

CULTURE IN A FRAME: C³B AS A COMIC-BASED BENCHMARK FOR MULTIMODAL CULTURALLY AWARENESS

Anonymous authors

Paper under double-blind review

ABSTRACT

Cultural awareness capabilities have emerged as a critical capability for Multimodal Large Language Models (MLLMs). However, current benchmarks lack progressed difficulty in their task design and are deficient in cross-lingual tasks. Moreover, current benchmarks often use real-world images. Each real-world image typically contains one culture, making these benchmarks relatively easy for MLLMs. Based on this, we propose C³B (Comics Cross-Cultural Benchmark), a novel multicultural, multitask and multilingual cultural awareness capabilities benchmark. C³B comprises over 2000 images and over 18000 QA pairs, constructed on three tasks with progressed difficulties, from basic visual recognition to higher-level cultural conflict understanding, and finally to cultural content generation. We conducted evaluations on 11 open-source MLLMs, revealing a significant performance gap between MLLMs and human performance. The gap demonstrates that C³B poses substantial challenges for current MLLMs, encouraging future research to advance the cultural awareness capabilities of MLLMs.

1 INTRODUCTION

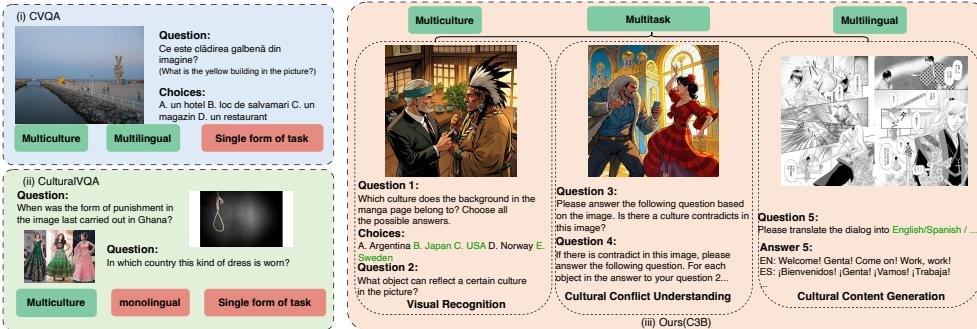


Figure 1: **Comparison between C³B and previous culture awareness capability benchmarks.** In comparison with existing benchmarks for cultural awareness capabilities, C³B is compatible with multicultural, multilingual, and multitask contexts, thereby facilitating a more thorough evaluation.

Multimodal Large Language Models (MLLMs) have become more and more important in many aspects of daily living, such as machine translation (Chen et al., 2025), image captioning (Anantha Ramakrishnan et al., 2025) and visual question answering (Huynh et al., 2025). Users who interact with these models often discover such a situation: current models perform well in a Western-centric culture context but perform badly in non-Western culture contexts (Singh et al., 2025; Nayak et al., 2024; AlKhamissi et al., 2024; Burda-Lassen et al., 2025; Naous et al., 2024). This imbalance shows that MLLMs need to improve cultural awareness capabilities which refers to capabilities of MLLMs to understand and process cultural contexts (Pawar et al., 2024).

Benchmarks are essential to build MLLMs with strong cultural awareness capabilities (Cohen and Howe, 1988; Reuel et al., 2024). While existing benchmarks have laid a foundational framework for

evaluation, there remains room for improvement. From a multicultural perspective, existing benchmarks for evaluating cultural awareness capabilities of MLLMs mainly focus on real-world images (Arora et al., 2025; Romero et al., 2024; Xu et al., 2025). A single real-world image typically contains one culture, making these benchmarks relatively easy for MLLMs. From a multitask perspective, most of these benchmarks include one question per data sample, which makes it difficult to evaluate MLLMs across multiple dimensions. From a multilingual perspective, languages are carriers of cultural meaning (Kramsch, 2014). A concept may have no direct equivalent expression across languages. Therefore, adding multi-lingual tasks to benchmarks will introduce appropriate complexity, enabling us to evaluate MLLMs more comprehensively.

To address these issues, we propose C³B (Comics Cross-Cultural Benchmark), a novel multicultural, multitask and multilingual cultural awareness capabilities benchmark, containing 2220 images and 18789 QA pairs. In contrast to real-world images, we select comics as the primary medium in our benchmark. Comics differ from real-world images: they often depict a fictional scene. Real-world images often tie to the specific, singular cultural contexts of real-life scenarios, but fictional scenes in comics are free from such constraints. This enables comics to condense numerous cultures into a single frame, creating a more complex context, raising the bar for evaluation. C³B consists of 3 tasks that form a logical chain. Based on difficulty levels, these tasks progress from basic visual recognition to higher-level cultural conflict understanding, and finally to cultural content generation. This multitask arrangement enables a more comprehensive evaluation of MLLMs. In cultural generation task, C³B incorporates 5 languages (Japanese, Russian, Thai, English, and Spanish), reducing the limitations of previous monolingual benchmarks. The differences between C³B and previous cultural awareness capability benchmarks are presented in Figure 1.

In this study, we conduct a comprehensive evaluation of 11 open-source MLLMs on C³B. The results confirm the value of C³B, as they reveal a significant performance gap between MLLMs and human performance. Furthermore, the results provide critical insights into the current state of cultural awareness capabilities of MLLMs. Specifically, MLLMs should enhance their understanding of lesser-known cultures and their abilities to process cultural conflicts. Our contributions can be summarized as follows:

1. We propose C³B, a novel comic-centric, multicultural, multitask and multilingual cultural awareness capabilities benchmark.
2. C³B incorporates 3 tasks with escalating difficulty, evaluating cultural awareness capabilities of MLLMs comprehensively through progressively challenging tasks.
3. We benchmark 11 MLLMs with C³B, which presents an initial set of evaluations on this benchmark, establishing a baseline for future research on MLLMs with strong cultural awareness capabilities.

2 RELATED WORK

2.1 MULTIMODAL LARGE LANGUAGE MODELS

Recent years have witnessed rapid advancements in Multimodal Large Language Models (MLLMs). The multimodal capabilities of MLLMs enable large language models to address a broader range of tasks (Caffagni et al., 2024). Models like BLIP-2 (Li et al., 2023), LLaVA (Liu et al., 2023b; 2024; 2023a) and Qwen-VL (Bai et al., 2023) perform well in tasks such as visual question answering (Dong et al., 2024) and multimodal machine translation (Chen et al., 2025). Moreover, InternLM-XC2.5 (Zhang et al., 2024) has good long-contextual input and output capabilities, which enables many advanced features, such as high resolution image understanding. Llama3.2 series models (Grattafiori et al., 2024) are optimized for many multimodal tasks, becoming baseline for many methods.

2.2 MULTIMODAL BENCHMARK ON CULTURAL AWARENESS CAPABILITIES

Recent multimodal benchmarks on cultural awareness capabilities mainly focus on real-world images to evaluate MLLMs. Among various recent benchmarks (Romero et al., 2024; Burda-Lassen et al., 2025; Arora et al., 2025; Schneider et al., 2025; Yang et al., 2025), CVQA (Romero et al.,

108 2024) adopts a multiple-choice format to evaluate the cultural awareness capabilities of MLLMs
 109 using real-world images. Notably, CVQA covers 30 languages, enabling evaluation from a multi-
 110 lingual perspective. CVQA relies on a single form of task, restricting its ability to comprehensively
 111 evaluate the cultural awareness capabilities of MLLMs across diverse interaction scenarios. Cultur-
 112 alVQA (Nayak et al., 2024) also evaluates MLLMs with real-world images, covering 11 countries
 113 in 2378 images. More recently, GIMMICK (Schneider et al., 2025) incorporates six tasks for eval-
 114 uating the cultural awareness capabilities of MLLMs. The images included still exhibit relatively
 115 low cultural density. Recently, GLOBALRG (Bhatia et al., 2024) has utilized images sourced from
 116 50 countries and integrated visual grounding tasks to benchmark the cultural awareness capabilities
 117 of MLLMs. However, this framework does not account for multilingual settings. Moreover, ALM-
 118 bench (Vayani et al., 2025) encompasses over 100 languages and 19 different cultural domains, yet
 119 the images contained ALM-bench are still real-world images. AKhamissi et al. (2025) explores
 120 the development of more sophisticated cultural benchmarks, providing a complementary lens for
 121 multimodal cultural reasoning. In parallel, Karamolegkou et al. (2024) introduces a culture-centric
 122 evaluation subset wherein a subset of images is annotated with multiple cultural associations. Over-
 123 all, C³B integrates the advantages of these benchmarks, forming a multitask, multicultural, and
 124 multilingual benchmark.

125 2.3 MULTIMODAL BENCHMARKS ON COMICS

126 Multimodal benchmarks centered on comics primarily focus on basic visual tasks. For Western-style
 127 comics, the eBDtheque dataset (Guérin et al., 2013) was the first publicly released comic dataset,
 128 featuring spatial and semantic annotations for 100 pages of Western comics. The COMICS dataset
 129 (Iyyer et al., 2017) includes over 1.2 million comic panels, offering resources for future research.
 130 For Japanese-style comics, Manga109 (Matsui et al., 2016) comprises 21,142 comics pages, with
 131 a primary focus on multimedia applications. More recently, CoMix (Vivoli et al., 2024) integrates
 132 comics into a new dataset but remains focused on visual tasks such as speaker identification and
 133 character naming.

134 Given the current landscape of multimodal benchmarks for cultural awareness capabilities and
 135 comics, we propose C³B. The differences between C³B and previous works are presented in Table
 136 1. From the table, we observe that benchmarks for evaluating cultural awareness capabilities have
 137 not simultaneously integrated multicultural images, multitask settings, and multilingual tasks. Ad-
 138 ditionally, none of them incorporate progressive difficulty tiers. Regarding comic-centered datasets,
 139 most are not designed for cultural evaluation purposes.

140 Table 1: **The difference between C³B and previous works.** We analyze the works along three
 141 dimensions: whether the dataset is **Multicultural** for every image, **Multitask** for every data sample,
 142 **Multilingual**, whether its primary task is **Cultural Awareness Capabilities** and whether the tasks
 143 within have **Progressed Difficulty**.

