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Abstract

The Maximum Mean Discrepancy (MMD) is a kernel-based metric widely used for non-
parametric tests and estimation. Recently, it has also been studied as an objective function for
parametric estimation, as it has been shown to yield robust estimators. We have implemented
MMD minimization for parameter inference in a wide range of statistical models, including vari-
ous regression models, within an R package called regMMD. This paper provides an introduction
to the regMMD package. We describe the available kernels and optimization procedures, as well
as the default settings. Detailed applications to simulated and real data are provided.
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1 Introduction26

In somemodels, popular estimators such as themaximum likelihood estimator (MLE) can become very27

unstable in the presence of outliers. This has motivated research into robust estimation procedures28

that would not suffer from this issue. Various notions of robustness have been proposed, depending29

on the type of contamination in the data. Notably, the Huber contamination model (Huber 1992)30

considers random outliers while, more recently, stricter notions have been proposed to ensure31

robustness against adversarial contamination of the data.32

The maximum mean discrepancy (MMD) is a kernel-based metric that has received considerable33

attention in the past 15 years. It allows for the development of tools for nonparametric tests and34

estimation (Chwialkowski, Strathmann, and Gretton 2016; Gretton et al. 2007). We refer the reader to35

(Muandet et al. 2017) for a comprehensive introduction to MMD and its applications. A recent series36

of papers has suggested that minimum distance estimators (MDEs) based on the MMD are robust to37

both Huber and adversarial contamination. These estimators were initially proposed for training38

generative AI (Dziugaite, Roy, and Ghahramani 2015; Sutherland et al. 2016; Li et al. 2017), and the39

study of their statistical properties for parametric estimation, including robustness, was initiated by40

(Briol et al. 2019; Chérief-Abdellatif and Alquier 2022; Alquier and Gerber 2024). We also point out41

that the MMD has been successfully used to define robust estimators that are not MDEs, such as42

bootstrap methods based on MMD (Dellaporta et al. 2022) or Approximate Bayesian Computation43

(Legramanti, Durante, and Alquier 2025).44

Unfortunately, we are not aware of any software that allows for the computation of MMD-based45

MDEs. To make these tools available to the statistical community, we developed the R package46

called regMMD. This package allows for the minimization of the MMD distance between the empirical47

distribution and a statistical model. Various parametric models can be fitted, including continuous48

distributions such as Gaussian and gamma, and discrete distributions such as Poisson and binomial.49

Many regression models are also available, including linear, logistic, and gamma regression. The50

regMMD package is available on the CRAN website (R Core Team 2020): regMMD page51

The optimization is based on the strategies proposed by (Briol et al. 2019; Chérief-Abdellatif and52

Alquier 2022; Alquier and Gerber 2024). For some models we have an explicit formula for the gradient53

of the MMD, in which case we use gradient descent, see e.g. (Boyd and Vandenberghe 2004; Nesterov54

2018) to perform the optimization. For most models such a formula does not exist, but we can55

however approximate the gradient without bias by Monte Carlo sampling. This allows to use the56
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stochastic gradient algorithm of (Robbins and Monro 1951), that is one of the most popular estimation57

methods in machine learning (Bottou 2004). We refer to the reader to (Wright 2018; J. C. Duchi58

2018) and Chapter 5 in (Bach 2024) for comprehensive introductions to otpimization for statistics59

and machine learning, including stochastic optimization methods.60

The paper is organized as follows. In Section 2 we briefly recall the construction of the MMD metric61

and the MDE estimators based on the MMD. In Section 3 we detail the content of the package regMMD:62

the available models and kernels, and the optimization procedures used in each case. Finally, in63

Section 4 we provide examples of applications of regMMD. Note that these experiments are not meant64

to be a comprehensive comparison of MMD to other robust estimation procedures. Exhaustive65

comparisons can be found in (Briol et al. 2019; Chérief-Abdellatif and Alquier 2022; Alquier and66

Gerber 2024). The objective is simply to illustrate the use of regMMD through pedagogical examples.67

