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ABSTRACT

Vision capabilities in vision large language models (VLLMs) have consistently
lagged behind their linguistic capabilities. In particular, numerous benchmark
studies have demonstrated that VLLMs struggle when fine-grained visual infor-
mation or spatial reasoning is required. However, we do not yet understand ex-
actly why VLLMs struggle so much with these tasks relative to others. Some
works have focused on visual redundancy as an explanation, where high-level
visual information is uniformly spread across numerous tokens and specific, fine-
grained visual information is discarded. In this work, we investigate this premise
in greater detail, seeking to better understand exactly how various types of visual
information are processed by the model and what types of visual information are
discarded. To do so, we introduce a simple synthetic benchmark dataset that is
specifically constructed to probe various visual features, along with a set of met-
rics for measuring visual redundancy, allowing us to better understand the nuances
of their relationship. Then, we explore fine-tuning VLLMs on a number of com-
plex visual tasks to better understand how redundancy and compression change
based upon the complexity of the data that a model is trained on. We find that
there is a connection between task complexity and visual compression, implying
that having a sufficient ratio of high complexity visual data is crucial for altering
the way that VLLMs distribute their visual representation and consequently im-
proving their performance on complex visual tasks. We hope that this work will
provide valuable insights for training the next generation of VLLMs.

1 INTRODUCTION

Large language models (LLMs) have revolutionized the field of natural language processing, obtain-
ing impressive performance across many complex tasks. More recently, many state-of-the-art LLMs,
such as OpenAI’s GPT OpenAI (2024), Anthropic’s Claude Anthropic (2025), and Meta’s Llama
Grattafiori et al. (2024) have been expanded to include vision capabilities as well, where vision and
text tokens are embedded alongside each other and passed through the model simultaneously. One
would hope that the vast knowledge that these models acquire from the billions of text tokens that
they are trained on would transfer to the vision domain, resulting in similarly strong performance
across many computer vision tasks. However, this has often not borne out in practice. Indeed, the
vision capabilities of these models have always seemed to lag behind their linguistic counterparts
Kamath et al. (2023); Rahmanzadehgervi et al. (2024).

More specifically, prior work has identified fine-grained object recognition and spatial reasoning as
two visual capacities that are especially limited in modern VLLMs Kamath et al. (2023); Deitke et al.
(2025), where a model might be able to achieve near state-of-the-art performance on image caption-
ing or visual question answering (VQA) Alayrac et al. (2022); Yuan et al. (2021); Li et al. (2023),
only to barely perform better than chance on benchmarks that have been specifically constructed
to target these deficiencies. While benchmarking is effective in demonstrating these deficiencies, it
only offers high level descriptive insights into the types of problems that VLLMs struggle with.

Recent work has taken a model-focused approach to diagnosing these issues through ablation stud-
ies, visualization tools, and more. However, these works tend to highlight issues, such as token
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redundancy, holistically rather than directly tying them to specific tasks. In this work, we seek to
bridge this gap, explicitly focusing on fine-grained object grounding and spatial reasoning, and how
a model’s visual and multimodal representations directly contribute to degraded performance. Un-
derstanding this relationship will yield valuable metrics and insights for VLLM training, enabling
practitioners to select architectures and datasets that lend themselves to improved performance.

We begin by introducing metrics that we use to compute the visual redundancy, or compression,
of a VLLM. These include token-based metrics, such as the stable rank of the visual embeddings
at the final layer, ablation-based metrics, where a percentage of visual tokens are removed and
performance impacts are observed, and token probes, where a linear probe is trained on individual
token positions to predict various visual features contained in the image. We run these metrics across
a variety of datasets that explicitly include a wide range of image complexity, including a synthetic
dataset that we construct for this purpose, and subsets of MSCOCO Lin et al. (2014) and Whats Up?
Kamath et al. (2023). We demonstrate across these datasets, using more recent VLLMs, that VLLMs
distribute visual information across the embeddings, resulting in a high degree of uniformity across
the tokens, where each represents all objects in the image to a certain extent, limiting the existence
of specialized tokens.

To demonstrate why this is problematic and directly relate it to image/task complexity, we then cor-
relate each of the redundancy metrics that we computed to various measures of task complexity,
such as the number of objects, number of unique shapes and colors, etc. We show that high visual
redundancy and limited compressability is strongly associated with reduced performance on com-
plex tasks, such as object counting. Unfortunately, because redundancy is ubiquitously prevalent
VLLMs, this simply results in poor performance on complex tasks.

In the last section of our work, we seek to understand the role that fine-tuning plays in visual re-
dundancy. We explore fine-tuning a VLLM on each of the aforementioned datasets, specifically
analyzing the difference of outcomes between datasets which require spatial reasoning and those
that require grounding. We then re-run our suite of metrics to see how redundancy and token uti-
lization changes depending on the complexity of the fine-tuning task. We find that the type of
complexity (grounding vs. spatial reasoning) changes how the model’s hidden representations are
altered, with the former producing larger changes in hidden states. Additionally, we find that fine-
tuning a VLLM overwhelmingly alters the text representations of the model relative to the vision
representations, which are largely left unaltered. These results suggest that including complex visual
examples in the training data is crucial for altering the behavior of VLLMs and that the type of task
complexity that is introduced can impact the hidden representations of the model at differing points.