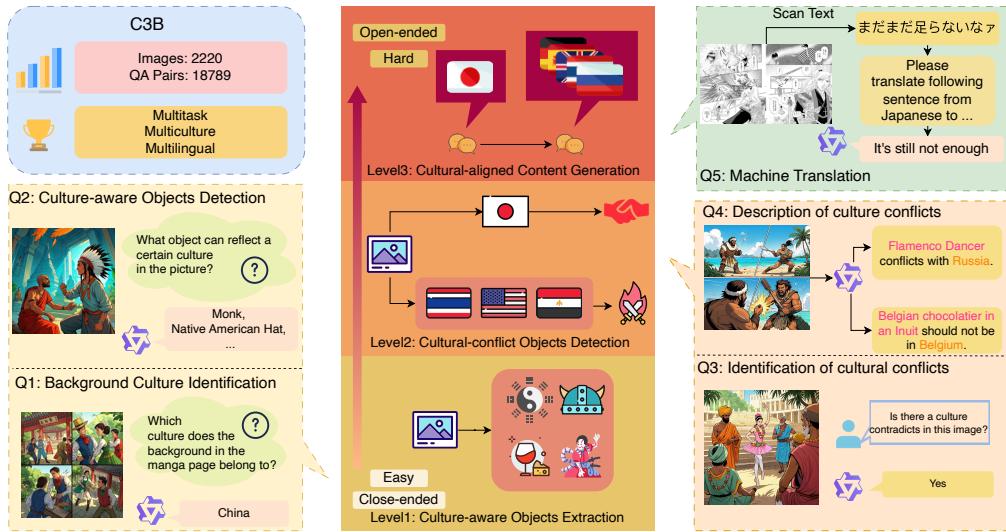
Benchmarks	Multicultural	Multitask	Multilingual	Cultural Awareness Capabilities	Progressed Difficulty
CVQA (Romero et al., 2024)	✗	✗	✓	✓	✗
MOSAIC-1.5k (Burda-Lassen et al., 2025)	✗	✗	✗	✓	✗
CoMix (Vivoli et al., 2024)	✓	✗	✗	✗	✗
eBDtheque (Guérin et al., 2013)	✓	✗	✗	✗	✗
Manga109 (Matsui et al., 2016)	✓	✗	✗	✗	✗
CulturalVQA (Arora et al., 2025)	✗	✗	✗	✓	✗
GIMMICK (Schneider et al., 2025)	✓	✓	✗	✓	✗
C ³ B	✓	✓	✓	✓	✓

153 3 C³B: COMICS CROSS-CULTURAL UNDERSTANDING BENCHMARK

154 C³B is a novel comic-centric benchmark designed to comprehensively evaluate MLLMs’ cultural
 155 awareness capabilities. C³B features a multicultural diversity, a multitask setting and a multilin-
 156 gual coverage. To comprehensively evaluate MLLMs, C³B incorporates three tasks with increasing
 157 difficulty (detailed in Section 3.1). For data construction (detailed in Section 3.2), we design a multi-
 158 agent method to create culturally rich comics and their annotations, ensuring both efficiency and
 159 quality of images. In Section 3.3, some necessary statistics of C³B is presented. An overview of
 160 C³B is presented in Figure 2. Some data samples of C³B is presented in Appendix B.

162 3.1 TASKS
163

164 We design 3 tasks with escalating difficulty to evaluate different dimensions of cultural awareness
165 capabilities of MLLMs. The first task, Culture-aware Object Extraction (Extraction@Culture), eval-
166 uates the visual recognition and basic cultural understanding capabilities of MLLMs. The second
167 task, Cultural-conflict Object Detection (Conflict@Culture), focuses on evaluating their abilities
168 to understand cultural conflicts. The third task, Culturally-aligned Content Generation (Genera-
169 tion@Culture), measures their multilingual generation capabilities when provided multimodal cul-
170 tural contexts. The question template for each task is presented in Appendix A.



189 Figure 2: **Overview of C³B.** C³B evaluates MLLMs across three dimensions: Object Identification
190 (foundational vision capability based on culture), Conflict Identification (cultural conflict under-
191 standing), and Culturally-aligned Content Generation (comprehensive cultural generation).

192 **Culture-aware Objects Extraction (Extraction@Culture)** This task requires the MLLM not only
193 to identify objects within the image but also to understand whether or not the object is related to a
194 specific cultural context. In this task, we set two questions:

- 196 1. **Question 1 (Q1): Background Culture Identification** We task MLLMs with identifying
197 the background culture of comic pages. Multiple valid answers may exist for a single
198 question.
- 199 2. **Question 2 (Q2): Culture-aware Objects Detection** In this question, MLLMs are re-
200 quired to identify all culturally representative objects in the image. We set up multiple
201 options, with each option including several culturally representative objects. The MLLM
202 needs to choose an option that contains exactly all the objects present in the image.

203 **Cultural-conflict Objects Detection (Conflict@Culture)** This task is designed to evaluate
204 MLLMs' capabilities in identifying culturally conflicts within comics. In C³B, if two distinct cul-
205 tures are depicted within a single image, the instance is classified as a cultural conflict. In this task,
206 we also set two questions:

- 208 1. **Question 3 (Q3): Identification of cultural conflicts** In this question, MLLMs must de-
209 termine whether there is cultural conflict in the presented image.
- 210 2. **Question 4 (Q4): Description of culture conflicts** When cultural conflict is detected, the
211 MLLM is subsequently required to specify which objects of the answer to Q2 contradict
212 the culture to the answer of Q1.

214 **Culturally-aligned Content Generation (Generaion@Culture)** This task is designed to eval-
215 uate the cultural generation capabilities of MLLMs. As for the specific task form, we select ma-
chine translation. We have set up translation tasks for the language pairs of Japanese-English (JA-

EN), Japanese-Russian (JA-RU), Japanese-German (JA-DE), Japanese-Thai (JA-TH), and Japanese-Spanish (JA-ES). These language pairs roughly cover languages from various continents, enabling a comprehensive evaluation of the overall translation capabilities of MLLMs.

3.2 CONSTRUCTION OF C³B

The construction process of C³B comprises two parts: image collection and annotation. An overview of the entire process is presented in Figure 3.

Image Collection For task Extraction@Culture and Conflict@Culture, we design a comic generation pipeline with the help of doubao APIs¹. The pipeline consists of two key stages: (1) prompt generation to specify cultural conflict scenarios, followed by (2) image creation based on generated prompts. This process is illustrated in Figure 3a. **Subsequent to prompt generation, manual verification is performed on the generated prompts to assess the presence of harmful content.**

For the Generation@Culture task, we source images from Manga109 (Matsui et al., 2016). We manually selected 1197 comics images that are closely related to culture and contain more culturally representative objects as well as cultural conflicts.

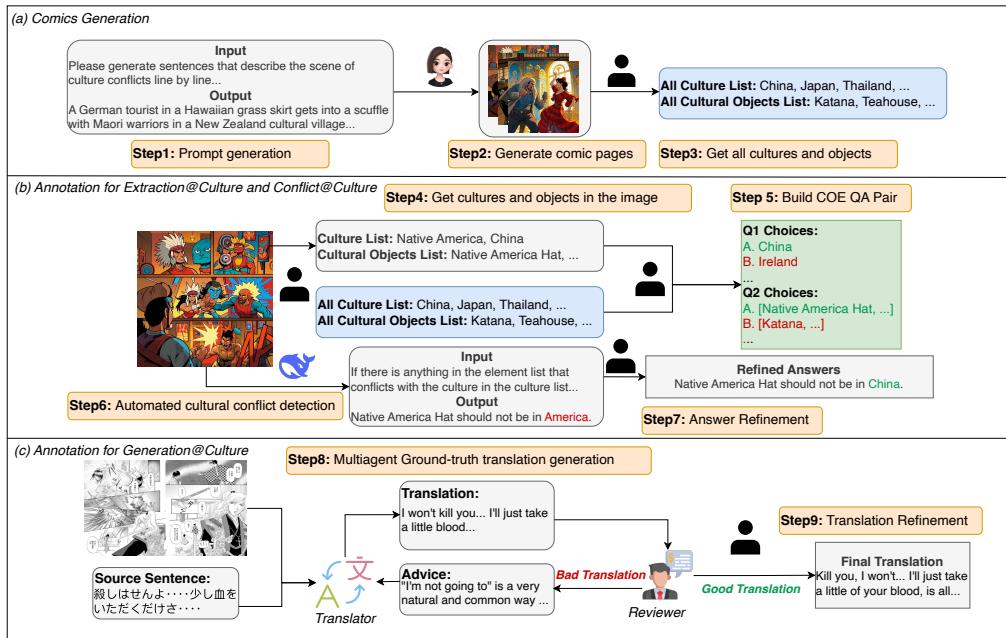


Figure 3: **The construction process of C³B.** The process contains 3 steps: Comics Generation, Annotation for Extraction@Culture and Conflict@Culture and Annotation for Generation@Culture.

Annotation The annotation for the tasks of Extraction@Culture and Conflict@Culture refers to the process of QA pairs creation (illustrated in Figure 3b). For the task Extraction@Culture, we first manually compiled two lists: one containing all distinct cultures present in the comic pages, and the other listing all culturally representative objects. Next, we manually created QA pairs for each comic page. For Q1, we identified the cultures presented in a given image, then randomly selected additional cultures from the precompiled culture list to form a total of 5 options. For Q2, we first manually created a list of all culturally representative objects in the image, then generated 5 options by randomly modifying this list by either adding one object, deleting one object, or deleting two objects.

For the task Conflict@Culture, we implemented an annotation pipeline consisting of two stages with the help of Deepseek-V3 (DeepSeek-AI, 2024) (illustrated in Figure 3c). The prompt setting is presented in Appendix C.1. The details of the pipeline is:

¹<https://www.volcengine.com/>

- 270 1. **Automated Cultural Conflict Detection:** Given the background cultures and culturally
 271 representative objects in the comics page, Deepseek will analyze each object to identify if
 272 the object conflicts with one of the background cultures. After this, it generates either a
 273 formatted conflict description or "No".
 274 2. **Manual Verification and Correction:** We manually inspect all generated results, focusing
 275 primarily on verifying whether the model misjudged the existence of conflicts. Subsequent
 276 to this, we check if the generated formatted conflict descriptions contained formatting in-
 277 consistencies or culture-related inaccuracies. The examples of these two kinds of errors are
 278 presented in Appendix D.
 279

280 For the task Generation@Culture, annotation refers to the process of creating ground-truth transla-
 281 tions. We design a multi-agent process to generate ground-truth translations, which involves two
 282 specialized agents: (1) a Translator responsible for generating translations, and (2) a Reviewer re-
 283 sponsible for checking the translation based on the input sentence and giving suggestions. The
 284 Translator first provides a rough translation based on the extracted dialog from Manga109. If the
 285 Reviewer regards the translation as good translation, we will conduct manual verification to finalize
 286 the translation. Otherwise, the Reviewer will examine three specific types of potential errors: con-
 287 textual inconsistencies, basic translation errors, and culture-related inaccuracies. The suggestions
 288 generated by the Reviewer are subsequently integrated into the prompt. The Translator then uses
 289 it to produce a new translation. In the annotation process, we employed DeepSeek-V3 as the base
 290 model, with the prompt used presented in C.2. More details on annotation are presented in E.
 291

292 3.3 DATA STATISTICS

293 To ensure a comprehensive evaluation, C³B includes a total of 2,220 images and more than 18000
 294 QA pairs. An overall statistics of C³B is presented in Table 2.

302 **Figure 4: The cultures C³B covers are pre-
 303 sented in a world map.** Regions shaded in blue
 304 indicate that the culture is included in C³B.

305 **Table 2: Statistics of C³B.**

Statistic	Number
Images	2220
- Extraction@Culture& Conflict@Culture	1023
- Generation@Culture	1197
- No. Japanese/Western Style Images	1697/523
QA Pairs	18789
- Extraction@Culture	1023
- Conflict@Culture	1023
- Generation@Culture	16743
- No. All Culture Covered	77
- Min/Max Possible Answers of Extraction@Culture	1/5

306 In task Extraction@Culture, there are 1023 images. Each image corresponds to one QA pair. In
 307 Q1, the number of correct numbers ranges from 1 to 5 among 5 candidate options. This variability
 308 increases the difficulty for MLLMs to process the task.

309 In task Conflict@Culture, the images used are the same as task Extraction@Culture, covering both
 310 Japanese comics and American comic styles. This design choice is intentional because the Ex-
 311 traction@Culture and Conflict@Culture tasks evaluate the visual signal processing capabilities of
 312 MLLMs. In these two tasks, introducing comics of different styles would make the process more
 313 complicated and challenging.

