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Abstract

Recent progress in large language models (LLMs) highlights the power of scaling
test-time compute to achieve strong performance on complex tasks, such as mathe-
matical reasoning and code generation. This raises a critical question: how should
model training be modified to optimize performance under a subsequent test-time
compute strategy and budget? To explore this, we focus on pass@N, a simple
test-time strategy that searches for a correct answer in N independent samples. We
show, surprisingly, that training with cross-entropy (CE) loss can be misaligned
with pass@N in that pass@N accuracy decreases with longer training. We explain
the origins of this misalignment in terms of model overconfidence induced by CE,
and experimentally verify our prediction of overconfidence as an impediment to
scaling test-time compute via pass@N. Furthermore we suggest a principled, modi-
fied training loss that is better aligned to pass@N by limiting model confidence and
rescuing pass@N test performance. Our algorithm demonstrates improved math-
ematical reasoning on MATH and MiniF2F benchmarks under several scenarios:
(1) providing answers to math questions; and (2) proving theorems by searching
over proof trees of varying shapes. Overall our work underscores the importance of
co-designing two traditionally separate phases of LLM development: training-time
protocols and test-time search and reasoning strategies.

1 Introduction

Scaling test-time compute has been integral to unprecedented improvements in LLMs’ reasoning
skills for complex tasks such as math and coding. Thus, test-time compute has emerged as a new
dimension for improving LLMs, leading to a key tradeoff between allocating additional compute to
inference versus pretraining [1l]. Diverse test-time strategies include Chain-of-Thought (CoT) [2],
tree-of-thought [3]], self-consistency [4], self-reflection [5]], self-critique [6]], self-verification [7] and
Monte-Carlo tree search [8]. These have shown great success in boosting model performance in the
post-training phase or at inference time. More recently, OpenAI’s O1 model [9] and DeepSeek’s R1
model [10] have combined some of these strategies with reinforcement learning to generate high-
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quality reasoning traces for problems of various difficulty levels, demonstrating clear performance
improvements as more test-time compute is allocated.

These successes fit into a broader paradigm in which a frontier model is first fine-tuned on a reasoning
task with supervised fine-tuning (SFT) [2| [11} [12], and then a test-time algorithm is applied to
model outputs or reasoning traces to improve performance [3 4, [13]]. Many test-time algorithms are
independent of the fine-tuning process. As a result, the fine-tuning is agnostic to and thus decoupled
from the test-time algorithm [14]. However, for a given choice of test-time strategy and compute
budget, it is not a priori clear which fine-tuning approach, including the loss objective, would be best
aligned with the test-time strategy so as to maximize the test accuracy under the overall strategy.

Our work studies the problem of aligning fine-tuning with test-time algorithms. We consider what
is perhaps the simplest setting, SFT with CE loss and pass@N as the test-time strategy. This
setting reveals a case of misalignment: standard SFT is not maximizing performance under pass@N.
We believe that this misalignment presents itself in several combinations of fine-tuning/test-time
approaches, motivating our thorough study in this paper. Our main contributions are,

* We identify a misalignment between standard fine-tuning with CE loss and the pass@N
coverage metric at test time (Section 4.1).

* We develop and experimentally verify a framework that suggests this misalignment arises
from overconfidence induced by training on CE loss (Sections .2] and {£.3).

* We propose a loss function that directly optimizes the pass@N coverage metric, demon-
strating consistent improvement over the CE loss objective and achieving superior accuracy
frontiers on MATH and MiniF2F (Sections[5.1]to [5.3).

* We extend our algorithm to more complex test-time scenarios including searching over
proof-trees of varying shapes to improve automated theorem proving, and answering math
questions using Chain-of-Thought reasoning traces, demonstrating improved mathematical
reasoning in both cases (Sections [5.3|and [5.4).

2 Related Works

Test-time compute and pass@N strategy. A growing body of work explores how training and
test-time strategies interact to shape model performance. Jones [15] highlight a tradeoff between train
and test-time compute in a controlled board game setting. Brown et al. [16] identify an exponentiated
power law between coverage and number of in-context samples, while Snell et al. [1] explore
compute-optimal strategies for scaling test-time inference. Our paper focuses primarily on the
pass@N test-time strategy. Gui et al. [[17] show that, in the best-of-N setting, the sample distribution
is well-aligned with the reward model, and alignment methods have been proposed to distill this
distribution and reduce sampling costs [[17, [18]]. However, their work focuses on improving the
pass@1 performance from the Best-of-N policy, while we focus on directly improving the pass@N
performance. Closely related to our work, Chow et al. [14] derives a similar training objective
for reinforcement learning (RL) to directly optimize for the best-of-N test-time strategy. Li et al.
[19] argue that fine-tuning with cross-entropy loss limits output diversity and propose a maximum
entropy-based method to address this issue. Our work similarly identifies limitations of cross-entropy
when scaling test-time compute, but focuses on the alignment of training and test-time strategies. In
addition, Yue et al. [20] argue that fine-tuning with Group Relative Policy Optimization (GRPO) does
not improve reasoning capabilities beyond the base model when evaluated with pass@N strategy. We
will show that GRPO training may also lead to overconfidence in Figure

Post-training for mathematical reasoning. Various post-training techniques have been developed to
improve mathematical reasoning in LLMs. Instruction-tuning and reinforcement learning with human
feedback boost model performance on math tasks [21H23]], while continued training on domain-
specific math or code data also boosts downstream reasoning [24-H28]. Rejection-sampling [29]]
and self-improvement [30] methods augment training data for SFT. Recent approaches [9} [10] have
incorporated RL to achieve exceptional reasoning capabilities. GRPO [10} 27] is a newly proposed
RL algorithm demonstrating strong improvements in mathematical reasoning. Several recent studies
have further addressed response length and problem difficulty biases [31], as well as conducted
extensive analyses of accuracy and response length across a wide variety of base models [31}[32].



While our primary focus is SFT, our loss function can be applied to other settings that train under CE
loss, such as continual training, instruction-tuning, and data augmentation.

Data pruning and hard example mining. The loss function we derive below can be viewed from the
lens of data pruning and hard example mining. Data selection is used to curate high-quality datasets
for pretraining [33], where Sorscher et al. [34] show that pruning easy samples can improve loss
scaling as a function of dataset size. Zhou et al. [35], Ye et al. [36]] demonstrate that, in SFT, even
small datasets can yield strong alignment and reasoning performance. Hard example mining focuses
on identifying and emphasizing challenging samples to improve model performance [37]. In the
domain of mathematical reasoning, Tong et al. [38] find a difficulty imbalance in rejection-sampled
datasets and show that more extensive training on difficult samples improves model performance.

3 Problem setup

Given a vocabulary set W, we consider a dataset D = {(z®,y())}M  where (V) € W™ is a
prompt, ¥ € W™ is its ground-truth completion, and n; and mn; are the prompt and completion
lengths. In the context of math, () is the problem statement and y(*) is its solution. To model
the conditional distribution p(y(*) |2(*)) we use an autoregressive transformer model [39]], which is
traditionally trained by minimizing the cross-entropy loss

Lce=— E logp(y|z) (D
(z,y)~D

where p denotes the model’s distribution.

To use and evaluate the model at test time, we assume the existence of an efficient oracle verifier
V which takes as input an (x, y) pair and returns V' (z,y) = 1 if y is a correct completion of = and
0 otherwise. Practical examples of verifiers include compilers or pre-defined unit tests for coding
problems, or automatic proof checkers in mathematical theorem proving. In such applications, a
simple method, known as pass@N, for trading test-time compute for accuracy involves sampling
N completions from p given the test prompt = and applying the verifier V to all of them to search
for a correct solution. The probability of a correct answer is then no longer the probability that 1
completion is correct, but rather the probability that at least one of N is correct. This probability, for
a dataset D, is given by the pass@N coverage metric

Cy = E P(3j € [N]s.t.V(x,y;) = 1). )

iid. .
a~D,y: (- |2)

Minimizing the CE loss in Equation (E]) is equivalent to maximizing the pass@1 metric C, on a
training set D. But if we scale up test-time compute so that the pass@N metric C3y on a test set D for
N > 1 is the relevant performance metric, is Lcg still a good training loss, or can we do better?