2 Statistical background68

2.1 Parametric estimation69

Let 𝑋1, … , 𝑋𝑛 be 𝒳-valued random variables identically distributed according to some probability70

distribution 𝑃0, and let (𝑃𝜃, 𝜃 ∈ Θ) be a statistical model. Given a metric 𝑑 on probability distributions,71

we are looking for an estimator of 𝜃0 ∈ argmin𝜃∈Θ 𝑑(𝑃𝜃, 𝑃0) when such a minimum exists. Letting72

̂𝑃𝑛 =
1
𝑛 ∑

𝑛
𝑖=1 𝛿𝑋𝑖 denote the empirical probability distribution, the minimum distance estimator (MDE)73

̂𝜃 is defined as follows:74

̂𝜃 ∈ argmin
𝜃∈Θ

𝑑(𝑃𝜃, ̂𝑃𝑛).

The robustness properties of MDEs for well chosen distances was studied as early as in (Wolfowitz75

1957; Parr and Schucany 1980; Yatracos 2022). When 𝑑(𝑃𝜃, ̂𝑃𝑛) has no minimum, the definition can be76

replaced by an 𝜀-approximate minimizer, without consequences on the the properties of the estimator,77

as shown in to (Briol et al. 2019; Chérief-Abdellatif and Alquier 2022).78

Let ℋ be a Hilbert space, let ‖ ⋅ ‖ℋ and ⟨⋅, ⋅⟩ℋ denote the associated norms and scalar products,79

respectively, and let 𝜑 ∶ 𝒳 → ℋ. Then, for any probability distribution 𝑃 on 𝒳 such that80

𝔼𝑋∼𝑃[‖𝜑(𝑋)‖ℋ] < +∞ we can define the mean embedding 𝜇(𝑃) = 𝔼𝑋∼𝑃[𝜑(𝑋)]. When the mean81

embedding 𝜇(𝑃) is defined for any probability distribution 𝑃 (e.g. because the map 𝜑 is bounded in82

ℋ), for any probability distributions 𝑃 and 𝑄 we put83

𝔻(𝑃, 𝑄) ∶= ‖𝜇(𝑃) − 𝜇(𝑄)‖ℋ .

Letting 𝑘(𝑥, 𝑦) = ⟨𝜑(𝑥), 𝜑(𝑦)⟩ℋ, it appears that 𝔻(𝑃, 𝑄) depends on 𝜑 only through 𝑘, as we can84

rewrite:85

𝔻2(𝑃, 𝑄) = 𝔼𝑋,𝑋 ′∼𝑃[𝑘(𝑋 , 𝑋 ′)] − 2𝔼𝑋∼𝑃,𝑋 ′∼𝑄[𝑘(𝑋 , 𝑋 ′)] + 𝔼𝑋,𝑋 ′∼𝑄[𝑘(𝑋 , 𝑋 ′)]. (1)

Whenℋ is actually a RKHS for the kernel 𝑘 (see (Muandet et al. 2017) for a definition), 𝔻(𝑃, 𝑄) is86

called the maximum mean discrepancy (MMD) between 𝑃 and 𝑄. A condition on 𝑘 (universal kernel)87

ensures that the map 𝜇 is injective, and thus that 𝔻 satisfies the axioms of a metric. Examples of88

universal kernels are known, such as the Gaussian kernel 𝑘(𝑥, 𝑦) = exp(−‖𝑥 − 𝑦‖2/𝛾 2) or the Laplace89

kernel 𝑘(𝑥, 𝑦) = exp(−‖𝑥 − 𝑦‖/𝛾), see (Muandet et al. 2017) for more examples and references to the90

proofs.91

The properties of MDEs based on MMD were studied in (Briol et al. 2019; Chérief-Abdellatif and92

Alquier 2022). In particular, when the kernel 𝑘 is bounded, this estimator enjoys very strong robustness93

properties. We cite the following very simple result.94
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Theorem2.1 (special case of Theorem 3.1 in (Chérief-Abdellatif and Alquier 2022)). Assume𝑋1, … , 𝑋𝑛95

are i.i.d. from 𝑃0. Assume the kernel 𝑘 is bounded by 1. Then96

𝔼 [𝔻 (𝑃 ̂𝜃, 𝑃
0)] ≤ inf

𝜃∈Θ
𝔻(𝑃𝜃, 𝑃0) +

2
√𝑛

.

