gl regMD: an R package for parametric
'x estimation and regression with maxi-
H

mum mean discrepancy

OMPUTO

ISSN 2824.7795 The R package regMVMD

Pierre Alquier ©!

Department of Information Systems, Data Analytics and Operations, ESSEC
Business School

Mathieu Gerber School of Mathematics, University of Bristol

Date published: 2025-05-07 Last modified: 2025-05-07

Abstract

The Maximum Mean Discrepancy (MMD) is a kernel-based metric widely used for non-
parametric tests and estimation. Recently, it has also been studied as an objective function for
parametric estimation, as it has been shown to yield robust estimators. We have implemented
MMD minimization for parameter inference in a wide range of statistical models, including vari-
ous regression models, within an R package called regMMD. This paper provides an introduction
to the regMMD package. We describe the available kernels and optimization procedures, as well
as the default settings. Detailed applications to simulated and real data are provided.

Keywords: parameter estimation, regression, robust statistics, minimum distance estimation, kernel
methods, maximum mean discrepancy

i Contents

> 1 Introduction 2
s 2 Statistical background 3
4 2.1 Parametric estimation oL oo L 3
5 22 Regression 4
s 3 Package content and implementation 4
7 3.1 Overview of the functionmmd_est 5
8 3.2 Overview of the functionmmd_reg 7
9 3.3 Kernels and bandwidth parameters 0 0oL 8
10 3.4 Optimizationmethods 8
" 3.5 Availablemodels 9

!Corresponding author: pierre.alquier@essec.edu

https://orcid.org/0000-0003-4249-7337
https://orcid.org/0000-0001-6774-2330
mailto:pierre.alquier@essec.edu

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

4 Detailed examples 10

4.1 Toy example: robust estimation in the univariate Gaussian model 10

4.2 Robust linear regressiono 14
421 Datasetandmodel L Lo 14

422 Datapreparation e 15

423 OLSestimation 15

424 MMD estimation with the default settings 16

4.2.5 Tuning the fitin MMD estimation 17

43 Robust Poisson regression 18
43.1 Datasetandmodel Lo Lo 18

432 GLMestimation. o oo oo 18

4.3.3 MMD estimation with default setting 18
References 20
Session information 21

1 Introduction

In some models, popular estimators such as the maximum likelihood estimator (MLE) can become very
unstable in the presence of outliers. This has motivated research into robust estimation procedures
that would not suffer from this issue. Various notions of robustness have been proposed, depending
on the type of contamination in the data. Notably, the Huber contamination model (Huber 1992)
considers random outliers while, more recently, stricter notions have been proposed to ensure
robustness against adversarial contamination of the data.

The maximum mean discrepancy (MMD) is a kernel-based metric that has received considerable
attention in the past 15 years. It allows for the development of tools for nonparametric tests and
estimation (Chwialkowski, Strathmann, and Gretton 2016; Gretton et al. 2007). We refer the reader to
(Muandet et al. 2017) for a comprehensive introduction to MMD and its applications. A recent series
of papers has suggested that minimum distance estimators (MDEs) based on the MMD are robust to
both Huber and adversarial contamination. These estimators were initially proposed for training
generative Al (Dziugaite, Roy, and Ghahramani 2015; Sutherland et al. 2016; Li et al. 2017), and the
study of their statistical properties for parametric estimation, including robustness, was initiated by
(Briol et al. 2019; Chérief-Abdellatif and Alquier 2022; Alquier and Gerber 2024). We also point out
that the MMD has been successfully used to define robust estimators that are not MDEs, such as
bootstrap methods based on MMD (Dellaporta et al. 2022) or Approximate Bayesian Computation
(Legramanti, Durante, and Alquier 2025).

Unfortunately, we are not aware of any software that allows for the computation of MMD-based
MDEs. To make these tools available to the statistical community, we developed the R package
called regMMD. This package allows for the minimization of the MMD distance between the empirical
distribution and a statistical model. Various parametric models can be fitted, including continuous
distributions such as Gaussian and gamma, and discrete distributions such as Poisson and binomial.
Many regression models are also available, including linear, logistic, and gamma regression. The
regMMD package is available on the CRAN website (R Core Team 2020): regMMD page

The optimization is based on the strategies proposed by (Briol et al. 2019; Chérief-Abdellatif and
Alquier 2022; Alquier and Gerber 2024). For some models we have an explicit formula for the gradient
of the MMD, in which case we use gradient descent, see e.g. (Boyd and Vandenberghe 2004; Nesterov
2018) to perform the optimization. For most models such a formula does not exist, but we can
however approximate the gradient without bias by Monte Carlo sampling. This allows to use the

https://cran.r-project.org/web/packages/regMMD/

57

58

59

60

61

62

63

64

65

66

67

68

69

70

7

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

stochastic gradient algorithm of (Robbins and Monro 1951), that is one of the most popular estimation
methods in machine learning (Bottou 2004). We refer to the reader to (Wright 2018; J. C. Duchi
2018) and Chapter 5 in (Bach 2024) for comprehensive introductions to otpimization for statistics
and machine learning, including stochastic optimization methods.

The paper is organized as follows. In Section 2 we briefly recall the construction of the MMD metric
and the MDE estimators based on the MMD. In Section 3 we detail the content of the package regMMD:
the available models and kernels, and the optimization procedures used in each case. Finally, in
Section 4 we provide examples of applications of regVMMD. Note that these experiments are not meant
to be a comprehensive comparison of MMD to other robust estimation procedures. Exhaustive
comparisons can be found in (Briol et al. 2019; Chérief-Abdellatif and Alquier 2022; Alquier and
Gerber 2024). The objective is simply to illustrate the use of regMMD through pedagogical examples.

2 Statistical background

2.1 Parametric estimation

Let Xi,..., X,, be Z-valued random variables identically distributed according to some probability
distribution P?, and let (Py, 0 € ©) be a statistical model. Given a metric d on probability distributions,
we are looking for an estimator of 6, € arg mingeg d(Pp, P°) when such a minimum exists. Letting
P, = % > Jx, denote the empirical probability distribution, the minimum distance estimator (MDE)

0is defined as follows:)
0 € argmind(Py, P,).
fe®

The robustness properties of MDEs for well chosen distances was studied as early as in (Wolfowitz
1957; Parr and Schucany 1980; Yatracos 2022). When d(Py, P,) has no minimum, the definition can be
replaced by an e-approximate minimizer, without consequences on the the properties of the estimator,
as shown in to (Briol et al. 2019; Chérief-Abdellatif and Alquier 2022).