A summary of our novel contributions are as follows:

• We provide a thorough analysis of visual redundancy in VLLMs that exceeds prior works
both in breadth and depth.

• We explicitly link visual redundancy in these models to quantitative measures of task com-
plexity, revealing detailed insights into failure scenarios.

• We investigate the impact of fine-tuning on visual redundancy, providing strong concrete
takeaways that can be used in training or compressing VLLMs.

2 BACKGROUND AND RELATED WORK

Vision Large Language Models The first vision language models to gain substantial attention
and wide-spread usage were constrastively trained Radford et al. (2021). While these models are
powerful, learning robust multimodal embeddings that can be utilized across multiple tasks, one of
their primary drawbacks is that they do not allow for open-ended natural language generation. More
recently, vision components have been integrated into large language models (LLMs) and trained au-
toregressively on next-token prediction tasks, which we will refer to as vision large language models
(VLLMs) throughout this work. Some examples of models that follow this paradigm include Llama
3.2, LlaVa, Molmo, and Flamingo Grattafiori et al. (2024); Liu et al. (2023); Deitke et al. (2025);
Alayrac et al. (2022). VLLMs allow for open-ended natural language generation and therefore can
be applied across a wide-range of tasks in zero-shot settings that constrastively trained models can-
not. However, the performance of VLLMs across visual tasks is underwhelming relative to textual
tasks, especially when complex reasoning is required. Furthermore, while contrastive models are
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explicitly trained to align modalities, VLLMs are not, making vision-text alignment and multimodal
interpretability difficult, and motivating the investigations in our work.

Let us define a generic VLLM more formally as follows. Consider a sequence of input text tokens
x(t) = {x(t)

1 , x
(t)
2 , . . . , x

(t)
Nt

} and an image input x(i) ∈ RH×W×C . Both inputs undergo separate
embedding procedures. Commonly, this will consist of pre-trained embedding layers or models
for each respective modality, resulting in a final sequence of text embeddings E(t) ∈ RNt×d and
image embeddings E(i) ∈ RNi×d. These embeddings are then processed using a transformer-based
decoder. In many cases, the embeddings are simply concatenated with one another and passed jointly
through the model, or the text embeddings are passed to the decoder and cross-attention is utilized
to integrate visual information throughout the model.

Visual-token Compression and Redundancy It is well established that not all of the vision to-
kens are needed in VLLMs to obtain strong performance across various tasks. For instance, Kaduri
et al. (2025) found that randomly ablating up to 95% of the tokens from LlaVa resulted in a minimal
drop in performance on COCO. However, much of the effort in this space has focused on exploiting
this redundancy rather than questioning and understanding it. This has led to works such as Ye et al.
(2025); Gholami et al. (2025); Dhouib et al. (2025); Yang et al. (2025); Xing et al. (2024), which
propose mechanisms for selecting which visual tokens to discard, further restricting the number of
tokens while retaining performance. More recently, a few other works have sought to understand
how visual information propagates through the model Zhang et al. (2025); Yin et al. (2025). In this
work, we build on these studies, extending them in a number of novel directions. Firstly, we are
the first work to explore many of the more recent, high performing VLLMs, such as Molmo and
Llama 3.2, whereas most prior works have focused exclusively on LlaVA. Furthermore, we are the
first work to focus on evaluating multiple models across the same tasks, using the same metrics,
simultaneously. Additionally, we are the first work to explore additional fine-tuning and the impact
that this has on visual redundancy/compression, offering insights into how data affects these aspects
of a model.

3 METHODS

3.1 COMPRESSION METRICS

We consider two types of compression metrics, those focused on token norms and those focused
on token rank. We explore 3 different metrics for each type. For token norm metrics, we utilize
the Gini coefficient, which quantifies the inequality of L2 norms across the token embeddings, the
normalized entropy, which quantifies the information content of the token norm distribution, and
the coefficient of variation (CV), which measures the relative variability of token norms. While the
norm metrics provide interesting insights regarding how information is distributed across tokens, it
does not provide a means of further characterizing exactly how much information is stored across
the tokens. To this end, we also utilize rank metrics, which are computed over the token matrix of a
given layer. The first metric that we use is the stable rank, which measures the effective dimensional-
ity of the token matrix, the participation ratio, which measures how many singular values contribute
significantly to the collective representation of the tokens at a given layer, and the exponential en-
tropy, which computes the Shannon entropy of the singular value distribution. More details for each
metric are available in the Appendix.

3.2 SVD ANALYSIS

To more deeply explore the relationship between vision, text, and multi-modal hidden states, and
the impact their content and interaction has on final performance, we choose to apply singular-value
decomposition analysis to both the unimodal and multimodal hidden state matrices. To do so, we
first extract the text and vision tokens from the multimodal matrix. We then apply SVD to the vision
(Uv, Sv, V

T
v ), text (Ut, St, V

T
t ), and multimodal matrices (Uc, Sc, V

T
c ) individually, producing the

building blocks for our analyses.