Additional non-asymptotic results can be found in (Briol et al. 2019; Chérief-Abdellatif and Alquier97

2022). In particular, Theorem 3.1 of (Chérief-Abdellatif and Alquier 2022) also covers non independent98

observations (time series). An asymptotic study of ̂𝜃, including conditions for asymptotic normality,99

can be found in (Briol et al. 2019). All these works provide strong theoretical evidence that ̂𝜃 is100

very robust to random and adversarial contamination of the data, and this is supported by empirical101

evidence.102

2.2 Regression103

Let us now consider a regression setting: we observe (𝑋1, 𝑌1), … , (𝑋𝑛, 𝑌𝑛) in 𝒳 ×𝒴 and we want to104

estimate the conditional distribution 𝑃0𝑌 |𝑋=𝑥 of 𝑌 given 𝑋 = 𝑥 for any 𝑥. %A direct application of105

the method in the previous section to the random variables (𝑋1, 𝑌1), … , (𝑋𝑛, 𝑌𝑛) would lead to the106

estimation of the joint distribution of the pair (𝑋 , 𝑌 ), which is not the objective of regression models.107

To this end we consider a statistical model (𝑃𝛽, 𝛽 ∈ ℬ) and model the conditional distribution of 𝑌108

given 𝑋 = 𝑥 by (𝑃𝛽(𝑥,𝜃), 𝜃 ∈ Θ) where 𝛽(⋅, ⋅) is a specified function 𝒳 × Θ → ℬ. The first estimator109

proposed by (Alquier and Gerber 2024) is:110

̂𝜃reg ∈ argmin
𝜃∈Θ

𝔻(1
𝑛

𝑛
∑
𝑖=1

𝛿𝑋𝑖 ⊗ 𝑃𝛽(𝑋𝑖,𝜃),
1
𝑛

𝑛
∑
𝑖=1

𝛿𝑋𝑖 ⊗ 𝛿𝑌𝑖)

where 𝔻 is the MMD defined by a product kernel, that is a kernel of the form 𝑘((𝑥, 𝑦), (𝑥′, 𝑦 ′)) =111

𝑘𝑋(𝑥, 𝑥′)𝑘𝑌(𝑦 , 𝑦 ′) (non-product kernels are theoretically possible, but not implemented in the package).112

Asymptotic and non-asymptotic properties of ̂𝜃 are studied in (Alquier and Gerber 2024). The113

computation of ̂𝜃 is however slow when the sample size 𝑛 is large, as it can be shown that the criterion114

defining this estimator is the sum of 𝑛2 terms.115

By contrast, the following alternative estimator116

̃𝜃reg ∈ argmin
𝜃∈Θ

1
𝑛

𝑛
∑
𝑖=1

𝔻(𝛿𝑋𝑖 ⊗ 𝑃𝛽(𝑋𝑖,𝜃), 𝛿𝑋𝑖 ⊗ 𝛿𝑌𝑖) ,

has the advantage to be defined through a criterion which is a sum of only 𝑛 terms. Intuitively, this117

estimator can be interpreted as a special case of ̂𝜃reg where 𝑘𝑋(𝑥, 𝑥′) = 1{𝑥=𝑥′}. An asymptotic study118

of ̃𝜃reg is provided by (Alquier and Gerber 2024). The theory and the experiments suggest that both119

estimators are robust, but that ̂𝜃reg is more robust than ̃𝜃reg. However, for computations reasons,120

for large sample sizes 𝑛 (𝑛 > 5 000, say) only the latter estimator can be computed in a reasonable121

amount of time.122

3 Package content and implementation123

The package regMMD allows to compute the above estimators in a large number of classical models. We124

first provide an overview of the twomain functions with their default settings: mmd_reg for regression,125

and mmd_est for parameter estimation. We then give some details on their implementations and126

options. These functions have many options related to the choice of kernels, the choice of the127

bandwidth parameters and of the parameters of the optimization algorithms used to compute the128

estimators. To save space, in this section we only discuss the options that are fundamental from a129
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statistical perspective. We refer the reader to the package documentation for a full description of the130

available options.131

We start by loading the package and fixing the seed to ensure reproducibility.132

require("regMMD")

