to produce
decisions x?(⇣̂) which minimize the ground-truth objective value f(x?(⇣̂), ⇣) given an observation
of z 2 Z . Concretely, assuming a dataset of samples (z, ⇣) drawn from a joint distribution ⌦, the
goal is to learn a model C✓ : Z ! C producing predictions ⇣̂ = C✓(z) which achieves

Minimize
✓

E(z,⇣)⇠⌦

h
f

⇣
x?(⇣̂), ⇣

⌘i
. (2)
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This optimization is equivalent to minimizing expected regret, defined as the magnitude of subopti-
mality of x?(⇣̂) with respect to the ground-truth parameters:

regret(x?(⇣̂), ⇣) = f(x?(⇣̂), ⇣) � f(x?(⇣), ⇣). (3)

Two-stage Method. A common approach to training the prediction model ⇣̂ = C✓(z) is the two-

stage method, which trains to minimize the mean squared error loss `(⇣̂, ⇣) = k⇣̂ � ⇣k22, without
taking into account the second stage optimization. While directly minimizing the prediction errors is
confluent with the task of optimizing ground-truth objective f(x?(⇣̂), ⇣), the separation of the two
stages in training leads to error propagation with respect to the optimality of downstream decisions,
due to misalignment of the training loss with the true objective (Elmachtoub & Grigas, 2021).

End-to-End Predict-Then-Optimize. Improving on the two-stage method, the End-to-end Predict-
end-Optimize (EPO) approach trains directly to optimize the objective f(x?(⇣̂), ⇣) by gradient
descent, which is enabled by finding or approximating the derivatives through x?(⇣̂). This allows for
end-to-end training of the PtO goal (2) directly as a loss function, which consistently outperforms two-
stage methods with respect to the evaluation metric (2), especially when the mapping z ! ⇣ is difficult

to learn and subject to significant prediction error. Such an integrated training of prediction and
optimization is referred to as Smart Predict-Then-Optimize (Elmachtoub & Grigas, 2021), Decision-

Focused Learning (Wilder et al., 2019), or End-to-End Predict-Then-Optimize (EPO) (Tang & Khalil,
2022). This paper adopts the latter term throughout, for consistency. Various implementations of this
idea have shown significant gains in downstream decision quality over the conventional two-stage
method. See Figure 1 (a) and (b) for an illustrative comparison, where the constraint set is denoted
with F . An overview of related work on the topic is reported in Appendix A.

CHALLENGES IN END-TO-END PREDICT-THEN-OPTIMIZE

Despite their advantages over the two-stage, EPO methods face two key challenges: (1) Differentia-

bility: the need for handcrafted backpropagation rules through x?(⇣), which are highly dependent
on the form of problem (1), and rely on the assumption of derivatives @x?

@⇣ which may not exist or
provide useful descent directions, and require that the mapping (1) is unique, producing a well-defined
function; (2) Efficiency: the need to solve the optimization (1) to produce x?(⇣) for each sample, at
each iteration of training, which is often inefficient even for simple optimization problems.

This paper is motivated by a need to address these disadvantages. To do so, it recognizes a body of
work on training DNNs as learned optimization proxies which have fast execution, are automatically
differentiable by design, and specialize in learning mappings ⇣ ! x?(⇣) of hard optimization prob-
lems. While the next section discusses why the direct application of learned proxies as differentiable
optimization solvers in an EPO approach tends to fail, Section 4 presents a successful adaptation of
the approach in which optimal solutions are learned end-to-end from the observable features z.

3 EPO WITH OPTIMIZATION PROXIES

The Learning-to-Optimize problem setting encompasses a variety of distinct methodologies with
the common goal of learning to solve optimization problems. This section characterizes that setting,
before proceeding to describe an adaptation of LtO methods to the Predict-Then-Optimize setting.

