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Abstract
Many machine learning problems can be seen
as approximating a target distribution using a
particle distribution by minimizing their statis-
tical discrepancy. Wasserstein Gradient Flow can
move particles along a path that minimizes the
f -divergence between the target and particle dis-
tributions. To move particles, we need to calculate
the corresponding velocity fields derived from a
density ratio function between these two distribu-
tions. Previous works estimated such density ra-
tio functions and then differentiated the estimated
ratios. These approaches may suffer from over-
fitting, leading to a less accurate estimate of the
velocity fields. Inspired by non-parametric curve
fitting, we directly estimate these velocity fields
using interpolation techniques. We prove that
our estimators are consistent under mild condi-
tions. We validate their effectiveness using novel
applications on domain adaptation and missing
data imputation. The code for reproducing our re-
sults can be found at https://github.com/
anewgithubname/gradest2.

1. Introduction
Many machine learning problems can be formulated as min-
imizing statistical divergences between distributions, e.g.,
Variational Inference (Blei et al., 2017), Generative Model-
ing (Nowozin et al., 2016; Yi et al., 2023), Domain Adap-
tation (Courty et al., 2017a; Yu et al., 2021), and Data Im-
putation (Muzellec et al., 2020). Among many divergence
minimization techniques, Particle-based gradient descent
reduces the divergence between a set of particles (which de-
fine a distribution) and the target distribution by iteratively
moving particles according to an update rule.

One such algorithm is Stein Variational Gradient Descent
(SVGD) (Liu and Wang, 2016; Liu, 2017). It minimizes the
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Figure 1. Estimating a log density ratio log r using a flexible
model (RBF kernel) leads to a overfitted estimate (log r1). The
overfitting consequently causes huge fluctuations in the derivative
(log r1)

′. Our proposed method provides a much more stable
estimate log r2 and a more accurate estimate of (log r2)′.

Kullback-Leibler (KL) divergence using the steepest descent
algorithm and has achieved promising results in Bayesian
inference. However, to compute the SVGD updates, we
need unnormalized target density functions. If we only have
samples from the target distribution—as is often the case in
applications like domain adaptation and generative model
training— we cannot directly apply SVGD to minimize the
f -divergences.

Wasserstein Gradient Flow (WGF) describes the evolution
of a marginal measure qt along the steepest descent direc-
tion of a functional objective in Wasserstein geometry where
xt ∼ qt follows a probability flow ODE. It can be employed
to minimize an f -divergence between a particle distribu-
tion and the target distribution. Particularly, such WGFs
characterize the following ODE (Yi et al., 2023; Gao et al.,
2019)

dxt = ∇(h ◦ rt)(xt)dt, t ∈ [0,∞).

Here rt := p
qt

is the ratio between the target density p and
particle density qt at time t, and h is a known function which
depends on the f -divergence. The gradient operator ∇ com-
putes the gradient of the composite function h ◦ rt. If we
know rt, simulating the above ODE would be straightfor-
ward using a discrete-time Euler method. However, the main
challenge is that we do not know the ratio rt in practice. In
the context we consider, we know neither the particle nor
target density, which constitutes rt.

To overcome this issue, recent works (Gao et al., 2019;
Ansari et al., 2021; Simons et al., 2021) first obtain an es-
timate r̂t using a density ratio estimator (Sugiyama et al.,
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2012), then differentiate h◦ r̂t to obtain ∇(h◦ r̂t)(xt). How-
ever, like other estimation tasks, density ratio estimation can
be prone to overfitting. The risk of overfitting is further
exacerbated when employing flexible models such as kernel
models or neural networks. Overfitting can be disastrous
for gradient estimation: A wiggly fit of rt will cause huge
fluctuations in gradient (see the blue fit in Figure 1). More-
over, density ratio estimation lacks the inductive bias for
the density ratio gradient estimation. In other words, while
it might be good at estimating the ratio itself, it doesn’t
have any built-in assumptions to capture the gradient of the
density ratio function accurately.

In this paper, we directly approximate the velocity fields
induced by WGF, i.e., ∇(h ◦ rt)(xt). We show that the
backward KL velocity field, where h = log, can be effec-
tively estimated using Nadaraya-Watson (NW) interpolation
if we know ∇ log p, and this estimator is closely related
to SVGD. We prove the estimation error of ∇ log rt(xt)
vanishes as the kernel bandwidth approaches to zero. This
finding motivates us to propose a more general linear in-
terpolation method to approximate ∇(h ◦ rt)(xt) for any
general h functions using only samples from p and qt. Our
estimators are based on the idea that, within the neighbour-
hood of a given point, the best linear approximation of h◦rt
has slope ∇(h◦rt). Under mild conditions, we show that our
estimators are also consistent for estimating ∇(h ◦ rt)(xt)
and achieve the optimal non-parametric regression rate. Fi-
nally, equipped with our proposed gradient estimator, we
test WGF on two novel applications: domain adaptation
and missing data imputation and achieve promising perfor-
mance.

2. Background
Notation: Rd is the d-dimensional real domain. Vectors are
lowercase bold letters, e.g., x := [x1, . . . , xd]

⊤. x−j is a
subvector of x obtained by excluding the j-th dimension.
Matrices are uppercase bold letters, e.g., X,Y . f ◦ g is the
composite function f(g(·)). f ′ is the derivative of a univari-
ate function. ∂if means the partial derivative with respect to
the i-th input of f and ∇f := [∂1f, ∂2f, · · · , ∂df ]⊤. ∇⊤f
represents its transpose. ∇xf(x,y) represents the gradient
of f with respect to the input x. ∇f ∈ Rd×m represents
the Jacobian of a vector-valued function f : Rm → Rd.
∂2i f means the second-order partial derivative with respect
to the i-th input of f . ∇2f is the Hessian of f . ∥ · ∥ is the ℓ2
norm of a vector or the spectral norm of a matrix. λmin [X]
represents the smallest eigenvalue of a matrix X . a ∨ b is
the greater value between two scalars a and b. P(Rd) is the
space of probability measures defined on Rd equipped with
Wasserstein-2 metric or Wasserstein space for short. Ê[·] is
the sample approximation of an expectation E[·].

We begin by introducing WGF of f -divergence, an effective

Name Notation f(rt) h(rt)
Forw. KL KL[p, qt] rt log(rt) rt
Back. KL KL[qt, p] − log(rt) log rt − 1

Pearson’s χ2 χ2
p[p, qt]

1
2 (rt − 1)2 1

2r
2
t − 1

2

Neyman’s χ2 χ2
n[p, qt]

1
2rt

− 1
2 − 1

rt
+ 1

2

Table 1. Some f -divergences, their definitions and h functions
computed according to Theorem 2.1.

technique for minimizing f -divergence between the particle
and target distribution.

2.1. Wasserstein Gradient Flows of f -divergence

In general terms, a Wasserstein Gradient Flow is a curve
in probability space (Ambrosio et al., 2005). By moving
a probability measure along this curve, a functional objec-
tive (such as a statistical divergence) is reduced. In this
work, we focus solely on using f -divergences as the func-
tional objective. Let qt : R+ → P(Rd) be a curve in
Wasserstein space. Consider an f -divergence defined by
Df [p, qt] :=

∫
qt(x)f(rt(x))dx, where rt := p

qt
. f is a

twice differentiable convex function with f(1) = 0.

Theorem 2.1 (Corollary 3.3 in (Yi et al., 2023)). The
Wasserstein gradient flow of Df [p, qt] characterizes the par-
ticle evolution via the ODE:

dxt = ∇(h ◦ rt)(xt)dt, h(rt) = rtf
′(rt)− f(rt).

Simply speaking, particles evolve in Euclidean space accord-
ing to the above ODE moves the corresponding qt along a
curve where Df [p, qt] always decreases with time.

Theorem 2.1 establishes a relationship between f and a
function h : R+ 7→ R. The gradient field of h ◦ rt over time
as t→ ∞ is referred to as the WGF velocity field. Similar
theorems on reversed f -divergences have been discussed in
(Gao et al., 2019; Ansari et al., 2021). Some frequently used
f -divergences and their corresponding h functions are listed
in Table 1. Specifically, for the backward KL divergence we
have ∇(h ◦ rt)(xt)|h=log(·) = ∇ log rt(xt).

In reality, we move particles by simulating the above ODE
using the forward Euler method: We draw particles from an
initial distribution q0 and iteratively update them for time
t = 0, 1 . . . T according to the following rule:

xt+1 := xt + η∇(h ◦ rt)(xt) (1)

where η is a small step size. There is a slight abuse of
notation, and we reuse t for discrete-time indices 1.

Although (1) seems straightforward, we normally do not
have access to rt, so the update in (1) cannot be readily
performed. In previous works, such as (Gao et al., 2019;

1From now on, we will only discuss discrete-time algorithms.
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Simons et al., 2021), rt is estimated using density ratio esti-
mators and the WGF is simulated using the estimated ratio.
Although these estimators achieved promising results, the
density ratio estimators are not designed for usage in WGF
algorithms. For example, a small density ratio estimation
error could lead to huge deviations in gradient estimation,
as we demonstrated in Figure 1. Others (Wang et al., 2022)
propose to estimate the gradient flow using Kernel Density
Estimation (KDE) on densities p and qt separately (See Sec-
tion J), then compute the ratio. However, KDE tends to
perform poorly in high dimensional settings (see e.g., (Scott,
1991)).

3. Direct Velocity Field Estimation by
Interpolation

In this work, we consider directly estimating the velocity
field, i.e., directly modelling and estimating ∇(h ◦ rt). We
are encouraged by the recent successes in Score Matching
(Hyvärinen, 2005; 2007; Vincent, 2011; Song et al., 2020),
which is a direct estimator of a log density gradient. It works
by minimizing the squared differences between the true log
density gradient and the model gradient. However, such a
technique cannot be easily adapted to estimate ∇(h ◦ rt),
even for h(r) = log r (See Appendix K).