Let % be a Hilbert space, let || - | and (-, -)g denote the associated norms and scalar products,
respectively, and let ¢ : & — Z. Then, for any probability distribution P on & such that
Ex-plle(X)|g] < 4o we can define the mean embedding u(P) = Ex._p[¢(X)]. When the mean
embedding p(P) is defined for any probability distribution P (e.g. because the map ¢ is bounded in
), for any probability distributions P and Q we put

D(P,Q) := |u(P) — p(Ql g -

Letting k(x,y) = (@(x), ¢(y)) g, it appears that D(P, Q) depends on ¢ only through k, as we can
rewrite:

D*(P,Q) = Ex x+~plk(X, X")] = 2Ex_p xr~olk(X, X")] + Ex xr~olk(X, X")]. (1)

When # is actually a RKHS for the kernel k (see (Muandet et al. 2017) for a definition), D(P, Q) is
called the maximum mean discrepancy (MMD) between P and Q. A condition on k (universal kernel)
ensures that the map p is injective, and thus that D satisfies the axioms of a metric. Examples of
universal kernels are known, such as the Gaussian kernel k(x, y) = exp(—|x — y|2/y?) or the Laplace
kernel k(x, y) = exp(—|x — y|l/y), see (Muandet et al. 2017) for more examples and references to the
proofs.

The properties of MDEs based on MMD were studied in (Briol et al. 2019; Chérief-Abdellatif and
Alquier 2022). In particular, when the kernel k is bounded, this estimator enjoys very strong robustness
properties. We cite the following very simple result.

95

96

97

98

929

100

101

102

103

104

105

106

107

108

109

110

m

112

113

114

115

116

117

118

119

120

121

122

124

125

126

127

128

129

Theorem 2.1 (special case of Theorem 3.1 in (Chérief-Abdellatif and Alquier 2022)). Assume X1, ..., X,
are i.i.d. from P°. Assume the kernel k is bounded by 1. Then

E[D (B, P")] < inf D (P P") + %

Additional non-asymptotic results can be found in (Briol et al. 2019; Chérief-Abdellatif and Alquier
2022). In particular, Theorem 3.1 of (Chérief-Abdellatif and Alquier 2022) also covers non independent
observations (time series). An asymptotic study of 0, including conditions for asymptotic normality,
can be found in (Briol et al. 2019). All these works provide strong theoretical evidence that 0is
very robust to random and adversarial contamination of the data, and this is supported by empirical
evidence.

2.2 Regression

Let us now consider a regression setting: we observe (X;,Y;),...,(X,,Y,) in & x % and we want to
estimate the conditional distribution P3| x=x Of Y given X = x for any x. %A direct application of
the method in the previous section to the random variables (X;,Y;), ..., (X, Y,) would lead to the
estimation of the joint distribution of the pair (X,Y), which is not the objective of regression models.
To this end we consider a statistical model (P[;, p € #) and model the conditional distribution of Y
given X = x by (Pg(y9),0 € ©) where B(,,-) is a specified function 2 x © — ZB. The first estimator
proposed by (Alquier and Gerber 2024) is:

A

n n
. 1 1
Oreg € argminD | = Z Sx, ® Pp(x.60) = Z Ox, ® dy,
0O ni4 ni3

where D is the MMD defined by a product kernel, that is a kernel of the form k((x, y), (x",y")) =
kx(x, x")ky(y, y’) (non-product kernels are theoretically possible, but not implemented in the package).
Asymptotic and non-asymptotic properties of 0 are studied in (Alquier and Gerber 2024). The
computation of 0is however slow when the sample size n is large, as it can be shown that the criterion
defining this estimator is the sum of n? terms.

By contrast, the following alternative estimator

n

= .1

Greg € arg Jémn - Z D (5Xi ® Pp(x.0), 5Xi ® 5}/1) >
€O n 5

has the advantage to be defined through a criterion which is a sum of only n terms. Intuitively, this
estimator can be interpreted as a special case of 6., Where kx(x, x") = 1(—y/}. An asymptotic study

of éreg is provided by (Alquier and Gerber 2024). The theory and the experiments suggest that both

eg 1s more robust than éreg. However, for computations reasons,
for large sample sizes n (n > 5000, say) only the latter estimator can be computed in a reasonable
amount of time.

estimators are robust, but that ér

3 Package content and implementation

The package regMMD allows to compute the above estimators in a large number of classical models. We
first provide an overview of the two main functions with their default settings: mmd_reg for regression,
and mmd_est for parameter estimation. We then give some details on their implementations and
options. These functions have many options related to the choice of kernels, the choice of the
bandwidth parameters and of the parameters of the optimization algorithms used to compute the
estimators. To save space, in this section we only discuss the options that are fundamental from a

130

131

132

133

134

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

statistical perspective. We refer the reader to the package documentation for a full description of the
available options.

We start by loading the package and fixing the seed to ensure reproducibility.
require("regMMD")
Loading required package: regMMD

set.seed(0)

3.1 Overview of the function mmd_est

The function mmd_est performs parametric estimation as described in Section 2.1. Its required
arguments are the data x and the type of model model (see Section 3.5 for the list of available models).
Each model implemented in the package has one or two parameters, namely par1 and par2. If the
model contains a parameter that is fixed (i.e. not estimated from the data) then its value must be
specified by the user. On the other hand, a value for a parameter that we want to estimate from
the data does not have to be given as an input. If, however, a value is provided then it is used to
initialize the optimization algorithm that serves at computing the estimator (see below). Otherwise
an initialization by default is used.

For example, there are three Gaussian univariate models: Gaussian.loc, Gaussian.scale and
Gaussian. In each model paril is the mean and par?2 is the standard deviation. We will use the
following data:

x = rnorm(100,1.9,1)

hist(x)
Histogram of x
o _
(Q\
>
(&S]
o |
S
g 2 -
L
m —
o Jd —= —{]
| | | | |
0 1 2 3 4
X

In the Gaussian model the two parameters parl and par?2 are estimated from the data and the MMD
estimator of 6 =(par1,parl) can be computed as follows:

estim = mmd_est (x,model="Gaussian")

Here, we mention that the output of both mmd_est and mmd_reg is a list that contains error messages
(if any), the estimated parameters (if no error prevented their computations) and various information

151

153

154

155

156

157

158

159

160

162

163

164

165

166

167

168

169

170

17

172

173

174

175

176

177

178

180

181

182

183

184

185

186

188

189

on the model, the estimators and the algorithms. The major information can be retrived through a
summary function:

summary (estim)