Loading required package: regMMD133

set.seed(0)

3.1 Overview of the function mmd_est134

The function mmd_est performs parametric estimation as described in Section 2.1. Its required135

arguments are the data x and the type of model model (see Section 3.5 for the list of available models).136

Each model implemented in the package has one or two parameters, namely par1 and par2. If the137

model contains a parameter that is fixed (i.e. not estimated from the data) then its value must be138

specified by the user. On the other hand, a value for a parameter that we want to estimate from139

the data does not have to be given as an input. If, however, a value is provided then it is used to140

initialize the optimization algorithm that serves at computing the estimator (see below). Otherwise141

an initialization by default is used.142

For example, there are three Gaussian univariate models: Gaussian.loc, Gaussian.scale and143

Gaussian. In each model par1 is the mean and par2 is the standard deviation. We will use the144

following data:145

x = rnorm(100,1.9,1)
hist(x)

Histogram of x

x

F
re

qu
en

cy

0 1 2 3 4

0
5

10
20

146

In the Gaussian model the two parameters par1 and par2 are estimated from the data and the MMD147

estimator of 𝜃 =(par1,par1) can be computed as follows:148

estim = mmd_est(x,model="Gaussian")

Here, we mention that the output of both mmd_est and mmd_reg is a list that contains error messages149

(if any), the estimated parameters (if no error prevented their computations) and various information150
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on the model, the estimators and the algorithms. The major information can be retrived through a151

summary function:152

summary(estim)

======================== Summary ========================153

Model: Gaussian154

---------------------------------------------------------155

Algorithm: SGD156

Kernel: Gaussian157

Bandwidth: 0.856108154564806158

---------------------------------------------------------159

Parameters:160

161

par1: mean -- initialized at 1.867162

estimated value: 1.8759163

164

par2: standard deviation -- initialized at 0.7786165

estimated value: 0.8889166

=========================================================167

Note that some of the information provided here (like the algorithm used) will be detailed below.168

Still in the Gaussian model, if we enter169

estim = mmd_est(x,model="Gaussian",par1=0,par2=1)
summary(estim)

======================== Summary ========================170

Model: Gaussian171

---------------------------------------------------------172

Algorithm: SGD173

Kernel: Gaussian174

Bandwidth: 0.856108154564806175

---------------------------------------------------------176

Parameters:177

178

par1: mean -- initialized at 0179

estimated value: 1.8758180

181

par2: standard deviation -- initialized at 1182

estimated value: 0.8862183

=========================================================184

we simply enforce the optimization algorithm that serves at computing the estimator to use 𝜃0 = (0, 1)185

as starting value. In the Gaussian.loc model only the location parameter (the mean) is estimated.186

Thus, to compute 𝜃 = par1 it is necessary to specify the standard deviation par2. For instance,187

estim = mmd_est(x,model="Gaussian.loc",par2=1)
summary(estim)

======================== Summary ========================188

Model: Gaussian.loc189

---------------------------------------------------------190

6
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Algorithm: GD191

Kernel: Gaussian192

Bandwidth: 0.856108154564806193

---------------------------------------------------------194

Parameters:195

196

par1: mean -- initialized at 1.867197

estimated value: 1.8817198

199

par2: standard deviation -- fixed by user: 1200

=========================================================201

will estimate 𝜃 in the model 𝒩 (𝜃, 1). If we provide a value for par1 then the optimization algorithm202

used to compute ̂𝜃 will use 𝜃0 =par1 as starting value. Finally, In the Gaussian.scale model only the203

scale parameter (standard deviation) is estimated. That is, to estimate 𝜃 =par2 in e.g. the 𝒩 (2, 𝜃2)204

distribution we can use205

estim = mmd_est(x,model="Gaussian.scale",par1=2)
summary(estim)