4 Misalignment between CE loss and pass@N

4.1 The CE loss induces overfitting for pass@N

To understand the impact of training with CE loss on pass@N test performance, we fine-tune
Llama-3-8B-base [40]] on the MATH [41]] dataset. We start from the base model rather than Llama-
3-8B-Instruct to avoid potential leakage of the MATH dataset into Llama-3-8B-Instruct through
post-training. We follow Lightman et al. [22] and use 12, 000 problems for training and the remaining
500 for testing. Here we train the model to provide a direct answer without a reasoning trace. We will
discuss training with CoT in Section[5.4] We confirm that the results presented in this section also
hold for a larger model, Llama-3-70B-base, and direct readers to Appendix [C.3|for additional results.

Table |1{ reveals that the pass@N performance Cg on a test set monotonically increases with the
number of training epochs only for N = 1, when minimizing CE loss is equivalent to maximizing C3,.
However, for N > 16, minimizing CE loss during training does not monotonically increase Cg at
test; indeed for N > 256, pass@N test performance, remarkably, monotonically decreases with the
number of training epochs, despite the fact that pass@ 1 performance monotonically increases. This
effectively corresponds to a novel type of overfitting, in which test performance degrades over training,
likely due to a mismatch between the test time (pass@N) and training time (pass@1) strategies.



4.2 Opverfitting, confidence, and explore-exploit tradeoff

What are the origins of this overfitting? First we show that in the simple case of a single problem
x, overfitting cannot occur. Let p(x) denote the probability assigned by the model to all correct
answers for problem x. Then the pass@1 coverage is C! = p(z) while the pass@N coverage is
CN =1—(1-p((x)N =1— (1 —CHN. This formula for CVV in the single problem case obeys:

Lemma 4.1. VN, N’ > 0, CY is monotonic in cN'.

Thus increasing pass@N’ coverage implies increasing pass@N coverage for any N and N’. When
N’ = 1, this implies minimizing CE loss maximizes pass@N coverage.

However, Lemma[d.T] can fail when there is more than one problem. To understand this in a simple
setting, consider a test set with two problems z; and x» with unique correct answers y; and y».
Consider two models. The first model assigns probabilities p1(y1]|z1) = 1 and P (yz|z2) = 0.
If we think of the probability a model assigns to an answer as its confidence in that answer, this
model is highly confident and correct for problem x;, but highly confident and wrong for x,.
Its pass@1 coverage is thus 50%. Moreover, since it always gets z; right and xo wrong, its
pass@N coverage remains at 50%. In contrast, consider a second model which assigns probabilities
P2(y1|x1) = Pp2(y2|z2) = 0.1. This model has high confidence (0.9) but unfortunately on incorrect
answers. Therefore its pass@1 accuracy is only 10%. However, it is willing to explore or hedge
by placing some low confidence (0.1) on the other answer, which happens to be correct. Thus if
this model samples N times, the pass@N coverage increases with NV, eventually approaching 100%
as N — oo. Thus the first model outperforms the second in terms of pass@ 1 but not pass@N for
large V. This indicates a tradeoff amongst policies: those that do better on pass@ 1 may not do
better at pass@N. Of course the best one can do is be confident and correct, corresponding to the
optimal model with p*(y;|z1) = p*(y2|x2) = 1. However, this toy example reveals that if one
cannot guarantee correctness, it can be beneficial to limit confidence and explore more solutions.

To demonstrate more generally the existence of tradeoffs between confident exploitation of a few
answers versus unconfident exploration of many answers, as a function of the number of passes IV,
we prove two lemmas. To set up these lemmas, given any problem, let p; denote the model probability
or confidence assigned to answer ¢, and assume answers are sorted from highest to lowest confidence
so that p; > p;4+1, V¢ > 1. Thus p; is the model’s maximal confidence across all answers. Moreover,
let p; be the probability across all the problems that the i ranked answer is actually correct. Assume
the model policy is approximately well calibrated so that higher confidence implies higher or equal
probability of being correct, i.e. p; > p;+1,V? > 1. We empirically verify that the model trained
with CE loss on the MATH dataset approximately satisfies this assumption (Figure [I3)). Indeed,
optimal policies maximizing pass@N coverage in Equation (2) are approximately well calibrated
(See Lemmal[AT)). p; is then the model’s maximal accuracy across all answers. We prove:

Lemma 4.2 (Upper bound on max confidence). Assume a max accuracy p1, and assume Zle pi >

1 — € for some 0 < € < 1. Then optimal policies maximizing pass@N coverage in Equation ({2)),
subject to above accuracy and calibration constraints, must have max confidence upper bounded as

k—1
N 1
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Table 1: Pass@N coverage on the MATH test set for a Llama-3-8B-base model fine-tuned with CE
loss on direct answers from the MATH training set. While pass@ 1 improves with continued training,
for large N, surprisingly, pass@N decreases with number of training epochs.

pass@1 pass@16 pass@256 pass@4k

Epoch1  4.4% 30.0% 65.2% 82.5%
Epoch2  53% 31.4% 64.5% 80.0%
Epoch3  6.5% 28.7% 54.5% 79.2%
Epoch4  7.4% 22.9% 44.5% 63.0%
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Figure 1: A model trained with CE loss becomes overconfident in its greedy completions, which
harms its pass@N coverage; our proposed DCO objective limits this overconfidence. We fine-
tune a Llama-3-8B base model on the MATH dataset to produce direct ansSwers. fgreedy is the model’s
greedy completion when choosing the most likely token at each sampling step. (a) The model trained
with CE loss assigns progressively larger confidences p(Jgreedy|2) to its greedy completions over the
course of training. (b) At the end of training, only a small portion of the model’s highly confident
completions are correct. This will harm the model’s pass @N performance when scaling up V. (¢)
Same as (a) but shown for the DCO loss with N/ = 256. The model trained on DCO shows a
much milder overconfidence effect. (d) The confidence distribution of greedy completions after four
epochs with DCO for various choices of N’. As N’ increases, the model’s confidence in its greedy
completion is more stringently limited, directly as a consequence of the overconfidence regularizer F'.

This upper bound is monotonically decreasing in N (Figure [I2)), implying that at large N, an
optimal policy for pass@N must limit its max confidence to be low, thereby favoring exploration and
discouraging exploitation. Furthermore, we prove:

Lemma 4.3 (Lower bound on max confidence). Assume top two accuracies p1 > po. Then optimal
policies maximizing pass@N coverage in Equation (2), subject to above accuracy and calibration
constraints, must have max confidence obeying
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This lower bound is a monotonically decreasing function of NV (Figure[12)), implying that at small
N, optimal policies must have high max confidence, thereby favoring exploitation and discouraging
exploration. Note in the limit N — 17, the lower bound is always 1, recovering the intuitive result
that the optimal policy for pass@1 is to place 100% confidence on the highest accuracy answer.

4.3 Overconfidence prevents performance gains from scaling test-time compute

Lemma[4.2]suggests that at large IV it is beneficial to unconfidently explore by assigning low model
confidence to many answers, while Lemma [4.3|suggests that at small N it is beneficial to confidently
exploit by assigning high model confidence to one or a few answers. These lemmas make a prediction
that could explain the empirical observation in Table[T} namely, maximization of pass@ 1 makes the
model overconfident, thereby preventing good performance on pass@N.