Learning to Optimize. The idea of training DNN models to emulate optimization solvers is referred
to as Learning-to-Optimize (LtO) (Kotary et al., 2021b). Here the goal is to learn a mapping
F! : C ! X from the parameters ⇣ of an optimization problem (1) to its corresponding optimal
solution x?(⇣) (see Figure 1 (c)). The resulting proxy optimization model has as its learnable
component a DNN denoted F̂! , which may be augmented with further operations S such as constraint
corrections or unrolled solver steps, so that F! = S � F̂! . While training such a lightweight model
to emulate optimization solvers is in general difficult, it is made tractable by restricting the task over
a limited distribution ⌦F of problem parameters ⇣.
A variety of LtO methods have been proposed, many of which specialize in learning to solve problems
of a specific form. Some are based on supervised learning, in which case precomputed solutions x?(⇣)
are required as target data in addition to parameters ⇣ for each sample. Others are self-supervised,
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requiring only knowledge of the problem form (1) along with instances of the parameters ⇣ for
supervision in training. LtO methods employ special learning objectives to train the proxy model F!:

Minimize
!

E⇣⇠⌦F

h
`

LtO
⇣
F!(⇣), ⇣

⌘i
, (4)

where `
LtO represents a loss that is specific to the LtO method employed. A primary challenge in LtO

is ensuring the satisfaction of constraints g(x̂)  0 and h(x̂) = 0 by the solutions x̂ of the proxy
model F!. This can be achieved, exactly or approximately, by a variety of methods, for example
iteratively retraining Equation (4) while applying dual optimization steps to a Lagrangian loss function
(Fioretto et al., 2020; Park & Van Hentenryck, 2023), or designing S to restore feasibility (Donti
et al., 2021), as reviewed in Appendix B. In cases where small constraint violations remain in the
solutions x̂ at inference time, they can be removed by post-processing with efficient projection or
correction methods as deemed suitable for the particular application (Kotary et al., 2021b).

EPO WITH PRETRAINED OPTIMIZATION PROXIES

Viewed from the Predict-then-Optimize lens, learned optimization proxies have two beneficial
features by design: (1) they enable very fast solving times compared to conventional solvers,
and (2) are differentiable by virtue of being trained end-to-end. Thus, a natural question is
whether it is possible to use a pre-trained optimization proxy to substitute the differentiable op-
timization component of an EPO pipeline. Such an approach modifies the EPO objective (2) as:

x�
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Figure 2: A distribution shift between the training dis-
tribution of a LtO proxy and the parameter predictions
during training leads to inaccuracies in the proxy solver.

Minimize
✓

E(z,⇣)⇠⌦


f

⇣ x̂z }| {
F!

�
C✓(z)| {z }

⇣̂

�
, ⇣

⌘�
, (5)

in which the solver output x?(⇣̂) of problem (2)
is replaced with the prediction x̂ obtained by
LtO model F! on input ⇣̂ (gray color highlights
that the model is pretrained, before freezing its
weights !).

However, a fundamental challenge in LtO lies
in the inherent limitation that ML models act as
reliable optimization proxies only within the distribution of inputs they are trained on. This challenges
the implementation of the idea of using pretrained LtOs as components of an end-to-end Predict-Then-
Optimize model as the weights ✓ update during training, leading to continuously evolving inputs
C✓(z) to the pretrained optimizer F! . Thus, to ensure robust performance, F! must generalize
well across virtually any input during training. However, due to the dynamic nature of ✓, there is an
inevitable distribution shift in the inputs to F! , destabilizing the EPO training.

Figures 2 and 3 illustrate this issue. The former highlights how the input distribution to a pretrained
proxy drifts during EPO training, adversely affecting both output and backpropagation. The latter

Figure 3: Effect on regret as LtO proxy acts outside
its training distribution.

quantifies this behavior, exemplified on a sim-
ple two-dimensional problem (described in Ap-
pendix C), showing rapid increase in proxy regret
as ⇣̂ diverges from the initial training distribution
⇣ ⇠ ⌦F (shown in black). The experimental re-
sults presented later in Table 2 reinforce these ob-
servations. While each proxy solver performs well
within its training distribution, their effectiveness
deteriorates sharply when utilized as described in
equation 5. This degradation is observed irrespec-
tive of any normalization applied to the proxy’s
input parameters during EPO training.