We start by looking at a simpler setting where ∇ log p is
known. In fact, this setting itself has many interesting appli-
cations such as Bayesian inference. The solution we derive
using interpolation will serve as a motivation for other inter-
polation based approaches in later sections.

3.1. Nadaraya-Watson (NW) Interpolation of Backward
KL Velocity Field

Define a local weighting function with a parameter σ > 0,
kσ(x,x

⋆) := exp
(
−∥x−x

⋆∥2
2σ2

)
. Nadaraya-Watson (NW)

estimator (Nadaraya, 1964; Watson, 1964) interpolates a
function g at a fixed point x⋆. Suppose that we observe
g(x) at a set of sample points {xi}ni=1 ∼ q, NW interpo-
lates g(x⋆) by computing

ĝ(x⋆) := Êq[kσ(x,x⋆)g(x)]/Êq[kσ(x,x⋆)]. (2)

Thus, the NW interpolation of the backward KL field 2 is

ût(x
⋆) := Êqt [kσ(x,x⋆)∇ log rt(x)]/Êqt [k(x,x⋆)].

(3)

Since we cannot evaluate ∇ log rt(x), (3) is intractable.
However, assuming that lim∥x∥→∞ qt(x)k(x,x

⋆) = 0, us-
ing integration by parts , the expectation in the numerator

2“backward KL field” is short for backward KL velocity field.

of (3) can be rewritten as:

Eqt [k⋆σ∇ log rt(x)] =Eqt [k⋆σ∇ log p(x)]− Eqt [∇ log qt(x)]

=Eqt [k⋆σ∇ log p(x) +∇k⋆σ], (4)

where we shortened the kernel kσ(x,x⋆) as k⋆σ. Since we
can evaluate ∇ log p, (4) can be approximated using samples
from the particle distribution qt. Thus, the NW estimator of
the backward KL field can be approximated by

ût(x
⋆) ≈ Êqt [k⋆σ∇ log p(x) +∇k⋆σ]/Êqt [k⋆σ]. (5)

Interestingly, the numerator of (5) is exactly the particle
update of the SVGD algorithm (Liu and Wang, 2016) for
an RKHS induced by a Gaussian kernel (See Appendix N
for details on SVGD), and the equality (4) has been noticed
by Chewi et al. (2020). Note that for different x⋆, the
denominator in (5) is different and thus cannot be combined
into the overall learning rate of SVGD.

3.2. Effectiveness of NW Estimator

For simplicity, we drop t from ut, rt, xt and qt when our
analysis holds the same for all t.

Although there have been theoretical justifications for the
convergence analysis of WGF given the ground truth ve-
locity fields such as Langevin dynamics (Wibisono, 2018).
Few theories have been dedicated to the estimation of ve-
locity fields themselves. One of the contributions of this
paper is that we study the statistical theory of the veloc-
ity field estimation through the lenses of non-parametric
regression/curve approximation.

Now, we prove the convergence rate of the NW estimator
under the assumption that the second-order derivative of
log r is well-behaved. Although û(x⋆) cannot be directly
computed, assuming ∇ log p, k and ∇k are well-behaved,
using concentration inequalities (such as Hoeffding’s in-
equality (Hoeffding, 1963)), the difference between û(x⋆)
and its approximation (5) can be easily bounded. Thus, we
focus on the classical NW estimator in (3).
Proposition 3.1. Suppose supx∈Rd ∥∇2 log r(x)∥ ≤ κ <
∞. Define k(y) := exp

[
−∥y∥2/2

]
. Assume that there

exist constants Ck,K that are independent of σ, such that∫
q(σy + x⋆)k(y)∥y∥dy∫
q(σy + x⋆)k(y)dy

≤ Ck,Eq
[
1

σd
k⋆σ

]
≥ K > 0

(6)

Varq

[
1

σd
k⋆σ∥x− x⋆∥

]
= O

(
1

σd

)
,

Varq

[
1

σd
k⋆σ

]
= O

(
1

σd

)
, as σ → 0. (7)

Then, with high probability, there exists a constant K ′:

∥û(x⋆)−∇ log r(x⋆)∥ ≤
√
dκ

[
K ′√
nσd

+ σCk

]
3
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for all σ > 0.

We can also deduce that, with an optimal choice of σ ∼
n−1/(d+2), the estimation error is Op(n−1/(d+2)).

See Appendix A for the proof. q(σy + x⋆) in the first in-
equality (6) can be further expanded using Taylor expansion.
Provided that the kernel k is well-behaved, this condition
becomes a regularity condition on q(x⋆) and its higher or-
der moments. The second inequality in (6) means that there
should be enough mass around x⋆ under the distribution q,
which is a key assumption in classical nonparametric curve
estimation (See, e.g., Chapter 20 in (Wasserman, 2010)).
(7) is required to ensure the empirical quantities in the NW
estimator converge to their population counterparts in prob-
ability.

It can be seen that the estimation error is bounded by the
sample approximation error K′

√
nσd

and a bias depending on
by σ. Interestingly, the bias term decreases at the rate of
σ, slower than the classical rate σ2 for the non-parametric
regression of a second-order differentiable function (Theo-
rem 20.21 in (Wasserman, 2010)). This is expected as NW
estimates the gradient of h ◦ r, not h ◦ r. To achieve a faster
σ2 rate, one needs to assume conditions on ∇3 log r. This
also highlights a slight downside of using NW to estimate
the gradient. However, in the following section, we show
that another interpolator achieves the superior rate when
using the same type of assumption on ∇2(h ◦ r).

4. Velocity Field Interpolation from Samples
Although we have seen that û is an effective estimator of
the backward KL velocity field, it can only be approximated
when we can evaluate ∇ log p. In some applications, such
as domain adaptation or generative modelling, we only have
samples from the target distribution, and ∇ log p is unavail-
able. Moreover, since the f -divergence family consists of
a wide variety of divergences, we hope to provide a gen-
eral computational framework to estimate different velocity
fields that minimize different f -divergences.

Nonetheless, the success of NW motivates us to look for
other interpolators to approximate ∇(h ◦ r)(x⋆).

Another common interpolation technique is local linear re-
gression (See e.g., (Gasser and Müller, 1979; Fan, 1993)
or Chapter 6, (Hastie et al., 2001)). It approximates an
unknown function g at x⋆ by using a linear function:
ĝ(x) := ⟨β(x⋆),x⟩ + β0(x

⋆). β(x⋆) and β0(x⋆) are the
minimizer of the following weighted least squares objective:

min
β∈Rd,β∈R

Êq
[
k⋆σ (g(x)− ⟨β,x⟩ − β0)

2
]
. (8)

A key insight is, since the gradient of a function is the slope
of its best local linear approximation, it is reasonable to

just use the slope of the fitted linear model, a.k.a., β(x⋆), to
approximate the gradient ∇g(x⋆). See Figure 6 in Appendix
for an illustration.

We apply the same rationale to estimate ∇(h◦r)(x⋆). How-
ever, unlike local linear interpolation, we cannot evaluate
h ◦ r at any input. Thus, we cannot directly use the least
squares objective (8) to obtain a local linear interpolation.
Similar to what we have done in Section 3.1, we look for a
tractable population estimator for estimating h ◦ r, which
can be approximated using samples from p and q. Then, we
“convert it” into a local linear objective.

In the following section, we derive an objective for esti-
mating h ◦ r by maximizing a variational lower bound of a
mirror divergence.

4.1. Mirror Divergence

Definition 4.1. Let Dϕ[p, q] and Dψ[p, q] denote two f -
divergences with f being ϕ and ψ respectively. Dψ is the
mirror of Dϕ if and only if ψ′(r) ≜ rϕ′(r)− ϕ(r), where
≜ means equal up to a constant.

For example, let Dϕ[p, q] and Dψ[p, q] be KL[p, q] and
χ2
p[p, q] respectively. From Table 1, we can see that
ϕ(r) = r log r andψ(r) = 1

2 (r−1)2. Thus rϕ′(r)−ϕ(r) =
r(1 + log r) − r log r = r ≜ ψ′(r) = r − 1. Therefore,
χ2
p[p, q] is the mirror of KL[p, q]. Similarly, we can ver-

ify that KL[p, q] is the mirror of KL[q, p] and KL[q, p] is
the mirror of χ2

n[p, q]. In general, Dψ[p, q] is the mirror of
Dϕ[p, q] does not imply the other direction.

4.2. Gradient Estimator using Linear Interpolation

The key observation that helps derive a tractable objective
is that h ◦ r is the argmax of “the mirror variational lower-
bound”. Suppose h is associated with an f -divergence Dϕ

as per Theorem 2.1 and Dψ is the mirror of Dϕ. Then h ◦ r
is the argmax of the following objective:

Dψ[p, q] = max
d

Ep[d(x)]− Eq[ψcon(d(x))], (9)

where ψcon is the convex conjugate of ψ. The formal state-
ment and its proof can be found in Appendix C. The equality
in (9) is known in previous literature (Nguyen et al., 2010;
Nowozin et al., 2016) and the objective in (9) is commonly
referred to as the variational lowerbound of Dψ[p, q].

Notice that the expectations in (9) can be approximated by
Êp[·] and Êq[·] using samples from p and q respectively.

This is a surprising result. Since h is related to Dϕ’s field
(as per Theorem 2.1), one may associate maximizing Dϕ’s
variational lowerbound with its velocity field estimation.
However, the above observation shows that, to approximate
Dϕ’s field, one should maximize the variational lowerbound

4
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of its mirror divergence Dψ! To our best knowledge, this
“mirror structure” in the context of WGF has never been
studied before.

