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Abstract

Current methods for compressing neural network weights, such as decomposition,
pruning, quantization, and channel simulation, often overlook the inherent sym-
metries within these networks and thus waste bits on encoding redundant infor-
mation. In this paper, we propose a format based on bits-back coding for storing
rotationally symmetric Transformer weights more efficiently than the usual array
layout at the same floating-point precision. We evaluate our method on Large Lan-
guage Models (LLMs) pruned by SliceGPT (Ashkboos et al., 2024) and achieve a
3-5% reduction in total bit usage for free across different model sizes and architec-
tures without impacting model performance within a certain numerical precision.

1 Introduction

Modern neural networks, particularly Large Language Models (LLMs), typically contain billions
of parameters. Therefore, encoding and transmitting these models efficiently is gaining widespread
interest. Currently, compression techniques of model weights mainly fall into four categories, in-
cluding decomposition (e.g., Hu et al., 2022; Saha et al., 2023), pruning (e.g., Hoefler et al., 2021;
Frantar and Alistarh, 2023; Ashkboos et al., 2024), quantization (e.g., Wang et al., 2023; Xu et al.,
2024), and channel simulation (e.g., Havasi et al., 2019; Isik et al., 2023; He et al., 2024).

However, these techniques ignore the fact that neural networks typically exhibit symmetries in their
weight space. For example, in feedforward networks, applying a random permutation to the neurons
in one layer and its inverse to the weights in the subsequent layer leaves the output unchanged.
Encoding weights without accounting for these symmetries will lead to suboptimal codelength.

In this work, we consider addressing this redundancy through bits-back coding. We focus on Trans-
formers pruned by SliceGPT (Ashkboos et al., 2024), a recent method for pruning Transformer
weights, which not only reduces the total number of parameters with minimal impact on perfor-
mance but introduces rotation symmetries into the Transformer weights. Specifically:

* We introduce bits-back coding to compress neural network weights, which can reduce the storage
by saving bits from the symmetries in the weight space.

* Particularly, we propose a practical bits-back coding scheme for rotation symmetries. We apply
our approach to Large Language Models (LLMs) pruned by SliceGPT and demonstrate that our
proposed approach can save additional free bits while preserving prediction accuracy within a
certain numerical precision.

* We further showcase that by transmitting a small number of bits as a correction code, we can
rescue the performance drops due to numerical inaccuracies. Applying our approach with this
correction code, we can, in total, save 3-5% bits across different sizes and models for free.
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2 Background

Before launching into our methods, we provide a brief introduction to bits-back coding (Frey and
Hinton, 1996), Transformer (Vaswani et al., 2017), and SliceGPT (Ashkboos et al., 2024).

Bits-back Coding. Bits-back argument was first proposed by Hinton and Van Camp (1993) and
turned into a coding algorithm by Frey and Hinton (1996). Bits-back applies to the cases where the
source produces multiple codewords for a given symbol. Bits-back coding was then extended by
Townsend et al. (2019) to cope with latent variable models for lossless data compression, and by
Kunze et al. (2024) to encode unordered data structures. The basic idea behind bits-back coding
is simple: When encoding a symbol, the encoder uses some bits from the bitstream to choose one
of several possible codewords for that symbol. When decoding, the decoder identifies the symbol,
extracts the bits used for selecting the codeword, and then restores those bits to the bitstream. This
approach reduces the redundant bits from multiple codeword choices, achieving asymptotic effi-
ciency. In this work, we apply the same principle to transformer weights with rotation symmetries,
where the multiple codewords come from different rotations of network weights.

Transformer Architecture and SliceGPT. Transformer (Vaswani et al., 2017) is the cornerstone of
most Large Language Models. Its basic component is the transformer block, as shown in Figure 1a.
Each block consists of a multi-head attention layer, a LayerNorm (Ba et al., 2016), and a feedforward
network (FFN). Two residual connections are added around the attention layer and FFN.

SliceGPT (Ashkboos et al., 2024) is a recently proposed method for pruning weights in Transformer
models. The approach leverages the insight that the outcome of LayerNorm (more precisely, RM-
SNorm, i.e., x < x/||x||) is invariant if we apply a rotation to the input and its inverse to the output.
This rotation matrix and its inverse can be absorbed into the weights before and after the normaliza-
tion layer. Therefore, by performing PCA on the hidden states, we can choose rotation matrices that
align with the principal components. This allows us to prune the rows and columns corresponding
to the less significant eigenvalues in the hidden states, effectively reducing the model’s complexity
without drastically hurting the performance. We visualize each transformer block after rotation and
pruning in Figure 1b. The shadow indices the pruned columns and rows.