Summary
Model: Gaussian
Algorithm: SGD
Kernel: Gaussian
Bandwidth: 0.856108154564806
Parameters:
parl: mean -- initialized at 1.867

estimated value: 1.8759

par2: standard deviation -- initialized at 0.7786
estimated value: 0.8889

Note that some of the information provided here (like the algorithm used) will be detailed below.
Still in the Gaussian model, if we enter

estim = mmd_est(x,model="Gaussian",parl=0,par2=1)

summary (estim)

———————— Summary ========
Model: Gaussian

Algorithm: SGD

Kernel: Gaussian

Bandwidth: 0.856108154564806

Parameters:

parl: mean -- initialized at O

estimated value: 1.8758

par2: standard deviation -- initialized at 1
estimated value: 0.8862

we simply enforce the optimization algorithm that serves at computing the estimator to use 6, = (0, 1)
as starting value. In the Gaussian.loc model only the location parameter (the mean) is estimated.
Thus, to compute 6 = par1 it is necessary to specify the standard deviation par2. For instance,

estim = mmd_est(x,model="Gaussian.loc",par2=1)
summary (estim)

Summary
Model: Gaussian.loc

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

Algorithm: GD

Kernel: Gaussian
Bandwidth: 0.856108154564806
Parameters:

parl: mean -- initialized at 1.867

estimated value: 1.8817

par2: standard deviation -- fixed by user: 1

will estimate 0 in the model (6, 1). If we provide a value for par1 then the optimization algorithm
used to compute 6 will use 0y =par1 as starting value. Finally, In the Gaussian.scale model only the
scale parameter (standard deviation) is estimated. That is, to estimate § =par2 in e.g. the (2, 6?)
distribution we can use

estim = mmd_est(x,model="Gaussian.scale",parl=2)

summary (estim)
Summary
Model: Gaussian.scale
Algorithm: SGD
Kernel: Gaussian
Bandwidth: 0.856108154564806
Parameters:
parl: mean -- fixed by user: 2
par2: standard deviation -- initialized at 0.6981

estimated value: 0.9005

3.2 Overview of the function mmd_reg

The function mmd_reg is used for regression models (Section 2.2) and requires to specify two argu-
ments, namely the output vector y of size n and the n x q input matrix X. By default, the functions
performs linear regression with Gaussian error noise (with unknown variance) and the regression
model to be used can be changed through the option model of mmd_reg (see Section 3.5 for the list of
available models). In addition, by default, if the input matrix X contains no column whose entries are
all equal then an intercept is added to the model, that is, a column of 1’s is added to X. This default
setting can be disabled by setting the option intercept of mmd_reg to FALSE.

All regression models implemented in the package have a parameter par1, and some of them have
an additional scalar parameter par2. If a model has par1 as unique parameter then the parameter
to be estimated is @ =par1 and the conditional distribution of Y given X = x is modelled using a
model of the form (Pg(,7¢),0 € RF), with k the size of x. For instance, for Poisson regression the
distribution Pg(,g) is the Poisson distribution with mean exp(x"6). By contrast, some models have
an additional parameter par?2 that also needs to be estimated from the data, so that 8 =(par1,par2).
For these models the conditional distribution of Y given X = x is modeled using a model of the form

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

(Pﬂ(xTY’l//), 0=(.y)e R¥*1). For instance, for the Gaussian linear regression model with unknown
variance Pty gy = A (xTy,¥?). Finally, some models have an additional parameter par2 whose
value needs to be specified by the user. For these models § =par1, par2= i for some ¢ fixed by
the user, and the conditional distribution of Y given X = x is modeled using a model of the form
(Pﬂ(xTG,I#)’ 0 e]Rk). For instance, for the Gaussian linear regression model with known variance,
Poixropy =N (x76,¥?). Remark that for all models implemented in the package par1 is therefore
the vector of regression coefficients. As with the function mmd_est, if a value for a parameter that
needs to be estimated from the data is provided then it is used to initialize the optimization algorithm
that serves at computing the estimator, otherwise an initialization by default is used. It is important
to note that the number k of regression coefficients of a model is either g (the number of columns of
the input matrix X) or ¢ + 1 if an intercept has been added by mmd_reg. In the latter case, if we want
to provide a value for par1 then it must be vector of length g.

For example, there are two linear regression model with Gaussian noise: linearGaussian which
assumes that noise variance is unknown and linearGaussian. loc which assumes that noise variance
is unknown. By default, the former model is used by mmd_reg, and thus linear regression can be
simply performed using estim = mmd_reg(y,X). By default mmd_reg uses the MMD estimator éreg,
which we recall is cheaper to compute that the alternative MMD estimator éreg.

3.3 Kernels and bandwidth parameters

For parametric models (Section 2.1) the MMD estimator of 0 is computed with a kernel k(x, x")
of the form k(x,x’) = K(|x — x’||/y) for some bandwidth parameter y > 0 and some function
K : [0,00) = [0,). The choice of K and y can be specified through the option kernel and bdwth of
the function mmd_est, respectively. By default, the median heuristic is used to choose y (the median
heuristic was used successfully in many applications of MMD, for example (Gretton et al. 2012), see
also (Garreau, Jitkrittum, and Kanagawa 2017) for a theoretical analysis). The following three options
are available for the function K:

. Gaussian: K(u) = exp(—u?),
« Laplace: K(u) = exp(—u),
« Cauchy: K(u) = 1/(2 + u?).

Similarly, for regression models (Section 2.2), the MMD estimators are computed with kx(x, x") =
Kx(|lx — x’|l/yx) and ky(y, y") = Ky(ly — ¥’ /yy) for some bandwidth parameters yx > 0 and yy > 0
and functions Ky, Ky : [0,00) — [0, o). The choice of Kx, Ky, and yx and yy can be specified through
the option kernel.x, kernel.y, bdwth.x and bdwth.y of the function mmd_reg, respectively. The
available choices for Ky and Ky are the same as for K, and by default the median heuristic is used

to select yy. By default, bdwth.x=0 and thus it is the estimator éreg that is used by mmd_reg. The
alternative estimator éreg can be computed either by providing a positive value for bdwth.x or by
setting bdwth.x="auto", in which case a rescaled version of the median heuristic is used to choose a

positive value for yyx.

3.4 Optimization methods

Depending on the model, the package regMMD uses either gradient descent (GD) or stochastic gradient
descent (SGD) to compute the estimators.