We then localize (9) to obtain a local linear estimator of
h ◦ r at a fixed point x⋆. First, we parameterize the function
d using a linear model dw,b(x) := ⟨w,x⟩+ b. Second, we
weight the objective using kσ(x,x⋆), which leads to the
following local linear objective:

(w(x⋆), b(x⋆)) = argmax
w∈Rd,b∈R

ℓ(w, b;x⋆),

where ℓ(w, b;x⋆) :=Êp[k⋆σdw,b(x)]− Êq[k⋆σψcon(dw,b(x))]
(10)

The above transformation is similar to how the local linear
regression “localizes” the ordinary least squares objective.

Solving (10), we get a linear approximation of h ◦ r at x⋆:

h(r(x⋆)) ≈ ⟨w(x⋆),x⋆⟩+ b(x⋆).

Following the intuition that ∇(h ◦ r)(x⋆) is the slope of
the best local linear fit of h(r(x⋆)), we use w(x⋆) to ap-
proximate ∇(h ◦ r)(x⋆). We will theoretically justify this
approximation in Section 4.3. Now let us study two exam-
ples:

Example 4.2. Suppose we would like to estimate KL[p, q]’s
field at x⋆, which is ∇r(x⋆). Using Definition 4.1, we
can verify that the mirror of KL[p, q] is Dψ = χ2

p[p, q], in
which case ψ = 1

2 (r − 1)2. The convex conjugate of ψ is
ψcon(d) = d2/2+d. Substituting ψcon in (10), the gradient
estimator w→(x⋆) ≈ ∇r(x⋆) is obtained by the following
objective:

(w→(x⋆), b→(x⋆)) := argmax
w∈Rd,b∈R

ℓ→(w, b;x⋆)

where ℓ→(w, b;x⋆) :=Êp[k⋆σ · dw,b(x)]−

Êq
[
k⋆σ ·

(
dw,b(x)

2

2
+ dw,b(x)

)]
.

(11)

Example 4.3. Suppose we would like to estimate KL[q, p]’s
field at x⋆, which is ∇ log r(x⋆). Using Definition 4.1, we
can verify that the mirror of KL[q, p] is Dψ = KL[p, q], in
which case, ψ(r) = r log r. The convex conjugate of ψ is
ψcon(d) = exp(d− 1). The gradient estimator w←(x⋆) ≈
∇ log r(x⋆) is obtained by the following objective:

(w←(x⋆), b←(x⋆)) := argmax
w∈Rd,b∈R

ℓ←(w, b;x⋆)

where ℓ←(w, b;x⋆) :=Êp[k⋆σ · dw,b(x)]−

Êq[k⋆σ · exp(dw,b(x)− 1)]. (12)

In the following section, we show that the estimation error
∥w(x⋆)−∇(h ◦ r)(x⋆)∥ vanishes as σ → 0 and n→ ∞.

4.3. Effectiveness of Local Interpolation

In this section, we state our main theoretical result. Let
(w(x⋆), b(x⋆)) be a stationary point of ℓ(w, b;x⋆). We
denote the domain of x as X (not necessarily Rd). Without
loss of generality, we also assume all sample averages Ê[·]
are averaged over n samples. We prove that, w(x⋆) is a
consistent estimate of ∇(h ◦ r)(x⋆) assuming the change
rate of the flow is bounded.
Assumption 4.4. The change rate of the velocity fields is
well-behaved, i.e.,

sup
x∈X

∥∇2(h ◦ r)(x)∥ ≤ κ.

This is an analogue of the assumption on ∇2 log r in Propo-
sition 3.1.
Assumption 4.5. There exists a constant Ck > 0 indepen-
dent of σ,

1

2

∫
q(σy + x⋆)k(y) · ∥y∥2 · ∥[σy + x⋆, 1]∥dy ≤ Ck.

This assumption is similar to the first inequality in (6). Ex-
panding q(σy + x⋆) using Taylor expansion and providing
that our kernel is well behaved, this assumption essentially
implies the boundedness of the q(x⋆) and ∥∇2q(x⋆)∥.

Define two shorthands: w∗ := ∇(h ◦ r)(x⋆) and b∗ :=
h(r(x⋆))− ⟨∇(h ◦ r)(x⋆),x⋆⟩.

Assumption 4.6. Let x̃ :=
[
x⊤, 1

]⊤
. As σ → 0,

tr

[
Covp

[
1

σd
k⋆σ · x̃

]]
= O(

1

σd
),

tr

[
Covq

[
1

σd
k⋆σ · ψ′con(⟨w∗,x⟩+ b∗)x̃

]]
= O(

1

σd
).

These two are analogues of (7). They are required so that
our sample approximation of the objective is valid and con-
centration inequalities can be applied.
Assumption 4.7. For all a ∈ [0, 1] and x ∈ X ,
ψ′′con [ah(r(x)) + (1− a)(⟨w∗,x⟩+ b∗)] ≤ Cψ′′

con
.

This is a unique assumption to our estimator, where we as-
sume that the convex conjugate ψcon has a bounded second-
order derivative.
Theorem 4.8. Suppose Assumption 4.4, 4.5, 4.6 and 4.7
holds. If there exist strictly positive constants W,B,Λmin

that are independent of σ and n such that,

∥w∗∥ ≤W, |b∗| ≤ B (13)

and for all w ∈ {w|∥w∥ < 2W} and b ∈ {b||b| < 2B},

λmin

{
Êq
[
k⋆σ∇2

[w,b]ψcon(⟨w,x⟩+ b)
]}

≥ σdΛmin,

(14)
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holds with high probability. Then there exists σ0, N,K > 0
such that for all 0 < σ < σ0, n > N ,

∥w(x⋆)−w∗∥ ≤
K√
nσd

+ κCkCψ′′
con
σ2

Λmin
,

with high probability.

The proof can be found in Appendix D.

Similar to Proposition 3.1, the estimation error is upper-
bounded by the sample approximation error that reduces
with the “effective sample size” nσd, and a bias term that
reduces with σ. Interestingly, although we make the smooth-
ness assumption on ∇2(h ◦ r), similar to Proposition 3.1,
the bias vanishes at a quadratic rate σ2, unlike the linear
rate obtained in Proposition 3.1.

We can deduce that, with an optimal choice of σ ∼
n−1/(d+4), the estimation error is Op(n−2/(d+4)), a rate
faster than the rate implied by Proposition 3.1.

Using Theorem 4.8, we can prove the consistency of various
velocity field estimators for different f -divergences.
Corollary 4.9. Suppose supx∈X ∥∇2r(x)∥ ≤ κ→, As-
sumption 4.5, 4.6 holds and

λmin

{
Êq
[
kσ(x,x

⋆)x̃x̃⊤
]}

≥ σd · Λ→ > 0, (15)

holds with high probability. Then ∃σ0, N,K > 0,

∥w→(x⋆)−∇r(x⋆)∥ ≤
K√
nσd

+ κ→ · Ck · σ2

Λ→

for all 0 < σ < σ0, n > N holds with high probability.

See Appendix E for the proof.
Corollary 4.10. Suppose supx∈X ∥∇2 log r(x)∥ ≤ κ←,
and Assumption 4.5, 4.6 holds. Assume

sup
x∈X

∥x∥ ≤ CX , sup
x∈X

log r(x)− 1 ≤ Clog r,

and there exists B,W <∞, so that

∥∇ log r(x⋆)∥ < W, | log r(x⋆)−⟨∇ log r(x⋆),x⋆⟩| < B.

Additionally,

λmin

[
Êq[kσ(x,x⋆)x̃x̃⊤]

]
≥ σd · Λ← > 0, (16)

holds with high probability. Then ∃σ0, N,K > 0 and for
all 0 < σ < σ0, n > N,

∥w←(x⋆)−∇ log r(x⋆)∥

≤ 1

(Λ← · exp(−2WCX − 2B − 1))
· K√

nσd
+

κ← · Ck · [exp(WCX +B − 1) ∨ exp(Clog r − 1)] · σ2

Λ← · exp(−2WCX − 2B − 1)
,

holds with high probability.

See Appendix F for the proof. Note that due to the assump-
tion that ∥x∥ is bounded, Corollary 4.10 can only be applied
to density ratio functions with bounded input domains. How-
ever, this does include important examples such as images,
where pixel brightnesses are bounded within [0, 1]. Using
the same proof techniques, it is possible to derive more
Corollaries for other f -divergence velocity fields. We leave
them as a future investigation.

4.4. Model Selection via Linear Interpolation

Although Theorem 4.8 says the estimation bias disappears as
σ → 0, when we only have a finite number of samples, the
choice of the kernel bandwidth σ controls the bias-variance
trade-off of the local estimation. Thus we propose a model
selection criterion. The details of the procedure is provided
in Appendix I.1.

The high level idea is: Suppose we have testing samples
from p and q. A good choice of σ would result in a good
approximation of h ◦ r on testing points, thus the best ap-
proximation of h ◦ r would maximize the variational lower
bound (9). Therefore, we only need to evaluate (9) on test-
ing samples to determine the optimality of σ.

Our local linear estimator offers a unique advantage of
model selection because it is formulated as a non-parametric
curve fitting problem. In contrast, SVGD lacks a systematic
approach and has to resort to the “median trick”.

5. Experiments
5.1. Reducing KL Divergence: SVGD vs. NW vs. Local

Linear Estimator

In this experiment, we investigate the performance of SVGD,
NW and Local Linear (LL) estimator through the task of
minimizing KL[qt, p]. We let SVGD, NW and LL fit the
target distribution p = N (0, 1). 500 iid initial particles are
drawn from q0 = N(−1, 0.252). For all methods, we use
naive gradient descent to update particles with a fixed step
size 0.1. We also consider a variant of SVGD where Ada-
Grad (Duchi et al., 2011) is applied to adjust the step size
dynamically. For SVGD and SVGD with AdaGrad, we use
the MATLAB code provided by Liu and Wang (2016) with
its default heuristics. We plot the trajectories of particles of
all three methods in Figure 2.