3 Getting bits back from Rotation Symmetries

In this section, we describe our method, which is based on the observation of rotation symme-
tries in the Transformer block pruned by SliceGPT. Comparing Figure 1b and Figure la, we can
see SliceGPT not only reduces the number of parameters (by pruning out columns and rows), but
also introduces rotation symmetries. Concretely, in a SliceGPT-pruned Transformer, denoting the
weights in the /-th transformer block with superscripts, we have:
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This symmetry suggests that directly encoding the weights (e.g., in £loat16) would use more bits
than necessary. In the following, we offer an informal explanation to clarify this redundancy:

For simplicity, let’s denote the weights in a transformer as ®. Assuming the coding distribution is
Q', we need to spend about — log, Q(®) bits to encode the weights directly. On the other hand, as

VIIf we encode the weights using f1loat16, we are essentially assuming that all possible floating-point values
(2'€ in total) have the same probability mass.
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(a) A standard transformer block. (b) A transformer block with SliceGPT.

Figure 1: Visualization of a Standard Transformer Block and a SliceGPT-Pruned Transformer Block.
(a) The standard Transformer block first maps the input through an attention layer; then it applies
LayerNorm (Ba et al., 2016) and a 1-layer Feedforward Network (FFN). Two residual connections
are added after the attention layer and the FFN. Here, we adopt the notation by Ashkboos et al.
(2024), where M =1 — %11T represents the operation that subtracts the mean in each row. (b)
SliceGPT (Ashkboos et al., 2024) first absorbs M and diag(c) into the weights before and after the
normalization layer. It then rotates these weights by applying PCA to the hidden states, aligning
them with their principal components (PCs). Subsequently, SliceGPT prunes rows and columns
corresponding to the least significant PCs, indicated by gray shadows. It is important to note that
the weights in (b) differ from those in (a) due to the absorption of M and diag(«) and the rotation.
For a more detailed explanation of SliceGPT, please refer to Figure 4 in Ashkboos et al. (2024).

discussed above, applying rotations (and its inversion) to some weights leaves the output invariant.
Therefore, if we define equivalence in terms of outputs (and we do!), the weights with different
rotations form an equivalence class, denoted by [®]. Encoding this equivalence class will require

—log, (Z@E[@] Q(@)) bits. In a finite-precision system, where the number of possible rotation

matrices is limited, the equivalence class is finite. Assuming that each entry in the equivalence
class has the same probability, and denoting the cardinality of the equivalence class by C, we have

—log, (zee[@] Q(@)) — —log, (CQ(®)) = —log, Q(O) — log, C. This implies that directly
encoding the weights wastes — log, C bits more than necessary.

To this end, we apply bits-back coding to eliminate this redundancy. In short, each time we encode

the weights in one transformer block (more precisely, W;e) and W((,e)), we start by decoding a
random rotation from the current bitstream and applying it to the weights. We then encode the
rotated weights into the bitstream. When decoding, we first decode the rotated weights and recover
the rotation we applied to the original weights. Then, we encode the rotation matrix back to the
bitstream. This process is repeated for every transformer block, and hence, the redundancy caused
by the rotation symmetries will be eliminated asymmetrically.

However, there are two questions remaining unsolved: (a) how can we recover the rotation given a
rotated weight matirx? (b) how can we decode/encode a rotation (Orthogonal) matrix from/to the
current bitstream? We will answer these questions in Section 3.1 and Section 3.2, respectively. We
then put things all together in Section 3.3 and describe the full encoding and decoding algorithms
in Algorithms 5 and 6. Besides, as we only apply rotations to weight matrices with finite precision
(e.g., float16), we may suffer from numerical inaccuracy, impacting the transformer’s outputs. To
handle this, we propose to send a simple correction code, which we discuss at the end of Section 3.3.

3.1 Rotating Transformer to its Canonical Direction

We now discuss how to recover the rotation from a rotated weight matrix. This is, in general, not fea-
sible without additional information about the original weight. Fortunately, as noted in Remark 3.1,
we can apply any rotation to the weights. This allows us to first rotate the weights to a canonical
direction as a reference. We can define this canonical direction in multiple ways as long as we can



recover it easily after applying a random rotation. In this work, we adopt eigenvalue decomposition
to define the canonical direction, while future works could explore more sophisticated methods.