314 In task Generation@Culture, each QA pair consists of a source sentence and its ground-truth transla-
 315 tion in 5 languages. All 16743 QA pairs cover 77 distinct cultures (visualized in Figure 4), enabling
 316 us to comprehensively benchmark the understanding different cultures of MLLMs.

317 4 C³B EVALUATION ON EXISTING LLMs

318 **Models** To evaluate performance of MLLMs on our C³B benchmark, we choose 11 open-source
 319 MLLMs. Specifically, we select SPHINX (Lin et al., 2023), Monkey (Li et al., 2024), MiniGPT-
 320 v2 (Chen et al., 2023), mPLUG-Ow13 (Ye et al., 2024), LLaVA family models (Liu et al., 2023b;
 321 2024; 2023a), InternLM-XC2.5 (Zhang et al., 2024), Llama3.2 (Grattafiori et al., 2024), Qwen2.5-
 322 VL (Bai et al., 2025) and InternVL2 (Chen et al., 2024).

324 **Metrics** For task Extraction@Culture and Conflict@Culture, we use accuracy (ACC) as the eval-
 325 uation metric. For Q4, because it is constructed based on models' answers to Q1 and Q2, we have
 326 designed a composite ACC metric CACC:

$$328 \quad \text{CACC}(Q_4) = a \times \text{ACC}(Q_1) + b \times \text{ACC}(Q_2) + c \times \text{ACC}(Q_4) \quad (1)$$

329 where a, b, c represent preset weighting parameters, $\text{ACC}(Q_i)$ denotes the accuracy score for Ques-
 330 tion i . These weighting parameters quantify the respective contributions to the final evaluation. In
 331 our experiments, the values of a, b, c are 0.3, 0.3 and 0.4. Q1 and Q2 contribute approximately
 332 equally to Q4, while Q4 should dominate. To simultaneously consider the contributions of the three
 333 tasks, we set the hyperparameters in this way.

334 For Generation@Culture, we adopt the conventional metric BLEU (Papineni et al., 2002), supple-
 335 mented by COMET (Rei et al., 2022) and BLEURT (Sellam et al., 2020) to align with current
 336 standards in LLM-based translation research.

337 **Evaluation Settings** All evaluations were conducted on a Ubuntu server equipped with an H20-
 338 NVLink GPU featuring 96GB of memory. We adhered strictly to the official inference example
 339 codes provided by the respective model developers.

342 5 EXPERIMENT RESULTS

344 5.1 MAIN RESULTS FOR TASK EXTRACTION@CULTURE AND CONFLICT@CULTURE

346 Table 3: **Main Results of task Extraction@Culture and Conflict@Culture in C³B.** For task Con-
 347 flict@Culture, two types of accuracy metrics are used to evaluate model performance. Specifically,
 348 Q4 is constructed based on the answer of MLLM to Q1 and Q2. The calculation process of **CACC**
 349 of Q4 considers the answers to Q1 and Q2. In contrast, **ACC** refers to the accuracy of Q4 calculated
 350 without referencing answers to Q1 and Q2. The highest performance is marked in **bold**.

352 Methods	353 Extraction@Culture		353 Conflict@Culture		353 Conflict@Culture (Q4)	
	354 Q1 (ACC)	355 Q2 (ACC)	356 Q3 (ACC)	357 ACC	358 CACC	359
SPHINX	29.9	5.28	69.2	0.16	10.6	
Monkey	28.4	5.08	33.0	0.19	10.1	
MiniGPT-v2	18.0	6.84	66.3	0.51	7.7	
mPLUG-Owl3	24.9	15.2	30.8	2.03	12.8	
LLaVA1.5-7B	32.5	2.93	56.3	0.00	10.6	
LLaVA-NeXT	16.5	39.8	0.88	0.00	16.9	
LLaVA-OV	39.0	32.4	53.1	3.87	23.0	
InternLM-XC2.5	46.0	50.9	68.5	1.94	29.8	
Llama3.2	46.0	59.0	44.9	2.76	32.6	
Qwen2.5-VL	53.7	55.9	63.1	3.20	34.2	
InternVL2	46.0	50.9	68.5	0.01	29.1	

363 Table 3 presents the results for task Extraction@Culture and Conflict@Culture. Qwen2.5-VL
 364 demonstrates optimal performance, with Q1 outperforming the second-ranked models (InternLM-
 365 XC2.5, Llama3.2 and InternVL2) by 7.7 points and Q4 achieving a 1.6-point lead over the second-
 366 ranked model (Llama3.2). We also find that all models achieve extremely low ACC in Q4 due to the
 367 influence from Q1 and Q2.

368 As for task Extraction@Culture, in Q1, LLaVA-NeXT performs the worst, because it tends to de-
 369 scribe the image rather than answer the question directly. We name this phenomenon as "Turn-a-
 370 deaf-ear" (shown in Appendix F.1). In Q2, Llama3.2 performs the best, exceeding average perfor-
 371 mance by 72.7%. In this task, LLaVA1.5-7B performs the worst, because it keeps answering "A".
 372 We name this failure pattern as "Take-a-shot-in-the-dark" and an example is shown in Appendix F.2.

373 As for task Conflict@Culture, in Q3, SPHINX performs the best, exceeding the second-ranked
 374 model (InternLM-XC2.5 and InternVL2) by 0.7 points. In Q4, we find that models from the LLaVA
 375 series yield considerably lower results. Specifically, both LLaVA1.5-7B and LLaVA-NeXT achieves
 376 0.00 ACC. Through case study (detailed in Appendix F.3), we find that, LLaVA-NeXT persistently
 377 outputs "Nothing", indicating a lack of cultural conflict comprehension capability, while LLaVA1.5-
 7B cannot follow instructions properly, and we name this phenomenon as "stubbornness".

378 5.2 MAIN RESULTS FOR TASK GENERATION@CULTURE
379

380 Table 4 shows the results for task Generation@Culture. The results show that Qwen-2.5-VL demon-
381 strates the most robust multilingual capabilities, as it outperforms other models across all cultural
382 generation tasks. In contrast, MiniGPT-v2 exhibits notably poor performance. Specifically, it
383 achieves a BLEU score of 0 in most tasks. This underperformance can be attributed to the weak
384 instruction-following ability, as presented in Appendix F.4. This error pattern might be caused by
385 the poor understanding capability of comic pages. Additionally, LLaVA-NeXT tends to repeat the
386 source sentence when handling the tasks except JA-EN. Among all tasks, the performance of all
387 models in JA-TH is the poorest while they all perform the best in JA-EN tasks. These results indi-
388 cate that the multilingual capabilities when given cultural contexts needs to be enhanced, and greater
389 support for low-resource languages should also be strengthened.
390

390 **Table 4: Main Result of task Generation@Culture.** The result is presented in the format
391 BLEU/COMET/BLEURT. The highest performance is marked in **bold**.

Methods	JA-EN	JA-DE	JA-RU	JA-ES	JA-TH
SPHINX	3.71/63.2/42.3	1.12/54.3/33.1	0.27/45.0/19.3	1.62/56.9/27.5	0.02/38.7/16.1
Monkey	3.88/62.0/43.3	1.62/55.5/33.5	0.73/48.2/17.7	2.81/56.3/29.3	0.63/50.2/18.0
MiniGPT-v2	0.03/44.5/30.9	0.00/32.1/15.8	0.00/30.0/13.9	0.00/36.5/21.6	0.00/32.2/14.5
mPLUG-Owl3	6.21/58.4/39.8	4.97/56.0/36.8	3.97/57.6/33.5	4.75/55.7/34.6	2.02/51.9/25.2
LLaVA1.5-7B	5.94/62.0/41.0	2.74/54.2/29.7	1.39/53.8/23.1	4.23/62.2/38.4	1.13/44.9/10.2
LLaVA-NeXT	4.88/61.2/41.2	0.00/46.4/10.5	0.14/41.8/11.1	0.00/48.7/6.87	0.28/42.1/12.5
LLaVA-OV	6.00/58.3/35.2	3.37/49.6/24.7	2.78/49.3/23.0	3.24/53.4/26.5	3.77/42.8/13.8
InternLM-XC2.5	4.99/66.6/49.9	1.08/59.2/42.0	1.90/63.4/40.6	2.33/65.3/44.7	0.53/53.7/27.3
Llama3.2	5.05/54.6/35.2	4.27/51.3/31.8	1.70/47.0/20.1	5.73/55.0/31.1	0.99/46.9/17.4
Qwen2.5-VL	13.2/70.9/53.8	12.0/67.7/52.1	8.74/69.8/48.5	14.5/72.0/54.3	9.72/67.8/42.2
InternVL2	7.20/66.6/47.6	3.52/58.5/40.4	3.33/63.8/40.3	5.32/66.8/46.9	0.74/45.3/24.5

403 5.3 IMPACT FOR Q4 FROM Q1 AND Q2
404

405 In C³B, answering Q4 requires models to correctly answer Q1
406 and Q2. To evaluate the influence of Q1 and Q2 on Q4, we first
407 calculate the correlation coefficients (Formula 2) between Q1
408 and Q4 and between Q2 and Q4, which yielded values of 0.56
409 and 0.51, respectively. The result demonstrates that Q1 and Q2
410 exhibit a moderate correlations with Q4.
411

$$R(Q_i, Q_4) = \frac{\text{Cov}(\text{ACC}(Q_i), \text{ACC}(Q_4))}{\sqrt{\text{Var}(\text{ACC}(Q_i))\text{Var}(\text{ACC}(Q_4))}} \quad (2)$$

412 where R represents the correlation coefficient between two
413 questions, Cov refers to the covariance, Var refers to the var-
414 iance, and $\text{ACC}(Q_i)$ is the accuracy value of Question i .
415

416 Moreover, we conducted an ablation study on Q1 and Q2. We
417 added the answers to Q1/Q2 into the prompt template of Q4 to
418 observe the impact on model performance. **CACC** represents the average performance of all 11
419 MLLMs, and the results are presented in Table 5. The results indicate that incorporating the Q1
420 answer into the Q4 prompt will enhance performance (+0.003), but adding the Q2 answer will not
421 change the performance. The greatest performance boost is observed when both Q1 and Q2 answers
422 are included (+0.533). Although Q1 and Q2 show moderate correlations with Q4 (0.56 and 0.51),
423 the ablation results reveal only marginal improvement when adding Q1/Q2 answers. This suggests
424 that the positive correlations mainly reflect an intrinsic consistency across related questions, while
425 the direct prompt incorporation of Q1/Q2 answers is not always effectively leveraged by MLLMs.
426

427 5.4 GENERATED COMIC PAGES ANALYSIS
428

429 To evaluate C³B’s cultural diversity, we compute three measures Culture Density Per Image (CDPI),
430 Cultural Breadth Intensity (CBI), and Coverage-Adjusted Density (CAD) and compare them against

431 **Table 5: Performance of Q4
when answers to Q1 and/or Q2
are omitted.** Q1/Q2 Answer means that only Q1/Q2 answer is
432 provided. Q1&Q2 Answer means both Q1 and Q2 answers are pro-
433 vided.