======================== Summary ========================206

Model: Gaussian.scale207

---------------------------------------------------------208

Algorithm: SGD209

Kernel: Gaussian210

Bandwidth: 0.856108154564806211

---------------------------------------------------------212

Parameters:213

214

par1: mean -- fixed by user: 2215

216

par2: standard deviation -- initialized at 0.6981217

estimated value: 0.9005218

=========================================================219

3.2 Overview of the function mmd_reg220

The function mmd_reg is used for regression models (Section 2.2) and requires to specify two argu-221

ments, namely the output vector y of size 𝑛 and the 𝑛 × 𝑞 input matrix X. By default, the functions222

performs linear regression with Gaussian error noise (with unknown variance) and the regression223

model to be used can be changed through the option model of mmd_reg (see Section 3.5 for the list of224

available models). In addition, by default, if the input matrix X contains no column whose entries are225

all equal then an intercept is added to the model, that is, a column of 1’s is added to X. This default226

setting can be disabled by setting the option intercept of mmd_reg to FALSE.227

All regression models implemented in the package have a parameter par1, and some of them have228

an additional scalar parameter par2. If a model has par1 as unique parameter then the parameter229

to be estimated is 𝜃 =par1 and the conditional distribution of 𝑌 given 𝑋 = 𝑥 is modelled using a230

model of the form (𝑃𝛽(𝑥⊤𝜃), 𝜃 ∈ ℝ𝑘), with 𝑘 the size of 𝑥. For instance, for Poisson regression the231

distribution 𝑃𝛽(𝑥⊤𝜃) is the Poisson distribution with mean exp(𝑥⊤𝜃). By contrast, some models have232

an additional parameter par2 that also needs to be estimated from the data, so that 𝜃 =(par1,par2).233

For these models the conditional distribution of 𝑌 given 𝑋 = 𝑥 is modeled using a model of the form234

7
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(𝑃𝛽(𝑥⊤𝛾 ,𝜓 ), 𝜃 = (𝛾 , 𝜓 ) ∈ ℝ𝑘+1). For instance, for the Gaussian linear regression model with unknown235

variance 𝑃𝛽(𝑥⊤𝛾 ,𝜓 ) = 𝒩 (𝑥⊤𝛾 , 𝜓 2). Finally, some models have an additional parameter par2 whose236

value needs to be specified by the user. For these models 𝜃 =par1, par2= 𝜓 for some 𝜓 fixed by237

the user, and the conditional distribution of 𝑌 given 𝑋 = 𝑥 is modeled using a model of the form238

(𝑃𝛽(𝑥⊤𝜃,𝜓 ), 𝜃 ∈ ℝ𝑘). For instance, for the Gaussian linear regression model with known variance,239

𝑃𝛽(𝑥⊤𝜃,𝜓 ) = 𝒩 (𝑥⊤𝜃, 𝜓 2). Remark that for all models implemented in the package par1 is therefore240

the vector of regression coefficients. As with the function mmd_est, if a value for a parameter that241

needs to be estimated from the data is provided then it is used to initialize the optimization algorithm242

that serves at computing the estimator, otherwise an initialization by default is used. It is important243

to note that the number 𝑘 of regression coefficients of a model is either 𝑞 (the number of columns of244

the input matrix X) or 𝑞 + 1 if an intercept has been added by mmd_reg. In the latter case, if we want245

to provide a value for par1 then it must be vector of length 𝑞.246

For example, there are two linear regression model with Gaussian noise: linearGaussian which247

assumes that noise variance is unknown and linearGaussian.loc which assumes that noise variance248

is unknown. By default, the former model is used by mmd_reg, and thus linear regression can be249

simply performed using estim = mmd_reg(y,X). By default mmd_reg uses the MMD estimator ̃𝜃reg,250

which we recall is cheaper to compute that the alternative MMD estimator ̂𝜃reg.251

3.3 Kernels and bandwidth parameters252

For parametric models (Section 2.1) the MMD estimator of 𝜃 is computed with a kernel 𝑘(𝑥, 𝑥′)253

of the form 𝑘(𝑥, 𝑥′) = 𝐾(‖𝑥 − 𝑥′‖/𝛾 ) for some bandwidth parameter 𝛾 > 0 and some function254