A step toward resolving this distribution shift issue allows the weights of F! to adapt to its changing
inputs, by jointly training the prediction and optimization models:

Minimize
✓,!

E(z,⇣)⇠⌦


f

⇣ x̂z }| {
F!

�
C✓(z)| {z }

⇣̂

�
, ⇣

⌘�
. (6)
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The predictive model C✓ is then effectively absorbed into the predictive component of F! , resulting
in a joint prediction and optimization proxy model J� = F! � C✓, where � = (!, ✓). Given the
requirement for feasible solutions, the training objective (6) must be replaced with an LtO procedure
that enforces the constraints on its outputs. This leads us to the framework presented next.

4 LEARNING TO OPTIMIZE FROM FEATURES

The distribution shift effect described above arises due to the disconnect in training between the
first-stage prediction network C✓ : Z ! C and the second-stage optimization proxy F! : C ! X .
However, the Predict-Then-Optimize setting (see Section 2) ultimately only requires the combined
model to produce a candidate optimal solution x̂ 2 X given an observation of features z 2 Z . Thus,
the intermediate prediction ⇣̂ = C✓(z) in Equation (6) is, in principle, not needed. This motivates
the choice to learn direct mappings from features to optimal solutions of the second-stage decision
problem. The joint model J� : Z ! X is trained by Learning-to-Optimize procedures, employing

Minimize
�

E(z,⇣)⇠⌦


`

LtO
⇣
J�(z), ⇣

⌘�
. (7)

This method can be seen as a direct adaptation of the Learn-to-Optimize framework to the Predict-
then-Optimize setting. The key difference from the typical LtO setting, described in Section 3, is that
problem parameters ⇣ 2 C are not known as inputs to the model, but the correlated features z 2 Z

are known instead. Therefore, estimated optimal solutions now take the form x̂ = J�(z) rather than
x̂ = F!(⇣). Notably, this causes the self-supervised LtO methods to become supervised, since the
ground-truth parameters ⇣ 2 C now act only as target data while the separate feature variable z takes
the role of input data.

We refer to this approach as Learning to Optimize from Features (LtOF). Figure 1 illustrates the key
distinctions of LtOF relative to the other learning paradigms studied in the paper. Figures (1c) and
(1d) distinguish LtO from LtoF by a change in model’s input space, from ⇣ 2 C to z 2 Z . This
brings the framework into the same problem setting as that of the two-stage and end-to-end PtO
approaches, illustrated in Figures (1a) and (1b). The key difference from the PtO approaches is that
they produce an estimated optimal solution x?(⇣̂) by using a true optimization solver, but applied to
an imperfect parametric prediction ⇣̂ = C✓(z). In contrast, LtOF directly estimates optimal solution
x̂(z) = J�(z) from features z, circumventing the need to represent an estimate of ⇣.

4.1 SOURCES OF ERROR

Both the PtO and LtOF methods yield solutions subject to regret, which measures suboptimality
relative to the true parameters ⇣, as defined in Equation 3. However, while in end-to-end and,
especially, in the two-stage PtO approaches, the regret in x?(⇣̂) arises from imprecise parameter
predictions ⇣̂ = C✓(z) (Mandi et al., 2023), in LtOF, the regret in the inferred solutions x̂(z) =
J�(z) arises due to imperfect learning of the proxy optimization. This error is inherent to the LtO
methodology used to train the joint prediction and optimization model J�, and persists even in
typical LtO, in which ⇣ are precisely known. In principle, a secondary source of error can arise from
imperfect learning of the implicit feature-to-parameter mapping z ! ⇣ within the joint model J�.
However, these two sources of error are indistinguishable, as the prediction and optimization steps are
learned jointly. Finally, depending on the specific LtO procedure adopted, a further source of error
arises when small violations to the constraints occur in x̂(z). In such cases, restoring feasibility (e.g,
through projection or heuristics steps) often induces slight increases in regret (Fioretto et al., 2020).