Method	CACC
Base Prompt	19.231
+ Q1 Answer	19.234
+ Q2 Answer	19.231
+ Q1&Q2 Answer	19.764

cultural QA datasets. CDPI is defined as the quantification of the average number of distinct cultures depicted within an image. CBI is designed to measure both cultural density and the total number of cultures depicted in an image. CAD incorporates log-scaling to alleviate excessive rewards arising from large cultural lists. The CDPI, CBI and CAD of a dataset are presented in Equation 3, 4 and 5. In the equations D represents a complete image dataset, which is $\{I_1, I_2, \dots, I_n\}$, $\text{CultureInImage}(I_i)$ denotes the number of cultures in the image I_i , N_{cultures} refers to the number of cultures occurring in the dataset and $|D|$ as the cardinality of D , corresponding to the total number of images.

$$\text{CDPI}(D) = \frac{1}{|D|} \sum_{i=1}^n \text{CultureInImage}(I_i) \quad (3)$$

$$\text{CBI}(D) = \text{CDPI}(D) \times N_{\text{cultures}} \quad (4)$$

$$\text{CAD}(D) = \text{CDPI}(D) \times \log_2(N_{\text{cultures}} + 1) \quad (5)$$

The results are presented in Table 6, indicating that C^3B shows significantly higher cultural diversity compared to similar datasets. This highlights its improved ability to evaluate cultural awareness capabilities of MLLMs.

5.5 SCORES OF DIFFERENT CULTURE

To examine how well MLLMs can recognize diverse cultures, we conducted a culture-specific evaluation of each model's correctness to mono-culture QA task (Q1). The results, visualized in Figure 5, indicate that the performance of MLLMs differs substantially across cultural groups. In detail, representative cultures (e.g., Cambodia and Japan) are reliably identified by the models, while lesser-known cultures (e.g., Finnish and Somalia) exhibit notably higher error rates. The results show that the cultural awareness capabilities of MLLMs for lesser-known cultures should be enhanced.

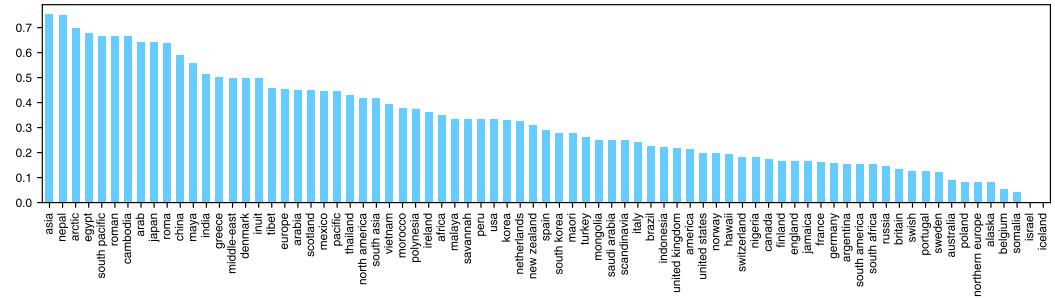


Figure 5: Model Accuracy on Q1 by Culture.

5.6 HUMAN-MODEL ANALYSIS

To validate the effectiveness of C^3B , we conducted a human evaluation (more detail in Appendix G). First, We categorized task difficulties based on the number of distinct cultures in each image: 1 (easy), 2/3 (medium), and 4/5 (hard). This tiered classification allows evaluation across different complexity levels. Next, we randomly selected 100 questions per tier. For each tier, we calculated two metrics: the average accuracy performance of human and MLLMs.

Table 7: Result of Human-Model Analysis. Q4 is constructed based on the answer of MLLM to Q1 and Q2. The calculation process of ACC of Q4 considers the answers to Q1 and Q2. In contrast, ACC refers to the accuracy of Q4 calculated without referencing models' answers to Q1 and Q2. **IRA** stands for Inter-rater Agreement Score. **PTA** stands for Per-tier Time-to-answer.

Method	Q1					IRA	PTA(Seconds)
	ACC	ACC	ACC	ACC	CACC		
<i>Easy Questions</i>							
Human Evaluation	92.0	77.0	100.0	60.0	74.7	95%	27.01
Model Performance	48.0	28.8	50.5	1.90	23.8	-	-
<i>Medium Questions</i>							
Human Evaluation	78.0	60.0	100.0	45.0	59.4	91%	52.92
Model Performance	32.6	27.1	54.0	1.69	18.6	-	-
<i>Hard Questions</i>							
Human Evaluation	69.0	51.0	100.0	35.0	50.0	93%	60.61
Model Performance	25.7	25.5	41.7	1.27	15.9	-	-

486 The results are presented in Table
 487 7. Three graduate student volunteers
 488 participated in the experiment, with each completing all the questions. We then calculated their
 489 average accuracy to quantify their performance.

490 We find that the human performance is significantly better than that of MLLMs, particularly in Q3,
 491 where the human performance achieves all 100% accuracy. Constrained by the performance in Q1
 492 and Q2, the human ACC result is relatively low, yet it still exceeds the MLLMs' performance. The
 493 results show that C³B is challenging for MLLMs and the cultural awareness capabilities of MLLMs
 494 need to be improved.

496 6 CONCLUSION

497 We propose C³B, a novel comic-based, multicultural, multitask, and multilingual cultural awareness
 498 capabilities benchmark. Applying comics as the core medium, we enable comprehensive evaluation
 499 of cultural awareness capabilities of MLLMs, with the dataset encompassing a large number of im-
 500 ages, QA pairs, and cultural contexts. C³B contains three tasks with progressed difficulties, from
 501 basic visual recognition to higher-level cultural conflict understanding, and finally to cultural content
 502 generation. We benchmarked 11 open-source MLLMs on C³B, revealing a significant performance
 503 gap between MLLMs and human performance. Specifically, current MLLMs lack proficiency in
 504 understanding less well-known cultures and processing cultural conflicts, highlighting areas for im-
 505 provement. We anticipate that C³B will serve as a critical tool to support and advance research on
 506 MLLMs' cultural awareness capabilities.

509 ETHICS STATEMENT

510 Our C³B benchmark incorporates images created by Doubao. Through a rigorous human annota-
 511 tion and verification process (Appendix E), we have made every effort to mitigate the majority of
 512 cultural biases and stereotypes. Prior to the creation of images, we manually checked all prompts
 513 and removed harmful content, thereby ensuring the high quality of the created images.

514 Regarding the definition of cultural conflict, we have explicitly clarified that the cultural conflict in
 515 our task refers to co-occurrence conflict rather than aggressive conflict. Our work is not intended to
 516 cause any harm to individuals or groups.

520 REFERENCES

- 521 B. AlKhamissi, M. ElNokrashy, M. AlKhamissi, and M. Diab. Investigating cultural alignment of large language
 522 models. In L.-W. Ku, A. Martins, and V. Srikumar, editors, *Proceedings of the 62nd Annual Meeting of*
 523 *the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 12404–12422, Bangkok,
 524 Thailand, Aug. 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.671. URL
 525 <https://aclanthology.org/2024.acl-long.671/>.
- 526 M. AlKhamissi, Y. Xiao, B. AlKhamissi, and M. Diab. Hire your anthropologist! rethinking culture benchmarks
 527 through an anthropological lens, 2025. URL <https://arxiv.org/abs/2510.05931>.
- 528 A. Anantha Ramakrishnan, A. A. Ramakrishnan, and D. Lee. RONA: Pragmatically diverse image caption-
 529 ing with coherence relations. In V. Padmakumar, K. Gero, T. Wambganss, S. Sterman, T.-H. Huang,
 530 D. Zhou, and J. Chung, editors, *Proceedings of the Fourth Workshop on Intelligent and Interactive Writ-
 531 ing Assistants (In2Writing 2025)*, pages 74–86, Albuquerque, New Mexico, US, May 2025. Association
 532 for Computational Linguistics. ISBN 979-8-89176-239-8. doi: 10.18653/v1/2025.in2writing-1.8. URL
 533 <https://aclanthology.org/2025.in2writing-1.8/>.
- 534 S. Arora, M. Karpinska, H.-T. Chen, I. Bhattacharjee, M. Iyyer, and E. Choi. CaLMQA: Exploring cul-
 535 turally specific long-form question answering across 23 languages. In W. Che, J. Nabende, E. Shutova,
 536 and M. T. Pilehvar, editors, *Proceedings of the 63rd Annual Meeting of the Association for Compu-
 537 tational Linguistics (Volume 1: Long Papers)*, pages 11772–11817, Vienna, Austria, July 2025. Associa-
 538 tion for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.578. URL
 539 <https://aclanthology.org/2025.acl-long.578/>.