We detail the algorithm for the canonical direction in Algorithm 1. In short, for each transformer
block, we can apply two free rotations according to Remark 3.1: the first rotation is applied to
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T
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‘We hence define the canonical direction such that

T
ng). ‘We hence define the canonical direction such that W((,l) W((,Z) is diagnoal.

After rotating the transformer to its canonical direction, we can recover any rotation that is ap-

plied to the canonical Wézfl) or W((f) by eigenvalue decomposition. Specifically, let’s con-

sider a random rotation Q applied to W;eil) in its canonical direction as an example. Denot-

ing the matrix after rotation is VNVée*l) — Wgzil)Q, we can perform eigenvalue decomposition
on Wg_l) ng_l), and the rotation matrix Q can then be recovered by stacking the eigen-
vectors together in columns. The weight matrix in the canonical direction can be obtained by

Wi Wi = wiTeQT

A caveat exists in the above procedure: eigenvalue decomposition can result in eigenvectors with
opposite signs. This will lead to undesired results when recovering the canonical weight matrix. We
include a detailed explanation in Appendix B. To address this, we encode the sign of the summation
of each row of the rotation matrix as side information. This only requires D bits for a D-dimensional
rotation matrix. After recovering eigenvectors through eigenvalue decomposition, we can use this
side information to correct the sign for each eigenvector (i.e., rows in the rotation matrix). Algo-
rithm 2 describes this process.

Another concern arises when Wée_l)TWg_l) (or W((,Z) TW((f)) is not full-rank. In such cases,
eigenvalue decomposition will not recover the rotation applied to these canonical weights. To ad-
dress this, we can define the canonical direction by applying eigenvalue decomposition to BB,
where BT = Wgé‘”T, by‘”T, w wi, WSP] (or BT = [Wg")T, p® " W&“]). How-
ever, we actually found Wéé_l)Twy_l) and W((f) TWg[) were already full-rank across all ar-
chitectures in our experiments. This may be because SliceGPT has already pruned insignificant
principal components in the hidden states, leading to more compact weight matrices.

3.2 Decoding and Encoding Rotation Matrices

Now, we discuss how fo decode/encode a rotation matrix from/to a given bitstream. A naive ap-
proach is to directly decode and encode these D? entries in a rotation matrix Q € RP*P e g., by
float16. However, it is difficult to guarantee that D? elements decoded from a given bitstream can
form a rotation matrix. In fact, a D-dimensional rotation matrix Q has only D(D — 1)/2 degrees
of freedom (DOF), which means that we only need to decode and encode D(D — 1)/2 floats for the
entire matrix. Therefore, the question becomes: (a) how can we construct a random rotation matrix
Sfrom D(D — 1)/2 random floats; (b) how can we recover these floats given a rotation matrix?

Ideally, we aim to generate a uniformly distributed random rotation matrix, i.e., a random rotation
matrix from the Haar distribution. Following the method by Stewart (1980), we can construct the
matrix by iteratively applying Householder transformations (Householder, 1958). This is also the
approach in scipy.stats.special_ortho_group for generating random rotation matrices.

However, this algorithm is difficult to reverse: we need to reverse the householder transformations
one by one, and hence, we will suffer from large numerical instability. Therefore, we propose a
simple method to generate a rotation matrix. This approach does not result in a uniformly distributed
rotation matrix. However, we found our approach works well in practice. Since our goal is not to
design a theoretically optimal algorithm but rather a more practical approach to perform bits-back,
we leave a better design for the rotation matrix to future works.

We describe the process of decoding and encoding a rotation matrix in Algorithms 3 and 4. In brief,
to decode a rotation matrix, we first decode a symmetric matrix from the bitstream by decoding its



diagonal and upper triangular parts and performing an eigenvalue decomposition. The eigenvalues
are then encoded back into the bitstream. To encode this rotation matrix, we first decode its eigenval-
ues from the bitstream, reconstruct the symmetric matrix via matrix multiplication, and then encode
its diagonal and upper triangular parts back into the bitstream. Notably, our approach requires only
the number of bits corresponding to D(D — 1)/2 floats, which aligns with the degrees of freedom
of a random rotation matrix.