Alignment We first look at token projection consistency, a measure of how consistently the pri-
mary unimodal token component projects onto the primary token component of each modality in
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multimodal token space. To compute this, we take the dot product between the normalized primary
token component of each modality in muiltimodal space and the primary token component of each
unimodal matrix. Such a metric allows us to understand whether unimodal tokens are able to collab-
orate in multimodal space (high consistency), or if individual modes retain specialized communica-
tion with each other (low consistency). We next look at feature space alignment, or the dot product
between the top right singular vectors of unimodal and multimodal matrices. This metric provides
us a sense of whether primary unimodal token representations are able to fuse in the multimodal
setting. Next we look at subspace alignment, or the degree to which each modality contributes to
the primary token component of the multimodal matrix. For a given modality m, we simply take the
average per-token energy of each modality’s primary token component em =

∥ucm∥2

nm
and then

normalize them by the average energies to obtain alignment: am =
mpt

mpt+¬mpt
. This metric helps

us understand whether vision or text tokens dominate the global token pattern when modal counts
are accounted for. Lastly, we look at reconstruction alignment, or the ability of primary unimodal
feature-space representations to reconstruct the multimodal feature-space representations. To com-
pute alignment, we simply use the projection matrix formed by the first k right singular vectors of
each modal SVD, VkV

T
K to reconstruct the original multimodal token matrix Q via QVKV T

K . For a
given modality, we then compute the coefficient of determination between the original matrix and
its reconstruction via:

R2 = 1− mean(Q−QVKV T
K )2

var(Q)
.

For our reconstructions, we compare results using an arbitrary rank (k = 5). See the Appendix for
more details on our SVD analyses.

3.3 LINEAR PROBING

While the compression metrics offer a high-level overview of token compression at each layer of
the model, they do not provide insights into the specific information that is stored in individual
tokens. To explore this aspect of the models’ embeddings, we employ MLP probes, trained on the
embeddings to predict various visual features of the image, e.g., the most common object in the
image or the largest object in the image. To ensure that the number of tokens is consistent across
individual datasets, we resize all images to a uniform size. Then, we train a probe for each individual
position across each layer of the model. Each probe is a MLP with two hidden layers and ReLU
activations. The specific visual features that each probe predicts varies by dataset, but all features are
framed as classification problems. By looking at the mean accuracy and variance in accuracy across
layers, these probes allow us to capture general trends about which layers encoded which types of
information, as well as whether tokens are specialized to store specific types of visual information
vs. generally storing global image information.

3.4 TOKEN ABLATIONS

The final metrics we use in our analysis are ablation-based. Here, we directly assess the performance
of the model on the downstream task as tokens are randomly ablated from the model. This most
directly corresponds to how VLLMs are compressed and offers a global perspective on how each
individual token that enters the model is impacting overall performance. While complex token
ablation methodologies have been proposed Ye et al. (2025); Gholami et al. (2025); Dhouib et al.
(2025), for consistency across models and datasets, we adopt a simple methodology. We define an
ablation ratio ρ, which corresponds to the percentage of tokens dropped from the model’s inputs.
For a given ablation ratio, we randomly select Nρ tokens to drop from the visual tokens, where
Nρ = ρ ∗N and N is the total number of visual tokens in the model’s input.

4 EXPERIMENTS

4.1 ZERO-SHOT ANALYSES

We begin by analyzing two VLLMs in a zero-shot setting leveraging the metrics described in the
previous section. We selected two recent VLLMs (at the time of beginning our experiments) Molmo
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Figure 1: Visual compression trends across layers of Molmo for our proposed synthetic dataset.

Deitke et al. (2025) and Llama 3.2 Grattafiori et al. (2024). Both models achieve impressive perfor-
mance across a variety of tasks and are fully open-source, making them strong candidates. Addition-
ally, they have slightly different architectures, providing a broad coverage of most modern VLLM
models. Namely, Molmo prepends the vision tokens to the text tokens, passing them through a
transformer decoder jointly, allowing for multimodal attention at all layers of the model. Llama 3.2
instead leverages cross-attention to combine vision and text, where text tokens are passed through
the transformer decoder and at fixed intervals, cross-modal attention is allowed.

Synthetic Data Creation When quantifying complexity in images, there are many factors that
must be considered, especially in real-world complex scenes, including the number of objects, over-
all size of objects, size of objects relative to one another, color of objects, number of colors in each
object, number of colors in the background, amount of background, etc. To avoid this complexity in
our initial experiments, we opted to generate a synthetic image dataset, consisting of 2D shapes on
a white background. We varied complexity across a number of fixed axes, allowing for complexity
to be more precisely quantified in each image. More specifically, we start with a base configuration
which consists of a single object of random shape, color, and size placed on a white background,
and using this base configuration we generate families of images at multiple object counts, ranging
from 1-200. For each count, it produces that number of objects with only the baseline configuration,
then it systematically varies one aspect at a time (shape, color, or size) as well as a mixture of each.
We leverage a visual vocabulary consisting of 5 shapes, 10 colors, and 3 sizes, allowing for a variety
of images to be generated for a single base configuration. For this work, we generated images of
1000x1000 with 20 base configurations, resulting in 8,220 images in total.