- 540 J. Bai, S. Bai, S. Yang, S. Wang, S. Tan, P. Wang, J. Lin, C. Zhou, and J. Zhou. Qwen-vl: A versatile vision-
 541 language model for understanding, localization, text reading, and beyond. *arXiv preprint arXiv:2308.12966*,
 542 2023.
- 543 S. Bai, K. Chen, X. Liu, J. Wang, W. Ge, S. Song, K. Dang, P. Wang, S. Wang, J. Tang, H. Zhong, Y. Zhu,
 544 M. Yang, Z. Li, J. Wan, P. Wang, W. Ding, Z. Fu, Y. Xu, J. Ye, X. Zhang, T. Xie, Z. Cheng, H. Zhang,
 545 Z. Yang, H. Xu, and J. Lin. Qwen2.5-vl technical report. *arXiv preprint arXiv:2502.13923*, 2025.
- 546 M. Bhatia, S. Ravi, A. Chinchure, E. Hwang, and V. Shwartz. From local concepts to universals: Evaluating
 547 the multicultural understanding of vision-language models. In Y. Al-Onaizan, M. Bansal, and Y.-N. Chen,
 548 editors, *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pages
 549 6763–6782, Miami, Florida, USA, Nov. 2024. Association for Computational Linguistics. doi: 10.18653/
 550 v1/2024.emnlp-main.385. URL <https://aclanthology.org/2024.emnlp-main.385/>.
- 551 O. Burda-Lassen, A. Chadha, S. Goswami, and V. Jain. How culturally aware are vision-language models?,
 552 2025. URL <https://arxiv.org/abs/2405.17475>.
- 553 D. Caffagni, F. Cocchi, L. Barsellotti, N. Moratelli, S. Sarto, L. Baraldi, L. Baraldi, M. Cornia, and R. Cucchiara.
 554 The revolution of multimodal large language models: A survey. In L.-W. Ku, A. Martins, and V. Srikumar, editors,
 555 *Findings of the Association for Computational Linguistics: ACL 2024*, pages 13590–13618, Bangkok,
 556 Thailand, Aug. 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.findings-acl.807.
 557 URL <https://aclanthology.org/2024.findings-acl.807/>.
- 558 A. Chen, Y. Song, K. Chen, X. Bai, M. Yang, L. Nie, J. Liu, T. Zhao, and M. Zhang. Make imagination clearer!
 559 stable diffusion-based visual imagination for multimodal machine translation. In W. Che, J. Nabende,
 560 E. Shutova, and M. T. Pilehvar, editors, *Proceedings of the 63rd Annual Meeting of the Association for
 561 Computational Linguistics (Volume 1: Long Papers)*, pages 26567–26583, Vienna, Austria, July 2025. As-
 562 sociation for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.1289.
 563 URL <https://aclanthology.org/2025.acl-long.1289/>.
- 564 J. Chen, D. Zhu, X. Shen, X. Li, Z. Liu, P. Zhang, R. Krishnamoorthi, V. Chandra, Y. Xiong, and M. Elhoseiny.
 565 Minigpt-v2: large language model as a unified interface for vision-language multi-task learning, 2023. URL
 566 <https://arxiv.org/abs/2310.09478>.
- 567 Z. Chen, J. Wu, W. Wang, W. Su, G. Chen, S. Xing, M. Zhong, Q. Zhang, X. Zhu, L. Lu, et al. Internvl:
 568 Scaling up vision foundation models and aligning for generic visual-linguistic tasks. In *Proceedings of the
 569 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 24185–24198, 2024.
- 570 P. R. Cohen and A. E. Howe. How evaluation guides ai research: The message still counts more than the
 571 medium. *AI Magazine*, 9(4):35, Dec. 1988. doi: 10.1609/aimag.v9i4.952. URL <https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/952>.
- 572 DeepSeek-AI. Deepseek-v3 technical report, 2024. URL <https://arxiv.org/abs/2412.19437>.
- 573 DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning, 2025. URL
 574 <https://arxiv.org/abs/2501.12948>.
- 575 R. Dong, C. Han, Y. Peng, Z. Qi, Z. Ge, J. Yang, L. Zhao, J. Sun, H. Zhou, H. Wei, X. Kong, X. Zhang,
 576 K. Ma, and L. Yi. DreamLLM: Synergistic multimodal comprehension and creation. In *The Twelfth Inter-
 577 national Conference on Learning Representations*, 2024. URL <https://openreview.net/forum?id=y01KGvd9Bw>.
- 578 A. Grattafiori, A. Dubey, A. Jauhri, A. Pandey, A. Kadian, A. Al-Dahle, A. Letman, A. Mathur, A. Schelten,
 579 A. Vaughan, A. Yang, A. Fan, A. Goyal, A. Hartshorn, A. Yang, A. Mitra, A. Srivankumar, A. Korenev,
 580 A. Hinsvark, A. Rao, A. Zhang, A. Rodriguez, A. Gregerson, A. Spataru, B. Roziere, B. Biron, B. Tang,
 581 B. Chern, C. Caucheteux, C. Nayak, C. Bi, C. Marra, C. McConnell, C. Keller, C. Touret, C. Wu, C. Wong,
 582 C. C. Ferrer, C. Nikolaidis, D. Allonsius, D. Song, D. Pintz, D. Livshits, D. Wyatt, D. Esiobu, D. Choudhary,
 583 D. Mahajan, D. Garcia-Olano, D. Perino, D. Hupkes, E. Lakomkin, E. AlBadawy, E. Lobanova, E. Di-
 584 nan, E. M. Smith, F. Radenovic, F. Guzmán, F. Zhang, G. Synnaeve, G. Lee, G. L. Anderson, G. Thattai,
 585 G. Nail, G. Mialon, G. Pang, G. Cucurell, H. Nguyen, H. Korevaar, H. Xu, H. Touvron, I. Zarov, I. A.
 586 Ibarra, I. Kloumann, I. Misra, I. Evtimov, J. Zhang, J. Copet, J. Lee, J. Geffert, J. Vranes, J. Park, J. Ma-
 587 hadeokar, J. Shah, J. van der Linde, J. Billock, J. Hong, J. Lee, J. Fu, J. Chi, J. Huang, J. Liu, J. Wang,
 588 J. Yu, J. Bitton, J. Spisak, J. Park, J. Rocca, J. Johnstun, J. Saxe, J. Jia, K. V. Alwala, K. Prasad, K. Upasani,
 589 K. Plawiak, K. Li, K. Heafield, K. Stone, K. El-Arini, K. Iyer, K. Malik, K. Chiu, K. Bhalla, K. Lakh-
 590 tia, L. Rantala-Yeary, L. van der Maaten, L. Chen, L. Tan, L. Jenkins, L. Martin, L. Madaan, L. Malo,
 591 L. Blecher, L. Landzaat, L. de Oliveira, M. Muzzi, M. Pasupuleti, M. Singh, M. Paluri, M. Kardas, M. Tsim-
 592 poukelli, M. Oldham, M. Rita, M. Pavlova, M. Kambadur, M. Lewis, M. Si, M. K. Singh, M. Hassan,
 593

- 594 N. Goyal, N. Torabi, N. Bashlykov, N. Bogoychev, N. Chatterji, N. Zhang, O. Duchenne, O. Çelebi, P. Al-
 595 rassy, P. Zhang, P. Li, P. Vasic, P. Weng, P. Bhargava, P. Dubal, P. Krishnan, P. S. Koura, P. Xu, Q. He,
 596 Q. Dong, R. Srinivasan, R. Ganapathy, R. Calderer, R. S. Cabral, R. Stojnic, R. Raileanu, R. Maheswari,
 597 R. Girdhar, R. Patel, R. Sauvestre, R. Polidoro, R. Sumbaly, R. Taylor, R. Silva, R. Hou, R. Wang, S. Hos-
 598 seini, S. Chennabasappa, S. Singh, S. Bell, S. S. Kim, S. Edunov, S. Nie, S. Narang, S. Raparthy, S. Shen,
 599 S. Wan, S. Bhosale, S. Zhang, S. Vandenhende, S. Batra, S. Whitman, S. Sootla, S. Collot, S. Gururangan,
 600 S. Borodinsky, T. Herman, T. Fowler, T. Sheasha, T. Georgiou, T. Scialom, T. Speckbacher, T. Mihaylov,
 601 T. Xiao, U. Karn, V. Goswami, V. Gupta, V. Ramanathan, V. Kerkez, V. Gonguet, V. Do, V. Vogeti, V. Albiero,
 602 V. Petrovic, W. Chu, W. Xiong, W. Fu, W. Meers, X. Martinet, X. Wang, X. Wang, X. E. Tan, X. Xia, X. Xie,
 603 X. Jia, X. Wang, Y. Goldschlag, Y. Gaur, Y. Babaei, Y. Wen, Y. Song, Y. Zhang, Y. Li, Y. Mao, Z. D. Coudert,
 604 Z. Yan, Z. Chen, Z. Papakipos, A. Singh, A. Srivastava, A. Jain, A. Kelsey, A. Shajnfeld, A. Gangidi, A. Vic-
 605 toria, A. Goldstand, A. Menon, A. Sharma, A. Boesenber, A. Baevski, A. Feinstein, A. Kallet, A. Sangani,
 606 A. Teo, A. Yunus, A. Lupu, A. Alvarado, A. Caples, A. Gu, A. Ho, A. Poult, A. Ryan, A. Ramchandani,
 607 A. Dong, A. Franco, A. Goyal, A. Saraf, A. Chowdhury, A. Gabriel, A. Bharambe, A. Eisenman, A. Yazdan,
 608 B. James, B. Maurer, B. Leonhardi, B. Huang, B. Loyd, B. D. Paola, B. Paranjape, B. Liu, B. Wu, B. Ni,
 609 B. Hancock, B. Wasti, B. Spence, B. Stojkovic, B. Gamido, B. Montalvo, C. Parker, C. Burton, C. Mejia,
 610 C. Liu, C. Wang, C. Kim, C. Zhou, C. Hu, C.-H. Chu, C. Cai, C. Tindal, C. Feichtenhofer, C. Gao, D. Civin,
 611 D. Beaty, D. Kreymer, D. Li, D. Adkins, D. Xu, D. Testuggine, D. David, D. Parikh, D. Liskovich, D. Foss,
 612 D. Wang, D. Le, D. Holland, E. Dowling, E. Jamil, E. Montgomery, E. Presani, E. Hahn, E. Wood, E.-T. Le,
 613 E. Brinkman, E. Arcaute, E. Dunbar, E. Smothers, F. Sun, F. Kreuk, F. Tian, F. Kokkinos, F. Ozgenel, F. Cag-
 614 gioni, F. Kanayet, F. Seide, G. M. Florez, G. Schwarz, G. Badeer, G. Swee, G. Halpern, G. Herman, G. Sizov,
 615 Guangyi, Zhang, G. Lakshminarayanan, H. Inan, H. Shojanazeri, H. Zou, H. Wang, H. Zha, H. Habeeb,
 616 H. Rudolph, H. Suk, H. Asperegn, H. Goldman, H. Zhan, I. Damlaj, I. Molybog, I. Tufanov, I. Leontiadis, I.-
 617 E. Veliche, I. Gat, J. Weissman, J. Geboski, J. Kohli, J. Lam, J. Asher, J.-B. Gaya, J. Marcus, J. Tang, J. Chan,
 618 J. Zhen, J. Reizenstein, J. Teboul, J. Zhong, J. Jin, J. Yang, J. Cummings, J. Carvill, J. Shepard, J. McPhie,
 619 J. Torres, J. Ginsburg, J. Wang, K. Wu, K. H. U, K. Saxena, K. Khandelwal, K. Zand, K. Matosich, K. Veer-
 620 araghavan, K. Michelena, K. Li, K. Jagadeesh, K. Huang, K. Chawla, K. Huang, L. Chen, L. Garg, L. A,
 621 L. Silva, L. Bell, L. Zhang, L. Guo, L. Yu, L. Moshkovich, L. Wehrstedt, M. Khabsa, M. Avalani, M. Bhatt,
 622 M. Mankus, M. Hasson, M. Lennie, M. Reso, M. Groshev, M. Naumov, M. Lathi, M. Keneally, M. Liu, M. L.
 623 Seltzer, M. Valko, M. Restrepo, M. Patel, M. Vyatskov, M. Samvelyan, M. Clark, M. Macey, M. Wang, M. J.
 624 Hermoso, M. Metanat, M. Rastegari, M. Bansal, N. Santhanam, N. Parks, N. White, N. Bawa, N. Singhal,
 625 N. Egebo, N. Usunier, N. Mehta, N. P. Laptev, N. Dong, N. Cheng, O. Chernoguz, O. Hart, O. Salpekar,
 626 O. Kalinli, P. Kent, P. Parekh, P. Saab, P. Balaji, P. Rittner, P. Bontrager, P. Roux, P. Dollar, P. Zvyagina,
 627 P. Ratanchandani, P. Yuvraj, Q. Liang, R. Alao, R. Rodriguez, R. Ayub, R. Murthy, R. Nayani, R. Mitra,
 628 R. Parthasarathy, R. Li, R. Hogan, R. Battey, R. Wang, R. Howes, R. Rinott, S. Mehta, S. Siby, S. J. Bondu,
 629 S. Datta, S. Chugh, S. Hunt, S. Dhillon, S. Sidorov, S. Pan, S. Mahajan, S. Verma, S. Yamamoto, S. Ra-
 630 maswamy, S. Lindsay, S. Lindsay, S. Feng, S. Lin, S. C. Zha, S. Patil, S. Shankar, S. Zhang, S. Zhang,
 631 S. Wang, S. Agarwal, S. Sajuyigbe, S. Chintala, S. Max, S. Chen, S. Kehoe, S. Satterfield, S. Govindaprasad,
 632 S. Gupta, S. Deng, S. Cho, S. Virk, S. Subramanian, S. Choudhury, S. Goldman, T. Remez, T. Glaser,
 633 T. Best, T. Koehler, T. Robinson, T. Li, T. Zhang, T. Matthews, T. Chou, T. Shaked, V. Vontimitta, V. Ajayi,
 634 M. Montanez, V. Mohan, V. S. Kumar, V. Mangla, V. Ionescu, V. Poenaru, V. T. Mihailescu, V. Ivanov, W. Li,
 635 W. Wang, W. Jiang, W. Bouaziz, W. Constable, X. Tang, X. Wu, X. Wang, X. Wu, X. Gao, Y. Kleinman,
 636 Y. Chen, Y. Hu, Y. Jia, Y. Qi, Y. Li, Y. Zhang, Y. Zhang, Y. Adi, Y. Nam, Y. Wang, Y. Zhao, Y. Hao, Y. Qian,
 637 Y. Li, Y. He, Z. Rait, Z. DeVito, Z. Rosnbrick, Z. Wen, Z. Yang, Z. Zhao, and Z. Ma. The llama 3 herd of
 638 models, 2024. URL <https://arxiv.org/abs/2407.21783>.
- 639 C. Guérin, C. Rigaud, A. Mercier, F. Ammar-Boudjelal, K. Bertet, A. Bouju, J.-C. Burie, G. Louis, J.-M. Ogier,
 640 and A. Revel. ebdtheque: a representative database of comics. In *Proceedings of the 12th International
 Conference on Document Analysis and Recognition (ICDAR)*, pages 1145–1149, 2013.
- 641 N. D. Huynh, M. R. Bouadjenek, S. Aryal, I. Razzak, and H. Hacid. Visual question answering: from early
 642 developments to recent advances – a survey, 2025. URL <https://arxiv.org/abs/2501.03939>.
- 643 M. Iyyer, V. Manjunatha, A. Guha, Y. Vyas, J. Boyd-Graber, H. Daumé, and L. Davis. The amazing mysteries
 644 of the gutter: Drawing inferences between panels in comic book narratives. In *2017 IEEE Conference on
 Computer Vision and Pattern Recognition (CVPR)*, pages 6478–6487, 2017. doi: 10.1109/CVPR.2017.686.
- 645 A. Karamolegkou, P. Rust, R. Cui, Y. Cao, A. Søgaard, and D. Hershcovich. Vision-language models under
 646 cultural and inclusive considerations. In N. Soni, L. Flek, A. Sharma, D. Yang, S. Hooker, and H. A.
 647 Schwartz, editors, *Proceedings of the 1st Human-Centered Large Language Modeling Workshop*, pages 53–
 648 66, TBD, Aug. 2024. ACL. doi: 10.18653/v1/2024.hucllm-1.5. URL <https://aclanthology.org/2024.hucllm-1.5/>.
- 649 C. Kramsch. Language and culture. *AILA Review*, 27(1):30–55, 2014. ISSN 1461-0213. doi: <https://doi.org/10.1075/aila.27.02kra>. URL <https://www.jbe-platform.com/content/journals/10.1075/aila.27.02kra>.