Despite being prone to optimization error, Section 5 shows that Learning to Optimize from Features
greatly outperforms two-stage methods, and is competitive with EPO training based on exact differen-
tiation through x?(⇣), when the feature-to-parameter mapping z ! ⇣ is complex. This is achieved
without any access to exact optimization solvers, nor models of their derivatives. This feat can be
explained by the fact that by learning optimal solutions end-to-end directly from features, LtOF does
not directly depend on learning an accurate representation of the underlying mapping from z to ⇣.
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4.2 EFFICIENCY BENEFITS

Because the primary goal of the Learn-to-Optimize methodology is to achieve fast solving times, the
LtOF approach broadly inherits this advantage. While these benefits in speed may be diminished
when constraint violations are present and complex feasibility restoration are required, efficient
feasibility restoration is possible for many classes of optimization models Beck (2017). This enables
the design of accelerated PtO models within the LtOF framework, as shown in Section 5.

4.3 MODELING BENEFITS

While EPO approaches require the implementation of problem-specific backpropagation rules, the
LtOF framework allows for the utilization of existing LtO methodologies in the PtO setting, on a
problem-specific basis. A variety of existing LtO methods specialize in learning to solve convex
and nonconvex optimization (Fioretto et al., 2020; Park & Van Hentenryck, 2023; Donti et al.,
2021), combinatorial optimization (Bello et al., 2017; Kool et al., 2019), and other more specialized
problem forms (Wu & Lisser, 2022). The experiments of this paper focus on the scope of continuous
optimization problems, whose LtO approaches share a common set of solution strategies.

5 EXPERIMENTAL RESULTS

The LtOF approach is evaluated on three Predict-Then-Optimize tasks, each with a distinct second
stage optimization component x? : C ! X , as in equation 1. These tasks include a convex quadratic
program (QP), a nonconvex quadratic programming variant, and a nonconvex program with sinusoidal
constraints, to showcase the general applicability of the framework.

LtOF methods. Three different LtOF implementations are evaluated on each applicable PtO task,
based on distinct Learn-to-Optimize methods, reviewed in detail in Appendix B. These include:

• Lagrangian Dual Learning (LD) (Fioretto et al., 2020), which augments a regression loss with
penalty terms, updated to mimic a Lagrangian Dual ascent method to encourage the satisfaction of
the problem’s constraints.

• Self-supervised Primal Dual Learning (PDL) (Park & Van Hentenryck, 2023), which uses an
augmented Lagrangian loss function to perform joint self-supervised training of primal and dual
networks for solution estimation.

• Deep Constraint Completion and Correction (DC3) (Donti et al., 2021), which relies on a com-
pletion technique to enforce constraint satisfaction in predicted solutions, while maximizing the
empirical objective function in self-supervised training.

While several other Learn-to-Optimize methods have been proposed in the literature, the above-
described collection represents diverse subset which is used to demonstrate the potential of adapting
the LtO methodology as a whole to the Predict-Then-Optimize setting.

Feature generation. End-to-End Predict-Then-Optimize methods integrate learning and optimization
to minimize the propagation of prediction errors–specifically, from feature mappings z ! ⇣ to
the resulting decisions x?(⇣) (regret). It’s crucial to recognize that even methods with high error

propagation can yield low regret if the prediction errors are low. To account for this, EPO studies often
employ synthetically generated feature mappings to control prediction task difficulty (Elmachtoub &
Grigas, 2021; Mandi et al., 2023). Accordingly, for each experiment, we generate feature datasets
(z1, . . . zN ) 2 Z from ground-truth parameter sets (⇣1, . . . ⇣N ) 2 C using random mappings of
increasing complexity. A feedforward neural network, Gk, initialized uniformly at random with k

layers, serves as the feature generator z = Gk(⇣). Evaluation is then carried out for each PtO task
on feature datasets generated with k 2 {1, 2, 4, 8}, keeping target parameters ⇣ constant.

Baselines. In our experiments, LtOF models use feedforward networks with k hidden layers. For
comparison, we also evaluate two-stage and, where applicable, EPO models, using architectures with
k hidden layers where k 2 {1, 2, 4, 8}. Further training specifics are provided in Appendix D.