To test this theoretical prediction of model overconfidence, we estimated the max confidence of the
model as p(Ygreedy |£) Where Ygreedy 18 the greedy completion to - obtained by sampling autoregres-
sively from the model 5, and at each step selecting the token with the highest probability. p(Ygreedy|Z)
approximates the max confidence p; in Lemmas and {£.3] For the model fine-tuned on MATH
with CE loss, we plot the distribution of p(ygreedy|z) over the test set in Figure|l|(a). This demon-
strates the model becomes progressively more confident about its greedy completion over training,
thereby confirming our theoretical prediction. In Figure[I](b) we see why this is a problem: only
some of the model’s highly confident answers are correct. Thus the model becomes overconfident
and largely wrong. Scaling test-time compute cannot easily rescue such a model, as over multiple
samples, it is likely to confidently provide the same wrong answers, explaining the origins of poor
pass@N test performance. In Appendix [C.4] we observe a similar trend of overconfidence on the
out-of-distribution test set AIME24, further highlighting the generality of this failure mode.



5 Direct Coverage Optimization

5.1 A solution that naturally prevents overconfidence

The misalignment between CE training loss and pass@N coverage suggests a simple solution: directly
optimize pass@N coverage for each training example at training time, whenever the pass@N strategy
is to be used at test-time. We thus propose the Direct Coverage Optimization (DCO) objective,
L0 = Ez,y)~p Do (@, y), where

Uheo(,y) = —log (1 — (1 = plyl)™) 3)
is the — log probability that the model produces y at least once in N samples given . Thus for each
prompt x and correct completion y in the training set, we maximize the probability y is found in N
passes. This loss naturally prevents model overconfidence, as can be seen via its gradient

Voldco(,y) = F (N, p(y|z)) Volcr(z, y) 4

where (¢ is the standard CE loss on a single example, and F'(N, p(y|z)) = N(lf_ﬁ((ffﬁ)g;\];;)%y‘m)

is an extra overconfidence regularization factor that multiplies the standard CE gradient. Note that
F(N,p(y|z)) = 1 for N = 1, so DCO reduces to CE for pass@1. Furthermore F'(N,p(y|z))
monotonically decreases in the model confidence p(y|z) (see Figure [2| (b)). Thus gradients for
examples (z, y) on which the model is more confident are attenuated, and this attenuation is stronger
for larger N. This justifies the interpretation of F'(N, p(y|z)) as a regularizer that prevents model
overconfidence. Indeed, for large N, F/(N, p(y|x)) = 0 for confidence p(y|x) 2 1/N. As soon as
model confidence on an example exceeds 1/N, its gradient becomes negligible. Thus interestingly,
aligning training and test better through DCO naturally yields a simple emergent regularization of
model overconfidence, which was itself identified as an impediment to performance gains through
scaling test-time compute in Figure [1| (a). Indeed, F'(N,p(y|z)) is smaller for easier examples
(Figure [I4] right), effectively regularizing their contribution. This regularization mitigates the
potential detrimental effects of overconfidence from easy examples as discussed in Appendix

In practice, the introduction of F' can lead to some samples in a batch contributing minimally to the
current gradient step. To maintain a stable effective batch size, we introduce a threshold e, and if for
a given example, (x,y), F(N,p(y|x)) < €, we replace the example with a new one.

5.2 DCO can prevent overconfidence and rescue test-time scaling

We next test whether DCO can rescue test-time scaling by preventing model overconfidence. We first
perform experiments on the MATH dataset in this section, and then in the next section we perform
experiments on the LeanDojo automated theorem proving benchmark [42]]. We fine-tune Llama-3-8B
base model for 4 epochs on the MATH training set using DCO for N’ = 256 and confirm that the
model is much less confident in its greedy completion than when trained with CE loss after multiple
epochs (compare Figure[I](a) and (c)). Moreover, training with DCO at larger N yields lower model
greedy confidences at the end of training (Figure[I](d)), consistent with Lemma[4.2]

We next assess pass@N test performance as a function of N for models trained by minimizing C,{)VC/O
for different values of N’ (Figure 2| (a)). For any given NN, there is an optimal N’ for the training
loss EIIDVC/O that maximizes pass@N test coverage, yielding a Pareto optimal performance frontier
(black curve) that is achieved when N” is close to V. In particular the model trained with CE loss
(equivalent to pass@ 1 maximization at training) performs poorly relative to the Pareto frontier at large
N (red curve below black at large N). Conversely, models trained with DCO at large N’ perform
poorly relative to the Pareto frontier for small N (green curves below black at small V).

Together these results indicate that the alignment of the training loss ﬁgéo with the test time strategy
pass@N, with N’ close to NV, is crucial for obtaining Pareto optimal performance. Moreover, these
results once again confirm the tradeoff between exploration and exploitation, with good performance
using pass@N test-time strategies requiring high (low) exploration with low (high) confidence at
large (small) V.

5.3 Improved theorem proving via ensembled tree search through a modified step-wise DCO

To further test our method in realistic settings with a verifier, we conduct experiments in theorem
proving using an interactive proof assistant on the LeanDojo benchmark [42] extracted from the math
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Figure 2: (a) DCO improves on CE loss for pass@N test coverage over a broad range of N and
traces a Pareto-optimal frontier. We fine-tune Llama-3-8B base models on MATH to produce direct
answers: one with CE loss and others using ﬁfjvéo for various N’ (color-coded). Each curve shows
pass@N coverage for a single fine-tuned model. Note that no N’ is optimal for all N. The black
curve is a Pareto-optimal performance frontier traced by the max of coverage curves for DCO over all
N'. (See Figure @ which highlights N’ = 256, and Figures|8|and |L0|for Llama-3-70B and AIME24
results.) (b) DCO limits overconfidence by attenuating gradients for examples on which the
model is highly confident. We plot the confidence regularization factor F' in Equation ). For CE
loss (N = 1), F' = 1 regardless of confidence p(y|z). For N > 1, F decreases with p(y|z) and drops
to zero around 1/N—once confidence on an example reaches O(1/N), F vanishes, preventing it from
further increasing. (c) Inverse confidence N at training time controls search-tree exploration
shapes at test-time. We provide schematic proof search trees for models trained with DCO®? for
small (left) and large (right) N.g. Circles are proof states; edges are tactics; solid edges are explored,
while dashed edges are not. Small N.g yields a narrow search tree that may miss correct proofs
(red, dashed), while larger N.g expands the tree to include the correct proof. However, if the tree
becomes too wide (Né“ff > N for a k-step proof), sampling the correct path becomes unlikely and
pass@N coverage decreases as CY ~ N/N, fﬁ. Thus Neg, chosen at training time, is a powerful knob
to control the tradeoff between exploitation and exploration at test time.

library of LEAN4 [43]]. In this task, at each step ¢ of the proof, the model is prompted with the current
proof state x[i], and it outputs a proof tactic y[¢] with a trainable model probability p(y[i]|x[¢]). The
proof assistant takes the sampled tactic y[i], verifies whether it is a valid tactic, and if so, returns the
next proof state x[i + 1] after the tactic y[i] is applied. At test time this interactive process between
the model and the assistant continues until either: (1) it terminates in an invalid tactic; (2) hits a
maximal allowed search depth set by computational constraints; or (3) terminates in a successful
proof of the initial proof goal as verified by the proof assistant.

In our experiments, we use LEAN4 [44]] as the formal proof language. We start from Qwen2.5-
Math-1.5B [26]], and fine-tune it on the LeanDojo benchmark [42]. In contrast to solving math
problems above where the model first autoregressively generates an entire answer y according
to p(y|z) and then the entire y is verified for correctness, in theorem proving we must obtain
correct tactics y[i], as verified by the proof assistant, at every proof step i. A straightforward
application of DCO fine-tuning in this setting then involves replacing the model confidence p(y|x)
in Equation (3) on a single answer y, with the model confidence on an entire successful, complete
k-step proof p(y[0], ..., y[k — 1]|z][0]) = Hf;ol P(y[é]|z[i]). Because of the chain rule, the DCO
gradient on a single proof has the same form as Equation (4)) but with F'(N, p(y|x)) replaced with
F(N, Hf;ol P (y[i]|x[i])). We naively applied this DCO fine-tuning method with N’ = 4k and
evaluated the resulting model, as well as a base model trained with CE loss, on MiniF2F, using
pass@4k. CE loss achieves a proof success rate of 37.4%, while fine-tuning with DCO achieves a
38.7% success rate. Thus, a naive application of DCO to theorem proving by matching the parameter
N’ in DCO to the parameter N in pass@N achieves only a modest improvement.