Although all three algorithms move particles toward the
target distribution, the naive SVGD does not spread the
particle mass quickly enough to cover the target distribu-
tion when using the same step size. This situation is much
improved by applying the adaptive learning rate method
(AdaGrad). In comparison, NW and LL both converge fast.
After 20 iterations, all particles have arrived at the target
positions. Since all methods are motivated by minimizing
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Figure 2. Particle Trajectories of SVGD, SVGD with AdaGrad, NW, LL. Approximated KL[qt, p] with different methods.

KL[qt, p], we plot the KL[qt, p] approximated by Donsker
and Varahan Lower Bound (Donsker and Varadhan, 1976)
for all four methods. The plot of KL[qt, p] agrees with our
qualitative assessments: AdaGrad SVGD can reduce the
KL significantly faster than the vanilla SVGD with naive
gradient descent. After 20 iterations, the KL divergence
for both NW and LL particles reaches zero, indicating that
the particles have fully converged to the target distribution.
LL achieves a performance comparable to NW. This is a
remarkable result as NW, and SVGD has access to the true
∇ log p, but LL only has samples from p.

In the next sections, we will showcase the performance of
LL in forward/backward KL minimization problems.

5.2. Joint Domain Adaptation

In domain adaptation, we want to use source domain sam-
ples to help a prediction task in a target domain. This ad-
dresses situations where the training data for a method
may differ from the real data when deployed. We as-

sume that source samples Dq :=
{
(x

(i)
q , y

(i)
q )
}nq
i=1

are
drawn from a joint distribution QXY and target samples

Dp :=
{
(x

(i)
p , y

(i)
p )
}np
i=1

are drawn from a different joint
distribution PXY . However, yp is missing from the target
set. Thus, we want to predict missing labels in Dp with the
help of Dq. Courty et al. (2017b;a) propose to find an op-
timal map that aligns the distribution QXY and PXY , then
train a classifier on the aligned source samples. Inspired
by this method, we propose to align samples by minimiz-
ing KL[qt, p], where p is the density of the target PXY
and qt is a particle-label pair distribution whose samples

are Dqt :=
{
(x

(i)
t , y

(i)
q )
}nq
i=1

. To minimize KL[qt, p], we
evolve xt according to the backward KL field and xt=0 is
initialized to be the source input xq . In words, we transport
source input samples so that the transported and target sam-
ples are aligned in terms of minimizing the backward KL
divergence. After T iterations, we can train a classifier us-
ing transported source samples {(xT , yq)} to predict target
labels.

One slight issue is that we do not have labels in the target
domain but performing WGF requires joint samples (X,Y ).
To solve this, we adopt the same approach used in Courty
et al. (2017a), replacing yp with a proxy ĝ(xp), where ĝ
is a prediction function trained to minimize an empirical
transportation cost (See Section 2.2 in Courty et al. (2017a)).
We demonstrate our approach in a toy example, in Figure 3.

Figure 3. Left: the source classifier (represented by colored areas)
misclassifies many testing points (colored dots). Middle: WGF
moves particles to align the source and target samples. Lines
are trajectories of sample movements in each class. Right: the
retrained classifier on the transported source samples gives a much
better prediction.

Table 2 compares the performance of adapted classifiers on
a real-world 10-class classification dataset named “office-
caltech-10”, where images of the same objects are taken
from four different domains (amazon, caltech, dslr and web-
cam). We reduce the dimensionality by projecting all sam-
ples to a 100-dimensional subspace using PCA. We compare
the performance of the base (the source RBF kernel SVM
classifier), the Joint Distribution Optimal Transport (Courty
et al., 2017a) (JDOT), an RBF kernel SVM trained on the
WGF transported source samples {(xT , yq)} (WGF) and
an SVM trained on MMDFlow (Hagemann et al., 2024)
transported source samples (MMD). The classification ac-
curacy on the entire target sets are reported. It can be seen
that in some cases, reusing the source classifiers in the target
domain does lead to catastrophic results (e.g. amazon to dslr,
caltech to dslr). However, we can avoid such performance
decline by using any joint distribution-based domain adap-
tation. It can be seen that both WGF and MMD achieve
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Dq → Dp base JDOT WGF MMD
amz. → dslr 27.39% 65.61% 78.34% 78.34%
amz. → web. 61.69% 67.80% 84.07% 89.15%
amz. → cal. 81.66% 63.58% 82.72% 82.19%
dslr → amz. 70.35% 72.96% 85.91% 76.30%
dslr → web. 94.92% 76.61% 95.25% 86.10%
dslr → cal. 58.95% 72.31% 79.25% 69.01%

web. → amz. 75.78% 75.37% 91.34% 89.46%
web. → dslr 94.27% 73.25% 98.73% 100.00%
web. → cal. 67.05% 63.49% 78.09% 75.16%
cal. → amz. 83.40% 84.55% 91.13% 89.04%
cal. → dslr 26.11% 69.43% 84.71% 84.71%
cal. → web. 63.39% 74.58% 80.34% 79.32%

Table 2. Domain adaptation of different domains in Office-Caltech-
10 dataset.

superior performance compared to JDOT while WGF has
the best performance in most adaptation cases.

5.3. Missing Data Imputation

In missing data imputation, we are given a joint dataset
D̃ := {(x̃(i),m(i))}, where m ∈ {0, 1}d is a mask vector
andm(i)

j = 0 indicates the j-th dimension of x̃(i) is missing.
The task is to “guess” the missing values in x̃ vector. In
recent years, GAN-based missing value imputation, e.g.,
GAIN (Yoon et al., 2018), has gained significant attention
(Zhang et al., 2023). Let x be an imputation of x̃. The basic
idea is that if x is a perfect imputation of x̃, then a classifier
cannot predict mj given (x,m−j). For example, given a
perfectly imputed image, one cannot tell which pixels are
imputed and which pixels are observed. Therefore, in their
approach, a generative network is trained to minimize the
aforementioned classification accuracy. In fact, this method
teaches the generator to break the dependency between x
and m. Inspired by this idea, we propose to impute {x̃} by
iteratively updating particles {xt}. The initial particle xt=0

is set to be

x0,j =

{
x̃j mj = 1

Sample from e.g., N (0, 1) mj = 0.

After that, the particles {xt} are evolved according to
the forward KL field that minimizes KL[pXtM , pXtpM ],
i.e., the mutual information between Xt (particles) and M
(mask). Note that we only update missing dimensions, i.e.,

xt+1,j :=

{
xt,j mj = 1

xt,j + η∂xjrt(xt,m) mj = 0.

Samples from pXtM are available to us since we observe
the pairs {(x,m)} and samples from pXtpM can be con-
structed as {(x,m′)}, where m′ is a random sample of M
given the missing pattern.

In the first experiment, we test the performance of vari-
ous imputers on an “S”-shaped dataset, where samples are
Missing Completely at Random (MCAR) (Rubin, 1976).
The results are plotted in Figure 4. We compare our im-
puted results (WGF) with Optimal Transport-based imputa-
tion method (Sinkhorn) (Muzellec et al., 2020), and GAN-
based imputation method (GAIN) (Yoon et al., 2018). σ is
chosen by automatic model selection described in Section
I.1. It can be seen that our imputer, based on minimizing
KL[pXtM , pXtpM ] nicely recovers the “S”-shape after 100
particle update iterations. However, Sinkhorn and GAIN
imputation methods struggle to accurately restore the “S”-
shaped pattern.

In the second experiment, we test the performance of our al-
gorithm on a real-world Breast Cancer classification dataset
(Zwitter and Soklic, 1988) in Figure 5. This is a 30-
dimensional binary classification dataset and we artificially
create missing values by following the MCAR paradigm
with different missing rates. Since the dataset is a binary
classification dataset, we compare the performance of lin-
ear SVM classifiers trained on imputed datasets. The per-
formance is measured by the Area Under the ROC Curve
(AUROC) on hold-out testing sets. In addition to Sinkhorn
and GAIN, we validate the performance of our method with
three additional algorithms: MMD flow using negative dis-
tance kernel (MMDFlow) (Hagemann et al., 2024), a model
selection-based method HyperImpute (Jarrett et al., 2022),
and an auto encoder-based approach (MIWAE) (Mattei and
Frellsen, 2019). The result shows that SVM trained on the
dataset imputed by our method achieves comparable perfor-
mance to datasets imputed by the other benchmark methods.
Our method is robust against the choice of σ. Details and
the selection of hyperparameters can be found in Section
I.2.

6. Limitations
All f -divergence fields are defined using the density ratio
function p/qt. However, the ratio function is not defined
when the input domains of p and qt are non-overlapping.
This problem is particularly noticeable when working on
high-dimensional, real-world datasets. This so-called “den-
sity chasm problem” (Rhodes et al., 2020) will also affect
the velocity field estimation as assumptions required by our
estimators e.g., Assumption 4.4 or (13) depends on the den-
sity ratio. One possible solution to this issue is to build a
“bridge” using interpolations of two distributions, estimate
the density ratios of “neighbouring” interpolations, and then
combine these estimates. However, this will significantly
increase the computational cost as we need to estimate the
density ratio gradients of many pairs of distributions. Devel-
oping an efficient gradient estimator using target and particle
distribution interpolation is an interesting future task.

8



Minimizing f -Divergences by Interpolating Velocity Fields

Figure 4. Comparison of imputation methods. Fully observed samples are plotted in blue, and imputed samples in red. The leftmost plot
shows the initial particles in the WGF impute. The second left plot visualizes the imputation trajectories of different particles. The third
left plot is the final output after 100 WGF iterations.

Figure 5. AUROC of a linear SVM classifier on the imputed Breast
Cancer dataset. Base indicates the performance of a baseline
imputer where we impute the missing values with Gaussian noises.

Another potential limitation of the proposed estimator is its
applicability to high-dimensional datasets. Although some
preliminary investigations show that the proposed estimator
does work reasonably well on some high-dimensional gen-
erative tasks (see Section O.2), it is known that local regres-
sion tends to perform poorly on high-dimensional datasets
(see, e.g., (Stone, 1980; 1982)). Instead of performing WGF
updates directly on the high-dimensional datasets, we can
consider performing the updates in a low-dimensional fea-
ture space (see Section L). Some preliminary investigations
have shown promising results (see Section O.3).