Comparison to LtO setting. It is natural to ask how solution quality varies when transitioning from
LtO to LtOF in a PtO setting, where solutions are learned directly from features. To address this
question, each PtO experiment includes results from its analogous Learning to Optimize setting,
where a DNN F! : C ! X learns a mapping from the parameters ⇣ of an optimization problem to its
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Figure 4: Comparison between LtO (k=0), LtOF, Two-
stage (2S) and EPO (k>1) on the portfolio optimization.
2S(EPO)-m indicates that the prediction model of the re-
spective PtO method is an m layer ReLU neural network.

Method Portfolio N/conv. QP AC-OPF

L
tO

F

LD it 0.0003 0.0000 0.0004

LD fct 0.0000 0.0045 0.1573
PDL it 0.0003 0.0000 0.0006
PDL fct 0.0000 0.0045 0.1513
DC3 it 0.0011 0.0001 -
DC3 fct 0.0003 0.0000 -

P
tO

PtO-1 et 0.0054 0.0122 0.1729
PtO-2 et 0.0059 0.0104 0.1645
PtO-4 et 0.0062 0.0123 0.1777
PtO-8 et 0.0067 0.0133 0.1651

Table 1: Execution (et), inference (it), and fea-
sibility correction (fct) times for LtOF and PtO

(in seconds) for each sample. Two-stage methods
execution times are comparable to PtO’s ones.

corresponding solution x?(⇣). This is denoted k =0 (LtO), indicating the absence of any feature
mapping. All figures report the regret obtained by LtO methods for reference, although they are not
directly comparable to the Predict-then-Optimize setting.

Finally, all reported results are averages across 20 random seeds and we refer the reader to Appendix
D for additional details regarding experimental settings, architectures, and hyperparamaters adopted.

5.1 CONVEX QUADRATIC OPTIMIZATION

A well-known problem combining prediction and optimization is the Markowitz Portfolio Optimiza-
tion (Rubinstein, 2002). This task has as its optimization component a convex Quadratic Program:

x?(⇣) = arg max
x�0

⇣T x � �xT⌃x, s.t. 1T x = 1 (8)

in which parameters ⇣ 2 RD represent future asset prices, and decisions x 2 RD represent their
fractional allocations within a portfolio. The objective is to maximize a balance of risk, as measured
by the quadratic form covariance matrix ⌃, and total return ⇣T x. Historical prices of D = 50
assets are obtained from the Nasdaq online database (Nasdaq, 2022) and used to form price vectors
⇣i, 1  i  N , with N =12, 000 individual samples collected from 2015-2019. In the outputs x̂ of
each LtOF method, possible feasibility violations are restored, at low computational cost, by first
clipping [x̂]+ to satisfy x � 0, then dividing by its sum to satisfy 1T x = 1. The convex solver
cvxpy (Diamond & Boyd, 2016) is used as the optimization component in each PtO method.

Results. Figure 4 shows the percentage regret due to LtOF implementations based on LD, PDL and
DC3. Two-stage and EPO models are evaluated for comparison, with predictive components given
various numbers of layers. For feature complexity k > 1, each LtOF model outperforms the best
two-stage model, increasingly with k and up to nearly two orders of magnitude when k = 8. The
EPO model, trained using exact derivatives through (8) as provided by the differentiable solver in
cvxpylayers (Agrawal et al., 2019a) is competitive with LtOF until k = 4, after which point its
best variant is outperformed by each LtOF variant. This result showcases the ability of LtOF models
to reach high accuracy under complex feature mappings without access to optimization problem
solvers or their derivatives, in training or inference, in contrast to conventional PtO frameworks.

Table 1 presents LtOF inference times (it) and feasibility correction times (fct), which are compared
with the per-sample execution times (et) for PtO methods. Run times for two-stage methods are
closely aligned with those of EPO, and thus obmitted. Notice how the LtOF methods are at least an
order of magnitude faster than PtO methods. This efficiency has two key implications: firstly, the
per-sample speedup can significantly accelerate training for PtO problems. Secondly, it is especially
advantageous during inference, particularly if data-driven decisions are needed in real-time.