In theorem proving, since every single intermediate proof step tactic y[i] must be valid, it is natural to
consider a step-wise generalization of DCO. For example, at each step ¢, the model chooses a tactic
y[i] with confidence p(y[i]|z[i]). Our proposed step-wise DCO optimizes this single-step confidence
according to Equation () as before, except now the step-wise confidence regularizer is given by
F(Negt, p(y[i]|«[7])). Here one can think of Neg as a step-wise DCO hyperparameter that controls the
exploration width at every proof step. In essence, the confidence regularizer prevents the confidence
of any chosen tactic from becoming much higher than 1/N. Since the sum of the confidences
over all tactics at each step must be 1, this means that at test time, model exploration at each step
corresponds to searching on a search tree in which each proof state x[i] allows the exploration of



Table 2: Proof success rates on Mathlib and MiniF2F using pass @4k. DCO*®? outperforms CE loss
(Neg = 1) on both datasets for well-chosen N.g. Ensembling models trained with different Nog
leverages complementary strengths, with substantial gains over CE at matched test-time compute.

Negr 1 (CE loss) 4 8 16 32 Ensemble of Neg =1
all Neg’s (5x test compute)
Mathlib 55.6% 56.4% 56.1% 56.5% 55.8% 62.2% 57.0%
MiniF2F 37.4% 39.0% 395% 37.0% 37.4% 43.6 % 39.5%

approximately only N tactics. Thus using N in step-wise DCO during fine-tuning selects the
approximate branching factor N of the proof search tree at test time (see Figure[2|(c)).

In particular, a valid (partial) proof of length k will have probability of order N e;fk . Thus small N
limits the exploration at test time to a tree with small branching factor, but allows longer proofs with
larger numbers of steps k to have higher sampling probability. This limited width search strategy
should work well at test time using pass@N as long as two conditions hold: (1) a successful proof of
length £ is present in the search tree of branching factor Neg; and (2) the N in pass@N at test time
is large enough that this proof of probability O(N;fk' ) is selected with high probability in IV passes
(which starts to occur as soon as N > NE,). Conversely, larger N allows for more exploration at
test time using a wider search tree of larger branching factor, but it makes finding longer proofs with
large k harder, since the approximate success condition for pass@N of N > NE. is harder to satisfy
at fixed IV and large N¢gr and k. However, this wide exploration strategy can work well for short
proofs with small % if a successful short proof does not lie in the limited width search tree obtained at
small Neg, but does lie in a wider search tree at larger Negr (Figure[2] (c) right).

The mean and median lengths of the proofs in the training set are 4.2 and 2, respectively. Thus we
explore fine-tuning with the step-wise DCO algorithm, DCO®®P, with N ranging from 1 (CE loss)
to Negr = 32. We evaluate pass @4k performance on the Mathlib and MiniF2F test sets and find that
larger Nog improves accuracy over the CE baseline (Table[2). Interestingly, the optimal N increases
with more passes at test time (Table [6)), similar to the Pareto frontier in Figure[2] (a). Since different
choices of N correspond to different search strategies at test time—larger N favors short proofs in
wide trees, smaller N favors long proofs in narrow trees— we hypothesized that ensembling these
methods could significantly boost performance. This was indeed the case (ensemble entry in Table [2)).
The ensemble strategy samples 5 x 4k times, so a proper baseline is CE loss with the same test-time
compute of pass@N with N = 20k. The ensemble strategy outperforms this stringent baseline with
significant excesses of 5.2% on Mathlib and 4.1% on MiniF2F.

These results indicate that varying Neg in DCO®*®P at training time allows a diversity of tree search
strategies trading depth and breadth that can be exploited by scaling test-time compute via pass@N.

5.4 Approximate DCO also improves performance with chain-of-thought reasoning

In Section[5.2] the model is trained to directly give an answer y to a problem «. In this case, one can
implement DCO at training time by explicitly computing the model confidence p(y|x) and using it in
Equation (). However, in a Chain-of-Thought (CoT) training paradigm, the training data consists of
triplets (, ¢, y) where x and y are the problem and answer as before, but now c is a CoT reasoning
trace that explains how to derive y from x. The model is trained on the triplet (x, ¢, y), and at test
time, given a new problem z’, it generates a reasoning trace ¢’ followed by an answer y’. Importantly,
the model is evaluated on whether its answer y' is correct independent of its reasoning trace ¢’.

Thus, to estimate the probability p(y|x) that the model assigns to any answer y, one can no longer
compute it directly as in the direct answer case. Instead, one must marginalize over all possible rea-
soning traces ¢ to obtain p(y|z) = > . p(y, ¢|z). Exact marginalization is intractable, so we replace
the marginalization with a Monte Carlo estimate of p(y|xz), which we insert into the overconfidence
regularization factor F' in Equation (). We call this algorithm approximate DCO, denoted by DCO?.
We also compute Monte Carlo estimates of the probability the model assigns to its most likely final
answer, p(y™°9¢|z), as a proxy for the model’s max confidence. Note that in the CoT setting the
greedy answer would correspond to a single most likely reasoning trace, but we want the probability
of the most likely final answer marginalizing over all reasoning traces.
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Figure 3: (a, b) Overconfidence persists in CoT fine-tuning with CE loss. We fine-tune a Llama-3-
8B base model on CoT traces in the MATH dataset and plot the distribution of the estimated model
confidences p(y™°%¢|x) over samples in the test set at various points in training. (a) For CE loss, the
model becomes more confident in its most likely answers as training progresses—the confidence
distribution shifts to the right. This effect is milder than in the direct answer setting (Figure[I)). (b)
DCO? limits this shift of the confidence distribution over training. (¢, d) Overconfidence is also
present in GRPO fine-tuning and can result in a model that is overconfident and wrong. (¢) The
model trained with GRPO assigns progressively larger confidences to p(y™°4¢|z) over the course of
training. (d) At the end of training, only a small portion of the model’s highly confident completions
are correct, which will harm the model’s pass@N performance when scaling up N.

Table 3: Pass@N coverage on MATH (& indicates standard error of the mean). We fine-tune Llama-
3-8B-base on CoT traces. Training with DCO? using N’ = 64 underperforms CE loss for pass@1,
but outperforms it for higher N, with the largest improvement when N’ = N. The GRPO model has
the strongest pass@ 1 performance, but its performance degrades at larger IV due to overconfidence.

Epoch 1 Epoch 3 Epoch 5
Pass@N CE GRPO DCO* CE GRPO DCO* CE GRPO DCO?*

Pass@1 4.3%01 3001 5001 9001 12,606 8301 9901 14,6+01 7gE01
Pass@16 30.2%07 27.1%0.7 34,2+0.6 41 6+0-4 358+0.3 42 6+0-6 40.9+04 29 2+02 43 g+0.5
Pass@64 51.2%12 506+07 553+1.0 61 7804 463404 ¢3,1£0-8 60.9+0.6 354+0.3 g4,3+0.6

We conduct experiments on the MATH dataset. As a baseline, we first fine-tune a Llama-3-8B-base
model using CE loss on the golden CoT solutions. We find in Table [3that pass@1 coverage robustly
improves over the course of CE loss training. Intriguingly, in the CoT setting, overfitting induced by
the misalignment of CE loss at training time with the pass@N strategy at test time, appears less severe
compare with the direct answer setting (cf. Table[l). Nevertheless, we still find a clear increase in the
model’s max confidence through training (Figure|3|(a)). In contrast, training with DCO? mitigates the
rise in the model’s max confidence (Figure[3|(b)). As with the direct answer setup, model trained with
DCO* (N’ = 64) exhibits lower pass@ 1 performance compared to the CE baseline but demonstrates
superior performance when evaluated with pass@N for larger N values (Table[3).