𝐾 ∶ [0,∞) → [0,∞). The choice of 𝐾 and 𝛾 can be specified through the option kernel and bdwth of255

the function mmd_est, respectively. By default, the median heuristic is used to choose 𝛾 (the median256

heuristic was used successfully in many applications of MMD, for example (Gretton et al. 2012), see257

also (Garreau, Jitkrittum, and Kanagawa 2017) for a theoretical analysis). The following three options258

are available for the function 𝐾:259

• Gaussian: 𝐾(𝑢) = exp(−𝑢2),260

• Laplace: 𝐾(𝑢) = exp(−𝑢),261

• Cauchy: 𝐾(𝑢) = 1/(2 + 𝑢2).262

Similarly, for regression models (Section 2.2), the MMD estimators are computed with 𝑘𝑋(𝑥, 𝑥′) =263

𝐾𝑋(‖𝑥 − 𝑥′‖/𝛾𝑋) and 𝑘𝑌(𝑦 , 𝑦 ′) = 𝐾𝑌(‖𝑦 − 𝑦 ′‖/𝛾𝑌) for some bandwidth parameters 𝛾𝑋 ≥ 0 and 𝛾𝑌 > 0264

and functions 𝐾𝑋, 𝐾𝑌 ∶ [0,∞) → [0,∞). The choice of 𝐾𝑋, 𝐾𝑌, and 𝛾𝑋 and 𝛾𝑌 can be specified through265

the option kernel.x, kernel.y, bdwth.x and bdwth.y of the function mmd_reg, respectively. The266

available choices for 𝐾𝑋 and 𝐾𝑌 are the same as for 𝐾, and by default the median heuristic is used267

to select 𝛾𝑌. By default, bdwth.x=0 and thus it is the estimator ̃𝜃reg that is used by mmd_reg. The268

alternative estimator ̂𝜃reg can be computed either by providing a positive value for bdwth.x or by269

setting bdwth.x="auto", in which case a rescaled version of the median heuristic is used to choose a270

positive value for 𝛾𝑋.271

3.4 Optimization methods272

Depending on the model, the package regMMD uses either gradient descent (GD) or stochastic gradient273

descent (SGD) to compute the estimators.274

More precisely, for parametric estimation it is proven in Section 5 of (Chérief-Abdellatif and Alquier275

2022) that the gradient of 𝔻2(𝑃𝜃, ̂𝑃𝑛) with respect to 𝜃 is given by276

∇𝜃𝔻2(𝑃𝜃, ̂𝑃𝑛) = 2𝔼𝑋,𝑋 ′∼𝑃𝜃 [(𝑘(𝑋 , 𝑋 ′) − 1
𝑛

𝑛
∑
𝑖=1

𝑘(𝑋𝑖, 𝑋 )) ∇𝜃[log 𝑝𝜃(𝑋)]] (2)
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under suitable assumptions on 𝑃𝜃, including the existence of a density 𝑝𝜃(𝑋) and its differentiability.277

In some models there is an explicit formula for the expectation in Equation 2. This is for instance278

the case for the Gaussian mean model, and for such models a gradient descent algorithm is used to279

compute the MMD estimator. For models where we cannot compute explicitly the expectation in280

Equation 2 it is possible to compute an unbiased estimate of the gradient by sampling from 𝑃𝜃. In281

this scenario the MMD estimator is computed using AdaGrad (J. Duchi, Hazan, and Singer 2011),282

and adaptive step-size SGD algorithm. Finally, in very specific models, 𝔻(𝑃𝜃, ̂𝑃𝑛) can be evaluated283

explicitly in which case we can perform exact optimization exact. This is for example the case when284

𝑃𝜃 is the (discrete) uniform distribution on {1, 2, … , 𝜃}.285

In mmd_est, for each model all the available methods for computing the estimator are implemented.286

The method used by default is chosen according to the ranking: exact>GD>SGD. We can enforce287

another method with the method option. For instance, estim <- mmd_est(x,model="Gaussian") is288

equivalent to estim <- mmd_est(x,model="Gaussian",method="GD") and we can enforce the use289

of SGD with estim <- mmd_est(x,model="Gaussian",method="SGD").290

For regression models, formulas similar to the one given in Equation 2 for the gradient of the criteria291

defining the estimators ̂𝜃reg and ̃𝜃reg are provided in Section S1 of the supplement of (Alquier and292