More precisely, for parametric estimation it is proven in Section 5 of (Chérief-Abdellatif and Alquier
2022) that the gradient of D?(Py, P,) with respect to is given by

VgDA(Py B,) = 2Ex xo-p, [(k(x, X =23 k(X X)) Vllog pg(xn] (2)
i=1

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

297

298

299

300

301

302

303

304

305

306

307

308

309

310

31

312

313

314

315

316

317

318

319

320

321

under suitable assumptions on Py, including the existence of a density py(X) and its differentiability.
In some models there is an explicit formula for the expectation in Equation 2. This is for instance
the case for the Gaussian mean model, and for such models a gradient descent algorithm is used to
compute the MMD estimator. For models where we cannot compute explicitly the expectation in
Equation 2 it is possible to compute an unbiased estimate of the gradient by sampling from Py. In
this scenario the MMD estimator is computed using AdaGrad (J. Duchi, Hazan, and Singer 2011),
and adaptive step-size SGD algorithm. Finally, in very specific models, D(Pp, P,) can be evaluated
explicitly in which case we can perform exact optimization exact. This is for example the case when
Py is the (discrete) uniform distribution on {1, 2, ..., 6}.

In mmd_est, for each model all the available methods for computing the estimator are implemented.
The method used by default is chosen according to the ranking: exact>GD>SGD. We can enforce
another method with the method option. For instance, estim <- mmd_est (x,model="Gaussian") is
equivalent to estim <- mmd_est(x,model="Gaussian",method="GD") and we can enforce the use
of SGD with estim <- mmd_est(x,model="Gaussian",method="SGD").

For regression models, formulas similar to the one given in Equation 2 for the gradient of the criteria
defining the estimators Hreg and Qreg are provided in Section S1 of the supplement of (Alquier and
Gerber 2024). For the two estimators, this gradient can be computed explicitly for all linear regression
models when kernel.y="Gaussian" and for the logistic regression model.

For the estimator éreg, and as for parametric estimation, gradient descent is used when the gradient
of the objective function can be computed explicitly, and otherwise the optimization is performed
using Adagrad. In mmd_reg gradient descent is implemented using backtracking line search to select
the step-size to use at each iteration, and a stopping rule is implemented to stop the optimization
earlier when possible.

The computation of éreg is more delicate. Indeed, the objective function defining this estimator is
the sum of n? terms (see Section 2.2), implying that minimizing this function using gradient descent
or SGD leads to algorithms for computing the estimator that require ©(n?) operations per iteration.
In the package, to reduce the cost per iteration we implement the strategy proposed in Section S1
of the supplement of (Alquier and Gerber 2024). Importantly, with this strategy the optimization
is performed using an unbiased estimate of the gradient of the objective function, even when the
gradient of the n? terms of objective function can be computed explicitly. It is however possible to
use the explicit formula for these gradients to reduce the variance of the noisy gradient, which we do
when possible. As for the computation of éreg a stopping rule is implemented to stop the optimization

earlier when possible. With this package it is feasible to compute éreg in a reasonable amount of time
for dataset containing up to a few thousands data points (up-to n = 5000 observations, say).

Finally, we stress that, from a computational point of view, MMD estimation in regression models is a
much more challenging task than in parametric models for at least two reasons. Firstly, while in the
latter task the dimension of the parameter of interest 6 is at most two for the models implemented
in this package (see below), in regression the dimension of 6 can be much larger, depending on the
number of explanatory variables. Secondly, the objective functions to minimize for regression models
are “more non-linear’ . When estimating a regression model it is therefore a good practice to verify
that the optimization of the objective function has converged. This can be done by inspecting the
sequence of 0 values computed by the optimization algorithm, accessible from the object trace of
mmd_reg.

3.5 Available models

List of univariate models in mmd_est:

£ . Gaussian /' (m,0?): Gaussian(estimation of m and o), Gaussian.loc(estimation of m) and
23 Gaussian.scale(estimation of o),

324 + Cauchy: Cauchy(estimation of the location parameter),

325 « Pareto: Pareto(estimation of the exponent),

26 « exponential &(1): ‘exponential},

327 « gamma Gamma(a,b): gamma(estimation of a and b), gamma.shape(estimation of a) and
328 gamma . rate(estimation of b),

329 « continuous uniform: continuous.uniform.loc(estimation of m in ¥[m — Lm+ £],
330 where L is fixed by the user), continuous.uniform.upper(estimation of b in %|a,b]) and
331 continuous.uniform.lower.upper(estimation of both a and b in % [a, b]),

332 « Dirac §,: Dirac(estimation of a; while this might sound uninteresting at first, this can be used
33 to define a “model-free’’ robust location parameter),

334 . discrete uniform % ({1, 2,..., N}): discrete.uniform(estimation of N),

335 « binomial Bin(N, p): binomial(estimation of N and p), binomial.size(estimation of N) and
336 binomial.prob(estimation of p),

337 « geometric &(p): geometric,

338 « Poisson &(1): Poisson.

339 List of multivariate models in mmd_est:

340 « multivariate Gaussian ./ (y1, UUT): multidim.Gaussian (estimation of yand U), multidim.Gaussian.loc
341 (estimation of p while U = oI for a fixed 0 > 0) and multidim.Gaussian.scale (estimation of
3 U while p is fixed),

343 « Dirac mass §,: multidim.Dirac.

s List of regression models in mmd_reg:

345 « linear regression models with Gaussian noise: linearGaussian (unknown noise variance) and
346 linearGaussian.loc (known noise variance),

347 « exponential regression: exponential,

348 + gamma regression: gamma, or gamma.loc when the precision parameter is known,

349 + beta regression: beta, or beta.loc when the precision parameter is known,

350 « logistic regression: logistic,

351 « Poisson regression: poisson.

w» 4 Detailed examples

3 4.1 Toy example: robust estimation in the univariate Gaussian model

14 We start with a very simple illustration on synthetic data. We choose one of the simplest model,
55 namely, estimation of the mean of a univariate Gaussian random variable. The statistical model is
s6 A (0,1), which is the Gaussian.loc model in the package. We remind the above, using the default
57 settings:

estim = mmd_est(x,model="Gaussian.loc",par2=1)

summary (estim)
358 Summary
359 Model: Gaussian.loc
360 TTTTTT TS T
31 Algorithm: GD
32 Kermnel: Gaussian
33 Bandwidth: 0.856108154564806

10

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

Parameters:

parl: mean -- initialized at 1.867
estimated value: 1.8817

par2: standard deviation -- fixed by user: 1

The user can also impose a different bandwidth and kernel, which will result in a different estimator:

estim = mmd_est(x,model="Gaussian.loc",par2=1,bdwth=0.6,kernel="Laplace")
summary (estim)
Summary
Model: Gaussian.loc
Algorithm: GD
Kernel: Laplace
Bandwidth: 0.6
Parameters:
parl: mean -- initialized at 1.867

estimated value: 1.8795

par2: standard deviation -- fixed by user: 1

We end up the discussion on the Gaussian mean example by a toy experiment: we replicate N = 200
times the simulation of n = 100 i.i.d. random variables /' (—2, 1) and compare the maximum likelihood
estimator (MLE), equal to the empirical mean, the median, and the MMD estimator with a Gaussian
and with a Laplace kernel, using in both cases the median heuristic for the bandwidth parameter.
We report the Mean Absolute Error over all the simulations (MAE) as well as the standard deviation
of the Absolute Error (sdAE).