7. Conclusion
In recent years, it has been discovered that by iteratively
updating a set of particles, WGF can approximate a target
distribution by reducing the f -divergences between corre-
sponding distributions. This paper addresses the important
problem of estimating the velocity fields induced by various
f -divergence WGFs. We propose novel interpolation-based
estimators for different f -divergences fields and prove their

validity. We demonstrate the effectiveness of these estima-
tors through two novel applications: domain adaptation and
missing data imputation. Our results show that even without
access to the density ratio function, the velocity fields can be
efficiently estimated from samples of the target and particle
distributions.
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A. Proof of Proposition 3.1
Proof.

|ûi(x⋆)− ∂i log r(x
⋆)| =

∣∣∣∣∣ Êq [kσ(x,x⋆)∂i log r(x)]Êq[kσ(x,x⋆)]
− ∂i log r(x

⋆)

∣∣∣∣∣
=

∣∣∣∣∣ Êq[kσ(x,x⋆) (∂i log r(x⋆) + ⟨∇∂i log r(x̄),x− x⋆⟩)]
Êq[kσ(x,x⋆)]

− ∂i log r(x
⋆)

∣∣∣∣∣
=

∣∣∣∣∣ Êq[kσ(x,x⋆)⟨∇∂i log r(x̄),x− x⋆⟩]
Êq[kσ(x,x⋆)]

∣∣∣∣∣
≤ Êq[kσ(x,x⋆)∥∇∂i log r(x̄)∥ · ∥x− x⋆∥]

Êq[kσ(x,x⋆)]

≤κ · Êq[kσ(x,x
⋆)∥x− x⋆∥]

Êq[kσ(x,x⋆)]

≤κ ·

(
Êq[kσ(x,x⋆)∥x− x⋆∥]

Êq[kσ(x,x⋆)]
− Eq[kσ(x,x⋆)∥x− x⋆∥]

Eq[kσ(x,x⋆)]
+

Eq[kσ(x,x⋆)∥x− x⋆∥]
Eq[kσ(x,x⋆)]

)
(17)

The second line is due to the mean value theorem and x̄ is a point in between x and x⋆ in a coordinate-wise fashion. The
second inequality is due to the operator norm of a matrix is always greater than a row/column norm.

Since Varq[
1
σd
kσ(x,x

⋆)∥x− x⋆∥] = O( 1
σd

) due to the assumption, using Chebyshev inequality

Êq
[
1

σd
kσ(x,x

⋆)∥x− x⋆∥
]
− Eq

[
1

σd
kσ(x,x

⋆)∥x− x⋆∥
]
= Op(

1√
nσd

).

Similarly, due to the assumption that Varq[ 1
σd
kσ(x,x

⋆)] = O( 1
σd

), we have

Êq
[
1

σd
kσ(x,x

⋆)

]
− Eq

[
1

σd
kσ(x,x

⋆)

]
= Op(

1√
nσd

).

Lemma A.1. Suppose |EA| ≤ A1 <∞, |EB| > B0 > 0. ÊA− EA = Op(
1√
nσd

) and ÊB − EB = Op(
1√
nσd

)

ÊA
ÊB

− EA
EB

= Op

(
1√
nσd

)
.

Sketch of proof

The argument below resembles the proof technique used in A.2 in Givens et al. (2023). Here, we provide a sketch argument.∣∣∣ ÊAÊB − EA
EB

∣∣∣ = ∣∣∣ ÊAEB−EAÊB
ÊBEB

∣∣∣ ≤ ∣∣∣ ÊA−EAÊB

∣∣∣+ ∣∣∣ ÊB−EBÊBEB

∣∣∣ · |EA|.
First, due to the boundedness of |EB|, for any ϵ, ∃N, ∀n > N , |ÊB| > |EB/2| > B0/2 with a probability 1 − ϵ. Thus,
ÊA− EA = Op(

1√
nσd

) implies
∣∣∣ ÊA−EAÊB

∣∣∣ = Op(
1√
nσd

).

Second, due to the boundedness of |EA|, and the boundedness of |ÊB| argued above, ÊA − EA = Op(
1√
nσd

) implies∣∣∣ ÊB−EBÊBEB

∣∣∣ · |EA| = Op(
1√
nσd

).

Hence, ÊA
ÊB

− EA
EB = Op

(
1√
nσd

)
.

Due to Lemma A.1 and (17), we have with high probability that

12
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(x⋆, ĝ(x⋆))

ĝ

x

g
(x

)
Figure 6. Fit g locally at x⋆ using a linear function ĝ. Its “slope” is a natural estimator of ∇xg(x

⋆).

|ûi(x⋆)− ∂i log r(x
⋆)| ≤κ ·

(
K√
nσd

+
Eq[kσ(x,x⋆)∥x− x⋆∥]

Eq[kσ(x,x⋆)]

)
≤κ ·

(
K√
nσd

+
σ
∫
q(x⋆ + σy)k(y)∥y∥dy∫
q(x⋆ + σy)k(y)dy

)
y := (x− x⋆)/σ

≤κ ·
(

K√
nσd

+ σCk

)
,

where K is constant.

B. Visualization of Gradient Estimation using Local Linear Fitting

C. Variational Objective for Estimating h ◦ r
Proposition C.1. The maximum in (9) is attained if and only if d = h ◦ r.

Proof. Due to the maximizing argument, the maximum of (9) is attained if and only if d = ψ′. The definition of mirror
divergence indicates that ψ′ = rϕ′(r)− ϕ(r). Theorem 2.1 states that h ◦ r = rϕ′(r)− ϕ(r) = ψ′, thus the maximum is
attained if and only if d = h ◦ r.

D. Proof of Theorem 4.8, Estimation Error Bound of w(x⋆)

Proof. In this section, to simplify notations, we denote θ as the parameter vector that combines both w and b, i.e.,
θ := [w, b]⊤. Specifically, we define

θ∗ =
[
w∗⊤, b∗

]⊤
:=
[
∇⊤(h ◦ r)(x⋆), h(r(x⋆))− ⟨∇(h ◦ r)(x⋆),x⋆⟩

]⊤
.

Let us denote the negative objective function in (10) as ℓ(θ) and consider a constrained optimization problem:

min
θ
ℓ(θ) subject to:∥θ − θ∗∥2 ≤ min(W,B)2. (18)

This convex optimization has a Lagrangian ℓ(θ) + λ(∥θ − θ∗∥2 −min(W,B)2), where λ ≥ 0 is the Lagrangian multiplier.
According to KKT condition, the optimal solution θ0 of (18) satisfies ∇ℓ(θ0) + 2λ(θ0 − θ∗) = 0.

We apply mean value theorem to g(θ) := ⟨θ0 − θ∗,∇ℓ(θ) + 2λ(θ − θ∗)⟩:

⟨θ0 − θ∗,∇ℓ(θ0) + 2λ(θ0 − θ∗)︸ ︷︷ ︸
g(θ0)=0, KKT condition

⟩ = ⟨θ0 − θ∗,∇ℓ(θ∗)⟩︸ ︷︷ ︸
g(θ∗)

+⟨(θ0 − θ∗)⊤
[
∇2ℓ(θ̄) + 2λI

]︸ ︷︷ ︸
∇g(θ̄)

, (θ0 − θ∗)⟩,

13
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where θ̄ is a point between θ∗ and θ0 in an elementwise fashion. Since θ̄ is in a hyper cube with θ0 and θ∗ as opposite
corners, it is in the constrain set of (18). Let us rearrange terms:

−⟨θ0 − θ∗,∇ℓ(θ∗)⟩ = ⟨θ0 − θ∗,
[
∇2ℓ(θ̄) + 2λI

]
(θ0 − θ∗)⟩ ≥ ⟨θ0 − θ∗,∇2ℓ(θ̄)(θ0 − θ∗)⟩,

For all θ in the constraint set, ∥w∥ = ∥w − w∗ + w∗∥ ≤ ∥w − w∗∥ + ∥w∗∥ ≤ ∥θ − θ∗∥ + ∥w∗∥ ≤ 2W and
|b| = |b− b∗+ b∗| ≤ |b− b∗|+ |b∗| ≤ ∥θ− θ∗∥+ |b∗| ≤ 2B. Under our assumption (14), the lowest eigenvalue of ∇2ℓ(θ)
for all θ in the constrain set of (18) is always lower bounded by σdΛmin. Therefore,

−⟨θ0 − θ∗,∇ℓ(θ∗)⟩ ≥ σd · Λmin∥θ0 − θ∗∥2.

Using Cauchy–Schwarz inequality

∥θ0 − θ∗∥∥∇ℓ(θ∗)∥ ≥ σd · Λmin∥θ0 − θ∗∥2.

Assume ∥θ0 − θ∗∥ is not zero (if it is, our estimator is already consistent).

∥θ0 − θ∗∥ ≤ 1

σdΛmin
∥∇ℓ(θ∗)∥

≤ 1

σdΛmin
∥∇ℓ(θ∗)− E∇ℓ(θ∗) + E∇ℓ(θ∗)∥

≤ 1

σdΛmin
(∥∇ℓ(θ∗)− E∇ℓ(θ∗)∥+ ∥E∇ℓ(θ∗)∥) (19)

Since tr
[
Covp

[
1
σd
k(x,x⋆) · x̃

]]
= O( 1

σd
) and tr

[
Covq

[
1
σd
k(x,x⋆) · ψcon(⟨w∗,x⟩+ b∗)x̃

]]
= O( 1

σd
) by assumption,

due to multi-dimensional version of Chebyshev’s inequality, σd∥ 1
σd

(∇ℓ(θ∗)− E∇ℓ(x∗)) ∥ = σdOp(
1√
nσd

). Therefore,

∥θ0 − θ∗∥ ≤ 1

σdΛmin

(
σd · K√

nσd
+ ∥E∇ℓ(θ∗)∥

)
,

with high probability and K is a constant.