Gerber 2024). For the two estimators, this gradient can be computed explicitly for all linear regression293

models when kernel.y="Gaussian" and for the logistic regression model.294

For the estimator ̃𝜃reg, and as for parametric estimation, gradient descent is used when the gradient295

of the objective function can be computed explicitly, and otherwise the optimization is performed296

using Adagrad. In mmd_reg gradient descent is implemented using backtracking line search to select297

the step-size to use at each iteration, and a stopping rule is implemented to stop the optimization298

earlier when possible.299

The computation of ̂𝜃reg is more delicate. Indeed, the objective function defining this estimator is300

the sum of 𝑛2 terms (see Section 2.2), implying that minimizing this function using gradient descent301

or SGD leads to algorithms for computing the estimator that require 𝒪(𝑛2) operations per iteration.302

In the package, to reduce the cost per iteration we implement the strategy proposed in Section S1303

of the supplement of (Alquier and Gerber 2024). Importantly, with this strategy the optimization304

is performed using an unbiased estimate of the gradient of the objective function, even when the305

gradient of the 𝑛2 terms of objective function can be computed explicitly. It is however possible to306

use the explicit formula for these gradients to reduce the variance of the noisy gradient, which we do307

when possible. As for the computation of ̃𝜃reg a stopping rule is implemented to stop the optimization308

earlier when possible. With this package it is feasible to compute ̂𝜃reg in a reasonable amount of time309

for dataset containing up to a few thousands data points (up-to 𝑛 ≈ 5 000 observations, say).310

Finally, we stress that, from a computational point of view, MMD estimation in regression models is a311

much more challenging task than in parametric models for at least two reasons. Firstly, while in the312

latter task the dimension of the parameter of interest 𝜃 is at most two for the models implemented313

in this package (see below), in regression the dimension of 𝜃 can be much larger, depending on the314

number of explanatory variables. Secondly, the objective functions to minimize for regression models315

are ‘’more non-linear’ ’. When estimating a regression model it is therefore a good practice to verify316

that the optimization of the objective function has converged. This can be done by inspecting the317

sequence of 𝜃 values computed by the optimization algorithm, accessible from the object trace of318

mmd_reg.319

3.5 Available models320

List of univariate models in mmd_est:321
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• Gaussian 𝒩 (𝑚, 𝜎2): Gaussian(estimation of 𝑚 and 𝜎), Gaussian.loc(estimation of 𝑚) and322

Gaussian.scale(estimation of 𝜎),323

• Cauchy: Cauchy(estimation of the location parameter),324

• Pareto: Pareto(estimation of the exponent),325

• exponential ℰ(𝜆): ‘exponential},326

• gamma 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏): gamma(estimation of 𝑎 and 𝑏), gamma.shape(estimation of 𝑎) and327

gamma.rate(estimation of 𝑏),328

• continuous uniform: continuous.uniform.loc(estimation of 𝑚 in 𝒰[𝑚 − 𝐿
2 , 𝑚 + 𝐿

2 ],329

where 𝐿 is fixed by the user), continuous.uniform.upper(estimation of 𝑏 in 𝒰[𝑎, 𝑏]) and330

continuous.uniform.lower.upper(estimation of both 𝑎 and 𝑏 in 𝒰[𝑎, 𝑏]),331

• Dirac 𝛿𝑎: Dirac(estimation of 𝑎; while this might sound uninteresting at first, this can be used332

to define a ‘’model-free’ ’ robust location parameter),333

• discrete uniform 𝒰({1, 2, … , 𝑁 }): discrete.uniform(estimation of 𝑁),334

• binomial 𝐵𝑖𝑛(𝑁 , 𝑝): binomial(estimation of 𝑁 and 𝑝), binomial.size(estimation of 𝑁) and335

binomial.prob(estimation of 𝑝),336

• geometric 𝒢(𝑝): geometric,337

• Poisson 𝒫 (𝜆): Poisson.338

List of multivariate models in mmd_est:339

• multivariate Gaussian𝒩 (𝜇, 𝑈𝑈 𝑇): multidim.Gaussian (estimation of 𝜇 and 𝑈), multidim.Gaussian.loc340

(estimation of 𝜇 while 𝑈 = 𝜎𝐼 for a fixed 𝜎 > 0) and multidim.Gaussian.scale (estimation of341