To provide a comprehensive comparison, we also evaluate a model trained with reinforcement
learning. Specifically, we use GRPO [27] to train the base model with the r1 [10] prompt template.
Interestingly, we observe that the GRPO-trained model exhibits pronounced overconfidence (Figure 3|
(c)), yet only a small portion of the model’s highly confident answers are correct (Figure [3|(d)). This
negatively impacts the model’s pass@N performance when scaling up N (Table[3). Although GRPO
demonstrates superior pass@ 1 performance, the model trained with DCO? achieves a significantly
stronger performance when evaluated with pass@N for larger N values (Table[3).

Overall these results once again validate our theory and algorithmic approaches, now in a CoT
reasoning setting. In essence, improved performance by scaling test time compute via a pass@N
strategy at large IV can be best obtained by aligning the training strategy via choosing DCO?* with the
same NN, and the origin of the performance improvement comes from limiting model overconfidence.

6 Discussion

In summary, all our results suggest the need for a tight co-design of two traditionally separate phases
of LLM development: (1) model training or fine-tuning and (2) test-time search/reasoning strategies



and budget. If the former is misaligned with the latter, then more training can actually impair
performance gains from scaling test-time compute. But if they are properly co-designed, end-to-end
training and test time performance can be far more effective. We have shown how to modify standard
cross-entropy loss for training to be better aligned to a pass@N strategy for large N at test-time.
Moreover, we have suggested and empirically confirmed why this co-design of training loss and
pass@N strategy is essential, because optimal policies for pass@N at large N should unconfidently
explore while the optimal policies for pass@N at small /V should confidently exploit.

Limitations. Our study primarily investigates SFT with the pass@N test-time strategy for its
simplicity. However, this strategy requires a verifier, restricting its applicability to problems where
verification is feasible. Extending our findings to other test-time strategies, such as best-of-N, is an
important direction for future research. Additionally, while we have noted similar overconfidence
phenomena in GRPO, a more comprehensive study of RL methods is beyond the current scope.
Lastly, our work only focuses on mathematical reasoning; generalizing our findings to other domains,
such as coding tasks where unit tests serve as natural verifiers, is left for future work.
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A Proofs

A.1 Proof of approximately well calibration under optimal policy

Lemma A.1. Given any problem, let p; denote the model probability or confidence assigned to answer
1, and assume answers are sorted from highest to lowest confidence so that p; > p;+1,V1 > 1. Let p;
be the probability that answer i is actually correct across all the problems. Then optimal policies
maximizing pass@N coverage in Equation (2) (denoted by p; ) is approximately well calibrated, i. e.
higher confidence implies higher or equal probability of being correct, i.e. p; > pjy+1,Vi > 1.

Proof. Let R be the total number of answers the model can generate. Here R could possibly equal
infinity. Let p; denote the model probability or confidence assigned to answer z under optimal policy
maximizing pass@N coverage in Equation ( . Let A; be the event that the i" ranked answer is not
chosen in the N passes and B; be the event that i ranked answer is chosen in the N passes. Let 15,
be the indicator function of B;. Then, given an event w, the probability of getting the correct answer

is Zfi1 pilp, (w). Hence, the expected probability of getting the correct answer is

R R R R
E (Zpilg,.) =Y pP(Bi) =Y pi(1-P(A)) = 1= pP(4;) =1 sz (1=-p)N, (3
i=1 i=1 i=1 i=1

If the current strategy is already optimal, any small change of (57, ..., p};) would not increase the
expected probability of getting the correct answer. Now suppose we don’t always have p; > p;y1, in
other words, p; < pj+1 forsome j > 1. If p% < pj,, we have

R 7j—1 R
. (zmgi) =S = S p1-) Y pr (1) —py (L)Y, ©
i=1 i=1 i=j+1

where the last inequality says that we can increase the expected probability of getting the correct an-
swer by swapping the confidence on answer originally labeled as j and j + 1, which is a contradiction.
If p> = pj . then for all § > O sufficiently small, we always have

R j—1 R
E (Zpilg) <1=Y pi(1=p)N = Y pi(1=p))N —p;(1=p; =) —pj 1 (1=p} 4 +0)7,
i=1 i=1 i=j+1

(N
O

which also contradict with the current policy being optimal.

A.2 Proof of Lemma 4.2

Proof. Let R be the total number of answers the model can generate. Here R could possibly equal
infinity. Let p; denote the model probability or confidence assigned to answer z under optimal policy
maximizing pass@N coverage in Equation ( . Let A; be the event that the i ranked answer is not
chosen in the N passes and B; be the event that i ranked answer is chosen in the N passes. Let 15,

be the indicator function of B;. Then, given an event w, the probability of getting the correct answer

is Zle pilp, (w). Hence, the expected probability of getting the correct answer is

R R R R R
E (Zmlgi) =Y piP(Bi) =Y pi(1-P(4)) = 1=Y piP(A) = 1= pi(1-p)" (®)
i=1 =1 =1 i=1 i=1

Optimal strategy maximizes Equation (8). Let 71 ({p7, ..., p};, }) = P} be the projection onto the first
entry, then

R
P} =m (argmm{z:pz (1—1p4) }) . 9)

{Zh}l 1 i=1

The proof is then motivated by the following intuition: given the constraint Z 1P > 1—€p7
attains its largest possible value when the p; (j > 2) are as small as possible. It is worth noting that

first
R k R
T <argmm{ E pi(1—p;) }) <m (argmm{ E pi(1—p)N + E p1}> . (10)

{Pl}L 1 i=1 {Zh}f 1 =1 i=k+1
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Second, given p; and Zle pi > 1—em <argmm{§:2 pi(L=p)N + Zf{:kﬂ pl}> is bounded
{pt}z 1
from above by

k R
1
m (argmm{pl (1—p1) N + g 1 =) Ny g pi}> ) (11)

{pi}i_ i=k+1
Third, fix p1, Jensen’s inequality tells us that

k
AN 1—p1—ce AN A AN 1—pi\n
— - — D > — — — — .
p(l—p1)" + ;:2 1 (I=pi)" 2p1(1=p1)" +(1—=p1—€)(1 P ) (12)

Combining all three inequalities above we have

R .

o . . 1-

pr=m (argmm{ZpZ (1-p:) }) < argmin{p; (1—p1)N +(1—p;—€)(1— h VY (13)
{pl}z 1 i=1 D1

The right hand side of Equation (I3]) can be computed by taking derivatives, and we arrive at

o . R 1— 5
5t < argmin(py(1— )™ + (1 py — (1 - 222
p1
14)
k-1 (
(k—]_)N 1p1 (1_p1—6)1N+]_
O

A.3 Proof of Lemma 4.3

Proof. The following proof is motivated by the following intuition: given the values of p; and ps, pj
attains its smallest possible value when the p; (j > 3) are as large as possible. Let s be the smallest
integer such that p; + sps > 1. We have,

R s+1
Pl =m (argmm{Zpl 1—p4) }) >m (argmm{pl (1—1p1) N4 Zpg 1—pz ) . (15

{pf}L 1 =1 {Pz}5+1
Second, for a fixed p;, Jensen’s inequality tells us that

s+1 N
. 1—
1(1=p1) +§:m1—pz >pr(1—p1)" + spa(1 — SPUN (16)

Therefore, we have

s+1 N
. R 1—
o (i1 -0+ 51 ) =amgminti1 o s = 52

{p:yst! P1
17)
Computing the right hand side of Equation by taking derivatives we have
. . R l_p Spl—Nprl
D1 zargfnm{pl(l—pl)N—i-SpQ(l— Ny =1 2 (18)
p1 s +p11—Np2]V—1

Since s is the smallest integer such that p; + sps > 1, we have
1+ p2 > p1 + sp, (19)
Combining Equation (T9) and Equation (I8) we arrive at

1
- L—pi+pa)p; " py
plzl_( 1 2)11 2N. (20)

1—pi+p2+p “py !
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B Experimental details

Our codebase uses PyTorch [45], Accelerate [46], and deepspeed (https://github.com/
microsoft/DeepSpeed) to enable efficient training with memory constraints, and vllm [47] for
efficient inference. Code will be made available here (https://github.com/allanraventos/refine).