- 648 J. Li, D. Li, S. Savarese, and S. Hoi. Blip-2: Bootstrapping language-image pre-training with frozen image
649 encoders and large language models, 2023. URL <https://arxiv.org/abs/2301.12597>.
- 650 Z. Li, B. Yang, Q. Liu, Z. Ma, S. Zhang, J. Yang, Y. Sun, Y. Liu, and X. Bai. Monkey: Image resolution and
651 text label are important things for large multi-modal models, 2024. URL <https://arxiv.org/abs/2311.06607>.
- 652 Z. Lin, C. Liu, R. Zhang, P. Gao, L. Qiu, H. Xiao, H. Qiu, C. Lin, W. Shao, K. Chen, J. Han, S. Huang,
653 Y. Zhang, X. He, H. Li, and Y. Qiao. Sphinx: The joint mixing of weights, tasks, and visual embeddings for
654 multi-modal large language models, 2023. URL <https://arxiv.org/abs/2311.07575>.
- 655 H. Liu, C. Li, Y. Li, and Y. J. Lee. Improved baselines with visual instruction tuning, 2023a.
- 656 H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning, 2023b.
- 657 H. Liu, C. Li, Y. Li, B. Li, Y. Zhang, S. Shen, and Y. J. Lee. Llava-next: Improved reasoning,
658 ocr, and world knowledge, January 2024. URL <https://llava-vl.github.io/blog/2024-01-30-llava-next/>.
- 659 Y. Matsui, K. Ito, Y. Aramaki, A. Fujimoto, T. Ogawa, T. Yamasaki, and K. Aizawa. Sketch-based
660 manga retrieval using manga109 dataset. *Multimedia Tools and Applications*, 76(20):2181121838, Nov.
661 2016. ISSN 1573-7721. doi: 10.1007/s11042-016-4020-z. URL <http://dx.doi.org/10.1007/s11042-016-4020-z>.
- 662 T. Naous, M. J. Ryan, A. Ritter, and W. Xu. Having beer after prayer? measuring cultural bias in large language
663 models. In L.-W. Ku, A. Martins, and V. Srikanth, editors, *Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 16366–16393, Bangkok,
664 Thailand, Aug. 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.862. URL
665 <https://aclanthology.org/2024.acl-long.862>.
- 666 S. Nayak, K. Jain, R. Awal, S. Reddy, S. V. Steenkiste, L. A. Hendricks, K. Stanczak, and A. Agrawal. Benchmarking vision language models for cultural understanding. In Y. Al-Onaizan, M. Bansal, and Y.-N. Chen,
667 editors, *Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing*, pages
668 5769–5790, Miami, Florida, USA, Nov. 2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.329. URL <https://aclanthology.org/2024.emnlp-main.329>.
- 669 K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu. Bleu: a method for automatic evaluation of machine translation.
670 In P. Isabelle, E. Charniak, and D. Lin, editors, *Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics*, pages 311–318, Philadelphia, Pennsylvania, USA, July 2002. Association for Computational Linguistics. doi: 10.3115/1073083.1073135. URL <https://aclanthology.org/P02-1040>.
- 671 S. Pawar, J. Park, J. Jin, A. Arora, J. Myung, S. Yadav, F. G. Haznitrama, I. Song, A. Oh, and I. Augenstein. Survey of cultural awareness in language models: Text and beyond, 2024. URL <https://arxiv.org/abs/2411.00860>.
- 672 R. Rei, J. G. C. de Souza, D. Alves, C. Zerva, A. C. Farinha, T. Glushkova, A. Lavie, L. Coheur, and A. F. T. Martins. COMET-22: Unbabel-IST 2022 submission for the metrics shared task. In P. Koehn, L. Barrault,
673 O. Bojar, F. Bougares, R. Chatterjee, M. R. Costa-jussà, C. Federmann, M. Fishel, A. Fraser, M. Freitag,
674 Y. Graham, R. Grundkiewicz, P. Guzman, B. Haddow, M. Huck, A. Jimeno Yepes, T. Kocmi, A. Martins,
675 M. Morishita, C. Monz, M. Nagata, T. Nakazawa, M. Negri, A. Névéol, M. Neves, M. Popel, M. Turchi, and
676 M. Zampieri, editors, *Proceedings of the Seventh Conference on Machine Translation (WMT)*, pages 578–
677 585, Abu Dhabi, United Arab Emirates (Hybrid), Dec. 2022. Association for Computational Linguistics.
678 URL <https://aclanthology.org/2022.wmt-1.52>.
- 679 A. Reuel, A. Hardy, C. Smith, M. Lamparth, M. Hardy, and M. J. Kochenderfer. Betterbench: Assessing ai benchmarks, uncovering issues, and establishing best practices. In A. Globerson,
680 L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, *Advances in Neural Information Processing Systems*, volume 37, pages 21763–21813. Curran Associates, Inc.,
681 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/26889e8359e7ef8a7f5d77457364ca55-Paper-Datasets_and_Benchmarks_Track.pdf.
- 682 D. Romero, C. Lyu, H. A. Wibowo, T. Lynn, I. Hamed, A. N. Kishore, A. Mandal, A. Dragonetti, A. Abzaliev,
683 A. L. Tonja, B. F. Balcha, C. Whitehouse, C. Salamea, D. J. Velasco, D. I. Adelani, D. L. Meur, E. Villa-
684 Cueva, F. Koto, F. Farooqui, F. Belcavello, G. Batnasan, G. Vallejo, G. Caulfield, G. Ivetta, H. Song, H. B.
685 Ademtew, H. Maina, H. Lovenia, I. A. Azime, J. C. B. Cruz, J. Gala, J. Geng, J.-G. Ortiz-Barajas, J. Baek,

- 702 J. Dunstan, L. A. Alemany, K. R. Y. Nagasinghe, L. Benotti, L. F. D’Haro, M. Viridiano, M. Estecha-
 703 Garitagoitia, M. C. B. Cabrera, M. Rodríguez-Cantelar, M. Jouitteau, M. Mihaylov, M. F. M. Imam, M. F.
 704 Adilazuarda, M. Gochoo, M.-E. Otgonbold, N. Etori, O. Niyomugisha, P. M. Silva, P. Chitale, R. Dabre,
 705 R. Chevi, R. Zhang, R. Diandaru, S. Cahyawijaya, S. Góngora, S. Jeong, S. Purkayastha, T. Kurabayashi,
 706 T. Clifford, T. Jayakumar, T. T. Torrent, T. Ehsan, V. Araujo, Y. Kementchedjieva, Z. Burzo, Z. W. Lim,
 707 Z. X. Yong, O. Ignat, J. Nwatu, R. Mihalcea, T. Solorio, and A. F. Aji. Cvqa: Culturally-diverse multilingual
 708 visual question answering benchmark, 2024. URL <https://arxiv.org/abs/2406.05967>.
- 709 F. Schneider, C. Holtermann, C. Biemann, and A. Lauscher. GIMMICK: Globally inclusive multimodal mul-
 710 titask cultural knowledge benchmarking. In W. Che, J. Nabende, E. Shutova, and M. T. Pilehvar, editors,
 711 *Findings of the Association for Computational Linguistics: ACL 2025*, pages 9605–9668, Vienna, Austria,
 712 July 2025. Association for Computational Linguistics. ISBN 979-8-89176-256-5. doi: 10.18653/v1/2025.
 713 findings-acl.500. URL [https://aclanthology.org/2025.findings-acl.500/](https://aclanthology.org/2025.findings-acl.500).
- 714 T. Sellam, D. Das, and A. Parikh. BLEURT: Learning robust metrics for text generation. In D. Jurafsky, J. Chai,
 715 N. Schluter, and J. Tetreault, editors, *Proceedings of the 58th Annual Meeting of the Association for Compu-
 716 tational Linguistics*, pages 7881–7892, Online, July 2020. Association for Computational Linguistics. doi:
 717 10.18653/v1/2020.acl-main.704. URL [https://aclanthology.org/2020.acl-main.704/](https://aclanthology.org/2020.acl-main.704).
- 718 S. Singh, A. Romanou, C. Fourrier, D. I. Adelani, J. G. Ngui, D. Vila-Suero, P. Limkonchotiwat, K. Marchi-
 719 sio, W. Q. Leong, Y. Susanto, R. Ng, S. Longpre, S. Ruder, W.-Y. Ko, A. Bosselut, A. Oh, A. Martins,
 720 L. Choshen, D. Ippolito, E. Ferrante, M. Fadaee, B. Ermis, and S. Hooker. Global MMLU: Under-
 721 standing and addressing cultural and linguistic biases in multilingual evaluation. In W. Che, J. Nabende,
 722 E. Shutova, and M. T. Pilehvar, editors, *Proceedings of the 63rd Annual Meeting of the Association for
 723 Computational Linguistics (Volume 1: Long Papers)*, pages 18761–18799, Vienna, Austria, July 2025. As-
 724 sociation for Computational Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.919.
 725 URL [https://aclanthology.org/2025.acl-long.919/](https://aclanthology.org/2025.acl-long.919).
- 726 A. Vayani, D. Dissanayake, H. Watawana, N. Ahsan, N. Sasikumar, O. Thawakar, H. B. Ademtew, Y. Hmaiti,
 727 A. Kumar, K. Kuckreja, M. Maslych, W. A. Ghallabi, M. Mihaylov, C. Qin, A. M. Shaker, M. Zhang,
 728 M. K. Ihsani, A. Esplana, M. Gokani, S. Mirkin, H. Singh, A. Srivastava, E. Hamerlik, F. A. Izzati, F. A.
 729 Maani, S. Cavada, J. Chim, R. Gupta, S. Manjunath, K. Zhumakhanova, F. H. Rabevohitra, A. Amirudin,
 730 M. Ridzuan, D. Kareem, K. More, K. Li, P. Shakya, M. Saad, A. Ghasemaghaei, A. Djanibekov, D. Azi-
 731 zov, B. Jankovic, N. Bhatia, A. Cabrera, J. Obando-Ceron, O. Otieno, F. Farestam, M. Rabbani, S. Baliah,
 732 S. Sanjeev, A. Shtanchaev, M. Fatima, T. Nguyen, A. Kareem, T. Aremu, N. Xavier, A. Bhatkal, H. Toyin,
 733 A. Chadha, H. Cholakkal, R. M. Anwer, M. Felsberg, J. Laaksonen, T. Solorio, M. Choudhury, I. Laptev,
 734 M. Shah, S. Khan, and F. Khan. All languages matter: Evaluating lmms on culturally diverse 100 languages,
 735 2025. URL <https://arxiv.org/abs/2411.16508>.
- 736 E. Vivoli, M. Bertini, and D. Karatzas. Comix: A comprehensive benchmark for multi-task comic understand-
 737 ing, 2024. URL <https://arxiv.org/abs/2407.03550>.
- 738 P. Xu, Y. Wang, S. Zhang, X. Zhou, X. Li, Y. Yuan, F. Li, S. Zhou, X. Wang, Y. Zhang, and H. Zhao. Tcc-bench:
 739 Benchmarking the traditional chinese culture understanding capabilities of mllms, 2025. URL <https://arxiv.org/abs/2505.11275>.
- 740 S. Yang, D. Zhang, J. Ren, Z. Xu, X. Zhang, Y. Song, H. Lin, and F. Xia. Cultural bias matters: A
 741 cross-cultural benchmark dataset and sentiment-enriched model for understanding multimodal metaphors.
 742 In W. Che, J. Nabende, E. Shutova, and M. T. Pilehvar, editors, *Proceedings of the 63rd Annual Meet-
 743 ing of the Association for Computational Linguistics (Volume 1: Long Papers)*, pages 26301–26317, Vi-
 744 enna, Austria, July 2025. Association for Computational Linguistics. ISBN 979-8-89176-251-0. doi:
 745 10.18653/v1/2025.acl-long.1275. URL [https://aclanthology.org/2025.acl-long.1275/](https://aclanthology.org/2025.acl-long.1275).
- 746 J. Ye, H. Xu, H. Liu, A. Hu, M. Yan, Q. Qian, J. Zhang, F. Huang, and J. Zhou. mplug-owl3: Towards
 747 long image-sequence understanding in multi-modal large language models, 2024. URL <https://arxiv.org/abs/2408.04840>.
- 748 P. Zhang, X. Dong, Y. Zang, Y. Cao, R. Qian, L. Chen, Q. Guo, H. Duan, B. Wang, L. Ouyang, S. Zhang,
 749 W. Zhang, Y. Li, Y. Gao, P. Sun, X. Zhang, W. Li, J. Li, W. Wang, H. Yan, C. He, X. Zhang, K. Chen, J. Dai,
 750 Y. Qiao, D. Lin, and J. Wang. Internlm-xcomposer-2.5: A versatile large vision language model supporting
 751 long-contextual input and output, 2024. URL <https://arxiv.org/abs/2407.03320>.
- 752
 753
 754
 755