5.2 NONCONVEX QP VARIANT

As a step in difficulty beyond convex QPs, this experiment considers a generic QP problem augmented
with an additional oscillating objective term, resulting in a nonconvex optimization component:

7
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Figure 5: Comparison between LtO (k = 0), LtOF, and Two Stage Method (2S) on the nonconvex QP (left)
and AC-OPF case (right). Right plot y-axis is in log-scale.

x?(⇣) = arg min
x

1

2
xT Qx + ⇣T sin(x)

s.t. Ax = b, Gx  h,

in which the sin function is applied elementwise. This formulation was used to evaluate the LtO
methods proposed both in Donti et al. (2021) and in Park & Van Hentenryck (2023). Following
those works, 0 4 Q 2 Rn⇥n, A 2 Rneq⇥n, b 2 Rneq , G 2 Rnineq⇥n and h 2 Rnineq have elements
drawn uniformly at random. Here it is evaluated as part of a Predict-Then-Optimize pipeline in which
predicted coefficients occupy the nonconvex term. Feasibility is restored by a projection onto the
feasible set, which is calculated by a more efficiently solvable convex QP. The problem dimensions
are n = 50 neq = 25, and nineq = 25.

Results. Figure 5 (left) shows regret due to LtOF models based on LD, PDL and DC3, along with
two-stage baseline PtO methods. No EPO baselines are available due to the optimization component’s
nonconvexity. The best two-stage models perform poorly for most values of k, implying that the
regret is particularly sensitive to prediction errors in the oscillating term. Thus its increasing trend
with k is less pronounced than in other experiments. The best LtOF models achieve over 4⇥ times
lower regret than the best baselines, suggesting strong potential for this approach in contexts which
require predicting parameters of non-linear objective functions. Additionally, the fastest LtOF method
achieves up to three order magnitude speedup over the two-stage, after restoring feasibility.

5.3 NONCONVEX AC-OPTIMAL POWER FLOW

Given a vector of marginal costs ⇣ for each power generator in an electrical grid, the AC-Optimal
Power Flow problem optimizes the generation and dispatch of electrical power from generators to
nodes with predefined demands. The objective is to minimize cost, while meeting demand exactly.
The full optimization problem and more details are specified in Appendix C, where a quadratic cost
objective is minimized subject to nonconvex physical and engineering power systems constraints.
This experiment simulates a energy market situation in which generation costs are as-yet unknown
to the power system planners, and must be estimated based on correlated data. The overall goal
is to predict costs so as to minimize cost-regret over an example network with 54 generators, 99
demand loads, and 118 buses taken from the well-known NESTA energy system test case archive
(Coffrin et al., 2014). Feasibility is restored for each LtOF model by a projection onto the nonconvex
feasible set. Optimal solutions to the AC-OPF problem, along with such projections, are obtained
using state-of-the-art Interior Point OPTimizer IPOPT (Wächter & Laird, 2023).

Results. Figure 5 (right) presents regret percentages, comparing LtOF to a two-stage baseline. Note
that no general EPO exists for handling such nonconvex decision components. DC3 is also omitted,
following Park & Van Hentenryck (2023), due to its incompatibility with the LtO variant of this
experiment. Notice how the best two-stage model is outperformed by the (supervised) LD variant
of LtOF for k > 1, and also by the (self-supervised) PDL variant for k > 2. Notably, PDL appears
robust to increases in the feature mapping complexity k. On the other hand, it is outperformed in each
case by the LD variant. Notice how, in the complex feature mapping regime k > 1, the best LtOF
variant achieves up to an order of magnitude improvement in regret relative to the most competitive