MATH. For experiments with MATH dataset [41] (license: MIT), we fine-tune the Llama-3-8B-
base [40] on the MATH [41] dataset. We start from the base model rather than Llama-3-8B-Instruct to
avoid potential leakage of the MATH dataset into Llama-3-8B-Instruct through post-training process.
We follow Lightman et al. [22]] and use 12,000 problems for training and the remaining 500 for
testing. In Sections 4] and [5.2] Figure[I] Figure[2](a) and (b), we fine-tune the model for 4 epochs with
a learning rate of 2e-5 and batch size 64. We adopt a linear learning rate warmup in the first 20 steps.
For experiments with DCO, some of the data may have an extreme confidence regularizer value, if the
model is already quite confident in answers to certain problems. To maintain an approximately fixed
batch size, we set a threshold of 0.3 on the confidence regularizer F'. Any training data examples
with an F' lower than this threshold will be replaced with new training examples to construct the
batch. For the CoT experiments in Section[5.4] we use learning rate 2e-5 and batch size 128, with the
same learning rate warmup.

Theorem proving. We use LeanDojo benchmark[42] (license: CC-BY 2.0) and adopt the random
train and test split as introduced in Yang et al. [42]]. The random test set includes 2,000 theorems. We
fine-tune the model Qwen2.5-Math-1.5B [26] on the training set for 3 epochs with learning rate le-5
and batch size 64. We adopt a linear learning rate warmup in the first 20 steps. To evaluate the model,
we use LeanDojo [42] to interact with the proof assistant. We impose a maximum wall clock time for
each theorem, in addition to limiting the number of passes per problem. For experiments with 4k
passes, the time budget is fixed at 5,000 seconds. In order to avoid the model going infinitely deep in
the search tree, we limit the number of proof steps to be at most 50.

DCO? objective. The DCO* introduced in Section [5.4]is an approximation for DCO. To construct
a batch of size B with DCO?, we process batches of samples sequentially; for each batch, we run
online inference on each of the samples and discard all samples with probability of success rate larger
than p*™esh . We choose to discard samples which have a DCO confidence reguarizer F' lower than
0.01, corresponding to p*"**h = 0.1 for N’ = 64. This process continues until we have enough
training data for a single batch. In Figure[d] we plot the number of discarded samples as a function of
training step for our DCO® experiments (same ones as in Table [3).

GRPO. We perform GRPO fine-tuning [10, 27] on problems of all difficulty levels in the MATH
training set. We follow the modifications to GRPO proposed in Dr. GRPO ([31]]), that is, we do not
normalize advantages by the standard deviation of the group rewards, do not normalize a roll-out’s
contribution to the loss by its length, and do not include a KL divergence term with respect to the
reference model. Furthermore, we perform only one policy gradient update for each set of model
roll-outs, so there is no need for clipping. This leads to the surrogate objective taking the form,

N’ |o;
Zi:l (03¢ | 4,0i,<t) A
TN — 1= stop_. grad (mg(0i,¢ | ¢, 0i,<t)) o

where we adopt notation similar to [31]]; N’ is the number of roll-outs for a single problem statement
¢, 0; is the ith roll-out in the group, o; ; is the tth token in o;, and mg(0; ¢ | ¢, 0;,<¢) is the probability
assigned by the model to token o; ; conditioned on context o; ;. The stop_grad operator prevents

the flow of gradients when computing Vo£. The advantages, in turn, are computed as /L,t =

(g, 0i) — fo;l r(q, 0 ), where r(q, 0;) is the binary reward assigned by the verifier to the
solution o; for the problem gq.

For our experiments, we use N/ = 8 and batch size 128, which results in a total of 1,024 roll-outs per
batch. We also perform batch balancing such that each batch contains no problems for which either
r(q,0;) = 0 forall i or r(g, 0;) = 1 for all ¢, since these samples do not provide any gradient signal.
We use a constant learning rate of le-6,with a 20-step linear warmup; we train for 5 epochs. Note
that batch balancing results in fewer gradient steps. Additionally, we use the r1 template from [[10]]
for our experiments,

A conversation between User and Assistant. The User asks a question, and the
Assistant solves it. The Assistant first thinks about the reasoning process in
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the mind and then provides the User with the answer. The reasoning process is
enclosed within <think> </think> and the answer is enclosed within <answer> </
answer> tags, respectively, i.e., <think> reasoning process here </think> <answer
> answer here </answer>.

User: {question}

Assistant: <think>

We strictly require solutions to follow the format specified in the prompt.

200

150 A

100

50 1

Number of Discarded Samples

(') 1(')0 2(')0 3(')0
Step
Figure 4: Number of discarded samples as a function of training step for the DCO? experiments. The

step structure reflects the model revisiting examples it has seen previously in training, where each
step closely matches the start of a new epoch.

Implementing online inference. Throughout our experiments and analysis, we extensively use the
open-source vllm package [47] for efficient inference. Integrating inference into the training loop
to enable training under the DCO? objective, as in Section poses a challenging implementation
problem. We solve this problem by placing vllm worker processes, which together perform inference
on all GPUs, in a separate process group and use Ray (https://github.com/ray-project/ray)
to isolate them from the training loop. This enables running concurrent training and inference on the
same set of GPUs. We believe this inference in the loop setup will be useful to the community, as it
enables straightforward implementation of online data filtering approaches for LLM training.

Computational cost. All experiments with model size smaller than 10B are performed on machines
with 8 NVIDIA H100 GPUs or 8 NVIDIA A100 GPUs. Experiments with model size larger than
10B are performed on machines with 8 NVIDIA H200 GPUs or 8 NVIDIA B200 GPUs. Specifically,
for DCO on the MATH dataset, each run required approximately 1 NVIDIA H100 GPU-hour when
using the Llama-3-8B-base model, and approximately 4 NVIDIA B200 GPU-hours when using the
Llama-3-70B-base model. For DCO*? on the LeanDojo benchmark with the Qwen2.5-Math-1.5B
model, each run required around 12 NVIDIA H100 GPU-hours. For DCO?® on the MATH dataset
with CoT, each run consumed about 60 NVIDIA H100 GPU-hours for the Llama-3-8B-base model.

For both DCO and DCO**P, the additional computational cost is minimal—limited to computing the
DCO factor, which is negligible compared to the cost of forward and backward passes. However,
DCO?, when applied to fine-tuning with CoT traces, introduces significant overhead due to the need
for online Monte Carlo estimation. In the setting of Llama-3 8B, with 32 layers, hidden dimension
4096, context length 1024, and batch size 128, we estimate 5 petaflops for each forward-backward
pass. Generating Nj;c = 64 CoT’s for each of 128 examples, in turn, requires approximately 50
petaflops. The actual inference compute cost depends on model performance: stronger models, which
will discard more samples, will need to process more samples in order to construct a full batch for the
next training step. Therefore there is a tradeoff: constructing a batch of 128 hard samples requires
running inference on more samples, but also means fewer steps are required to make a full pass
through the dataset.

The memory overhead is approximately 30% of GPU memory, when running one inference engine
per pair of H100 80GB GPUs. We note that while the flop overhead is significant, costly online
inference is also required in RL frameworks for CoT training. Furthermore, the choice of N;C can
be made smaller, leading to less precise estimates of the model’s probability of success on a given
problem, while speeding up training.
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C Additional results

C.1 Easy data drives overconfidence

Early in 1st epoch Late in 1st epoch

47 =4

1 2 3 4 5 1 2 3 4 5
Difficulty Level Difficulty Level

Figure 5: Easy data drives overconfidence and degrades performance when scaling test-time
compute. For the experiments in Figure |1}, we compute the directional derivative V,L2, at two
points during the first training epoch: 11% (early) and 86% (late). At each stage, the gradient
direction g = — Z(w e VEcE(z;,y;) is evaluated on batches of previously unseen training data
of each difficulty level defined in the MATH dataset. Early in training, data from all difficulty levels
contribute to decreasing the test loss (leff). However, later in training, easier examples (difficulty
level 2) provide no further benefit, while the easiest examples (difficulty level 1) actively degrade
test performance (right). The plotted VL[ is an average over batches of unseen data, and we use
N = 256, corresponding to pass@256.