756
757
758
759
760
761
762
763
764
765
766

Input Image:

767 **Q1:** Which culture does the background in the comics page belong to? Choose all the
768 possible answers.

769 **Choices for Q1:**

- 770 A. Cambodia
771 B. Greece
772 C. Brazil
773 D. Australia
774 E. China

775 **Answer to Q1:** C D

776 **Q2:** What object can reect a certain culture in the picture? You should choose the most
777 appropriate answer.

778 **Choices for Q2:**

- 779 A. ['An Australian surfer', 'kilt', 'Arabian sheikhs in a Brazilian', 'rainforest hut', 'indian
780 sari']
781 B. ['An Australian surfer', 'kilt', 'Arabian sheikhs in a Brazilian', 'rainforest hut', 'batik
782 robe has a clash']
783 C. ['An Australian surfer', 'kilt', 'Arabian sheikhs in a Brazilian', 'rainforest hut', 'a
784 group of inuit elders']
785 D. ['An Australian surfer', 'kilt', 'Arabian sheikhs in a Brazilian', 'rainforest hut']
786 E. ['An Australian surfer', 'kilt', 'Arabian sheikhs in a Brazilian']

787 **Answer to Q2:** D

788 **Q3:** lease answer the following question based on the image. Is there a culture contradicts
789 in this image?

790 **Answer to Q3:** Yes.

791 **Q4:** If there is contradict in this image, please answer the following question. For each
792 object in ['An Australian surfer', 'kilt', 'Arabian sheikhs in a Brazilian', 'rainforest hut'],
793 if that object and a certain culture in ["Brazil", "Australia"] conflict with each other, please
794 output it. The format is "Something should not be in Some Culture". For example, "Katana
795 should not be in America", "Chinese calligrapher should not be in Africa". If there isn't
796 contradict, output nothing.

797 **Answer to Q4:**

- 798 1. An Australian surfer should not be in Brazil.
799 2. kilt should not be in Australia.
800 3. kilt should not be in Brazil.
801 4. Arabian sheikhs in a Brazilian should not be in Australia.
802 5. rainforest hut should not be in Australia.

803
804
805
806
807
808
809

Figure 6: A data sample of Extraction@Culture and Conflict@Culture.

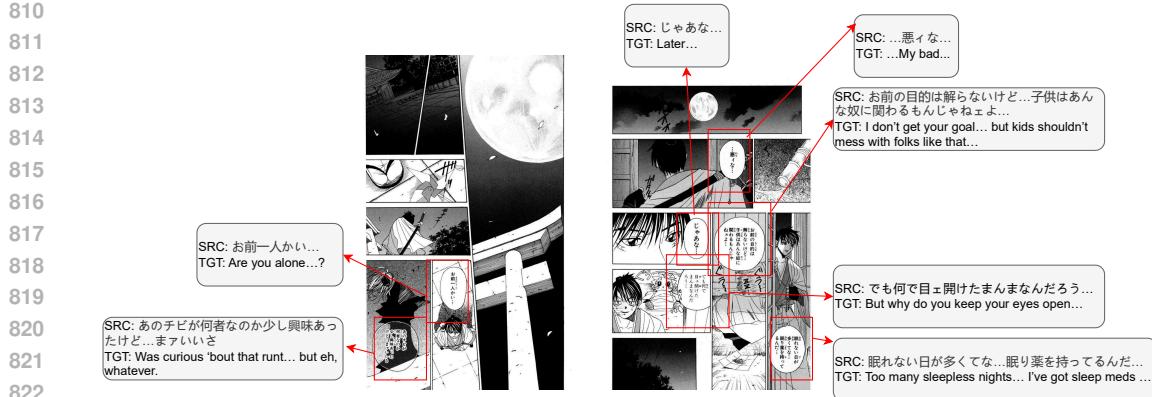


Figure 7: **A data sample of Generation@Culture.** During each inference, a single source sentence and the comic page are input to the MLLM.

A QUESTION SETTING FOR EACH TASK

A.1 EXTRACTION@CULTURE

Question 1: Which culture does the background in the comics page belong to? Choose all the possible answers.

Question 2: What object can reflect a certain culture in the picture? You should choose the most appropriate answer.

A.2 CONFLICT@CULTURE

Question 3: Please answer the following question based on the image. Is there a culture contradicts in this image?

Question 4: If there is contradict in this image, please answer the following question. For each object in the A_2 , if that object and a certain culture in A_1 conflict with each other, please output it. The format is "Something should not be in Some Culture". For example, "Katana should not be in America", "Chinese calligrapher should not be in Africa". If there isn't contradict, output nothing.

where A_1 refers to the list of cultures of the MLLM's answer to Q1, and A_2 refers to the list of cultural representative objects of the MLLM's answer to Q2.

A.3 GENERATION@CULTURE

Translate following sentences from Japanese into English. Output the result line by line. The sentences are:

B SOME DATA SAMPLE FROM C³B

B.1 EXTRACTION@CULTURE AND CONFLICT@CULTURE

An example of Extraction@Culture and Conflict@Culture is presented in Figure 6.

864 B.2 GENERATION@CULTURE
865866 An example of Generation@Culture is presented in Figure 7.
867868
869 C PROMPT SETTING FOR DATA COLLECTION AND ANNOTATION
870871 C.1 PROMPT SETTING FOR QA PAIR CREATION OF CONFLICT@CULTURE TASK
872873
874
875 Only output the answer. You need to check if there is anything in the element list that
876 conflicts with the culture in the culture list. If there is, you should output the result as
877 "Something should not be in Somewhere.". Otherwise, just output "No".
878879 For an element, if it conflicts with any one of the culture in the list, you should count it
880 as a conflict. For example, the culture list is [Japan, China] and the element list is [katana,
881 Chinese tea]. Then you should output "katana should not be in China" and "Chinese tea
882 should not be in Japan".883 As for acceptable results. For example, some acceptable results are "Katana should not be
884 in America", "Chinese calligrapher should not be in Africa" and "No".
885 Now output the result for: The element list is l_e . The culture list is l_p .886
887 Figure 8: **The prompt setting for QA pair creation in Conflict@Culture Task.**888
889 In the prompt setting of Conflict@Culture (presented in Figure 8), l_e and l_p denote the list of cultur-
890 ally representative objects and culture of image annotated in task Extraction@Culture respectively.
891892 C.2 PROMPT SETTING FOR ANNOTATION IN GENERATION@CULTURE
893894
895 The model we apply in annotation in Generation@Culture for creating C³B is DeepSeek-
896 R1 ([DeepSeek-AI, 2025](#)). The prompt we use for Translator is presented in Figure 9. The prompt
897 we use for Reviewer is presented in Figure 10. Upon receiving the review feedback, the prompt
898 provided to the Translator is presented in Figure 11.900
901 Output the answer line by line. Please only output the answer. Translate following sentence
902 from Japanese to English: s .
903904
905 Figure 9: **The prompt used for the Translator**, where s denotes the source sentence that is to be
906 translated.907
908
909
910 Output the answer line by line. Only output the translation, not suggestions. Please only
911 output the modified translation. You need to pay attention to whether there are any incon-
912 sistencies in context, whether there are culturally related errors and whether there are any
913 translation errors. The source is: s and the translation is: t .914
915 Figure 10: **The prompt used for the Reviewer**, where t denotes the translation provided by the
916 Translator.
917

918
919
920
921
922

Output the answer line by line. Please only output the answer. Translate following sentence from Japanese to English: *s*. Here is some advice: *a*

923
924
925

Figure 11: **The prompt used for the Translator once the review is provided**, where *a* denotes the review generated by the Reviewer.

926
927
928
929
930
931
932
933
934
935
936
937
938
939

Input: Only output the answer. You need to check if there is anything in the element list that conflicts with the culture in the culture list. If there is, you should output the result as "Something should not be in Somewhere.". Otherwise, just output "No".

For an element, if it conflicts with any one of the culture in the list, you should count it as a conflict. For example, the culture list is [Japan, China] and the element list is [katana, Chinese tea]. Then you should output "katana should not be in China" and "Chinese tea should not be in Japan".