Now we proceed to bound ∥E∇ℓ(θ∗)∥.

Lemma D.1. ∥E∇ℓ(θ∗)∥ ≤ Eq
[
kσ(x,x

⋆) 12 ∥x− x⋆∥2 ∥x̃∥
]
κ · Cψ′′

con

Proof. The expression of E∇ℓ(θ∗) is:

E∇ℓ(θ∗) := −Ep [kσ(x,x⋆) · x̃] + Eq [kσ(x,x⋆)ψ′con(⟨w∗,x⟩+ b∗) · x̃] . (20)

Due to Taylor’s theorem, ⟨w∗,x⟩+ b∗ = h(r(x))− 1
2 (x− x⋆)

⊤∇2(h ◦ r)(x̄) (x− x⋆) where x̄ is a point in between x
and x⋆ in an elementwise fashion. Thus, applying the mean value theorem on ψ′con,

ψ′con(⟨w∗,x⟩+ b∗) = ψ′con

[
h(r(x))− 1

2
(x− x⋆)

⊤∇2(h ◦ r)(x̄) (x− x⋆)

]
= ψ′con [h(r(x))]−

1

2
(x− x⋆)

⊤∇2(h ◦ r)(x̄) (x− x⋆)ψ′′con(y),

where y is a scalar in between h(r(x)) and h(r(x)) − 1
2 (x− x⋆)

⊤∇2(h ◦ r)(x̄) (x− x⋆) or equivalently, in between
h(r(x)) and ⟨w∗,x⟩+ b∗.

Theorem 2.1 states that h(r) = rϕ′ + ϕ, then, by the definition of the mirror divergence, ψ′ = h(r). Moreover, due
to the maximizing argument, ψ′con is the input argument of ψ (i.e., r) and ψ′ is the input argument of ψcon. Thus,
ψ′con(h(r)) = ψ′con(ψ

′(r)) = r. Let us write

E∇ℓ(θ∗) = −Ep[kσ(x,x⋆)x̃] + Eq[kσ(x,x⋆)ψ′con(h(r(x)))︸ ︷︷ ︸
r

x̃]

− Eq
[
kσ(x,x

⋆)
1

2
(x− x⋆)

⊤∇2(h ◦ r)(x̄) (x− x⋆)ψ′′con(y)x̃

]
= −Eq

[
kσ(x,x

⋆)
1

2
(x− x⋆)

⊤∇2(h ◦ r)(x̄) (x− x⋆)ψ′′con(y)x̃

]
,

14
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We can derive a bound for ∥E∇ℓ(θ∗)∥:

∥E∇ℓ(θ∗)∥ ≤ Eq
[
kσ(x,x

⋆) · 1
2

∣∣∣(x− x⋆)
⊤∇2(h ◦ r)(x̄) (x− x⋆)

∣∣∣ · |ψ′′con(y)| · ∥x̃∥]
≤ Eq

[
kσ(x,x

⋆)
1

2
∥x− x⋆∥2

∥∥∇2(h ◦ r)(x̄)
∥∥ ∥x̃∥]Cψ′′

con

≤ Eq
[
kσ(x,x

⋆)
1

2
∥x− x⋆∥2 ∥x̃∥

]
κ · Cψ′′

con

≤ σd+2 · κ · Cψ′′
con

1

2

∫
q(σy + x⋆) · k(y) · ∥y∥2 · ∥[σy + x⋆, 1]∥ dy ≤ σd+2 · κ · Cψ′′

con
Ck

Finally, due to Lemma D.1 and Assumption 4.5, we can see that with high probability

∥θ∗ − θ0∥ ≤
Kσd√
nσd

+ κ · σd+2 · Ck · Cψ′′
con

σdΛmin
≤

K√
nσd

+ κ · σ2 · Ck · Cψ′′
con

Λmin
.

Since nσd → ∞, σ → 0, ∥θ∗ − θ0∥ → 0 with high probability. There always exists σ0 and N , such that for all σ < σ0 and

n > N , min(W,B) >
K√
nσd

+κ·Ck·Cψ′′
con
·σ2

Λmin
. When it happens, θ0 must be the interior of the constrain set of (18). i.e., the

constraints in (18) are not active. It implies θ0 must be the stationary point of ℓ(θ) as long as σ is sufficiently small and n is
sufficiently large.

E. Proof of Corollary 4.9
Proof. Since (11) has a unconstrained quadratic objective, its maximizers are stationary points.

We can see that Assumption 4.4 holds. To apply Theorem 4.8, we still need to show that Assumption 4.7 holds and W and
B exist. In this case, ψcon(d) = d2/2 + d, so ψ′′con = 1. Thus Assumption 4.7 holds automatically for every Cψ′′

con
≥ 1.

Additionally,

∇2
[w,b]ψcon(⟨w,x⟩+ b) = Êq[kσ(x,x⋆)ψ′′con(⟨w,x⟩+ b)x̃x̃⊤] = Êq[kσ(x,x⋆)x̃x̃⊤].

Therefore, (15) implies the minimum eigenvalue assumption (14) holds for every W > 0, B > 0. Thus, we can choose any
W > 0 and B > 0 that satisfies (13). Noticing that h(r(x)) = r(x), applying Theorem 4.8 gives the desired result.

F. Proof of Corollary 4.10
Proof. Assumption 4.4, 4.5 and (13) are already satisfied. Let us verify the eigenvalue condition (14). In this case,
ψ′′con(d) = exp(d− 1). Thus exp(⟨w,x⟩+ b− 1) ≤ exp(2WCX + 2B − 1) <∞ for ∥w∥ ≤ 2W, |b| ≤ 2B. Moreover,
because x̃x̃⊤ is positive semi-definite, due to (16),

λmin

[
Êq[kσ(x,x⋆) exp(⟨w,x⟩+ b− 1)x̃x̃⊤]

]
≥σ2 · λmin

[
Êq[kσ(x,x⋆)x̃x̃⊤]

]
· exp(−2WCX − 2B − 1)

>σ2 · Λ← · exp(−2WCX − 2B − 1) > 0,

for all w, b that ∥w∥ ≤ 2W, |b| ≤ 2B. So (14) holds. Finally, let us verify Assumption 4.7. Since ψcon′′ is a strictly
monotone increasing function, supa∈[0,1] ψcon′′(ax0 + (1 − a)y0) is obtained either at x0 or y0. We only need to verify
that ψcon′′(h(r(x))) and ψcon′′(⟨w∗,x⟩+ b∗) are both bounded for all x. Both h(r(x)) and ⟨w∗,x⟩+ b∗ can be bounded
using our assumptions. Thus, for a

Cψ′′
con

= exp(W · CX +B − 1) ∨ exp(Clog r − 1)

Assumption 4.7 holds. Applying Theorem 4.8 completes the proof.
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(a) p, q with different means. The further p, q are apart, the larger the supx ∥∇2r(x)∥ is.

(b) p, q with different variances. The less overlapped p, q are, the larger the supx ∥∇2r(x)∥ is.

Figure 7. Visualizing ∇2(h ◦ r)(x) for Dϕ = KL[p, q] with two different settings of p and q.

G. ∥∇2r(x)∥ for Different p and q

See Figure 7.

H. Finite-sample Objectives
H.1. Practical Implementation

In our experiments, we observe that (10) can be efficiently minimized by using gradient descent with adaptive learning rate
schemes, e.g., Adam (Kingma and Ba, 2015). One computational advantage of the local linear model is that the computation
for each x⋆ is independent from the others. This property allows us to parallelize the optimization. Even using a single
CPU/GPU, we can easily write highly vectorized code to compute the gradient of (10) with respect to w and b for a large
particle set {x⋆i }ni=1.

Suppose Xp ∈ Rnp×d and Xq ∈ Rnq×d are the matrices whose rows are x
(i)
p and x

(i)
q respectively. Kp ∈ Rn×np ,

Kq ∈ Rn×nq are the kernel matrices between {x⋆} and Xp, {x⋆} and Xq respectively. W ∈ Rn×d and b ∈ Rn are the
parameters whose rows are w(x⋆) and b(x⋆) respectively. Then the gradient of (10) with respect to W , b can be expressed
as

KpXp/np −Kq ⊙ ψ′con(WX⊤q + b)Xq/nq,

Kp1np/np −Kq ⊙ ψ′con(WX⊤q + b)1nq/nq,

where 1np and 1nq are the vectors of ones with length np and nq respectively. ψ′con is evaluated element-wise. ⊙ is the
element-wise product and the vector b is broadcast to a matrix with nq columns.
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I. Experiment Details in Section 5
I.1. Model Selection

Let Dp :=
{
x
(i)
p

}np
i=1

,Dq :=
{
x
(i)
q

}nq
i=1

be training sets from p and q respectively and D̃p =
{
x̃(i)
p

}ñp
i=1

and D̃q ={
x̃(i)
q

}ñq
i=1

be testing sets. We can fit a local linear model at each testing point using the training sets, i.e.,

(
ŵσ(x̃), b̂σ(x̃)

)
:= argmax

w∈Rd,b∈R
ℓ (w, b; x̃,Dp,Dq)︸ ︷︷ ︸

tranining objective

.

The dependency on σ comes from the smoothing kernel in the training objective. We can tune σ by evaluating the variational
lower bound (9) approximated using testing samples:

ℓ̃
(
σ; D̃p, D̃q

)
:= Ẽp

[
d̂σ (x)

]
− Ẽq

[
ψcon(d̂σ (x))

]
︸ ︷︷ ︸

testing criterion

, (21)

where Ẽp[d̂(x)] := 1
ñp

∑ñp
i=1 d̂(x̃

(i)
p ), i.e., the sample average over the testing points. d̂σ(x̃) := ⟨ŵσ (x̃) , x̃⟩+ b̂σ (x̃), is

the interpolation of d(x̃) using training samples. The best choice of σ should maximize the above testing criterion.