Token Compression Figure 1 contains the layer-wise compression results for each of our pro-
posed metrics using Molmo and our synthetic dataset.1 The metrics that focus on token-wise spar-
sity (the top metrics) all follow the same pattern, where the early layers spread attention and energy
across a large number of vision tokens. However, as the mid-point of the model is reached, visual
information is re-concentrated into a smaller number of tokens. As the end of the model is reached,
information is again spread more evenly across tokens, with the final sharp change in compres-
sion being due to the hidden states at the final layer being extracted post-layer norm. The bottom
three metrics, which focus on the dimensionality of the visual information show a slightly different
pattern, where over the course of the model, the effective dimensionality of the visual information
increases as they represent increasingly complex visual features of the image. However, there is a

1We do not include results for Llama 3.2 in this set of experiments because the vision tokens are fixed
throughout the model.
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Figure 2: Spearman correlation between various compression metrics and various visual attributes
across layers of Molmo for our proposed synthetic dataset.
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Figure 3: Linear probe performance on various visual attributes using Molmo on our synthetic
dataset.

sudden drop off towards the end where dimensions are collapsed for efficient read-out, potentially
discarding some information that is useful to the model. Overall, this paints a picture of visual pro-
cessing in which information is spread across tokens at the beginning of the model, and the tokens
are representing relatively simple visual concepts. At the mid-point of the model, visual informa-
tion is compressed, spreading across fewer tokens, but the effective dimensionality of the data is
increasing as these tokens represent increasingly complex visual concepts. Then, finally at the end,
information is again spread across tokens and extraneous visual information is discarded. Figure
2 provides further insights into have visual compression is correlated with various attributes of the
synthetic data, showing the Spearman correlation between each of the compression metrics and var-
ious visual attributes of the corresponding images. Object count is overwhelmingly correlated with
less compression, suggesting that cluttered scenes need more tokens to be effectively represented.
The number of unique shapes and colors in the image are mildly correlated, suggesting that some
amount of object variety also requires more dimensions for effective representation. However, the
number of unique object sizes does not matter for the overall compressability of the image.

Probes Figure 3 contains the results for 3 different probing experiments for Molmo.2 These ex-
periments provide further insights into how visual information is processed in the model. One no-
table finding is the text tokens are highly predictive of visual attributes, indicating that a substantial
amount of visual information is stored in these tokens. Indeed, this translation of visual information
into the text space is immediate, where after the first layer, the text tokens already achieve strong

2A figure for Llama 3.2 is available in the Appendix.
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(a) Molmo ablations (b) Llama ablations

Figure 4: Visual ablation performance across various question types using our synthetic dataset.
Left: Molmo results. Right: Llama 3.2 results.

performance on each of the 3 tasks. The strongest performance is observed on object count, which
aligns with the insights from the compression metric correlations, where at all layers of the model
can predict the number of objects in the scene with high accuracy. Furthermore, because the results
are averaged over all positions in the model we can see that virtually all token positions are predic-
tive of object count and therefore contains some amount of object-level information. This points out
a potential inefficiency in how visual information is processed in a VLLM and suggests that there
is a high amount of redundancy present in the model. The other visual attributes are not quite as
predictive as object count, suggesting that certain types of object-level information is stored across
various tokens. However, again there is very little change in probe performance across layers, espe-
cially for the visual tokens. The text tokens for primary color do show some level of variance across
layers, suggesting that there may be more visual specialization in the text tokens at the middle layers
compared to the visual tokens at other layers.

Visual Ablations Figure 4a contains the visual ablation performance for both Molmo and for
Llama 3.2 on our synthetic dataset. Overall, we see that as tasks become more complex, or fine-
grained, compression has a larger impact on model performance. Color and shape variety are the
most high level tasks, where the model must recall which colors and shapes are present in the image.
This is simple image-level information that the model easily recalls, even when 99% of the visual
tokens are discarded. It’s worth remembering that the tokens come from CLIP before being ablated
and passed into the model, meaning that information is already spread across tokens, making this
observation possible. Next we have tasks such as finding the dominant color and shape, as well as the
unique shapes and colors. These tasks are not as high level as simply recalling the variety of these
attributes due to the fact that now some object-level comparison is needed. Nevertheless, relative
performance can be retained up to relatively high ablation ratios where even at 90% decent predictive
performance is sustained with a gradual decline as the number of dropped tokens increases. Lastly,
we have the most complex task, object count, which requires counting up to 200 objects in the
scene. Performance on this task deteriorates quickly, being more than halved with just 50% of the
tokens being discarded and the task being virtually impossible at 75%. At first glance, this appears
to contradict the probe results, where most tokens were predictive of object count. However, this
likely means that while all tokens have the information needed to answer this question, the model
learns to only attend to certain tokens to extract this information. So, while the tokens themselves
are not heavily specialized, the attention weights of the model are specialized. Overall, these results
suggest that compression should not be uniformly applied for each task; its effectiveness is directly
correlated with task complexity, where complex tasks should have a less compression than simpler
tasks.