3.3 Putting Things Together and Handling Numerical Inaccuracy

Having discussed the canonical direction for the transformer and the algorithm for decoding and
encoding a rotation matrix, we detail the complete algorithm for encoding and decoding the en-
tire transformer using bits-back in Algorithms 5 and 6, respectively. In these algorithms, we use
Encode_to and Decode_from to represent the process of appending or popping arrays of float16
values into or from the current bitstream.

However, since we only save rotated weights in finite precision (e.g., float16), we may suffer
from numerical inaccuracy, and hence the rotation matrix recovered by Algorithm 2 in decoding
will have deviations from the original rotation matrix applied to the canonical weights in encoding.
This will lead to two unideal outcomes: (a) the bitstream after re-encoding the rotation matrices (as
shown in lines 7 and 13 in Algorithm 6) will contain errors, which will affect the weights decoded
subsequently from this bitstream; (b) the weight matrices rotated back to the canonical direction (as
shown in lines 6 and 12 in Algorithm 6) will contain errors.

The first error can be fatal in a standard bits-back coding algorithm. This is because the bits-back
information and the information in the original bitstream can be misaligned - the least significant
bit (LSB) in the bits-back information can become the most significant bit (MSB) in the original
information. Consequently, a small error in the bits-back information may significantly alter the
original bitstream. Fortunately, this misalignment does not occur in our algorithms. This is because
all numbers in the bitstream are stored as float16: we encode all weights in f1loat16, and we also
encode the rotation matrix using float16 values, as described in Algorithms 3 and 4. Therefore,
errors in LSB will always remain in the LSB and will not be amplified. The only exception is the bits
representing the sign for each row of the rotation matrix (as shown in lines 9 and 14 in Algorithm 5).
However, since the codelength for these signs is known in advance (determined by the transformer
architecture), we can simply append these bits as a postfix to the entire bitstream and encode/decode
them separately from the other float values.

However, although the bits-back process will not amplify the error, the error itself can still impact
performance. Therefore, we propose transmitting an additional correction code to correct errors
exceeding a certain threshold. Specifically, errors in (a) occur in the D(D + 1)/2 floats obtained
by Algorithm 3 when encoding the rotation matrix to the bitstream, and errors in (b) occur when
rotating the weight matrices back to the canonical direction. Note that the encoder can simulate
both procedures during encoding to determine the exact value that the decoder will obtain. If the
error between the value obtained by the decoder and the one held by the encoder exceeds a certain
threshold, the encoder can send a correction code containing the positions and the true values in
float16. Correcting each value will require approximately 16 + [log, L] bits, where L is the total
number of values the decoder will reconstruct that can have errors. For example, L = D(D + 1)/2
for the error caused by (a), and L represents the total number of parameters in the weight matrix for
the error caused by (b).

A natural concern is that the correction code could become large if there are too many errors. Fortu-
nately, as we show in Figure 2, only a tiny portion of values have relatively large errors. Therefore,
the correction code requires only a small number of bits to transmit and does not significantly im-
pact the overall coding efficiency. It is worth noting that this correcting strategy can be considered
a simple error-correction code. Therefore, we may be able to adopt more complex error-correction
codes, but we leave this design for future exploration.

4 Experiments and Results

We evaluate our proposed approach in this section. We first test our method on the Open Pre-
trained Transformer Language Models (OPT, Zhang et al., 2022) and Llama-2 (Touvron et al., 2023)
pruned by SliceGPT (Ashkboos et al., 2024) with different slicing rates. Then, we investigate the
effectiveness of the correction codes proposed in Section 3.3.



Table 1: Compression rates and prediction performances before and after our proposed method. Our
method reduces further 3-5% bits and has very minor influence on the performance.

Model SliceGPT Compress Rate  Compress Rate Performance (before/after bits-back)
Slicing after SliceGPT  after bits-back PPL () PIQA (%, 1) WinoGrande (%, 1) HellaSwag (%, 1)

20% -9.53% -13.77% 16.59/16.60  64.91/64.80 54.78/54.38 45.26/45.32

OPT-1.3B 25% -14.84% -18.61% 17.78/17.86  63.55/63.33 52.80/53.28 43.20/43.11
30% -20.53% -23.81% 19.60/19.66  60.88/60.50 52.88/53.28 40.25/40.06

20% -9.19% -13.84% 13.89/13.95 68.44/68.12 58.88/58.72 51.35/51.17

OPT-2.7B 25% -15.07% -19.09% 14.85/14.87  66.70/66.76 57.30/57.70 48.41/48.38
30% -20.88% -24.43% 16.31/16.33  64.64/64.69 55.80/56.04 44.52/44.57

