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Abstract

Catastrophic forgetting poses a significant chal-
lenge in continual learning (CL). In the con-
text of Natural Language Processing, generative-
based rehearsal CL methods have made progress
in avoiding expensive retraining. However, gen-
erating pseudo samples that accurately capture
the task-specific distribution remains a daunting
task. In this paper, we propose Dirichlet Contin-
ual Learning (DCL), a novel generative-based re-
hearsal strategy designed specifically for CL. Dif-
ferent from the conventional use of Gaussian la-
tent variable in Conditional Variational Autoen-
coder, DCL employs the flexibility of the Dirich-
let distribution to model the latent variable. This
allows DCL to effectively capture sentence-level
features from previous tasks and guide the genera-
tion of pseudo samples. Additionally, we introduce
Jensen-Shannon Knowledge Distillation, a robust
logit-based knowledge distillation method that en-
hances knowledge transfer during pseudo-sample
generation. Our extensive experiments show that
DCL outperforms state-of-the-art methods in two
typical tasks of task-oriented dialogue systems,
demonstrating its efficacy.

1 INTRODUCTION

Continual learning (CL) is a significant learning paradigm
that aims to emulate human capacity for continuous learn-
ing and knowledge accumulation, while also ensuring that
previously learned knowledge is retained and effectively
transferred to facilitate the learning of new tasks [Parisi
et al., 2019a]. However, in practice, models often encounter
the notorious issue of catastrophic forgetting (CF), which
refers to the phenomenon of models forgetting previously
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learned tasks when learning new tasks [McCloskey and Co-
hen, 1989, Parisi et al., 2019b]. This challenge is particularly
prominent in the context of Natural Language Processing
(NLP), where the complexity and diversity of language pose
additional difficulties for CL [Ke and Liu, 2022b, Mehta
et al., 2023].

To address the CF issue, various approaches have been pro-
posed: (1) Regularization methods aim to minimize updates
to the important parameters of previous tasks, thus pre-
serving their performance [Kirkpatrick et al., 2017, Zenke
et al., 2017, Aljundi et al., 2018]. However, the accumula-
tion of regularizers may overly constrain network parame-
ters, hindering the learning of new tasks. (2) Architectural
approaches modify the network structure to enhance the
extraction of task-specific features [Serra et al., 2018, Ke
et al., 2021, Madotto et al., 2021, Zhang et al., 2022]. How-
ever, their task-focused approach may overlook effective
knowledge transfer across tasks. (3) Rehearsal strategies
involve replaying samples from previous tasks during train-
ing with the current task dataset [Lopez-Paz and Ranzato,
2017, Sun et al., 2019, Rolnick et al., 2019, Chuang et al.,
2020, Mi et al., 2020a,b, Zhao et al., 2022a]. Rehearsal
methods can be categorized into store-based rehearsal and
generative-based rehearsal. It is worth noting that rehearsal
methods have shown promise in mitigating forgetting in CL.
However, store-based rehearsal may result in inefficiencies
and increased memory demands, while generative-based
rehearsal emerges as a more effective alternative. This ap-
proach facilitates efficient memory utilization and knowl-
edge retention across sequential learning scenarios.

Generative-based rehearsal methods have emerged as
promising approaches for mitigating the need for extensive
retraining [Parisi et al., 2019b, Ke and Liu, 2022a]. These
methods aim to generate pseudo samples that closely mimic
the task-specific distribution, enabling the model to retain
knowledge from previous tasks. However, generating such
samples accurately remains a challenging task. The success
of generative replay hinges on the production of high-quality
pseudo samples that effectively approximate the real data
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distribution of prior tasks. Higher-quality pseudo samples
inherently contribute to better preservation of learned tasks,
thereby minimizing forgetting in CL. However, previous
studies [Sun et al., 2019, Chuang et al., 2020, Zhao et al.,
2022a] have often demonstrated limited diversity, fluency,
or poor alignment with the designated task when generating
pseudo samples for each observed task.

To address these challenges, we propose a novel generative-
based rehearsal strategy, called Dirichlet Continual Learning
(DCL), specifically tailored for CL in NLP. In contrast to
conventional approaches that employ the Gaussian latent
variable in Conditional Variational Autoencoders (CVAE),
DCL harnesses the flexibility and versatility of the Dirichlet
distribution to model the latent prior variable. This unique
feature empowers DCL to effectively capture and repre-
sent sentence-level features from previous tasks, laying a
solid foundation for generating high-quality pseudo sam-
ples. Moreover, we introduce Jensen-Shannon Knowledge
Distillation (JSKD), a robust logit-based knowledge distil-
lation method that enhances knowledge transfer during the
generation of pseudo samples. By accurately measuring the
similarity of the teacher model learned from previous tasks
and the student model learned from the current task, JSKD
facilitates the transfer of accumulated knowledge from pre-
vious tasks to the current task. This approach augments the
effectiveness of the rehearsal process, ensuring that the gen-
erated samples retain and reflect the task-specific knowledge
acquired by the model.

We summarize our main contributions as follows:

• We propose a novel generative-based rehearsal method,
which effectively addresses the issue of forgetting and
diversity by employing the Dirichlet latent variable
within the framework of Conditional Variational Au-
toencoders (CVAE). This approach enables us to ap-
proximate the real data distribution more accurately,
thereby improving the quality of generated pseudo sam-
ples.