4.2 FINE-TUNING

Datasets Dataset selection for our fine-tuning experiments is driven by multimodal task com-
plexity, encouraging as much vision-language alignment as possible. Therefore, we select visual
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Figure 5: Visual compression trends across layers of Molmo averaged across various fine-tuning
and evaluation datasets.
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Figure 6: SVD alignment metrics for Molmo averaged over each of our fine-tuning datasets accord-
ing to whether they were referring expression datasets.

referring expression and spatial reasoning as our two target tasks. We use GQA and COCO to pro-
duce 3 datasets of varying complexity for each, roughly following the procedure outlined in Kamath
et al. (2023). A detailed breakdown of these datasets and the creation process is available in the
Appendix.

Visual Compression Figure 5 contains the compression metrics averaged over each of our evalua-
tion and fine-tuning datasets, demonstrating differences in compression throughout Molmo. Overall,
depending on the nature of the fine-tuning dataset, different trends are observed. The referring ex-
pression datasets all follow a similar trend where early layers become less concentrated while also
dropping in rank. At later layers, the rank stays lower than the baseline, but more specialized tokens
emerge as the model begins the task of localizing the target object. In contrast, the more complex
spatial reasoning datasets lead to the emergence of more specialization in early layers, with a higher
stable rank, while the later layers contain less specialization. We believe this difference is due to the
fact that the output is more in-line with the pre-training data distribution as it take the form of natu-
ral language for the spatial reasoning tasks, whereas the localization output, while included during
pre-training, represents only a small portion of the data, requiring a larger distribution shift. These
results suggest that if more specialization is desired, a combination of the two tasks is desirable,
where a target must be localized while also requiring spatial reasoning at the earlier layers. This
would result in increased rank and more specialized tokens throughout the model.

SVD Alignment Figure 6 contains the results for the SVD metrics on our fine-tuned models. We
averaged over each of our datasets according to whether they were referring expression datasets or
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just standard spatial datasets. For feature alignment, text showed noticeable changes, while vision
showed minimal change. The referring expression data produced sharper, more localized spikes in
the models’ layers relative to the spatial reasoning datasets. From these results, we can observe
that fine-tuning mainly rotates the principal text features towards the multimodal features, leaving
the vision features relatively static, and that data which is more out-of-distribution (the referring
expression task is relatively distinct from a standard task due to the localization output) results in
more abrupt shifts in the singular vectors. The subspace alignment again shows more substantial
changes in the text representations, where text is overwhelmingly dominant in the early layers and
moderately dominant in the final layers. Here the regular spatial reasoning datasets are more im-
pactful. This is likely due to the increased complexity of the spatial reasoning prompts, which the
model needs to successfully parse in order to complete the task. Lastly, reconstruction alignment
again confirms that the text subspace explains substantially more of the multimodal representations
across most layers of the model. Noticeably, for the referring expression data, the text explains
even more of the multimodal representations and the vision explains a substantial part as well. This
suggests that visual alignment with the multimodal space is more important for this task throughout
the model as the model tries to localize the target object, whereas for the standard spatial reasoning
dataset, visual information is not largely integrated into the multimodal space until the end, as the
model needs to consider spatial information only after the prompt is sufficiently understood.

5 DISCUSSION

The results of our zero-shot and fine-tuning experiments reveal interesting insights into how VLLMs
represent visual information and the impact that fine-tuning has on the model’s internal representa-
tions. Many of our insights will prove valuable for creating better compression policies in VLLMs.
Namely, we found that the most compression should occur at the earliest layers in the network,
where information is most diffuse, with moderate compression at later layers, and only mild com-
pression at middle layers where tokens display more specialization and dropping the wrong one
could more substantially impact model performance. Furthermore, compression should be based on
the downstream task. Simple tasks such as visual recognition can have extremely severe compres-
sion ratios, only obtaining even just 1% of the overall tokens in the network using our naive tuning
approach, whereas complex tasks can start showing some degradation at even just 50% compression.
A compression method that is dynamic and can adapt to each task would naturally be most effective.
In terms of effective fine-tuning, we found that updating the text and any multimodal projection lay-
ers would likely be more important for task adaptation than fine-tuning the visual encoder. This is
because even in the LLM decoder, the visual features remain relatively consistent. Additionally, we
found that tuning on grounding vs. spatial reasoning tasks could display different trends across the
model, suggesting that mixing this data is key to performance improvement across all layers of the
model. Spatial reasoning seemed to make even more substantial changes to the text representation
of the model, furthering its multimodal alignment, while the grounding data seemed to do the same
for vision. This validates the direction that Molmo Deitke et al. (2025) originally pursued, which
involved collecting fine-tuning data that specifically targeted both of these tasks. However, it re-
veals that even further expanding the data to include more of these tasks could improve multimodal
representations within the model.