N = 200
n = 100
theta = -2

err = matrix(data=0,nr=N,nc=4)
for (i in 1:N)

{
X = rnorm(n,theta,1)
thetamle = mean(X)
thetamed = median(X)
estim = mmd_est (X,model="Gaussian.loc",par2=1)
thetanewl = estim$estimator
estim = mmd_est(X,model="Gaussian.loc",par2=1,kernel="Laplace")
thetanew2 = estim$estimator
err[i,] = abs(theta-c(thetamle,thetanewl,thetanew?,thetamed))
}

results = matrix(0,nr=2,nc=4)

11

393

394

395

396

397

results[1,] = colSums(err)/N

for (i in 1:4) results[2,i] = sd(err[,i])

colnames(results) = c('MLE','MMD (Gaussian kernel)','MMD (Laplace kernel)', 'Median')
rownames (results) = c('MAE', 'sdAE')

final = as.table(results)

knitr::kable(final,caption="Estimation of the mean in the uncontaminated case")

Table 1: Estimation of the mean in the uncontaminated case

MLE MMD (Gaussian kernel) MMD (Laplace kernel) Median
MAE 0.0780971 0.0905728 0.0878320 0.1038774
sdAE 0.0578317 0.0658958 0.0640874 0.0761439

In a second time, we repeat the same experiment with contamination: two of the X;’s are sampled
from a standard Cauchy distribution instead.

N = 200
n = 100
theta = -2

err = matrix(data=0,nr=N,nc=4)
for (i in 1:N)

{

cont = rcauchy(2)

X = c(rnorm(n-2,theta,1),cont)

thetamle = mean(X)

thetamed = median(X)

estim = mmd_est (X,model="Gaussian.loc",par2=1)

thetanewl = estim$estimator

estim = mmd_est(X,model="Gaussian.loc",par2=1,kernel="Laplace")

thetanew2 = estim$estimator

err[i,] = abs(theta-c(thetamle,thetanewl,thetanew?,thetamed))
}

results = matrix(0,nr=2,nc=4)

results[1,] = colSums(err)/N

for (i in 1:4) results[2,i] = sd(err[,i])

colnames(results) = c('MLE','MMD (Gaussian kernel)','MMD (Laplace kernel)', 'Median')
rownames (results) = c('MAE', 'sdAE"')

final = as.table(results)

knitr::kable(final,caption="Estimation of the mean in the contaminated case")

Table 2: Estimation of the mean in the contaminated case

MLE MMD (Gaussian kernel) MMD (Laplace kernel) Median
MAE 0.1411296 0.0964510 0.0941981 0.1061498
sdAE 0.2853344 0.0734671 0.0708889 0.0772327

The results are as expected: under no contamination, the MLE is known to be efficient and is therefore
the best estimator. On the other hand, the MLE (i.e. the empirical mean) is known to be very sensitive
to outliers. In contrast, the MMD estimators and the median are robust estimators of 8. We refer the

12

398

399

400

401

402

403

404

405

406

reader to (Briol et al. 2019; Chérief-Abdellatif and Alquier 2022) for more discussions and experiments
on the robustness MMD estimators.

Note that while the median is a natural robust alternative to the MLE in the Gaussian mean model,
such an alternative is not always available. Consider for example the estimation of the standard
deviation of a Gaussian, with known zero mean: .4 (0,0%). We cannot use (directly) a median in
this case, while the MMD estimators are available. We repeat similar experiments as above in this
model. We let N and n be as above and sample the uncontaminated observations from the .4(0, 1)
distributions. We them compare the MLE to the MMD with Gaussian and Laplace kernel both in the
uncontaminated case and under Cauchy contamination for two observations. The conclusions are
completely similar to the ones obtained in the Gaussian location experiments.

N = 200
n = 100
theta=1

err = matrix(data=0,nr=N,nc=3)
for (4 in 1:N)
{
X = rnorm(n,0,theta)
thetamle = sqrt(mean(X~2))
estim = mmd_est (X,model="Gaussian.scale",par1=0)
thetanewl = estim$estimator
estim = mmd_est (X,model="Gaussian.scale",parl1=0,kernel="Laplace")
thetanew2 = estim$estimator
err[i,] = abs(theta-c(thetamle,thetanewl,thetanew?))
}
results = matrix(0,nr=2,nc=3)
results[1,] = colSums(err)/N
for (i in 1:3) results[2,i] = sd(err[,i])
colnames(results) = c('MLE','MMD (Gaussian kernel)', 'MMD (Laplace kernel)')
rownames (results) = c('MAE', 'sdAE"')
final = as.table(results)
knitr::kable(final,caption="Estimation of the standard-deviation in the uncontaminated case")

Table 3: Estimation of the standard-deviation in the uncontaminated case

MLE MMD (Gaussian kernel) MMD (Laplace kernel)

MAE 0.0530777 0.0649238 0.0636323
sdAE 0.0390381 0.0507710 0.0497721
N = 200
n = 100
theta=1

err = matrix(data=0,nr=N,nc=3)
for (i in 1:N)
{
cont = rcauchy(2)
X = c(rnorm(n-2,0,theta),cont)
thetamle = sqrt(mean(X~2))
estim = mmd_est(X,model="Gaussian.scale",parl=0)

thetanewl = estim$estimator

13

408

409

410

411

412

413

414

415

416

417

estim = mmd_est (X,model="Gaussian.scale",parl1=0,kernel="Laplace")

thetanew2 = estim$estimator
err[i,] = abs(theta-c(thetamle,thetanewl,thetanew2))
}
results = matrix(0,nr=2,nc=3)
results[1,] = colSums(err)/N
for (i in 1:3) results[2,i] = sd(err[,il])

colnames(results) = c('MLE','MMD (Gaussian kernel)','MMD (Laplace kernel)')

rownames (results) = c('MAE', 'sdAE"')
final = as.table(results)

knitr::kable(final,caption="Estimation of the standard-deviation in the contaminated case")

Table 4: Estimation of the standard-deviation in the contaminated case

MLE MMD (Gaussian kernel) MMD (Laplace kernel)