• We introduce Jensen-Shannon Knowledge Distillation
(JSKD), a new logit-based knowledge distillation strat-
egy that enhances the transfer of knowledge between
teacher and student models. JSKD facilitates more ef-
fective and robust knowledge transfer, leading to im-
proved performance in the generation of pseudo sam-
ples.

• Through extensive experiments on two typical tasks
in task-oriented dialogue systems, we demonstrate the
remarkable performance improvement achieved by our
proposed DCL compared to state-of-the-art baselines
for CL in NLP. DCL achieves performance close to
the upper bound of multi-task learning, showcasing its
effectiveness. Most notably, we outperform the state-
of-the-art generative-based rehearsal method, Prompt
Conditioned VAE for Lifelong Learning (PCLL), in
all metrics. Specifically, in Intent Detection, our DCL

method achieves a significant 3.48% accuracy improve-
ment and a 4.22% Learning Curve Area (LCA) im-
provement. Similarly, in Slot Filling, DCL demon-
strates a notable 2.89% accuracy improvement and
a 6.08% LCA improvement.

2 RELATED WORK

We highlight related work in the following two subsections.

2.1 CONTINUAL LEARNING

CL can be categorized into three main strategies:

• Regularization methods aim to strengthen previous
knowledge by imposing constraints on important pa-
rameters and incorporating regularization terms into
the loss function. One notable approach is Elastic
Weight Consolidation (EWC) [Kirkpatrick et al., 2017],
which identifies crucial parameters and prevents their
updates, thereby preserving performance on previ-
ous tasks. Additionally, the Synaptic Intelligence (SI)
model [Zenke et al., 2017] dynamically computes per-
synapse consolidation strength throughout the learning
trajectory. Memory Aware Synapses (MAS) [Aljundi
et al., 2018] determine parameter importance in an on-
line and unsupervised manner. Learning without Mem-
orizing (LwM) [Dhar et al., 2019] utilizes attention
distillation loss to support the progressive learning of
new classes, making it effectively preserves informa-
tion on base classes when incorporating new classes.
However, the accumulation of multiple regularizers
may overly constrain network parameters, potentially
hindering the learning of new tasks.

• Architectural approaches usually modify the network
structure to capture task-specific features and mitigate
catastrophic forgetting. PathNet [Fernando et al., 2017]
introduces dynamic pathway evolution, allowing the
model to learn task-specific paths through a shared
network. CL with GANs [Seff et al., 2017] employs
adversarial training to achieve a balance between learn-
ing new tasks and retaining knowledge from previous
tasks. Piggyback GAN [Zhai et al., 2020] shares filter
between tasks, enabling high-quality generation with
fewer parameters while preserving performance on pre-
vious tasks. However, their task-focused approach may
overlook effective knowledge transfer between old and
new tasks.

• Rehearsal methods, utilized to sustain performance
by leveraging samples from previous tasks, can be
classified into two categories: store-based rehearsal
and generative-based rehearsal. Store-based rehearsal
methods, such as Replay in Deep Learning [Hayes
et al., 2021] and Gradient-based Memory Editing
(GMED) [Jin et al., 2021], rely on episodic memory



to store examples from previous tasks. For instance,
iCaRL [Rebuffi et al., 2017] incorporates a herding-
based step to select representative samples and alleviate
the catastrophic forgetting problem. Gradient Episodic
Memory (GEM) [Lopez-Paz and Ranzato, 2017] stores
and replays important exemplars from previous tasks
while learning new ones. Experience replay (ER) for
CL [Rolnick et al., 2019] continuously trains the model
using batch gradient descent by sampling examples
from both the current task and the episodic memory.
On the other hand, generative-based rehearsal meth-
ods, such as CL with deep generative replay [Shin
et al., 2017], rely on generative adversarial networks
(GANs) [Goodfellow et al., 2014] to create synthetic
samples. ReMix [Mi et al., 2020b] generates pseudo
samples by applying Mixup [Zhang et al., 2017] to
samples from previous tasks. However, store-based
rehearsal methods can be inefficient and require in-
creased memory demands, while generative-based re-
hearsal methods may suffer from limited diversity, flu-
ency, or poor alignment with the designated task.

2.2 CONTINUAL LEARNING IN NLP

Within the context of CL in NLP, researchers have explored
various strategies to address the challenges associated with
evolving language tasks:

• Regularization Adaptively Regularized Prioritized Ex-
emplar Replay (ARPER) [Mi et al., 2020a] presents
the initial attempt to explore a practical continual learn-
ing configuration for Natural Language Generation
(NLG) by incorporating prioritized exemplar replay
and adaptive regularization based on Elastic Weight
Consolidation (EWC). Specifically, ARPER prioritizes
representative and diverse utterances in exemplar se-
lection, aiming to comprehensively cover information
from previous tasks.