6 CONCLUSION

In this work, we presented a fine-grained analysis of VLLM redundancy and complexity. Building
on prior work which primarily focused on attention distributions throughout the model, we instead
focused on analyzing hidden states. Overall, we found a high-level of redundancy in the VLLMs,
especially in early and late layers of the model where activations are spread across more tokens.
Additionally, via a customized synthetic dataset, we discovered that complex tasks, such as object
counting, are more require more specialized tokens to be successful and are less robust to token
ablation methodologies. Lastly, we fine-tuned a VLLM on a large number of datasets and observed
that different types of complexity, based on downstream task, can impact the model representations
in different ways, but all data has a larger impact on text representations than vision representa-
tions. We hope that these insights will prove valuable in developing the next generation of VLLM
compression methodologies and in selecting effective datasets for fine-tuning VLLMs.

9
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7 ETHICS STATEMENT

All of the results in this paper are utilizing existing publicly available models and datasets. Addi-
tionally, our work is geared towards better understanding these models and impact that training on
certain datasets can have on the model. Therefore, we do not foresee any notable ethical implications
of our paper.

8 REPRODUCABILITY STATEMENT

While we do not include code with our submission due to time constraints, we do plan to release
our code upon publication. Additionally, we have included detailed information about our dataset
creation, metric implementation, and fine-tuning setups, including the compute that was used, in the
Appendix, to encourage reproducability.
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A APPENDIX

A.1 COMPRESSION METRIC DETAILS

We consider two types of compression metrics, those focused on token norms and those focused
on token rank. We explore 3 different metrics for each type. For token norm metrics, we utilize
the Gini coefficient, which quantifies the inequality of L2 norms across the token embeddings. The
coefficient ranges from 0, which indicates perfect equality across the norms and 1, which indicates
maximum inequality where a single token has all of the norm mass. For a set of token norms
{n1, n2, . . . , nk}, the Gini coefficient G is calculated as the area between the line of equality and
the Lorenz curve of the sorted norm distribution. The second token norm metric is the normalized
entropy. The normalized entropy quantifies the information content of the token norm distribution,
defined as Hnorm = −

∑
i pi log(pi)/ log(k), where pi is the probability mass of token i (computed

as ni/
∑

j nj) and k is the total number of tokens. Values range from 0 (deterministic distribution)
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to 1 (uniform distribution), indicating the degree of concentration in the token representation space.
The final norm metric is the coefficient of variation (CV), which measures the relative variability of
token norms. It is computes as CV = σ/µ where σ and µ are the standard deviation and mean of
the L2 norms respectively.

While the norm metrics provide interesting insights regarding how information is distributed across
tokens, it does not provide a means of further characterizing exactly how much information is stored
across the tokens. To this end, we also utilize rank metrics, which are computed over the token
matrix of a given layer. The first metric that we use is the stable rank, which measures the effec-
tive dimensionality of the token matrix. The stable rank is defined as SR =

∑
i σ

2
i

σ2
1

, where σi are
the singular values of the token embedding matrix in descending order. This metric provides a sta-
ble estimate of the intrinsic dimensionality that is less sensitive to noise than the traditional rank,
with values ranging from 1 (rank-1 matrix) to the minimum matrix dimension. The next metric is
participation ratio, which measures how many singular values contribute significantly to the collec-
tive representation of the tokens at a given layer. It is computed as PR =

(
∑

i σi)
2∑

i σ
2
i

, where a high
PR indicates that the tokens are utilizing their full dimensionality and a low PR indicates informa-
tion is compressed and the tokens are utilizing fewer effective dimensions. The last norm metric is
the exponential entropy, which computes the Shannon entropy of the singular value distribution, as
EE = exp (−

∑
i p̃i log(p̃i)) where p̃i = σi/

∑
j σj .

A.2 SVD ANALYSIS DETAILS

To more deeply explore the relationship between vision, text, and multi-modal hidden states, and
the impact their content and interaction has on final performance, we choose to apply singular-value
decomposition analysis to both the unimodal and multimodal hidden state matrices. To do so, we
first extract the text and vision tokens from the multimodal matrix. We then apply SVD to the vision
(Uv, Sv, V

T
v ), text (Ut, St, V

T
t ), and multimodal matrices (Uc, Sc, V

T
c ) individually, producing the

building blocks for our analyses.

Alignment We first look at token projection consistency, a measure of how consistently the pri-
mary unimodal token component projects onto the primary token component of each modality in
multimodal token space. To compute this, we take the dot product between the normalized primary
token component of each modality in muiltimodal space and the primary token component of each
unimodal matrix. For a given modality m, we have

consistm =
ucm

∥ucm∥
· um

where uij represents the primary token component of the multimodal or unimodal matrix, the for-
mer of which is selected for a specific modality when a second subscript is present. Such a metric
allows us to understand whether unimodal tokens are able to collaborate in multimodal space (high
consistency), or if individual modes retain specialized communication with each other (low consis-
tency). We next look at feature space alignment, or the dot product between the top right singular
vectors of unimodal and multimodal matrices. For a given modality m, we have

fsam =
vTm

∥vTm∥
· vTc
∥vTc ∥

which measures the principle directions between unimodal and multimodal components in feature
space. This metric provides us a sense of whether primary unimodal token representations are able
to fuse in the multimodal setting. Such a metric provides additional insight into the collaboration
between tokens. Next we look at subspace alignment, or the degree to which each modality con-
tributes to the primary token component of the multimodal matrix. For a given modality m, we
simply take the average per-token energy of each modality’s primary token component

em =
∥ucm∥2

nm

12
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and then normalize them by the average energies to obtain alignment:

am =
mpt

mpt + ¬mpt
.