20% -9.29% -14.07% 11.63/11.71  72.91/73.01 61.33/61.17 60.53/60.55

OPT-6.7B 25% -15.16% -19.29% 12.12/12.15  71.00/71.22 60.30/60.77 57.76/57.55
30% -21.18% -24.84% 12.81/12.91 69.31/69.42 59.75/59.59 53.64/52.94

20% -9.18% -14.01% 10.75/10.77  74.27/74.27 64.96/64.88 65.74/65.79

OPT-13B 25% -15.27% -19.51% 11.08/11.07 74.27/73.72 63.46/63.93 63.48/63.09
30% -21.29% -24.97% 11.55/11.59  72.69/73.01 61.96/62.43 60.12/60.05

20% -9.38% -14.13% 6.86/6.98  69.53/69.42 64.17/64.72 58.96/58.89

Llama-2-7B 25% -15.34% -19.53% 7.56/7.59  67.03/67.57 62.98/63.38 54.29/53.93
30% -21.45% -25.09% 8.63/8.69  64.69/64.09 62.75/62.12 49.13/49.07

Compression rate and performances. We evaluate our method on OPT-1.3B/2.7B/6.7B/13B and
Llama-2-7B, pruned by SliceGPT with different slicing rates. We report perplexity (PPL) and ac-
curacy on three downstream tasks (PIQA, Bisk et al. (2020); WinoGrande, Sakaguchi et al. (2021);
and HellaSwag, Zellers et al. (2019)) to assess our method’s impact on performance. Our approach
saves an additional 3-5% in bits with negligible impact on performance. Notably, the performance
changes are inconsistent, with occasional improvements after bits-back, suggesting that the changes
in the performance are more likely due to randomness than a clear degradation. We also note that
this codelength reduction is smaller than the theoretical estimates provided in Appendix D. The pri-
mary reason for this discrepancy is that our analysis does not account for the substantial size of the
head and embedding layers.

Numerical inaccuracy and the effectiveness of the correction codes. We now examine the
impact of numerical inaccuracies and the effectiveness of correction codes proposed in Section 3.3.
To provide an intuitive understanding of the numerical issue, we use the weights matrix W, from
the last layer of OPT-6.7B as an example and visualize the error between the reconstructed weights
and the original weights in Figure 2 in Appendix. As we can see, only a tiny fraction of the weights
exhibit relatively large errors. Therefore, we can transmit the positions and true values of weights
whose deviations exceed a certain threshold, using negligible bits to correct the numerical error.

The threshold is a hyperparameter that balances the codelength and accuracy. In Figure 3, we exam-
ine the impact of threshold selection using the OPT-2.7B model. Setting a relatively small threshold
(0.005-0.01) effectively mitigates nearly all performance drops due to numerical inaccuracies, while
still providing a significant reduction compared to the compression rate without bits-back coding.
In our experiments, we use a threshold of 0.01 for OPT models and 0.005 for Llama models.

5 Conclusion and Limitations

In this work, we introduce bits-back coding to encode Transformers in Large Language Models
pruned by SliceGPT. Our approach can save 3-5% additional bits for free across several different
architectures and sizes. While bits-back coding has long been applied in data compression, its appli-
cation to neural networks, where redundancy and symmetry are prevalent, has been underexplored.
Our work attempts to bridge this gap, opening a new direction for model compression. Key takeaway
is that by re-parameterizing and pre-processing network weights to explicitly capture symmetries,
as demonstrated in SliceGPT, we can employ bits-back coding to eliminate redundant bits.

Future research can focus on designing improved algorithms for encoding and decoding the random
rotation matrix, developing better error-correction codes to manage large deviations caused by nu-
merical instability, and integrating our method with other model compression techniques, such as
the extremely quantized networks proposed by Ma et al. (2024). Our method’s major concern is
the numerical instability. While we discuss reducing large deviations by sending a small number of
bits as a correction code, the challenge of making this approach efficient for extremely quantized
networks or incorporating it with other pruning techniques remains open.
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A Additional Experimental Results
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Figure 2: Histogram and empirical CDF of the error be- Figure 3: The effectiveness of
tween the reconstructed weights and the original weights the correction codes with differ-
before encoding, using W, in the final layer of OPT-6.7B ent thresholds. Setting a thresh-
as an example. The pattern in this plot generalizes well to old around 0.005-0.01 can ef-
other weights and models. As shown, only a small fraction fectively rescue all performance
of the weights exhibit relatively large deviations. Therefore, drops due to numerical inaccura-
we can allocate a negligible number of bits to transmit the cies while still significantly reduc-
positions and true values of these weights, effectively cor- ing bits compared to the compres-
recting the error caused by numerical inaccuracies. sion rate without bits-back.