MAE 0.4608255 0.0678643
sdAE 1.7910074 0.0503154

0.0668497
0.0495938

4.2 Robust linear regression

4.2.1 Dataset and model

To illustrate the use of the regMMD package to perform robust linear regression we use the R built-in
dataset airquality. The dataset contains daily measurements of four variables related to air quality
in New York, namely the ozone concentration (variable 0zone), the temperature (variable Temp), the
wind speed (variable Wind) and the solar radiation (variable Solar.R). Observations are reported for
the period ranging from the 1st of May 1973 to the 30th of September 1973, resulting in a total of 153
observations. The dataset contains 42 observations with missing values, which we remove from the

sample.

air.data = na.omit(airquality)
hist(air.data$0zone,breaks=20)

Histogram of air.data$Ozone

20

Frequency

0 5 10
I

0 50 100

air.data$Ozone

14

150

418

419

420

421

422

423

424

425

426

427

428

429

430

431

We report the histogram of the log of the variable 0zone:

hist(log(air.data$0zone) ,breaks=20)

Histogram of log(air.data$Ozone)

N
—
> 7 O I _
(&)
c 00 —
(8]
g ©
o
T]
N —
o 4 O M !_r
| | | | | |
0 1 2 3 4 5
log(air.data$Ozone)

From this plot we observe that there is one isolated observation (i.e. outlier), for which the log of the
observed value of Ozone is 0.

Our aim is to study the link between the level of ozone concentration and the other three variables
present in the dataset using the following linear regression model:
log(0zone) = a + f;Temp + fo(Temp)? + fsWind + B4 (Wind)?
+ fsSolar.R + fg(Solar.R)? + €
where € ~ #(0,02). The noise variance o is assumed to be unknown so that the model contains 8
parameters that need to be estimated from the data.

4.2.2 Data preparation

We prepare the vector y containing the observations for the response variable as well as the design
matrix X:

y = log(air.datal,1])
X = as.matrix(air.datal,-c(1,5,6)])
X = cbind(poly(air.datal,2], degree=2),poly(air.datal[,3], degree=2),poly(air.datal,4], degree=2))

4.2.3 OLS estimation

We first estimate the model with the ordinary least squares (OLS) approach, using bot the full dataset
and the one obtained by removing the outlier:

ols.full = 1m(y~X)

ii = which(y<1)

ols = 1m(y[-ii]~X[-ii,])

results = cbind(ols.full$coefficients,ols$coefficients)
print (results)

15

432

434

435

436

437

438

439

440

a41

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

468

469

470

47

472

[,1] [,2]
(Intercept) 3.4159273 3.4361465

X1 2.6074060 2.2885974
X2 -1.2034322 -0.8487403
X1 -2.2633108 -2.5209875
X2 1.2894833 1.1009511
X1 4.2120018 3.9218225
X2 0.4501812 0.8936152

As expected, the OLS estimates are sensitive to the presence of outliers in the data. In particular, we
observe that the unique outlier in the data has a non-negligible impact on the estimated regression
coefficient of the variables (Temp)? and (Solar.R)?.

4.2.4 MMD estimation with the default settings

Using the default settings of the mmd_reg function, the computationally cheap estimator éreg with a
Gaussian kernel ky(y, y”) is used, and the model is estimated as follows:

mmd.tilde = mmd_reg(y,X)

summary (mmd . tilde)

Summary
Model: linearGaussian
Estimator: theta tilde (bdwth.x=0)
Coefficients Estimate
(Intercept) 3.427
X1 2.3448
X2 -0.8132
X3 -2.329
X4 1.0565
X5 4.1788
X6 0.8369

Std. dev. of Gaussian noise : 0.4484 (estimated)

As expected from the robustness properties of MMD based estimators, we observe that the estimated
values of the regression coefficients are similar to those obtained by OLS on the dataset without the
outlier. The summary command also returns the value of the bandwidth parameter yy obtained with
the median heuristic and used to compute the estimator.

To estimate the model using the alternative estimator éreg we need to choose a non-zero value for

bdwth.x. Using the default setting, this estimator is computed as follows:

mmd.hat = mmd_reg(y,X,bdwth.x="auto")
summary (mmd . hat)

———————— Summary ========
Model: linearGaussian
Estimator: theta hat (bdwth.x>0)

16

474

475

476

477

478

479

480

481

482

483

484

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

5

5

516

(Intercept) 3.4269
X1 2.3444
X2 -0.8131
X3 -2.3297
X4 1.056
X5 4.1786
X6 0.8374

Kernel for y: Gaussian with bandwidth 0.5821
Kernel for x: Laplace with bandwidth 0.0215

We remark that the value for bdwth.x selected by the default setting is very small, and thus the two
MMD estimators provide very similar estimates of the model parameters.

4.2.5 Tuning the fit in MMD estimation

Above, the estimator éreg was computed using a Laplace kernel forkx(x, x”) and a Gaussian kernel
ky(y,y"), and using a data driven approach to select their bandwidth parameters yy and yy. If, for
instance, we want to use a Cauchy kernel for kx(x, x”) with bandwidth parameter yy = 0.2 and a
Laplace kernel for ky(y, y") with bandwidth parameter yy = 0.5, we can proceed as follows:

mmd.hat = mmd_reg(y,X,bdwth.x=0.1,bdwth.y=0.5,kernel.x="Cauchy",kernel.y="Laplace")

summary (mmd . hat)

Summary
Model: linearGaussian
Estimator: theta hat (bdwth.x>0)
Coefficients Estimate
(Intercept) 3.4106
X1 2.4541
X2 -0.8421
X3 -2.3274
X4 1.1086
X5 4.2962
X6 0.9091

Std. dev. of Gaussian noise : 0.4483 (estimated)

Kernel for y: Laplace with bandwidth 0.5
Kernel for x: Cauchy with bandwidth 0.1

We recall that different choices for the kernels ky(y, y”) and kx(x, x”) lead to different MMD estimators,
which explains why the estimates obtained here are different from those obtained in Section 4.2.4.

17

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

4.3 Robust Poisson regression
4.3.1 Dataset and model

As a last example we consider the same dataset and task as in Section 4.2, but now assume the
following Poisson regression model:

Ozone ~ Poisson(exp (a+ BiTemp + Po(Temp)? + PsWind + B4(Wind)?
+—ﬁ%Solar.R—F[%(Solar.R)2)>.
Noting that the response variable is now 0zone and not its logarithm as in Section ??, we modify the
vector y accordingly:
y = air.datal[,1]
In the histogram above we observe that there is one isolated observation (i.e.~outlier), for which the
observed value of Dzone is larger than 150.