8



Under review as a conference paper at ICLR 2024

Portfolio Nonconvex QP AC-OPF

Method k = 2 k = 4 k = 8 k = 2 k = 4 k = 8 k = 2 k = 4 k = 8

L
tO

F
LD Regret 1.7170 2.1540 2.1700 9.9279 9.7879 9.5473 0.1016 0.4904 0.7470

LD Regret (*) 1.5739 2.0903 2.1386 9.9250 9.8211 9.5556 0.0013 0.0071 0.0195
LD Violation (*) 0.0010 0.0091 0.0044 0.0148 0.0162 0.0195 0.0020 0.0037 0.0042
PDL Regret 1.5150 2.0720 2.3830 7.2699 10.747 7.6399 0.9603 0.8543 0.8304
PDL Regret (*) 1.4123 1.9372 2.0435 7.2735 10.749 7.6394 0.0260 0.0243 0.0242
PDL Violation (*) 0.0001 0.0003 0.0003 0.0028 0.0013 0.0015 0.0000 0.0002 0.0002
DC3 Regret 2.1490 2.3140 2.6600 14.271 11.028 10.666 - - -
DC3 Regret (*) 2.0512 1.9584 2.3465 13.779 11.755 10.849 - - -
DC3 Violation (*) 0.0000 0.0000 0.0000 0.5158 0.5113 0.5192 - - -

E
P

O EPO Regret (Best) 0.9220 1.4393 4.7495 - - - - - -
EPO w/ Proxy Regret (Best) 154.40 119.31 114.69 812.75 804.26 789.50 389.04 413.89 404.74

Two-Stage Regret (Best) 2.8590 4.4790 91.326 36.168 37.399 38.297 0.3300 1.1380 2.4740

Table 2: Percentage Regret and Constraint Violations for all experiments. (*) denotes “Before
Restoration”. Missing entries denote experiments not achievable with the associated method.

two-stage method. Despite feasibility of the LtOF methods being restored by a (difficult) projection
onto nonconvex constraint set, modest speed advantages are nonetheless gained.

Table 2 collects an abridged set of accuracy results due to each LtOF implementation and PtO baseline,
across all experimental tasks. Complete results can be found in Appendix D. In particular, average
constraint violations and objective regret are shown in addition to regret after restoring feasibility.
Infeasible results are shown in grey for purposes of comparing the regret loss due to restoration.
Best results on each task are shown in bold. Additionally, regret achieved by the EPO framework
with pretrained proxies (discussed in Section 3) are included. Average regrets between 100 and 800
percent illustrate the effect of their distributional shifts on accuracy. Again, notice how, in the context
of complex feature mappings k � 2, LtOF is competitive with EPO, while bringing substantial
computational advantages, and consistently outperforms two-stage methods, often, beyond an order
of magnitude in regret.

6 LIMITATIONS, DISCUSSION, AND CONCLUSIONS

The primary advantage of the Learning to Optimize from Features approach to PtO settings is its
generic framework, which enables it to leverage a variety of existing techniques and methods from
the LtO literature. On the other hand, as such, a particular implementation of LtOF may inherit any
limitations of the specific LtO method that it adopts. For example, when the LtO method does not
ensure feasibility, the ability to restore feasibility may be need as part of a PtO pipeline. Future work
should focus on understanding to what extent a broader variety of LtO methods can be applied to PtO
settings; given the large variety of existing works in the area, such a task is beyond the scope of this
paper. In particular, this paper does not investigate of the use of combinatorial optimization proxies
in learning to optimize from features. Such methods tend to use a distinct set of approaches from
those studied in this paper, including problem-specific designs which assume special structure in the
optimization problem, and often rely on training by reinforcement learning (Bello et al., 2017; Kool
et al., 2019; Mao et al., 2019). As such, this direction is left to future work.

The main disadvantage inherent to any LtOF implementation, compared to end-to-end PtO, is the
inability to recover parameter estimations from the predictive model, since optimal solutions are
predicted end-to-end from features. Although it is not required in the canonical PtO problem setting,
this may present a complication in situations where transferring the parameter estimations to external
solvers is desirable. This presents an interesting direction for future work.

By showing that effective Predict-Then-Optimize models can be composed purely of Learning-to-
Optimize methods, this paper has aimed to provide a unifying perspective on these as-yet distinct
problem settings. The flexibility of its approach has been demonstrated by showing superior per-
formance over PtO baselines with diverse problem forms. As the advantages of LtO are often best
realized in combination with application-specific techniques, it is hoped that future work can build
on these findings to maximize the practical benefits offered by Learning to Optimize in settings that
require data-driven decision-making.
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