In our experiments, we construct training and testing sets using cross validation and choose a list of candidate σ for the
model selection. This procedure is parallel to selecting k in k-nearest neighbors to minimize the testing error. In our case,
(21) is the “negative testing error”.

I.2. Missing Data Imputation

Before running the experiments, we first pre-process data in the following way:

1. Suppose X true is the original data matrix, i.e. without missing values. We introduce missingness to X true, and call
the matrix with missing values X̃ , following MCAR paradigm. Denote the corresponding mask matrix as M , where
m

(i)
j = 0 if x̃(i)j is missing, and m(i)

j = 1 otherwise.

2. Calculate column-wise mean ¯̃x and standard deviation s̃ (excluding missing values) of X̃ .

3. Standardize X̃ by taking X̃ = X̃−¯̃x
s̃ , where the vectors ¯̃x and s̃ are broadcasted to the same dimensions as the matrix

X̃ . Note that the division here is element-wise.

Denote Xt as the imputed data of X̃ at iteration i, where X0 = X̃ ⊙M + Z⊙ (1−M), and Z ∼ N (0,diag(1)).

We performed two experiments on both toy data (“S”-shape) and real world data (UCI Breast Cancer 3 data).

Let NWGF be the number of iterations WGF is performed. In each iteration, let NGradEst be the number gradient descent
steps for gradient estimation. In the missing data experiments, we set the hyperparameters to be:

• “S”-shape data: TWGF = 100, TGradEst = 2000, σ is chosen by model selection described in Section I.1.

• UCI Breast Cancer data: TWGF = 1000, TGradEst = 100, σ = median(
√

pairwise distance ofX
2 ) .

Across experiments, we observe that our method is robust against the choice of the bandwidth σ. We demonstrate this via a
new experiment that tests the imputation performance with different selections of σ. Figure 8 demonstrates this experiment
on the UCI Breast Cancer data. We can see that the imputation performance is still comparable with the original results (and
baseline methods) when the scale of σ varies from 0.01 to 1.

3Available at https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/wdbc.data.
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Figure 8. AUROC of a linear SVM classifier on the imputed Breast Cancer dataset, with various scales of σ from 0.01 to 1.

I.3. Wasserstein Gradient Flow

In this experiment, we first expand MNIST digits into 32× 32 pictures then adds a small random noise ϵ ∼ N (0, 0.0012I)
to each picture so that computing the sample mean and covariance will not cause numerical issues. For both forward and
backward KL WGF, we use a kernel bandwidth that equals to 1/5 of the pairwise distances in the particle dataset, as it is too
computationally expensive to perform cross validation at each iteration. After each update, we clip pixel values so that they
are in between [0, 1]. It is done using pyTorch torch.clamp function.

To reduce computational cost, at each iteration, we randomly select 4000 samples from the original dataset and 4000
particles from the particle set. We use these samples to estimate the WGF updates.

J. Discussion:Kernel Density Gradient Estimation
The Kernel Density Estimator (KDE) of p is

p̂(y) :=
1

np

np∑
i=1

k(x(i)
p ,y)/Z,

where Z is a normalization constant to ensure that
∫
p̂(x)dx = 1. Thus,

∇y log p̂(y) :=
1

np

np∑
i=1

∇yk(x
(i)
p ,y)/

1

np

np∑
i=1

k(x(i)
p ,y).

The normalizing constant Z is cancelled.

K. Discussion: Why Score Matching does not Work on Log Ratio Gradient Estimation
For Score Matching (SM), the estimator of p̂ := argmin

f

∫
p∥∇ log p − ∇ log f∥2dx, where the objective function is

commonly refered to as Fisher Divergence. To use SM in practice, the objective function is further broken down to∫
p∥∇ log p−∇ log f∥2dx =

∫
p∥∇ log f∥2dx+ 2

d∑
i=1

∫
p∂2i log fdx+ C, (22)

where we used the dimension-wise integration by parts and C is a constant.

Since our target is to estimate ∇ log p, we can directly model ∇ log p as g : Rd → Rd. The objective becomes∫
p∥g∥2dx+ 2

d∑
i=1

∫
p∂igidx+ C.
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SM can be used to estimate ∇ log p. One might assume that SM can also be used for estimating ∇ log r, where r := p
q . Let

us replace ∇ log p with ∇ log r in (22),∫
p∥∇ log r −∇ log f∥2dx =

∫
p∥∇ log f∥2dx− 2

d∑
i=1

∫
p∂i log r∂i log fdx+ C

=

∫
p∥∇ log f∥2dx+ 2

d∑
i=1

∫
q∂ir∂i log fdx+ C

=

∫
p∥∇ log f∥2dx+ 2

d∑
i=1

∫
r · ∂i(q∂i log f)dx+ C, (23)

=

∫
p∥∇ log f∥2dx+ 2

d∑
i=1

∫
r · q · ∂2i log fdx+ 2

d∑
i=1

∫
r · ∂iq · ∂i log fdx+ C (24)

and to get (23) we applied integration by parts, where we assumed q · r · ∂i log f → 0 as xi → ∞. In (24), the third term is
not tractable due to the lack of information about r and q. Changing the objective to

∫
p∥∇ log r−∇ log f∥2dx would also

yield an intractable objective for a similar reason.

L. Discussion: Gradient Flow Estimation in Feature Space
One of the issues of local estimation is the curse of dimensionality: Local approximation does not work well in high
dimensional spaces. However, since the f -divergence gradient flow is always associated with the density ratio function, we
can utilize special structures in density ratio functions to estimate ∇(h ◦ r)(x⋆) more effectively.

L.1. Density Ratio Preserving Map

Let s(x) be a measurable function, where s : Rd → Rm,m ≤ d. Consider two random variables, Xp and Xq, each
associated with probability density functions p and q, respectively. Define p◦ and q◦ as the probability density functions of
the random variables Sp := s(Xp) and Sq := s(Xq).

Definition L.1. s(x) is a density ratio preserving map if and only if it satisfies the following equality

r(x) = r◦(s(x)),where r◦(s(x)) :=
p◦(s(x))

q◦(s(x))
, ∀x ∈ X .

We can leverage the density ratio preserving map to reduce the dimensionality of gradient flow estimation. Suppose s(x) is
a known density ratio preserving map. Define z := s(x) and z⋆ := s(x⋆). We can see that

∇(h ◦ r)(x⋆)︸ ︷︷ ︸
Rd 7→Rd

= ∇(h ◦ r◦)(s(x⋆)) = ∇⊤s(x⋆)︸ ︷︷ ︸
Rd 7→Rd×m, known

∇(h ◦ r◦)(z⋆)︸ ︷︷ ︸
Rd 7→Rm

. (25)

If we can evaluate ∇s(x⋆), we only need to estimate an m-dimensional gradient ∇(h ◦ r◦)(z⋆), which is potentially easier
than estimating the original d-dimensional gradient ∇(h ◦ r)(x⋆) using a local linear model.

While Definition L.1 might suggest that s is a very specific function, the requirement for s to preserve the density ratio
is quite straightforward. Specifically, s must be sufficient in expressing the density ratio function. This requirement is
formalized in the following proposition:

Proposition L.2. Consider a function s : Rd → Rm. If there exists a function g : Rm → R+ such that r(x) =
g(s(x)),∀x ∈ X holds, then s is a density ratio preserving map. Additionally, it follows that g◦s = r = r◦◦s =⇒ g = r◦.

The proof can be found in Section M.

Proposition L.2 implies that we can identify the density ratio preserving map s by simply learning the ratio function r and
using the trained feature transform function as s. For instance, in the context of a neural network used to estimate r, s could
correspond to the functions represented by the penultimate layer of the network. After identifying s, we can simply translate
a high dimensional gradient flow estimation into a low dimensional problem according to (25).
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Algorithm 1 Searching for a Density Ratio Preserving Map s

1: Inputs: Dp, Dq and an initial guess of ŝ.
2: while ŝ not converged do
3: for each x ∈ Dp ∪ Dq do
4: z := ŝ(x)

5:
(
ŵ(z), b̂(z)

)
:= argmin

w∈Rm,b∈R
ℓ(w, b; z,Dp◦ ,Dq◦) |s=ŝ

6: d̂(z) := ⟨ŵ (z) , z⟩+ b̂ (z)
7: end for
8: ŝ := argmax

s∈S
Êp
[
d̂ (s (x))

]
− Êq

[
ψcon

(
d̂ (s (x))

)]
9: end while

10: Output: ŝ.

In practice, we find this method works well. However, this approach still requires us to estimate a high dimensional density
ratio function r to obtain a feature map s.

In the next section, we propose an algorithm of learning s from data without estimating a high dimensional density ratio
function.

L.2. Finding Density Ratio Preserving Map
Theorem L.3. Suppose h is associated with an f -divergence Dϕ according to Theorem 2.1 and Dψ is the mirror of Dϕ. If
r(x) = g∗(s∗(x)), then s∗ must be an arg sup of the following objective:

sup
s

Ep [h(r◦(s(x)))]− Eq [ψcon(h(r
◦(s(x))))] . (26)

Proof. Since r(x) = g∗(s∗(x)), Proposition C.1 implies that (g∗, s∗) is necessarily an arg sup to the following optimization
problem:

sup
s,g

Ep [h(g(s(x)))]− Eq [ψcon(h(g(s(x))))] .

Due to the law of unconscious statistician, Ep[f(s(x))] = Ep◦ [f(z)], where z = s(x). The above optimization problem
can be rewritten as

sup
s

sup
g

Ep◦ [h(g(z))]− Eq◦ [ψcon(h(g(z)))] ,

Proposition C.1 states that for all s, g = r◦ is an arg sup of the inner optimization problem. Substituting this optimal
solution of g and rewriting the expectation using x again, we arrive

sup
s

Ep [h(r◦(s(x)))]− Eq [ψcon(h(r
◦(s(x))))] .