This metric helps us understand whether vision or text tokens dominate the global token pattern
when modal counts are accounted for. Lastly, we look at reconstruction alignment, or the ability of
primary unimodal feature-space representations to reconstruct the multimodal feature-space repre-
sentations. To compute alignment, we simply use the projection matrix formed by the first k right
singular vectors of each modal SVD, VkV

T
K to reconstruct the original multimodal token matrix Q

via QVKV T
K . For a given modality, we then compute the coefficient of determination between the

original matrix and its reconstruction via

R2 = 1− mean(Q−QVKV T
K )2

var(Q)
.

For our reconstructions, we compare results using an arbitrary rank (k = 5) and the varying stable
rank of each unimodal matrix. To be transparent with these reconstructions, we also highlight con-
centration, or the amount of variance captured by the top-k singular values for both unimodal and
multimodal matrices via

∑k
i=1 σ2

i∑r
i=1 σ2

i
.

A.3 FINE-TUNING EXPERIMENTAL DETAILS

A.3.1 DATASETS

Dataset selection for our fine-tuning experiments is driven by two primary interests. The first is to
understand the effect which specializing a vision-language model in referring expression tasks has
on the content of token representations. The second is to test the competence of vision-language
models on simple spatial reasoning tasks. For these tasks, we use GQA Hudson & Manning (2019)
and COCO Lin et al. (2014) to produce three vision-language tasks of varying complexity from each
dataset:

1. Spatial captioning for one and two objects:
• One-object: “Describe the spatial relationship of the ⟨obj⟩ relative to the image.”
• Two-object: “Describe the spatial relationship between the ⟨obj1⟩ and the ⟨obj2⟩ in

the image.”
2. Referring expression for one and two objects:

• One-object: “Point to the ⟨obj⟩ on the bottom.”
• Two-object: “Point to the ⟨obj1⟩ to the left of ⟨obj2⟩.”

3. Referring expression with localization information for two objects:
• Two-object: “Point to the ⟨obj1⟩ to the left of ⟨obj2⟩ at [bbox2]

Spatial captioning tasks vary by dataset, but ground-truths generally follow the format “A photo of
a ⟨obj1⟩ to the right” for single objects and “A photo of a ⟨obj1⟩ to the right of a ⟨obj2⟩. Referring
expression ground truths are simply bounding boxes of format [x1, y1, x2, y2]. We use bounding
boxes to control for the possibility that Molmo may have seen subsets of COCO or GQA during
its training. This adds a novel dimension of visual complexity, since Molmo was only trained on
centerpoint referring expressions. We also mix captions into the COCO datasets, following the
suggestion in Kamath et al. (2023).

For both COCO and GQA, we create spatial-captioning, referring expression, and referring expres-
sion with localization datasets. Before the creation of any dataset, we roughly follow the methods
outlined in Kamath et al. (2023) by applying a broad filter to all image-question pairs. For the COCO
datasets, we filter images that contain multiple annotations of the same object to avoid model con-
fusion. We then set a box-size tolerance to exclude any objects that are too small (less than 3% of
image area) and too large (greater than 30% of image area). Finally, for each image we calculate its
centroid and enforce the conditions

|cbboxx − cimx | > α · w; ; |cbboxy − cimy | > α · h
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such that no object is “centered” within the image. This is to minimize model confusion for ground-
ing tasks since we exclusively use prepositions {left, right, above, below, bottom, top} in all referring
expression tasks. For the GQA datasets, we follow a similar process. First we filter questions by the
presence of target prepositions, keeping only those questions which contain our target prepositions.
We then filter out all questions where mentioned objects are not present in the scene, and remove
qualifiers from objects (e.g. “big”, “green”) to keep them aligned with the methods in Kamath et al.
(2023). Finally, we remove any objects which are less than 3% of the image area. In all referring
expression tasks from the second cohort, we only retain the original bounding boxes for localization,
and do not create centerpoint annotations. By doing so, we require Molmo to produce completely
new grounding outputs. In addition, we evaluate on six datasets produced by Kamath et al. (2023),
including one-and-two object spatial variants of GQA, COCO, and their own proprietary dataset,
WhatsUp. A breakdown of the dataset statistics is available in Table 1.

Training Molmo 7B-O Deitke et al. (2025) is fine-tuned separately on datasets CS, CRS, CRSB,
GS, GRS, and GRSB for three epochs using cross-entropy loss. LoRA Hu et al. (2022) is used for
fine-tuning all modules within Molmo. We use batch-size of 2 and gradient accumulation of 2 across
8 H100 GPUs for an effective batch size of 32. We set learning rates to lrbase = 5e−5, lrvis = 2e−6,
and lrproj = 1e−5, and LoRA parameters to r = 16 and α = 32. For referring expression datasets
CRS and CRSB, regular captioning instances are included to retain language capabilities, as outlined
in Kamath et al. (2023).