4.3.2 GLM estimation

We start by estimating the model with the generalized least squares (GLS) approach, using both on
the full dataset and the one obtained by removing the outlier:

glm.full = glm(y~X,family=poisson)

ii = which(y>150)

glm = glm(y[-ii]~X[-ii,],family=poisson)

results = cbind(glm.full$coefficients,glm$coefficients)
print (results)

[,1] [,2]
(Intercept) 3.5168945 3.506950377
X1 2.4621470 2.332854309
X2 -0.8796456 -0.827578293
X1 -2.4753279 -2.167010600
X2 0.9498002 0.559589428
X1 4.0664346 4.289933463
X2 -0.3247376 -0.003300254

It is well-known that the GLM estimator is sensitive to outliers and, as a result, we observe that the
unique outlier present in the data has a non-negligible impact on the estimated regression coefficients
of the model.

4.3.3 MMD estimation with default setting

We first estimate the model parameter using the estimator éreg. Using the default setting of mmd_reg
this is done as follow:

mmd.tilde = mmd_reg(y,X,model="poisson")

Warning in mmd_reg(y, X, model = "poisson"): Warning: The maximum number of
iterations has been reached.

summary (mmd . tilde)

18

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

585

586

Summary

Model: poisson
Estimator: theta tilde (bdwth.x=0)
Coefficients Estimate
(Intercept) 3.3754
X1 2.4766
X2 -1.0967
X3 -2.3401
X4 0.3289
X5 4.7545
X6 0.0784

Kernel for y: Laplace with bandwidth 18.3848

As for the linear regression example, we observe that the estimated values of the regression coefficients
are similar to those obtained by GLM on the dataset without the outlier data point.

Finally, we estimate the model parameters using the estimator éreg with its default setting:
mmd.hat = mmd_reg(y,X,model="poisson",bdwth.x="auto")

Warning in mmd_reg(y, X, model = "poisson", bdwth.x = "auto"): Warning: The
maximum number of iterations has been reached.

In this case, we obtain a warning message indicating that the maximum number of iterations maxit
allowed for the optimization algorithm has been reach. The value of maxit, set by default to 50, 000,
can be increased using the control argument of mmd_reg. For instance, setting maxit=10"6 remove
the warning message:

mmd.hat = mmd_reg(y,X,model="poisson",bdwth.x="auto",control=1list(maxit=1076))

summary (mmd . hat)

Summary
Model: poisson
Estimator: theta hat (bdwth.x>0)
Coefficients Estimate
(Intercept) 3.368
X1 2.4909
X2 -1.0501
X3 -2.386
X4 0.3063
X5 4.7321
X6 -0.0961

Kernel for y: Laplace with bandwidth 18.3848
Kernel for x: Laplace with bandwidth 0.0215

19

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

As for the linear regression model, the value of bdwth.x selected by the data driven approach
implemented in mmd_reg is close to zero and the estimate values of the model parameters are
therefore similar to those above obtained with the estimator Opeg.

References

Alquier, P., and M. Gerber. 2024. “Universal Robust Regression via Maximum Mean Discrepancy.”
Biometrika 111 (1): 71-92. https://doi.org/10.1093/biomet/asad031.

Bach, F. 2024. Learning Theory from First Principles. MIT press. https://mitpress.mit.edu/
9780262049443/learning-theory-from-first-principles/.

Bottou, L. 2004. “Stochastic Learning.” In Advanced Lectures on Machine Learning, edited by Olivier
Bousquet and Ulrike von Luxburg, 146-68. Lecture Notes in Artificial Intelligence, LNAI 3176.
Berlin: Springer Verlag. http://leon.bottou.org/papers/bottou-mlss-2004.

Boyd, S. P., and L. Vandenberghe. 2004. Convex Optimization. Cambridge university press. https:
//web.stanford.edu/~boyd/cvxbook/.

Briol, F.-X., A. Barp, A. B. Duncan, and M. Girolami. 2019. “Statistical Inference for Generative
Models with Maximum Mean Discrepancy.” arXiv Preprint arXiv:1906.05944. https://arxiv.org/
abs/1906.05944.

Chérief-Abdellatif, B.-E., and P. Alquier. 2022. “Finite sample properties of parametric MMD es-
timation: Robustness to misspecification and dependence.” Bernoulli 28 (1): 181-213. https:
//doi.org/10.3150/21-BEJ1338.

Chwialkowski, K., H. Strathmann, and A. Gretton. 2016. “A Kernel Test of Goodness of Fit” In
Proceedings of the 33rd International Conference on Machine Learning, edited by Maria Florina
Balcan and Kilian Q. Weinberger, 48:2606—15. Proceedings of Machine Learning Research. New
York, New York, USA: PMLR.

Dellaporta, C., J. Knoblauch, T. Damoulas, and F.-X. Briol. 2022. “Robust Bayesian Inference for
Simulator-Based Models via the MMD Posterior Bootstrap.” In International Conference on Artifi-
cial Intelligence and Statistics, 943-70. PMLR. https://proceedings.mlr.press/v151/dellaporta22a.
html.

Duchi, J. C. 2018. “Introductory Lectures on Stochastic Optimization.” The Mathematics of Data 25:
99-186.

Duchi, J., E. Hazan, and Y. Singer. 2011. “Adaptive Subgradient Methods for Online Learning and
Stochastic Optimization.” Journal of Machine Learning Research 12 (7). https://www.jmlr.org/
papers/v12/duchilla.html.

Dziugaite, G. K., D. M. Roy, and Z. Ghahramani. 2015. “Training Generative Neural Networks via
Maximum Mean Discrepancy Optimization.” arXiv Preprint arXiv:1505.03906. https://arxiv.org/
abs/1505.03906.

Garreau, D., W. Jitkrittum, and M. Kanagawa. 2017. “Large Sample Analysis of the Median Heuristic”
arXiv Preprint arXiv:1707.07269. https://arxiv.org/abs/1707.07269.

Gretton, A., K. M. Borgwardt, M. J. Rasch, B. Schélkopf, and A. Smola. 2012. “A Kernel Two-Sample
Test” The Journal of Machine Learning Research 13 (1): 723-73. https://www.jmlr.org/papers/v13/
grettonl2a.html.

Gretton, A., K. Fukumizu, C. Teo, L. Song, B. Scholkopf, and A. Smola. 2007. “A Kernel Statistical
Test of Independence.” Advances in Neural Information Processing Systems 20. https://proceedings.
neurips.cc/paper_files/paper/2007/hash/d5cfead94f5350c12¢322b5b664544c1-Abstract.html.

Huber, P. J. 1992. “Robust Estimation of a Location Parameter.” In Breakthroughs in Statistics, 492—518.
Springer. https://doi.org/10.1007/978-1-4612-4380-9_35.