As for acceptable results. For example, some acceptable results are "Katana should not be in America", "Chinese calligrapher should not be in Africa" and "No".

Now output the result for: The element list is [China, Japan, Brazil]. The culture list is [Chinese calligrapher, Japanese Katana, Brazilian Dancer].

Output with Error: In China, Brazilian dancers are rare...

Corrected Output: Brazilian dancers should not be in China.

940
941
942
943

Figure 12: **An example of formatting inconsistency**. The format provided is shaded in blue, and the output with error doesn't follow it.

944
945
946
947
948

D EXAMPLES OF ERRORS IN MANUAL VERIFICATION IN CONFLICT@CULTURE

949
950
951
952
953

This type of error occurs when the format of the conflict descriptions generated by the models fails to conform to the format provided. An example is provided in Figure 12.

954
955
956
957

D.1 FORMATTING INCONSISTENCY

This type of error occurs when the conflict descriptions generated by the models contains cultural errors. An example is provided in Figure 13.

958
959
960

E ANNOTATION DETAILS

961
962
963
964
965
966
967
968
969
970

All annotations were performed by three graduate students and two undergraduate students, with distinct division of labor across annotation tasks. All of the annotators come from Asian countries. Among the five annotators, three are graduate students engaged in culture-related research. The quality of annotation is ensured by credible online resources (e.g. Wikipedia).

For the annotation of cultural lists and cultural object lists in Image Collection phase, the two undergraduate students were tasked with this work, where each was assigned 512 images (accounting for 50% of the total dataset) for annotation. Subsequent to this initial annotation phase, the three graduate students conducted a comprehensive review of the annotated content and rectified any annotation errors identified based on the prompts which are used to generate images. The criteria for this phase are defined as follows:

971

1. **Fidelity:** An object is counted if it evokes a perceived association with a specific cultural context.

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

Input: Only output the answer. You need to check if there is anything in the element list that conflicts with the culture in the culture list. If there is, you should output the result as "Something should not be in Somewhere.". Otherwise, just output "No".

For an element, if it conflicts with any one of the culture in the list, you should count it as a conflict. For example, the culture list is [Japan, China] and the element list is [katana, Chinese tea]. Then you should output "katana should not be in China" and "Chinese tea should not be in Japan".

As for acceptable results. For example, some acceptable results are "Katana should not be in America", "Chinese calligrapher should not be in Africa" and "No".

Now output the result for: The element list is [China, Japan, Brazil]. The culture list is [Chinese calligrapher, Japanese Katana, Brazilian Dancer].

Output with Error: Japanese Katana should not be in Japan.

Corrected Output: Japanese Katana should not be in China. Japanese Katana should not be in Brazil.

Figure 13: **An example of culture-related errors.** In our example, Japanese katana should not be in the country except Japan.

990

991

992

993

994

995

996

997

998

2. **Granularity:** For an object associated with a culture shared across multiple countries, a regional-level description shall be adopted.
3. **Security:** An image shall be excluded if it contains aggressive depictions, which refer to racist content, sexual explicitness, and other analogous content that may cause harm to individuals.

999

1000

1001

1002

1003

1004

Following the annotation rectification phase, we calculated that 237 out of the total 1,023 images underwent revisions. The inter-annotator agreement score was determined to be 76.8%.

1005

1006

1007

1008

1009

For the annotation of question-answer (QA) pairs corresponding to the three tasks, all five annotators participated in the verification phase. Initially, each annotator independently revised the annotation results; subsequent to this individual revision step, a joint review of each question was conducted collectively by the entire annotation team. Finally, the questions corresponding to 755 images were manually revised, resulting in a correction rate of 73.8%. In this phase, the criteria are defined as follows:

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1. **Culture Fidelity:** All annotators were instructed to retrieve relevant information from credible online sources (e.g. Wikipedia) to verify the accuracy of the specific forms of cultural objects depicted in the image. In cases where inaccuracies were identified, the annotations were revised based on the outcomes of group discussions.

The guidelines for the annotation of cultural lists and cultural object lists are presented as follows:

1. **Fidelity & Granularity:** If an element in the image shows a country's cultural traits, please label it with the country name. If it reflects a regional cultural feature, please use the region or continent namelike "Middle East," "Asia," "South Pacific," and so on.
2. **Security:** If there's any stereotype or offensive content in the image or prompt, mark it for removal.
3. **Example:** When labeling elements in the image, try to keep the labels as close as possible to the prompt used to generate the image. Here's an example: "A Brazilian footballer in a Scottish kilt has a shouting match with Chinese ping-pong players in a Beijing sports complex." In such case, if the elements mentioned in the prompt appear in the image and can be matched to the entities in the prompt (e.g., the footballer in the image corresponds to a "Brazilian footballer," etc.), label them exactly as "Brazilian Footballer," "Scottish Kilt," and so on.
4. **Credibility:** For the cultural elements in the image, look them up on Wikipedia if you are not familiar with the culture. You can label them only if they match the relevant information there; otherwise, skip the labeling.

1026 **F CASE STUDY**
10271028
1029 During evaluation, we observed several unexpected behavioral patterns that led to suboptimal
1030 question-answering performance in MLLMs.
10311032 **F.1 ERROR CASES IN Q1**
10331034
1035 **"Turn-a-deaf-ear"**: This behavioral pattern is particularly occurred in LLaVA-NeXT, where the
1036 model frequently defaulted to describing the image rather than direct question-answering when pre-
1037 sented with clear instructions. We name this behavoir as "Turn-a-deaf-ear". An example is provided
1038 in Figure 14.1039 We assume that this behavioral pattern likely stems from the fine-tuning dataset's compositional
1040 bias, which predominantly trains MLLMs for image description tasks rather than image-grounded
1041 question answering.1042 We need to mention that, in Q3, LLaVA-NeXT fails to predict the result properly due to the same
1043 reason as in Q1.
10441045
1046 **Input Image:**1057 **Input:** Which culture does the background in the comics page belong to? Choose all the
1058 possible answers. Please only generate answer.

- 1059 A. Australia
-
- 1060 B. France
-
- 1061 C. Middle-east
-
- 1062 D. Indonesia
-
- 1063 E. South america

1064 **Ground-truth Answer:** A,B,C
1065 **Output:** The background in the comics page appears to be inspired by a setting that could
1066 be from a variety.1067
1068 Figure 14: **An example of "Turn-a-deaf-ear" is presented.** The MLLM is asked to output the
1069 correct choices but it outputs the detail of the comics page instead.
10701071
1072
1073 **F.2 ERROR CASE IN Q2**
10741075
1076 **"Take-a-shot-in-the-dark"**: This behavioral pattern was particularly observed in LLaVA1.5-7B
1077 when the model attempted to answer Q2. For this question, the model exhibited a tendency to output
1078 "A" as the response.
1079We calculated the frequency that LLaVA1.5-7B outputs the choice "A" and the result is 78.4, which
says that the model cannot understand the cultures properly and tends to output an answer.

1080 F.3 ERROR CASE IN Q4
10811082 **Keep answering "Nothing":** This behavioral pattern is particularly occurred in LLaVA-NeXT,
1083 where the model always answering "Nothing", which shows a lack of cultural conflict comprehen-
1084 sion capability. An example is presented in Figure 15.
10851086 **Input Image:**
10871097 **Input:** If there is contradict in this image, please answer the following question. For each
1098 object in ['Brazilian samba dancer', 'Swiss dirndl engages', 'dispute with Turkish Janis-
1099 saries', 'Chinese pagoda'], if that object and a certain culture in the [Turkey, Switzerland,
1100 Brazil, China] conflict with each other, please output it. The format is "**Something should
1101 not be in Some Culture**". For example, "Katana should not be in America", "Chinese callig-
1102 rapher should not be in Africa". If there isn't contradict, output nothing.
1103 **Ground-truth Answer:** "Swiss dirndl engages should not be in Brazil, . . . "
1104 **Output:** **Nothing.**1105
1106 Figure 15: **An example of keeping answering nothing.** MLLM keeps answering "nothing" instead
1107 of the description of cultural conflicts.
11081109 **"Stubbornness":** This behavioral pattern is particularly occurred in LLaVA-1.5-7B, where the
1110 model frequently defaulted to follow the instruction without thinking. We name this behavior as
1111 "Stubbornness". An example is provided in Figure 16.
11121113 F.4 ERROR CASE IN Q5
11141115 **Poor instruction following capabilities of MiniGPT:** For Question 5, our instruction to MLLMs
1116 was to directly output the translated sentence without including any redundant explanatory content.
1117 Nevertheless, MiniGPT tended to elaborate on how the translation was performed and also repeated
1118 the identical sentence a second time. An example is presented in Figure 17.
11191120 G DETAILS ON HUMAN-MODEL ANALYSIS
11211122 Regarding the human-model analysis, three undergraduate students volunteered to participate. Each
1123 question was answered separately, with a one-hour time limit per question, and was presented in the
1124 same format used for the MLLMs.
1125
11261127 H EFFECT OF OCR INTEGRATION ON MT TASK PERFORMANCE
11281129 We conducted additional experiments to evaluate the impact of OCR on the Generation@Culture
1130 task. Our experimental settings are as follows: one group directly adopted the pre-extracted text
1131 from Manga109, while the other group utilized OCR² technology for text extraction. We use BLEU
1132 as the evaluation metric. The results are presented in Table 8.
1133²<https://github.com/PaddlePaddle/PaddleOCR>

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

Input Image:

Input: If there is contradict in this image, please answer the following question. For each object in ['French chef in a Native', 'American headdress is wrestling', 'African tribal chiefs', 'Russian Orthodox church'], if that object and a certain culture in the [France, America, Russia] conflict with each other, please output it. The format is "**Something should not be in Some Culture**". For example, "Katana should not be in America", "Chinese calligrapher should not be in Africa". If there isn't contradict, output nothing.

Ground-truth Answer: "French chef in a Native should not be in United States.", . . .

Output: **Something should not be in Some Culture.**

Figure 16: **An example of "Stubbornness" is presented.** The MLLM fails to generate the required substitutions, leaving both the placeholder terms 'Something' and 'Some Culture' unmodified in its output.

Sure, here are the translations of the sentences you provided:

1. kuru na!: This is an interjection used to express excitement or surprise, similar to "Wow!" or "Whoa!" in English.
2. kuru na!: This is another way of expressing excitement or surprise, similar to "Wow!" or "Whoa!"

Figure 17: **An example of poor instruction following capability of MiniGPT.** Our instruction clearly required MiniGPT to directly output the target translations without additional content. Nevertheless, the model responded with redundant descriptive text (e.g., explaining the sentence type and emotional connotation) and duplicated translations for the identical Japanese input. Both issues indicate its failure to adhere to the constraint of instruction.

From the results, it is evident that OCR significantly degrades model performance. Since we did not utilize OCR in our experiments, the observed lower model performance is not attributable to OCR-related factors.

Table 8: **Main Result of effect of OCR on MT tasks.** The highest performance is marked in **bold**.

Methods	JA-DE		JA-RU		JA-ES		JA-TH	
	OCR	No OCR						
Qwen2.5-VL	0.92	12.0	0.97	8.74	1.32	14.5	1.22	9.72
LLaVA1.5-7B	0.64	2.74	0.24	1.39	0.62	4.23	0.32	1.13
Llama3.2	0.33	4.27	0.22	1.70	0.45	5.73	2.73	0.99