Evaluation Following fine-tuning, all models are tested on their respective test datasets, namely
CS, CRS, CRSB, GS, GRS, and GRSB. Additionally, the baseline model is evaluated against spatial
captioning datasets. For referring expression datasets, we evaluate on average IOU. For pure spatial
captioning, we compute caption likelihoods over correct and incorrect captions and consider a se-
lection correct when the model assigns it the highest likelihood. We use this method in an attempt
to emulate the evaluation methods in Kamath et al. (2023).

Additionally, we evaluate on the datasets provided by Kamath et al. (2023), namely COO, CTO,
GOO, GTO, W1, and W2. For COCO and GQA datasets, we limit our evaluation by grouping shared
models and datasets. Models fine-tuned on CS, CRS, and CRSB, for example, are all evaluated on
each of COO and CTO, while models fine-tuned on GS, GRS, and GRSB are all evaluated on
each of GOO and GTO. This evaluation is used isolate the effect which fine-tuning on increasingly
complex tasks has on simple spatial reasoning tasks across the same image space. For W1 and
W2, however, we use all fine-tuned models for evaluation. This evaluation helps us measure and
understand the same effects on out-of-distribution image spaces. Lastly, for each of the Kamath
et al. (2023) datasets we evaluate the untrained model, where we use the same spatial reasoning
metrics to establish its baseline spatial competency against our specialized models. The results of
our fine-tuning experiments is available in Table 2.

Token Analysis For each dataset, compression metrics 3.1 and SVD analyses 3.2 are extracted
from baseline and finetuned models in a manner identical to evaluation. For the COCO and GQA-
derived Kamath et al. (2023) datasets, we group shared models and datasets for token analysis, and
for W1 and W2, we conduct token analysis on each dataset using every fine-tuned model. We also
conduct token analysis for the baseline model on each of the datasets.

A.4 LLM USAGE

While LLMs did not contribute to our paper to the extent that we would consider it an author, we did
utilize it in creating this work. The primary way we used LLMs, primarily Claude, was in writing
code for running our experiments and generating the plots that are present in the paper. However, we
note that the ideas themselves and the experiments that we considered were all human driven. For
instance consider the synthetic data generation script. We used Claude to write this script, carefully
laying out exactly what we wanted generated and how we wanted it done. In writing the paper, we
used LLMs for generating some of the latex for the equations and for proof-reading. This proof-
reading consisted of identifying any grammatical errors, any breaks of the anonymity guidelines,
and recommended areas of the paper that could be improved.
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Dataset Shorthand Annotations Prepositions Objects
Train Test

COCO Spatial CS 69,348 2,862 left, right, top, bottom 1, 2
COCO Ref. Spatial CRS 69,348 2,862 left, right, top, bottom 1, 2
COCO Ref. Spatial Box CRSB 69,348 2,862 left, right, top, bottom 1, 2
GQA Spatial GS 66,356 9,265 left, right 2
GQA Ref. Spatial GRS 66,356 9,265 left, right 2
GQA Ref. Spatial Box GRSB 66,356 9,265 left, right 2
COCO One-Obj COO – 2,247 left, right, top, bottom 1
COCO Two-Obj CTO – 440 left, right, above, below 2
GQA One-Obj GOO – 1,160 left, right, top, bottom 1
GQA Two-Obj GTO – 291 left, right, front, behind 2
Whatsup-1 (Cont. Clevr) W1 – 408 left, right, front, behind 2
Whatsup-2 (Cont. Images) W2 – 412 left, right, on, under 2

Table 1: Dataset Overview

Figure 7: Llama probes
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Table 2: Fine-tuned Model Performance Across All Datasets

Dataset Model Token Prob. IOU

CS CS-FT 0.97 –
Baseline 0.95 –

CRS CRS-FT – 0.80
CRSB CRSB-FT – 0.79
GS GS-FT 0.99 –
GRS GRS-FT – 0.68
GRSB GRSB-FT – 0.71

COO

CS-FT 0.99 –
CRS-FT 0.88 –
CRSB-FT 0.84 –

CTO

CS-FT 0.99 –
CRS-FT 0.90 –
CRSB-FT 0.89 –
Baseline 0.86 –

GOO

GS-FT 0.94 –
GRS-FT 0.93 –
GRSB-FT 0.95 –
Baseline 0.97 –

GTO

GS-FT 0.97 –
GRS-FT 0.87 –
GRSB-FT 0.89 –
Baseline 0.89 –

W1

CS-FT 0.49 –
CRS-FT 0.69 –
CRSB-FT 0.74 –
GS-FT 0.50 –
GRS-FT 0.52 –
GRSB-FT 0.52 –
Baseline 0.55 –

W2

CS-FT 0.50 –
CRS-FT 0.51 –
CRSB-FT 0.50 –
GS-FT 0.50 –
GRS-FT 0.49 –
GRSB-FT 0.50 –
Baseline 0.50 –
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