Legramanti, S., D. Durante, and P. Alquier. 2025. “Concentration of Discrepancy-Based Approximate

20

https://doi.org/10.1093/biomet/asad031
https://mitpress.mit.edu/9780262049443/learning-theory-from-first-principles/
https://mitpress.mit.edu/9780262049443/learning-theory-from-first-principles/
https://mitpress.mit.edu/9780262049443/learning-theory-from-first-principles/
http://leon.bottou.org/papers/bottou-mlss-2004
https://web.stanford.edu/~boyd/cvxbook/
https://web.stanford.edu/~boyd/cvxbook/
https://web.stanford.edu/~boyd/cvxbook/
https://arxiv.org/abs/1906.05944
https://arxiv.org/abs/1906.05944
https://arxiv.org/abs/1906.05944
https://doi.org/10.3150/21-BEJ1338
https://doi.org/10.3150/21-BEJ1338
https://doi.org/10.3150/21-BEJ1338
https://proceedings.mlr.press/v151/dellaporta22a.html
https://proceedings.mlr.press/v151/dellaporta22a.html
https://proceedings.mlr.press/v151/dellaporta22a.html
https://www.jmlr.org/papers/v12/duchi11a.html
https://www.jmlr.org/papers/v12/duchi11a.html
https://www.jmlr.org/papers/v12/duchi11a.html
https://arxiv.org/abs/1505.03906
https://arxiv.org/abs/1505.03906
https://arxiv.org/abs/1505.03906
https://arxiv.org/abs/1707.07269
https://www.jmlr.org/papers/v13/gretton12a.html
https://www.jmlr.org/papers/v13/gretton12a.html
https://www.jmlr.org/papers/v13/gretton12a.html
https://proceedings.neurips.cc/paper_files/paper/2007/hash/d5cfead94f5350c12c322b5b664544c1-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2007/hash/d5cfead94f5350c12c322b5b664544c1-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2007/hash/d5cfead94f5350c12c322b5b664544c1-Abstract.html
https://doi.org/10.1007/978-1-4612-4380-9_35

634

6

@

5

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

Bayesian Computation via Rademacher Complexity” The Annals of Statistics 53 (1): 37-60.
https://doi.org/10.1214/24-A0S2453.

Li, C.-L., W.-C. Chang, Y. Cheng, Y. Yang, and B. Poczos. 2017. “MMD GAN: Towards Deeper Under-
standing of Moment Matching Network.” Advances in Neural Information Processing Systems 30.
https://proceedings.neurips.cc/paper_files/paper/2017/hash/dfd7468ac613286cdbb40872c8ef3b06-
Abstract.html.

Muandet, K., K. Fukumizu, B. Sriperumbudur, B. Schélkopf, et al. 2017. “Kernel Mean Embedding of
Distributions: A Review and Beyond.” Foundations and Trends® in Machine Learning 10 (1-2):
1-141. https://dx.doi.org/10.1561/2200000060.

Nesterov, Y. 2018. Lectures on Convex Optimization. Vol. 137. Springer. https://doi.org/10.1007/978-3-
319-91578-4.

Parr, W. C., and W. R. Schucany. 1980. “Minimum Distance and Robust Estimation.” Journal of the
American Statistical Association 75 (371): 616-24. https://doi.org/10.1080/01621459.1980.10477522.

R Core Team. 2020. R: A Language and Environment for Statistical Computing. Vienna, Austria: R
Foundation for Statistical Computing. https://www.R-project.org/.

Robbins, H., and S. Monro. 1951. “A Stochastic Approximation Method” The Annals of Mathematical
Statistics 22: 100-407. https://doi.org/10.1214/aoms/1177729586

Sutherland, D. J., H.-Y. Tung, H. Strathmann, S. De, A. Ramdas, A. Smola, and A. Gretton. 2016.
“Generative Models and Model Criticism via Optimized Maximum Mean Discrepancy.” arXiv
Preprint arXiv:1611.04488. abs.

Wolfowitz, J. 1957. “The Minimum Distance Method.” The Annals of Mathematical Statistics, 75—88.

Wright, S. J. 2018. “Optimization Algorithms for Data Analysis” The Mathematics of Data 25: 49.

Yatracos, Y. G. 2022. “Limitations of the Wasserstein MDE for Univariate Data” Statistics and
Computing 32 (6): 95. https://doi.org/10.1007/s11222-022-10146-7.

Session information

R version 4.4.1 (2024-06-14)
Platform: x86_64-pc-linux—-gnu
Running under: Ubuntu 24.04.2 LTS

Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.s0.3.12.0
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.s0.3.12.0

locale:
[1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8
[4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8
[7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats graphics grDevices datasets utils methods base

other attached packages:
[1] regMMD_0.0.1

21

https://doi.org/10.1214/24-AOS2453
https://proceedings.neurips.cc/paper_files/paper/2017/hash/dfd7468ac613286cdbb40872c8ef3b06-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/dfd7468ac613286cdbb40872c8ef3b06-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2017/hash/dfd7468ac613286cdbb40872c8ef3b06-Abstract.html
https://dx.doi.org/10.1561/2200000060
https://doi.org/10.1007/978-3-319-91578-4
https://doi.org/10.1007/978-3-319-91578-4
https://doi.org/10.1007/978-3-319-91578-4
https://doi.org/10.1080/01621459.1980.10477522
https://www.R-project.org/
https://doi.org/10.1214/aoms/1177729586
https://abs
https://doi.org/10.1007/s11222-022-10146-7

682

683

684

685

686

loaded via a namespace (and not attached):

[1] compiler_4.4.1
[6] tools_4.4.1
[9] xfun_0.52

[13] rlang_ 1.1.4

fastmap_1.2.0
rmarkdown_2.29
digest_0.6.37
renv_1.1.4

cli_3.6.2
knitr_1.50
rbibutils_2.3
evaluate_1.0.0

22

htmltools_0.5.8.1
jsonlite_1.8.9
Rdpack_2.6.1

	Introduction
	Statistical background
	Parametric estimation
	Regression

	Package content and implementation
	Overview of the function mmd_est
	Overview of the function mmd_reg
	Kernels and bandwidth parameters
	Optimization methods
	Available models

	Detailed examples
	Toy example: robust estimation in the univariate Gaussian model
	Robust linear regression
	Dataset and model
	Data preparation
	OLS estimation
	MMD estimation with the default settings
	Tuning the fit in MMD estimation

	Robust Poisson regression
	Dataset and model
	GLM estimation
	MMD estimation with default setting

	References
	Session information