Both expectations in (26) can be approximated using samples from p and q. Given a fixed s, h(r◦(z)) can be approximated
by an m-dimensional local linear interpolation

h(r◦(z)) ≈ d̂(z) := ⟨ŵ (z) , z⟩+ b̂ (z) ,
(
ŵ(z), b̂(z)

)
:= argmin

w∈Rm,b∈R
ℓ(w, b; z,Dp◦ ,Dq◦), (27)

where Dp◦ ,Dq◦ are sets of samples from p◦ and q◦ respectively.

Approximating expectations in (26) with samples in Dp and Dq and replacing h ◦ r◦ with d̂, we solve the following
optimization to obtain an estimate of s:

ŝ := argmax
s∈S

1

np

np∑
i=1

d̂
[
s
(
x(i)
p

)]
− 1

nq

nq∑
i=1

ψcon

[
d̂
(
s(x(i)

q )
)]
. (28)
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The optimization of (28) is a bi-level optimization problem as d̂ depends on (27). We propose to divide the whole problem
into two steps: First, let s = ŝ and solve for (ŵ, b̂). Then, with the estimated (ŵ, b̂), we solve for ŝ. Repeat the above
procedure until convergence. This algorithm is detailed in Algorithm 1.

In practice, we restrict S to be the set of all linear maps via a matrix S ∈ Rd×m whose columns are orthonormal basis, i.e.,
s(x) := S⊤x. The Jacobian ∇s(x) is simply S⊤.

After obtaining ŝ, we can approximate the gradient flow using the chain rule described in (25):

∇(h ◦ r)(x⋆) ≈ ∇⊤ŝ(x⋆)ŵ(z⋆),

where ŵ(z⋆) is approximated by an m-dimensional local linear interpolation(
ŵ(z⋆), b̂(z⋆)

)
:= argmin

w∈Rm,b∈R
ℓ(w, b; z⋆,Dp◦ ,Dq◦) |s=ŝ .

M. Discussion: Sufficient Condition of Density Ratio Preserving Map
In this Section, we provide a sufficient condition for s to be a density ratio preserving map.

Lemma M.1. If there exists some g : Rm → R+, such that r(x) = g(s(x)), then s is a density ratio preserving map and
g(s(x)) = r◦(s(x)).

Proof. The statement g(s(x)) being a density ratio p(x)
q(x) is equivalent to asserting that KL[p, q · (g ◦ s)] = 0. Since KL

divergence is always non-negative, it means

g = argmin
g:
∫
q(x)g(s(x))dx=1,g≥0

Ep
[
log

p(x)

q(x)g(s(x))

]
= Eq[log g(s(x))] + C1, (29)

i.e., g is a minimizer of KL[p, q · (g ◦ s)], where g ≥ 0 is constrained in a domain where q · (g ◦ s) is normalized to 1.

Similarly, r◦(z) being a density ratio p◦(z)
q◦(z) is the same as asserting that KL[p◦, q◦r◦] = 0 and is equivalent to

r◦ = argmin
g:
∫
q◦(z)g(z)dz=1,g≥0

Ep◦
[
log

p◦(z)

q◦(z)g(z)

]
= Eq◦ [log g(z)] + C2, (30)

i.e., r◦ is a minimizer of KL[p◦, q◦g].

In fact, one can see that (29) and (30) are identical optimization problems due to the law of the unconscious statistician:∫
q(x)g(s(x))dx = Eq[g(s(x))] = Eq◦ [(g(z))] =

∫
q◦(z)g(z)dz and Eq[log g(s(x))] = Eq◦ [log g(z)], which means

their solution sets are the same. Therefore, for any g that minimizes (29), it must also minimize (30). Hence it satisfies the
following equality r◦(s(x)) = g(s(x)) = r(x), where the second equality is by our assumption.

N. Discussion: Stein Variational Gradient Descent
SVGD minimizes KL[qt+1, p], where samples of qt+1 is constructed using the following deterministic rule:

xt+1 = xt + ηut(xt). (31)

xt are particles at iteration t, ut ∈ Hd, a d-dimensional Reproducing Kernel Hilbert Space (RKHS) with a kernel function
l(x,x′). Liu and Wang (2016) shows the optimal update ut has a closed form:

usvgd
t := Eqt [l(xt, ·)∇ log p(xt) +∇l(xt, ·)]. (32)

In practice, expectations Eqt [·] can be approximated by Êqt [·], i.e., the sample average taken from the particles at time t.
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Figure 9. Left: ∇ log r(x) and its approximations. Right: Estimation error with standard error.

Chewi et al. (2020) links SVGD with f -divergence WGF: usvgd
t is the backward KL divergence WGF under the coordinate-

wise transform of an integral operator. Indeed, the i-th dimension of SVGD update usvgdt,i can be expressed as

usvgdt,i :=Eqt [l(xt, ·)∂i log p(xt)] + Eqt [∂il(xt, ·)]
=Eqt [l(xt, ·)∂i log p(xt)]− Eqt [l(xt, ·)∂i log qt(xt)]

=

∫
qt(xt)l(xt, ·)∂i log

p(xt)

qt(xt)
dxt, (33)

where the last line is an integral operator (Wainwright, 2019) of the functional ∂i log p
qt

, i.e., the i-th dimension of the
backward KL divergence flow ∇ log rt. 4 Due to the reproducing property of RKHS, the SVGD update at some fixed point
x⋆ can be written as

usvgd(x⋆) = ⟨usvgd
t , l(·,x⋆)⟩Hd = Eq[l(x,x⋆)∇ log r(x)].

O. Additional Experiments
O.1. Gradient Estimation

Now we investigate the performance of estimating ∇ log r(x) using the proposed gradient estimator and an indirect estimator
using logistic regression. For the indirect estimator, we first train a Multilayer Perceptron (MLP) using a binary logistic
regression to approximate log r. Then obtain ∇ log r by auto-differentiating the estimated log ratio. The kernel bandwidth
in our method is tuned by using the model selection criterion described in Section 4.4.

To conduct the experiments, we let p = N (−5, .5)/3 + N (0, .5)/3 + N (5, .5)/3 and q = N (−5, 1)/3 + N (0, 1)/3 +
N (5, 1)/3. From each distribution, 5000 samples are generated for approximating the gradients.

The left plot in Figure 9 shows the true gradient and its approximations. It can be seen that the direct gradient estimation is
more accurate than estimating the log ratio first then taking the gradient.

The right plot in Figure 9 displays the estimation errors of different methods, comparing the proposed method with Kernel
Density Estimation (KDE) and score matching, all applied to the same distributions in the previous experiment. KDE was
previously used in approximating WGF (Wang et al., 2022). It first estimates p and q with p̂ and q̂ separately using non-
parametric kernel density estimators, then approximates ∇ log r with ∇ log p̂−∇ log q̂ . The score matching approximates
∇ log p̂ and ∇ log q̂ with the minimizers of Fisher-divergence. It has also been used in simulating particle ODEs in a
previous work (Maoutsa et al., 2020). The estimation error plot shows that the proposed estimator yields more accurate
results compared to the other two kernel-based gradient estimation methods, namely KDE and score matching.

O.2. Wasserstein Gradient Flow

In this experiment, we test the performance of the proposed gradient estimators by generating samples from a high
dimensional target distribution (MNIST handwritten digits). We will check whether the quality of the particles can be
improved by performing WGC using our estimated updates. Note that we do not intend to compare the generated samples

4Note that the second equality in (33) is due to the integration by parts, and only holds under conditions that lim∥x∥→∞ qt(x) = 0.
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Figure 10. Samples generated using forward and backward KL velocity field.

Figure 11. {xqt} in the first two dimensions x1, x2. Feature space WGF converges in fewer steps compared to WGF in the original space.
Above: g = cos. Below: g = sin.

with NN-based approaches, as the focus of our paper is on local estimation using kernel functions. We perform two
different WGFs, forward KL and backward KL whose updates are approximated using ŵ→ and ŵ← respectively. We let
the initial particle distribution q0 be N (µ,Σ), where µ,Σ are the mean and covariance of the target dataset and fix the
kernel bandwidth using “the median trick” (see the appendix for details).

The generated samples together with samples from the initial distribution q0 are shown in Figure 10. Judging from the
generated sample quality, it can be seen that both VGDs perform well and both have made significant improvements from
the initial samples drawn from q0.

We also provide two videos showing the animation of the first 100 gradient steps:

• Forward KL: https://youtube.com/shorts/HZcvUykrpbc

• Backward KL: https://youtube.com/shorts/AgN6dsDecCM

O.3. Feature Space Wasserstein Gradient Flow

In this experiment, we run WGF in a 5-dimensional space. The target distribution is

p = p12(x1,2)p345(x3,4,5), p345 := N (0, I)

and p12 is constructed by a generative process. We generate samples in the first two dimensions as follows

X1 = g(X2) + ϵ,X2 ∼ N (0, 1), ϵ ∼ N (0, 1).

In our experiment, we draw 5000 samples from p, and 5000 samples from q0 := N (0, I), and run the backward KL gradient
flow. Clearly, this WGF has a low dimensional structure since p and q only differs in the first two dimensions. We also run
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feature space backward KL field whose updates are calculated using (25). The feature function s(x) = S⊤x is learned by
Algorithm 1.

The resulting particle evolution for both processes is plotted in Figure 11. For visualization purposes, we only plot the first
two dimensions. It can be seen that the particles converge much faster when we explicitly exploit the subspace structure
using the feature space WGF. In comparison, running WGF in the original space converges at a much slower speed.

In this experiments, we set the learning rates for both WGF and feature space WGF to be 0.1 and the kernel bandwidth σ in
our local estimators is tuned using cross validation with a candidate set ranging from 0.1 to 2.
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