• Architectural Adapter-based Continual Learning
(AdapterCL) [Madotto et al., 2021] is an architectural
approach that places residual adapters [Houlsby et al.,
2019] atop the transformer layer to approximate each
task in a continual learning setting. Continual Prompt
Tuning (CPT) [Zhu et al., 2022] ensures non-forgetting
and bidirectional knowledge transfer in a parameter-
efficient dialog system. It utilizes techniques such as
prompt learning, memory replay, and query fusion to
facilitate continual learning. Semi-Supervised Lifelong
Learning (SSLL) [Zhao et al., 2022b] integrates both la-
beled and unlabeled data for sequentially arriving tasks
in a continual learning setting. It incorporates special-
ized modules to mitigate forgetting and harness the po-
tential of unlabeled data. Adaptive Continual Modeling
(ACM) [Zhang et al., 2022] adopts a two-stage method
to achieve efficient continual sequence generation. It

dynamically adds or reuses modules based on task
similarity and employs pseudo rehearsal for effective
knowledge transfer, outperforming existing baselines
in continual learning scenarios. GRACE [Hartvigsen
et al., 2022], a novel model editing method, enables
thousands of sequential edits on deployed language
models to address performance decay over time with-
out significant degradation.

• Rehearsal Language Model with Adaptive Learn-
ing (LAMOL) [Sun et al., 2019] is a rehearsal
method based on continual sequence generation. The
generative-based rehearsal approach employed by
LAMOL does not require memory to store previ-
ous samples. L2KD [Chuang et al., 2020] improves
LAMOL by assigning an extra teacher for each new
task to perform knowledge distillation PCLL [Zhu
et al., 2022] adopts a CVAE to generate pseudo sam-
ples from past tasks, which are then used for continual
learning.

The remarkable performance of PCLL motivates us to ex-
plore further in this paper.

3 METHOD

3.1 PROBLEM FORMULATION

A CL model in NLP aims to learn a stream of NLP tasks
sequentially, T = {T1, · · · , TN}, where N is the number
of tasks, which can be potentially infinite. For task n, de-
noted by Tn, its data Dn = {(xi, yi)}Nn

i=1 are drawn from
an underlying data distribution. Here, xi denotes an input
utterance, and yi denotes the output label. In Intent Detec-
tion, a typical example can be (“I need you to get me a flight
booked from Houston to Miami on United Airlines”, “book
flight”). Meanwhile, in Slot Filling, a typical example is
{“utterance: “how many comedy movies starring kevin cost-
ner have come out in the year 2000”, “GENRE: comedy;
ACTOR: kevin costner”}. Our goal is to train a model capa-
ble of excelling in all encountered tasks while minimizing
the extent of forgetting.

3.2 OVERVIEW

Figure 1 depicts the key components of our proposed
method, called Dirichlet Continual Learning (DCL). DCL
comprises the pseudo rehearsal module and the Language
Model (LM) training module. Prior to training the current
task, we utilize CVAE with the Dirichlet distribution to
model the latent variable, generating pseudo samples from
previous tasks. DCL then continues training using both the
pseudo data and real data from the current task, enhanc-
ing model robustness through the employment of JSKD. In
the CVAE framework, the encoder and decoder utilize a
pre-trained language model, such as GPT-2, with separate
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Figure 1: DCL consists of two key modules: the pseudo rehearsal module and the LM training module. The DCL model
follows two main steps: (1) During the training of Task N , the pseudo rehearsal module uses CVAE with Dirichlet latent
variable to generate pseudo samples from Task 1 to Task N − 1. (2) These pseudo samples are combined with the training
data from Task N to further train DCL, with the inclusion of JSKD to ensure robust training.

parameters. Importantly, the LM shares parameters with the
decoder of CVAE, enabling the construction of a unified
model to address the CL problem.

3.3 MODULES

LM Training Module For data sample (xi, yi) ∈ Dn in
task Tn, given an input utterance xi, LM aims to generate
the corresponding output yi. To achieve task-dependent gen-
eration, we define specific prefix prompt Pn and postfix
prompt P ∗

n for task Tn. These prompts are concatenated
with the input utterance, resulting in the augmented input
g(xi) = Pn ⊕ xi ⊕ P ∗

n , where ⊕ denotes word concatena-
tion. The details of Pn and P ∗

n can be found in Appendix A.
The LM for task Tn is optimized based on g(xi) which car-
ries the task-specific information. The LM is optimized by
minimizing the loss which is defined by LLM as follows:

−
∑

(xi,yi)∈Dn

log pθ(g(xi), yi) + log pθ(yi|g(xi)). (1)

Gaussian-guided Pseudo Rehearsal Module Following
the setting of PCLL, we employ CVAE to model the distri-
bution of high-dimensional data x using lower-dimensional
latent variable z [Agarwal et al., 2023]. Let z be a contin-
uous variable representing the sentence-level features of
input utterance x, and we take the task ID as c. The gen-
erative process involves an encoder qϕ(z|x, c) mapping x
to approximate the true posterior p(z|x, c). The latent vari-
able is sampled from qϕ(z|x, c), and a decoder pθ(x|z, c)
reconstructs x. The CVAE is trained to maximize the log-
likelihood log p(x|c), which is tractable by maximizing the

evidence lower bound (ELBO) L(θ, ϕ;x, c):

L(θ, ϕ;x, c)︸ ︷︷ ︸
−LG

CVAE

= −λKL(qϕ(z|x, c)||pθ(z|c))︸ ︷︷ ︸
LG

KL

− (−Eqϕ(z|x,c)[log pθ(x|z, c)])︸ ︷︷ ︸
LRec

≤ log p(x|c), (2)

where LG
CVAE denotes the CVAE loss which is the negative

of ELBO. LG
KL is the Kullback–Leibler (KL) loss measuring

the distribution distance of Gaussian latent. LRec represents
the reconstruction loss. θ is the model parameter, pθ(z|c) is
the prior distribution of z, and λ is the dynamic KL weight,
gradually increasing from 0 to 1 via the annealing technique,
to mitigate the KL-vanishing as proposed by Bowman et al.
[2016]. The CVAE is trained by minimizing LG

CVAE.