B Why we need to encode the sign of each eigenvector?

First, assume we apply a random rotation matrix Q to some canonical weight matrix W, and obtain
W — WQ. We can write this rotation matrix as a stack of orthonormal vectors:

Q=| - 5)

When we recover the canonical weight matrix, we apply eigenvalue decomposition to WTW. This
is possible as W T W is defined to be diagonal. Therefore, Q is one solution of eigenvalue decom-
position:

WW=Q'W'wQ =QTAQ (6)
However, the solution is not unique. We can write
. | — q — .
QAQ=|a1 - ap|A ' = X\adaqy (7
| — a5 — d

Changing the sign of any q4 will not influence the results of its outer product. Therefore, we can
change the sign of each qg4, and this will still be a valid solution to the eigenvalue decomposition.
As an example, WLG, assume by eigenvalue decomposition, we obtain

Q=" * = ®)
We recover canonical weight matrix by
T -1
S T - A1 — | - 1
wQ' =wWQQ =W o _Th : CI|D =W . #W 9)
—_— qD R— . .

1

Therefore, if we do not control the sign of each eigenvector. We cannot recover the original canonical
weight matrix.



C Algorithms

Algorithm 1 Rotate Transformer to its Canonical Direction.

Input: Transformer weights with SliceGPT: W, Q1) . WO, W W Wi bl b,

skip-att?

b b, QY e W W b Y Wiead, beas, £ = 1,2, L;

Output: Rotated weights.

Q < Eigenvalue Decompsition(W, , Wemb);
Wemp < WempQ;
for/e[l,---,L] do

Q(e) - QTQ(E) . WL(IE) - QTWSIZ); W;(f) - QTW’(f); Wg) - QTWI(;E);

skip_att skip_att?

-
Q < Eigenvalue Decompsition(W((f) W((f));
W <« wiPqQ: bl — Qb

J4 14 14 J4 J4 14
Qiki)p,att - ngi)p,atlQ; C2§ki)p,mlp N QTngi)pmlp; Wg ) - QTW( );

T
Q < Eigenvalue Decompsition(Wée) Wg));
¢ Vi ¢ ¢ 7 ’
ngi)p,mlp - ngi)p,mpo; Wg ) Wé )Q, bé ) QTb( );
end for

T .
Whead < Q Whead,

Algorithm 2 Recover rotation matrix from rotated weight.

Input: Rotated matrix W, reference signs s (vector of +1-s).
Qutput: Rotation matrix Q:

Q < Eigenvalue Decompsition(W T W). > rotate Wy) to canonical direction
for r € [row(Q)| do

Q'r- <« {Q’H if Sign(QT.sum()) = ST;'

—Q,, otherwise > change sign of Q

end for

Algorithm 3 Decode a rotation matrix from the Algorithm 4 Encode a rotation matrix to the cur-
current bitstream. We use red to represent adding rent bitstream. We use red to represent adding
bits to the bitstream; green for removing bits bits to the bitstream; green for removing bits

from the bitstream. from the bitstream.
Input: Bitstream M; Input: Rotation matrix Q, Bitstream M,
Output: Rotation matrix Q € RP*P, Output: Updated bitstream M.

X « 0 e RPxD,
Decode D(D —1)/2 floats from bitstream M; A < Decode_from(M).
Fill the upper triangular of X with these floats; X « Q diag(\) QT.

X —X+XT; Retrieve floats in the diagonal of X
Decode D floats from bitstream M; Encode these D floats into M.

Fill the diagonal of X with these floats; Retrieve floats in the upper triangular of X;
Q, A — Eigenvalue Decomposition(X); Encode these D(D — 1)/2 floats into M.

A\ — Encode_to(M).
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Algorithm 5 Bits-back Encoding for transformers (processed by SliceGPT). We use red to represent
adding bits to the bitstream; green to represent removing bits from the bitstream.