We have shown in Section[4.2] that overconfidence limits performance gains from scaling test-time
compute. Here we investigate whether all training data contribute equally to the drop in pass@N
test performance. To quantify this effect, we define the test loss as the negative log-probability

of coverage, L, = — Z($7y)e‘ptest log C(J\;’y), where C(I\; ) denotes the coverage for a single test

example (x,y). To measure how a training batch B influences the final test loss, we compute the
directional derivative Vgﬁgsl for the gradient direction g = — Z(%yi)e 5 Vece(7i,y;), where {cg

N

is the standard CE loss on a single example. A negative value, VL

step in the direction of g decreases the test loss.

< 0, indicates that a gradient

To analyze the impact of data difficulty, we group training data by difficulty level (as specified in
the MATH dataset) and use the directional derivative to examine how a batch of previously unseen
data from a given difficulty level would affect L2, at different stages of training. Early in training,
we observe that VL1 is negative across all difficulty levels, indicating that data from all difficulty
levels contribute positively to reducing the test loss (Figure[5] left). However, near the end of the first
epoch, training on easier examples (difficulty levels 1 and 2) no longer improves performance, and
the easiest examples (level 1) actively degrade pass@N test performance (Figure 3] right). This shows
how continued training on easy data can harm test performance when scaling test-time compute.
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C.2 Optimality of DCO is achieved when the training objective aligns with the test objective.

1.0 J12
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Figure 6: Pareto-optimality at a given test strategy pass@N for some NV is obtained by DCO
training for some N’ close to N. Same as Figure[1|but with N’ = 256 highlighted. We fine-tune
Llama-3-8B base models on the MATH dataset to produce direct answers. We fine-tune for 4 epochs
one model using CE loss and several models under the L']Z)VC,O objective, for choices of N indicated
by color. Note that there is no choice of N” that is optimal across all N (different colors are higher at
different /V). The black curve is a Pareto-optimal performance frontier traced by the max of coverage
curves for DCO over all N'. Fine-tuning with the DCO loss (N = 256) achieves Pareto-optimality
for 180 < N < 385 at test-time, further confirming that Pareto-optimality at a given test strategy
pass@N for some N on the x-axis is obtained by DCO training for some N’ close to N.

C.3 Additional results with Llama-3-70B-base

In this section, we present additional results using the larger Llama-3-70B-base model, which are
consistent with the findings reported for Llama-3-8B-base.

Table 4: Same as Tablebut with Llama-3-70B-base model. Pass@N coverage metric on the MATH
test set for a Llama-3-70B-base model fine-tuned with CE loss on direct answers from the MATH
training set. Surprisingly, Pass@N test accuracy at large N decreases with number of training epochs.

pass@1 pass@16 pass@256 pass@4k

Epoch 1 5.9% 34.3% 68.8% 84.2%
Epoch2  6.9% 32.0% 63.0% 81.5%
Epoch3  8.2% 24.2% 48.8% 72.2%
Epoch4  7.9% 22.2% 44.2% 65.9%
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Figure 7: Larger-sized model trained with CE loss also becomes overconfident in its greedy
completions; our proposed DCO objective limits this overconfidence on larger-sized models.
Same as Figure[I]but with Llama-3-70B-base. We fine-tune a Llama-3-70B-base model on the MATH
dataset to produce direct answers without a reasoning trace. Jgreeqy is the model’s greedy completion
when sampling autoregressively and choosing the most likely token at each step. Leftmost: The model
trained with CE loss assigns progressively larger confidences p(Jgreedy|) to its greedy completions
over the course of training. Left: At the end of the training, only a small portion of the model’s
highly confident completions are correct. This will harm the model’s pass@N performance when
scaling up N. Right: Same as leftmost but shown for the DCO loss with N = 256. Relative to the
CE loss, the model trained on DCO shows a much milder overconfidence effect. Rightmost: The
confidence distribution of the greedy completions after four epochs with DCO for various choices of
N. As N increases, the model’s confidence on the greedy completion is more stringently limited,
directly as a consequence of the overconfidence regularizer F'.
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Figure 8: DCO improves on CE for pass@N test coverage over a broad range of N and traces a
Pareto-optimal frontier with Llama-3-70B-base. Same as Figure 2] (a) but with Llama-3-70B-base
model. We fine-tune Llama-3-70B base models on the MATH dataset to produce direct answers. We

fine-tune for 4 epochs one model using CE loss and several models under the Eg’éo objective, for
choices of N’ indicated by color. We plot pass@N test coverage as a function of N, with each curve
(solid red or faint blue-green) corresponding to one fine-tuned model. Note that there is no choice
of N’ that is optimal across all N (different colors are higher at different N). The black curve is
a Pareto-optimal performance frontier traced by the max of coverage curves for DCO over all N’.
Pareto-optimality at a given test strategy pass@N for some N on the x-axis is obtained by DCO
training for some N’ close to N.

C.4 Out-of-distribution evaluation

In this section, we present additional evaluation results on AIME24. We confirm that overconfidence
persists even on the out-of-distribution test set, and that the DCO algorithm saves test-time scaling by
regularizing the max confidence.
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Table 5: Same as Table but evaluate on AIME24 dataset. Pass@N coverage metric on the AIME24
dataset for a Llama-3-8B-base model fine-tuned with CE loss on direct answers from the MATH
training set. Surprisingly, Pass@N test accuracy at large N decreases with number of training epochs.

pass@1 pass@16 pass@256 pass@4k

Epoch1  0.2% 3.4% 30.5% 80.5%

Epoch2  0.3% 4.1% 31.7% 75.6%

Epoch3  0.2% 2.9% 16.0% 42.0%

Epoch4  1.9% 4.9% 15.2% 35.8%

CE Loss CE Loss DCO (N'=256) DCO
13 [ Epoch 1 Incorrect [ Epoch 1 —nN=1
101 B ]/ Correct ] = poens | |3 wazse
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Figure 9: A model trained with CE loss becomes overconfident in its greedy completions on
out-of-distribution test set; our proposed DCO objective limits this overconfidence on out-of-
distribution test set. Same as Figure [I|but evaluated on AIME24. We fine-tune a Llama-3-8B-base
model on the MATH dataset to produce direct answers without a reasoning trace and evaluate the
model on AIME24. §ecqy is the model’s greedy completion when sampling autoregressively and
choosing the most likely token at each step. Leftmost: The model trained with CE loss assigns
progressively larger confidences p(Jgreedy|) to its greedy completions over the course of training.
Left: At the end of the training, only a small portion of the model’s highly confident completions
are correct. This will harm the model’s pass@N performance when scaling up N. Right: Same
as leftmost but shown for the DCO loss with N = 256. Relative to the CE loss, the model trained
on DCO shows a much milder overconfidence effect. Rightmost: The confidence distribution of
the greedy completions after four epochs with DCO for various choices of V. As N increases, the
model’s confidence on the greedy completion is more stringently limited, directly as a consequence
of the overconfidence regularizer F'.
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Figure 10: DCO improves on CE for pass@N test coverage over a broad range of N and traces
a Pareto-optimal frontier on out-of-distribution test set. Same as Figure [2](a) but evaluated on
AIME24. We fine-tune Llama-3-8B base models on the MATH dataset to produce direct answers
and evaluate on AIME24. We fine-tune for 4 epochs one model using CE loss and several models
under the E]])VC/O objective, for choices of N’ indicated by color. We plot pass@N test coverage as a
function of NV, with each curve (solid red or faint blue-green) corresponding to one fine-tuned model.
Note that there is no choice of N’ that is optimal across all IV (different colors are higher at different
N). The black curve is a Pareto-optimal performance frontier traced by the max of coverage curves
for DCO over all N’. Pareto-optimality at a given test strategy pass@N for some N on the x-axis is
obtained by DCO training for some N’ close to N.
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C.5 Comparing with Focal Loss
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Figure 11: DCO outperforms Focal Loss [48] for pass@N test coverage over a broad range of N
both for in- and out-of-distribution test sets. We fine-tune Llama-3-8B base models on the MATH
dataset to produce direct answers, using the Focal Loss [48]: L}, (z,y) = —(1 — p(y | )" log p(y |
x). We fine-tune several models for 4 epochs under £7; for choices of ~y indicated by color. We plot
pass@N test coverage as a function of N for MATH (left) and AIME?24 (right), with each curve
corresponding to one fine-tuned model. The black curve shows the Pareto-optimal performance
frontier traced by the max of coverage curves for DCO over all N’. The CE loss curves (red) and the
DCO frontier curves (black) are the same as in Figure |Z| (a) for MATH and Figure @for AIME24.