Dirichlet-guided Pseudo Rehearsal Module In contrast to
conventional CVAE, where the latent variable z ∼ N (µ,Σ)
is sampled from a symmetric multivariate Gaussian in a
continuous space, our DCL samples the latent variable
z ∼ Dir(α) from a Dirichlet distribution in a discrete space,
with α as the parameter vector. By leveraging the versatile
mathematical properties of the Dirichlet distribution, our
DCL model better approximates the actual token distribu-
tion, which can exhibit concave, convex, symmetrical, or
asymmetrical behavior. Since the Cumulative Distribution
Function (CDF) of the Dirichlet distribution is unknown, we
cannot employ the inverse CDF for sampling the Dirichlet
latent variable. Therefore, we use rejection sampling, fol-
lowing the suggestion by [Jankowiak and Obermeyer, 2018].
DCL then replaces LG

CVAE by LD
CVAE and aims to train the

model by minimizing the following loss:

LDCL = LLM + λLD
KL + LRec︸ ︷︷ ︸
LD

CVAE

, (3)



where LD
KL is the KL loss on the Dirichlet latent and is

expressed as [Zeng et al., 2019]:

log Γ(

K∑
k=1

αk)−
K∑

k=1

log Γ(αk)− log Γ(

K∑
k=1

βk) (4)

+

K∑
k=1

log Γ(βk) +

K∑
k=1

(αk − βk)(ψ(αk)− ψ(

K∑
k=1

αk)),

where α and β represent the parameters of the Dirichlet
distributions qϕ(z|x, c) and pθ(z|c), respectively.K denotes
the dimension of z. Γ is the gamma function and ψ is the
Digamma function.

3.4 KNOWLEDGE DISTILLATION

To address the issue of potential drift in the pseudo data
distribution and the negative impact of noise when combin-
ing generated pseudo samples with real training data, we
leverage knowledge distillation (KD) techniques [Chuang
et al., 2020, Mi et al., 2020a, Zhao et al., 2022a, Chen et al.,
2023] to safeguard DCL against the adverse effects of noisy
pseudo data.

In DCL, the student model fθn is trained on task Tn, while
the teacher model fθn−1 is trained on task Tn−1. We distill
the knowledge from fθn−1 to fθn using the pseudo data,
minimizing the knowledge distillation loss. As training pro-
gresses, the roles are switched, with the Tn model becoming
the teacher for Tn+1. This iterative role-switching enables
the accumulation of cumulative knowledge from previous
tasks, ensuring effective CL.

KD via KL Divergence Given a training sample (xi, yi),
the goal is to minimize the cross-entropy between the prob-
ability distributions produced by the teacher and student
models [Chuang et al., 2020]. The knowledge distillation
loss is:

LKD = α · LKL(Si, Ti) · τ2 + (1− α) · LCE(Si, yi), (5)

where Si = fθn(xi) and Ti = fθn−1
(xi) are output logits

of the student and teacher model for the input xi, respec-
tively. τ is the temperature to soften the teacher’s prediction
while LCE(Si, yi) quantifies the cross-entropy loss between
student prediction and the ground truth label yi. LKL im-
plicitly prevents the parameters of the student model from
straying too far away from the ones of the teacher model.
The first term denotes a soft target while the second term is
a hard target. α ∈ [0, 1] trades off two terms.

KD via JS Divergence Previous methods, such as [Hin-
ton et al., 2015], employ KL divergence to measure the
distribution similarity between student and teacher models.
However, KL divergence is sensitive to outliers, making
it less robust in scenarios with noisy or sparse data. To
address this limitation, we introduce Jensen-Shannon (JS)

divergence as a more stable alternative, incorporating a sym-
metric term. Leveraging this, we propose Jensen-Shannon
Knowledge Distillation (JSKD), a novel logit-based method,
which achieves remarkable performance in knowledge dis-
tillation.

JS Divergence Given distributions p and q, JS divergence
[Lin, 1991] is defined by:

LJS(p∥q) = 1
2 [LKL

(
p∥ 1

2 (p+ q)
)
+ LKL

(
q∥ 1

2 (p+ q)
)
].

(6)

JS divergence offers advantages over KL divergence: a)
its symmetry ensures consistent values regardless of com-
parison order, making it ideal for measuring distribution
similarities; b) JS divergence is bounded in the range [0, 1],
while KL divergence spans [0,+∞); c) Unlike the asymmet-
ric KL divergence, JS divergence symmetrically measures
the similarity between two probability distributions, with
values ranging from 0 (for identical distributions) to 1 (for
distributions with no shared support).

These properties make JS divergence more suitable for
knowledge distillation compared to KL divergence, par-
ticularly KL divergence may yield infinite value when one
sample appears exclusively in one task distribution.

Based on the above discussions, we propose JSKD to mea-
sure the distance between the student and teacher models,
improving model robustness. The JSKD loss is defined as:

LKD = α · LJS(Si, Ti) · τ2 + (1− α) · LCE(Si, yi). (7)

Specifically, we adopt the model trained on Tn−1 as the
teacher model and the current task Tn as the student model.
Incorporating knowledge distillation, the LRec and LLM for
task Tn is modified as:

LJS
Rec = α · LJS(lc, l

∗
c ) · τ2 + (1− α) · LCE(lc, yi), (8)

LJS
LM = α · LJS(ll, l

∗
l ) · τ2 + (1− α) · LCE(ll, yi), (9)

where lc and ll are the logits output of CVAE and LM of
task Tn, respectively. l∗c and l∗l represent the logits output of
task Tn−1, and yi signifies the ground truth.