Input: Transformer weights: Wenp, qulp att? (Z) W(Z) Wz()é)’ Wy), b(é) b,(f), b(e) b(l)
QY o W W b8, b, Wiead, bread, € = 1,2, , L

skip_mlp°

Output: Binary message M.

Im M 1. = initialization empty bitstream.

2: Rotate the transformer to its canonical direction by Algorithm 1.

3: # encode weights with bits-back:

4: Wemb, Pemp — Encode_to(M). > encode input embeddings

5: for0e[1,--- L]do

6 QY W W W b b b - Encode_to(M).

7: Q Decode rotation matrix from M by Algorithm 3. > decode a random rotation

g W —wlq

9: sign(Q.sum(-1)) — Encode_to(M). = encode sign of Q (overhead)
10 Wb, QL L Wi bl — Encode_to (M.
11: > encode rotated Wf,e) and other weights
12: Q < Decode rotation matrix from M by Algorithm 3. > decode a random rotation
13 W~ wiq.
14: sign(Q.sum(-1)) — Encode_to(M). > encode sign of Q (overhead)
15: Wg) , bg) — Encode_to(M). > encode rotated Wg) and other weights
16: end for
17: Whead, Phead — Encode_to(M). > encode heads

Algorithm 6 Bits-back Decoding for transformers (processed by SliceGPT). We use red to represent
adding bits to the bitstream; green to represent removing bits from the bitstream.

Input: Binary message M.
Output: Transformer weights: Wy, stlp att? W((f), W,(f), ( ) W(()) b(z) b,(c ), bq(,e), b(e)

QY W W bl bl Whcad, bheats £ = 1,2, , L.

skip-mlp°

1: Whead, Phead < Decode_from(M). > decode heads

2: for{e[L, - ,1] do

3: Wy) , bé“ <« Decode_from(M). o decode rotated Wéz) and other weights

4: s <« Decode_from(M). = decode sign of Q

5: Q < Recover rotation matrix by Algorithm 2 from (W(Z) S).

6: W(Z) e) QT = recover canonical direction

7: Q- Encode rotatlon matrix to M by Algorithm 4. > encode the random rotation

8: w b ,b Q\k,p mlp’ (6), b( ) < Decode_from(M).

9: > decode rotated W((f) and other weights
10: s < Decode_from(M). > decode sign of Q
11: Q < Recover rotation matrix by Algorithm 2 from (W(e) S).

12: W((f) OZ) QT = recover canonical direction
13: Q — Encode rotation matrix to M by Algorithm 4. = encode the random rotation
14: Qiﬁi)p;du, WSIO ) W,(f) w, bff‘) , bij(/), bS,” — Decode_from(M).

15: end for

16: Wemb, bemp < Decode_from (M). > decode input embeddings
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D Analysis of the Codelength

Here, we analyze the codelength reduction achieved by our proposed approach from a practical
standpoint. For simplicity’s sake, we assume there is no bias vector in our transformer architecture.
This is a reasonable assumption, as some modern architectures like LLaMA (Touvron et al., 2023)
follow similar designs. Additionally, we assume the transformer has no output head or embedding
layer. This assumption can be interpreted as modeling an extremely deep transformer, where the
effects of the head and embedding layers become negligible. However, it is important to note that
this is not a realistic assumption in practical scenarios. This is the main reason for the discrepancy
between our analysis in this section and the results we present in Section 4.

In one transformer block, as shown in Figure 1b, there exist eight matrices after SliceGPT, including
six sliced weight matrices and two skip connection matrices. If the slicing rate is s% and the weights
are stored in float16, the total codelength (in bits) can be expressed as:

( 6-r%D* +2-(r%D)?)- 16 (19)
—— ———
6 weight matrices 2 gkip connection

where we denote 7% = 1 — s% as the remaining rate after slicing. Using bits-back, we decode two
rotation matrices from the bitstream during encoding, leading to a reduction in codelength by:

(2 (r%D)(r%D —1)
2

)-16—(r%D)-(r%D—1)-16 (11)

We disregard the overhead from storing the signs of the eigenvectors (line 9 in Algorithm 5) and the
correction codes (discussed in Section 3.3), as these contributions are negligible.
Thus, the overall reduction in codelength is:

(r%D) - (r%D —1)/(6 - r%D? + 2 - (r%D)?) ~ r%/(6 + 2r%) (12)

For a slice rate of s% = 20 — 30%, this results in approximately a 10% reduction in codelength.
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