C.6 Theorem proving

In Table[6] we show additional results for model performance under the DCOS™ objective. We find
that the optimal N grows with increasing passes, agreeing with results in Sections [5.2]and [5.4} We
also conduct expert iteration [49,50] on Mathlib with theorems that do not have proof traces in the
training set. We use pass@ 1k to prove those theorems. We find that our algorithm achieves a stronger
improvement over the baseline for pass@4k after the 1% iteration. This improvement might result
from the fact that the models can prove more easy theorems where the model has a higher confidence.
As a result, we believe our method will perform better with expert iteration.

Table 6: Success rate on lean-dojo benchmark random test set trained with DCO®**P,

EXPERT ITERATION 0 EXPERT ITERATION 1
DCOSTEP PASS@ 16 PASS@64 PASS@256 PASS@ 1K PASS@4K PASS@ 16 PASS@256 PASS@4K
Neg =1(CE) 30.0% 38.75% 46.05 50.75% 55.55% 40.3% 52.65% 58.55%
Neg =4 30.15% 39.5% 47.2% 52.95% 5635% 40.8% 53.05% 59.45%
Neg = 8 30.2% 38.9% 47.15% 52.7% 56.1% 40.1% 53.25% 59.5%

Neg = 16 28.65% 46.7%  46.45% 52.9% 56.5% 39.05% 52.8% 60.05%
Negg = 32 26.05% 46.7% 45.6% 51.5% 558% 37.05% 52.2%  59.15%
ENSEMBLE 40.6% 49.15%  54.6% 59.0% 62.15% 49.05%  59.3% 64.8%
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C.7 Plot of the upper bound and the lower bound
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Figure 12: Plot of the upper bound (Equation (13)) and the lower bound (Equation (18)). We
plot the upper bound (blue) and lower bound (orange) for p; = %, po = 1, e = 1 and k = 2. Both

the upper bound and the lower decrease monotonically in N and they both tends to 1 as N — 17T,

C.8 Empirical evaluation of the approximately well calibrated assumption
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Figure 13: We empirically verify the assumption that models are approximately well-calibrated.
Left: We fine-tune a Llama-3-8B-base model with CE loss on the MATH dataset without CoT
and perform beam search with a width of 256 to obtain the top 16 most probable completions. We
then measure the accuracy of these completions at each confidence rank. Right: We fine-tune a
Llama-3-8B-base model with CE loss on the MATH dataset with CoT and perform estimate the top
16 most frequent answers after tracing out the reasoning traces. We then measure the accuracy of these
answers at each frequency rank. The results demonstrate that test accuracy decreases approximately
monotonically with model confidence rank, supporting the assumption.

24



C.9 The data dependency of confidence and factor F'
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Figure 14: Model is more confident on easy problems; DCO improves test-time scaling by
regularizing the easy examples. We fine-tune a Llama-3-8B-base model on the MATH dataset with
CE loss and plot the model confidence p(y|z) and the factor F'(N, p(y|x)) at 86% of the first training
epoch. Both model confidence and factor are evaluated on the unseen data grouped by difficulty
level from the MATH dataset. Model confidence decreases with increasing difficulty, whereas the
regularization factor increases with problem difficulty. As a result, DCO effectively regularizes
contribution from easy examples. This regularization mitigates the potential detrimental effects of
overconfidence from easy examples as discussed in Appendix [C.I] We use N = 256 corresponding
to pass @256 for the plots.

C.10 Quantifying the output diversity of models trained with DCO
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Figure 15: DCO enhances output diversity in fine-tuned models. Increasing N’ leads to greater
diversity in model completions. We fine-tune a Llama-3-8B-base model on the MATH dataset to
generate direct answers without explicit reasoning steps. Shannon entropy of model completions,
conditioned on the input prefix, is estimated using 4096 samples per test example. Left and Middle:
Histograms depicting the estimated entropy distributions for the test of MATH (left) and AIME24
(middle) respectively. Higher values of N’ shift the entropy distribution to the right, reflecting
increased diversity of model outputs. Right: Mean entropy values plotted against N’ with standard
errors of the mean. The estimated entropy increases with N”.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly and accurately reflect the main claims
made in the paper, including (1) identifying a misalignment between the CE loss used in
SFT and the pass@N coverage metric at test time; (2) developing and verifying a theoretical
framework that suggests the misalignment arises from overconfidence induced by CE loss;
(3) proposing a loss function that directly optimizes for pass@N and demonstrating its
superior performance on MATH and MiniF2F; (4) extending the proposed algorithm to more
complex scenarios with CoTs and theorem proving. We explicitly reference the relevant
sections supporting each contribution in the introduction.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We explicitly discuss the limitations of our findings, including the reliance on
a verifier for the pass@N strategy, the limited scope to mathematical reasoning tasks, and
the unexplored generalization to alternative test-time strategies and reinforcement learning
methods, in Section [6}

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

 The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.
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* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We explicitly state all assumptions required for each lemma in our paper.
Complete proofs for these theoretical results are provided in Appendix [A]

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide sufficient details for reproducing each experiment in Appendix [B]
including hyperparameter settings and required compute. Additionally, we include code
to reproduce all reported results as supplementary material, and we intend to publicly
open-source our codebase upon publication.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

» Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

* While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
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(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We plan to release our code publicly upon publication. Comprehensive docu-
mentation describing the usage, installation instructions and dependencies of our codebase
is included and will be made available alongside the code. Some of the experimental details
are included in Appendix [B]

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We clearly describe our experimental settings and provide comprehensive
details, including hyperparameters and dataset splits, for each experiment in Appendix [B}
Additionally, we include code as supplementary material to enable full reproducibility of all
reported results, and we plan to publicly open-source our codebase upon publication.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.
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* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: We generally do not report error bars due to the substantial computational cost
associated with performing multiple repeated runs. However, for experiments exhibiting
smaller performance margins (e.g., Table [3), we explicitly include error bars. We believe
our main findings are robust, reproducible with the provided experimental details and code,
and not attributable to superficial noise.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide detailed information regarding computational resources and asso-
ciated costs in Appendix B}

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
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Justification: We make sure to conform with the NeurIPS Code of Ethics.
Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our research is foundational in nature, focusing on understanding factors
that limit performance gains when scaling test-time compute, and designing algorithms
better aligned with test-time strategies to enhance mathematical reasoning capabilities in
LLMs. While our work could have broad impacts in education, research, and automated
problem-solving, we do not see a direct or immediate path toward specific negative societal
consequences beyond those already associated generally with large language model research.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:|[NA]

Justification: Our paper does not release data or models and thus the paper poses no such
risks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.
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* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

13.

14.

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have explicitly cited all papers whose open-source code or datasets were
utilized in our experiments.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We plan to release our code publicly upon publication. Comprehensive
documentation describing the usage, installation instructions and dependencies of our
codebase is included and will be made available alongside the code. We have carefully cited
all papers whose open-source code or datasets were utilized in our experiments. Some of
the details are included in Appendix

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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15.

16.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not require crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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