Hence, our DCL with JSKD is trained by minimizing the
following loss:

LJS
DCL = LJS

LM + λLD
KL + LJS

Rec. (10)

We emphasize that LD
KL is the KL divergence in Eq. (4) to

evaluate the distance between the assumed Dirichlet data
distribution and the real distribution. It is different from the
LKL where it evaluates the distance between the student and
teacher models in cross-task knowledge distillation.



4 EXPERIMENTS

4.1 DATASETS

Based on the setup and pre-processed datasets described in
PCLL [Zhao et al., 2022a], as detailed in Appendix B, we
conduct experiments to simulate continual learning (CL)
for two NLP tasks in task-oriented dialogue systems: Intent
Detection and Slot Filling. In Intent Detection, we utilize
six datasets annotated with intents: HWU [Liu et al., 2021],
BANKING [Casanueva et al., 2020], CLINC [Larson et al.,
2019], SNIPS [Coucke et al., 2018], AITS [Hemphill et al.,
1990], and TOP [Gupta et al., 2018] datasets. Notably, the
TOP dataset is divided into three distinct subsets: TOP-S1,
TOP-S2, and TOP-S3. These subsets, along with the other
five datasets, constitute a total of eight tasks used to evaluate
CL in the intent detection experiment. In Slot Filling, we
adopt the SNIPS, AITS, DSTC [Rastogi et al., 2020], MIT-
MOVIE, and MIT-RESTAURANT datasets. These datasets
yield a total of five tasks to evaluate CL in the slot filling
experiment. For a fair comparison, these tasks are learned
in six different orders, as depicted in Appendix C, and the
average performances of these orders are reported.

4.2 COMPARED METHODS

We compare our DCL with eleven competitive baselines:
(1) Fine-tune directly fine-tunes GPT-2 on the task stream
without preventing catastrophic forgetting (CF); (2-3) Two
typical regularization methods are EWC [Kirkpatrick et al.,
2017] and MAS [Aljundi et al., 2018], which penalize
changes of important parameters to mitigate forgetting; (4-
6) Three architectural methods include HAT [Serra et al.,
2018] with task-based hard attention, CTR [Ke et al., 2021]
which inserts continual learning plug-ins into BERT, and
AdapterCL [Madotto et al., 2021] with task-specific resid-
ual adapters; (7-11) Four rehearsal methods consist of two
variants of LAMOL [Sun et al., 2019], LAMOL-g and
LAMOL-t for global incorporation and task-specific tokens
respectively, ER [Rolnick et al., 2019] which preserves pre-
viously seen real samples for replay, L2KD [Chuang et al.,
2020] which performs knowledge distillation with an extra
teacher, and PCLL [Zhao et al., 2022a], the current state-
of-the-art method that applies prompt conditioned VAE for
lifelong learning; (12) Additionally, we evaluate the model
performance when all tasks are trained simultaneously in
a multi-task learning setting (Multi), which serves as the
upper bound in the comparison.

4.3 EXPERIMENTAL SETTINGS

The experiments are conducted on an NVIDIA A100-80GB
GPU, utilizing the Adam optimizer for both tasks. For In-
tent Detection, the following parameter settings are applied

Table 1: Comparison results of DCL and baselines. Scores
of baselines are reported in [Zhao et al., 2022a] and the
performance of Multi is the upper bound. The best results
are highlighted in bold.

Models Intent Detection (%) Slot Filling (%)
Score ↑ LCA ↑ Score ↑ LCA ↑

Finetune 14.09 28.76 15.38 19.55
EWC 14.16 28.34 15.67 19.51
MAS 14.15 28.61 15.59 19.37
HAT 73.92 73.03 61.99 67.33
CTR 67.44 71.11 63.84 67.28
AdapterCL 81.15 75.60 75.60 48.47
L2KD 35.22 61.78 44.16 39.94
LAMOL-g 50.30 60.67 45.12 38.03
LAMOL-t 51.81 67.97 44.83 37.58
ER 78.19 78.19 44.95 39.32
PCLL 90.25 88.82 74.48 68.41
DCL 93.73 93.04 77.37 74.49
Multi (Upper Bound) 96.25 N/A 80.80 N/A

due to their good performance: batch size: 32, learning rate:
5e-5, pseudo-sample rate: 0.2, z’s dimension: 128, maxi-
mum context length: 256, and the number of epochs: 5. In
knowledge distillation (KD), α was set to 0.9 and τ to 2.0.
Unless specified otherwise, the parameters used in Slot Fill-
ing are the same as those in Intent Detection, except for z’s
dimension (set to 512), maximum context length (set to 50),
the number of epochs (set to 10), and the KD parameters
α (set to 1.0) and τ (set to 2.0). The training time for DCL
on Intent Detection using a single GPU is approximately 5
hours, while for Slot Filling, it is around 6 hours.

4.4 EVALUATION METRICS

We adopt the accuracy score and macro-averaged F1 score
to evaluate the performance of Intent Detection and Slot
Filling, respectively. Following [Lopez-Paz and Ranzato,
2017, Chaudhry et al., 2018], we employ the following two
metrics to evaluate the performance: (1) Average Score
(Score) [Lopez-Paz and Ranzato, 2017] defines the average
accuracy on all tasks after the final task has been learned:

Score = 1
T

T∑
i=1

RT,i, where Ri,j denotes the evaluation

metric on task tj after training on task ti. (2) Learning
Curve Area (LCA) [Chaudhry et al., 2018] is the area
under a learning curve to indicate a model’s performance
in a sequence of tasks: LCA =

∫ T

0
P (t)dt, where P (t) is

the average model performance at step t across all already-
learnt tasks, and T is the total number of steps. Higher LCA
values indicate better performance.

4.5 MAIN RESULTS

Table 1 presents the performance of our proposed DCL
model compared to the baselines. DCL demonstrates a sig-



nificant improvement over all baselines in both tasks:

• DCL surpasses the state-of-the-art model, PCLL, by
a wide margin, achieving superior results across all
evaluation metrics. In Intent Detection, DCL achieves
a remarkable 3.48% increase in accuracy score and a
4.22% improvement in LCA. Similarly, in Slot Filling,
DCL achieves a notable 2.89% increase in F1 score
and a substantial 6.08% improvement in LCA. These
impressive enhancements are attributed to the effective
utilization of Dirichlet-guided pseudo rehearsal and
JSKD techniques. By leveraging these components,
DCL generates a more diverse and representative set
of examples, leading to further optimization of model
performance. The generation of diverse and representa-
tive examples is crucial for effectively capturing task-
specific information, particularly when the number of
available pseudo samples is limited.

• DCL achieves performance that is comparable to the
upper bound in Multi-task learning (Multi), with only
a slight lag of 2.52% in accuracy for Intent Detection
and 3.43% in F1 score for Slot Filling. This slight dif-
ference in performance can be attributed to variations
in the amount of data and the realism of the samples
used for evaluation.
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Figure 2: Learning curves of DCL and PCLL.

4.6 ABLATION STUDY

Learning curves of DCL vs. PCLL Figure 2 presents the
learning curve of average scores to gain deeper insights
into DCL and PCLL. The significant drop in accuracy ob-
served during task switching demonstrates the challenge of
catastrophic forgetting. However, DCL proves to be more
effective in mitigating this issue, as evidenced by its higher
accuracy compared to PCLL. Specifically, DCL outper-
forms PCLL in Intent Detection after 6,000 steps, whereas it
achieves a similar superiority over PCLL in Slot Filling after
around 1,000 steps. This trend suggests that as the model
encounters a more diverse range of tasks, the benefits of
DCL become more pronounced, highlighting the promising
nature of our approach.

Table 2: Results of DCL with KL knowledge distillation
and PCLL in two tasks. DCL outperforms PCLL across all
metrics.

Models Intent Detection (%) Slot Filling (%)
Score ↑ LCA ↑ Score ↑ LCA ↑

PCLL 90.25 88.82 74.48 68.41
DCL (with KL) 92.83 91.32 76.42 73.76

Table 3: F1 score(%) and LCA (%) of Slot Filling on six
orders with KL and JS knowledge distillation.

Orders
DCL (with KL) DCL (with JS)

Score ↑ LCA ↑ Score ↑ LCA ↑
order 0 80.26 73.82 81.39 74.66
order 1 80.31 74.82 80.94 75.23
order 2 74.04 70.01 74.77 70.73
order 3 77.00 76.28 78.03 76.69
order 4 72.98 70.10 74.53 70.99
order 5 73.92 77.50 74.56 78.61
Mean 76.42 73.76 77.37 74.49

Gaussian vs. Dirichlet-guided Rehearsal Module. We
conduct a comparative analysis of DCL and PCLL in In-
tent Detection and Slot Filling to evaluate the impact of a
Dirichlet-guided rehearsal module. To ensure a fair compar-
ison, DCL incorporates KL knowledge distillation, similar
to PCLL. The results presented in Table 2 demonstrate that
DCL, with the Dirichlet-guided rehearsal module, consis-
tently outperforms PCLL, which utilizes a Gaussian-guided
module, across all evaluation metrics in both tasks. These
findings indicate that the Dirichlet distribution provides a
more effective approximation of the true data distribution,
leading to better performance.

KL Knowledge Distillation vs. JSKD. We evaluate the
impact of JSKD on the performance of DCL and compare it
with DCL equipped with KL Knowledge Distillation. Due
to space limitations, we only report the performance in Slot
Filling under different learning orders, as summarized in
Table 3, where the performance in Intent Detection follows
similar trends and we report it in Table 4. Our findings con-
sistently demonstrate that DCL equipped with JS knowledge
distillation significantly outperforms DCL with KL knowl-
edge distillation across all task learning orders with 99%
confidence level on the paired t-test. Notably, we observe
significant improvements ranging from 0.63% to 1.55% in
the F1 score and 0.41% to 1.11% in LCA. This conclusion
also holds for Intent Detection.

Number of Pseudo Samples. To assess the impact of the
number of pseudo samples on the proposed approach, we
experiment with different ratios of pseudo samples in DCL.
Table 5 compares the performance of PCLL to DCL with
ratios of 0.1, 0.2, 0.4, and 0.5. Results about different ratios
of PCLL can be referred to Zhao et al. [2022a]. Remark-
ably, even with fewer pseudo samples incorporated during
training, DCL with a ratio of 0.1 surpasses PCLL with a



Table 4: ACC score(%) and LCA (%) of Intent Detection on
six orders with KL and JS knowledge distillation.

Orders
DCL (with KL) DCL (with JS)

Score ↑ LCA ↑ Score ↑ LCA ↑
order 0 92.76 91.27 93.52 92.69
order 1 92.76 88.49 93.64 90.45
order 2 92.56 93.36 93.74 95.47
order 3 92.91 91.53 93.83 93.34
order 4 92.68 89.92 93.79 92.04
order 5 93.33 93.32 93.85 94.22
Mean 92.83 91.32 93.73 93.04

Table 5: Comparison result of PCLL with pseudo samples
ratio of 0.2 and DCL with a different number of pseudo
samples numbers ranging from 0.1 to 0.5 in Intent Detection.

Model Ratio Score LCA
PCLL 0.05 84.09 89.54
PCLL 0.2 90.25 88.82
PCLL 0.5 91.02 91.44
PCLL 1.0 91.31 91.77
DCL 0.1 91.66 91.83
DCL 0.2 93.73 93.04
DCL 0.4 93.97 92.76
DCL 0.5 94.23 92.82

ratio of 0.2 in both metrics. This demonstrates the superi-
ority of DCL. Furthermore, we observe that performance
improves with an increasing number of pseudo samples.
This can be attributed to the fact that more samples carry
more information, thereby enhancing the capabilities of the
model.

Evaluating Pseudo Samples Quality. To compare the qual-
ity of the generated pseudo samples in different baselines
with our proposed model, we utilize Dist-n [Li et al., 2015]
to assess pseudo samples. Dist-n measures the proportion of
distinct n-grams in the generated pseudo samples. A higher
Dist-n value corresponding to larger pseudo sample diver-
sity is preferred where the samples are more distinct. We
employ Dist-1, Dist-2, Dist-3, and Dist-4 to analyze the
quality of generated samples completely.

Given the limited number of pseudo samples, the quality
of our exemplars is crucial to preserve the performance of
previous tasks. We aim to carefully select representative and
diverse utterances instead of generic and similar ones. Ta-
ble 6 summarizes the Dist-n results. Notably, DCL achieves
higher distinct scores compared to other methods, indicating
that DCL-generated pseudo samples exhibit larger diversity.
This suggests that pseudo samples created by DCL are more
similar to real samples.

Dimension of Latent Variable. Table 7 highlights the im-
pact of the dimension for z in DCL. Notably, DCL employ-
ing JSKD with a small dimension of 8 outperforms DCL
using KL with a larger dimension of 128. This suggests that

Table 6: Distinct scores for generated pseudo samples. A
higher Dist-n score means higher diversity.

Model Dist-1 Dist-2 Dist-3 Dist-4
LAMOL-g 0.0602 0.2466 0.4489 0.6178
LAMOL-t 0.1758 0.4733 0.6837 0.8090
PCLL 0.2836 0.6566 0.8369 0.9221
DCL 0.3092 0.7019 0.8708 0.9389
Real Sample 0.4000 0.7972 0.9255 0.9717

Table 7: Intent detection of DCL (with JS) and DCL (with
KL) for different latent variable dimensions.

Models Score LCA
DCL (with KL, z = 128) 92.83 91.32
DCL (with JS, z = 8) 93.51 93.11
DCL (with JS, z = 128) 93.73 93.04

the DCL model can generate high-quality pseudo samples
even with smaller dimensions and less encoded information,
resulting in improved accuracy. These results demonstrate
the superiority of the Dirichlet latent over the Gaussian
counterpart. However, it is important to note that DCL using
JSKD with a latent dimension of 8 exhibits degraded per-
formance compared to that of 128. This is attributed to the
reduced information capacity in the scenario with a smaller
dimension in z.

Llama2 as a Backbone. To evaluate the scalability of DCL
in large language models (LLMs), we employ Llama 2-7B
as the backbone to conduct experiments on Intent Detection.
The results at order 0 presented in Table 8 show that DCL
outperforms PCLL with a significant improvement of 5.72%,
demonstrating its efficiency and scalability. Fine-tuning of
both DCL and PCLL models using Lora on a single GPU
took approximately 80 hours. However, the performance is
noticeably worse than fine-tuning with GPT-2 due to the
limited amount of training data available.

4.7 CASE STUDY

Table 9 illustrates the pseudo samples generated by DCL,
PCLL, and real samples (Golden) from Intent Detection.
PCLL encounters challenges in accurately generating ut-
terances, as seen in examples like “Do they have a lot of
miles on this road” for the intent of “mpg” (miles per gal-
lon). Similar issues arise with the utterance “Do you know
how much my new credit card is worth?”. In contrast, DCL
consistently produces appropriate utterances with the cor-
responding intents. It showcases the superior capability of
DCL in generating enhanced pseudo samples that align more
consistently with the task distribution.



Table 8: Performance of DCL and PCLL using Llama2 as
backbone on Intent Detection.

Models Score
PCLL (Llama2) 66.69
DCL (Llama2) 72.41

Table 9: Illustration of generated pseudo samples by PCLL
and DCL with the Ground Truth (Golden).

Models Input Utterance Output

Golden what’s the fuel economy of my car. mpg
PCLL Do they have a lot of miles on this road? mpg
DCL What is the mpg of this car? mpg

Golden
What is the expiration date on my card? expiration

date

PCLL
Do you know how much my new credit
card is worth?

expiration
date

DCL
Can you check my expiration month? expiration

date

5 CONCLUSION

In this paper, we propose DCL, a generative-based rehearsal
method, to address CF in CL. Our DCL leverages a Dirichlet
distribution-based CVAE, which offers greater flexibility
in modeling utterance-level characteristics and generates
more realistic pseudo samples compared to the conventional
Gaussian-based CVAE. Furthermore, we propose a robust JS
divergence-based knowledge distillation method to enhance
knowledge transfer between tasks. Extensive experiments
validate the effectiveness of our DCL, demonstrating its
superiority over state-of-the-art methods.
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A PROMPT EXAMPLES

The prompt for intent detection is “For an utterance from the ID task, x has the following intent”.

• For example, when training on a BANKING task, the input x is “Please tell me how to link the card?”, and the modified
x is “For an utterance from the BANKING task, “Please tell me how to link the card?” has the following intent”. Thus
the output y is its corresponding intent “card linking”.

The prompt for slot filling is “In the ID task, if there are any slots and values, what are they in this sentence: x? Answer: ”.

• For example, when training on a DSTC task, the input is “I’m planning on leaving the 11th of this month and there are
3 people traveling.”, and the modified x is “In the DSTC task, if there are any slots and values, what are they in this
sentence: “I’m planning on leaving the 11th of this month and there are 3 people traveling.”? Answer: ”. Thus the
output y is its corresponding slot-value pairs returns “leaving date: 11th of this month”.

B DATASET DETAILS

As reported in PCLL [Zhao et al., 2022a], we highlight the details of the datasets as follows:

• ATIS dataset consists of audio recordings and manual transcriptions capturing user inquiries about flight information
in automated airline travel inquiry systems, featuring 17 distinct intent categories and serving as a benchmark for
evaluating natural language processing systems in the aviation domain.

• BANKING dataset comprises 13,083 utterances related to the banking domain, encompassing 77 different fine-grained
intents. It serves as a valuable resource for training and evaluating natural language processing models in tasks
associated with banking-related user queries.

• CLINC dataset spans 10 domains, including travel, kitchen, utility, and more, encompassing a diverse set of 150
different intent classes. Designed for evaluating natural language understanding systems, CLINC provides a rich
collection of user queries across various domains, making it a comprehensive resource for intent detection and
classification tasks.

• DSTC dataset consists of slot annotations across four domains: buses, events, homes, and rental cars. Designed for
dialogue state tracking, this dataset provides valuable information for developing and evaluating natural language
processing systems in the context of multi-domain dialogue understanding.

• HWU dataset includes 64 intents spanning 21 domains, such as alarm, music, IoT, news, and calendar. Covering a wide
range of user intents related to home activities, HWU serves as a comprehensive resource for training and evaluating
natural language processing models in the domain of home workouts and smart home interactions.
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• MIT_RESTAURANT 1 dataset is a semantically tagged training and test corpus presented in BIO format. Focused
on restaurant-related queries, it provides annotated data designed to aid in natural language understanding tasks,
specifically those involving restaurant information and interactions.

• MIT_MOVIE 1 comprises a semantically annotated training and test corpus in BIO format. Our implementation
focuses on the "eng" corpus, featuring straightforward queries for enhanced simplicity and clarity.

• TOP consists of 44,000 utterances, each annotated with a hierarchical semantic representation.
• SNIPS consists of crowdsourced queries distributed among seven user intents, representing various levels of complexity.

C DATASET ORDER

Table 10 lists six random permutations of tasks for Intent Detection and Slot Filling in the experiments.

Table 10: Six random permutations of tasks for Intent Detection and Slot Filling

Task Order Datasets

Intent Detection

Order 1 TOP_S1, HWU, SNIPS, BANKING, CLINC, TOP_S2, TOP_S3, ATIS
Order 2 BANKING, HWU, TOP_S1, TOP_S3, CLINC, TOP_S2, SNIPS, ATIS
Order 3 SNIPS, ATIS, TOP_S2, TOP_S3, CLINC, BANKING, HWU, TOP_S1
Order 4 CLINC, SNIPS, TOP_S3, BANKING, TOP_S2, HWU, TOP_S1, ATIS
Order 5 BANKING, TOP_S2, TOP_S1, ATIS, TOP_S3, HWU, CLINC, SNIPS
Order 6 CLINC, TOP_S1, TOP_S2, ATIS, SNIPS, HWU, BANKING, TOP_S3

Slot Filling

Order 1 MIT_MOVIE, DSTC, MIT_RESTAURANT, SNIPS, ATIS
Order 2 MIT_MOVIE, SNIPS, DSTC, MIT_RESTAURANT, ATIS
Order 3 ATIS, MIT_MOVIE, DSTC, MIT_RESTAURANT, SNIPS
Order 4 DSTC, MIT_RESTAURANT, MIT_MOVIE, ATIS, SNIPS
Order 5 MIT_MOVIE, ATIS, SNIPS, MIT_RESTAURANT, DSTC
Order 6 SNIPS, ATIS, MIT_RESTAURANT, MIT_MOVIE, DSTC

1https://groups.csail.mit.edu/sls/downloads/
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