𝑈 while 𝜇 is fixed),342

• Dirac mass 𝛿𝑎: multidim.Dirac.343

List of regression models in mmd_reg:344

• linear regression models with Gaussian noise: linearGaussian (unknown noise variance) and345

linearGaussian.loc (known noise variance),346

• exponential regression: exponential,347

• gamma regression: gamma, or gamma.loc when the precision parameter is known,348

• beta regression: beta, or beta.loc when the precision parameter is known,349

• logistic regression: logistic,350

• Poisson regression: poisson.351

4 Detailed examples352

4.1 Toy example: robust estimation in the univariate Gaussian model353

We start with a very simple illustration on synthetic data. We choose one of the simplest model,354

namely, estimation of the mean of a univariate Gaussian random variable. The statistical model is355

𝒩 (𝜃, 1), which is the Gaussian.loc model in the package. We remind the above, using the default356

settings:357

estim = mmd_est(x,model="Gaussian.loc",par2=1)
summary(estim)

======================== Summary ========================358

Model: Gaussian.loc359

---------------------------------------------------------360

Algorithm: GD361

Kernel: Gaussian362

Bandwidth: 0.856108154564806363
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---------------------------------------------------------364

Parameters:365

366

par1: mean -- initialized at 1.867367

estimated value: 1.8817368

369

par2: standard deviation -- fixed by user: 1370

=========================================================371

The user can also impose a different bandwidth and kernel, which will result in a different estimator:372

estim = mmd_est(x,model="Gaussian.loc",par2=1,bdwth=0.6,kernel="Laplace")
summary(estim)

======================== Summary ========================373

Model: Gaussian.loc374

---------------------------------------------------------375

Algorithm: GD376

Kernel: Laplace377

Bandwidth: 0.6378

---------------------------------------------------------379

Parameters:380

381

par1: mean -- initialized at 1.867382

estimated value: 1.8795383

384

par2: standard deviation -- fixed by user: 1385

=========================================================386

We end up the discussion on the Gaussian mean example by a toy experiment: we replicate 𝑁 = 200387

times the simulation of 𝑛 = 100 i.i.d. random variables𝒩 (−2, 1) and compare themaximum likelihood388

estimator (MLE), equal to the empirical mean, the median, and the MMD estimator with a Gaussian389

and with a Laplace kernel, using in both cases the median heuristic for the bandwidth parameter.390

We report the Mean Absolute Error over all the simulations (MAE) as well as the standard deviation391

of the Absolute Error (sdAE).392

N = 200
n = 100
theta = -2
err = matrix(data=0,nr=N,nc=4)
for (i in 1:N)
{

X = rnorm(n,theta,1)
thetamle = mean(X)
thetamed = median(X)
estim = mmd_est(X,model="Gaussian.loc",par2=1)
thetanew1 = estim$estimator
estim = mmd_est(X,model="Gaussian.loc",par2=1,kernel="Laplace")
thetanew2 = estim$estimator
err[i,] = abs(theta-c(thetamle,thetanew1,thetanew2,thetamed))

}
results = matrix(0,nr=2,nc=4)
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results[1,] = colSums(err)/N
for (i in 1:4) results[2,i] = sd(err[,i])
colnames(results) = c('MLE','MMD (Gaussian kernel)','MMD (Laplace kernel)','Median')
rownames(results) = c('MAE','sdAE')
final = as.table(results)
knitr::kable(final,caption="Estimation of the mean in the uncontaminated case")

Table 1: Estimation of the mean in the uncontaminated case

MLE MMD (Gaussian kernel) MMD (Laplace kernel) Median

MAE 0.0780971 0.0905728 0.0878320 0.1038774
sdAE 0.0578317 0.0658958 0.0640874 0.0761439

In a second time, we repeat the same experiment with contamination: two of the 𝑋𝑖’s are sampled393

from a standard Cauchy distribution instead.394

N = 200
n = 100
theta = -2
err = matrix(data=0,nr=N,nc=4)
for (i in 1:N)
{

cont = rcauchy(2)
X = c(rnorm(n-2,theta,1),cont)
thetamle = mean(X)
thetamed = median(X)
estim = mmd_est(X,model="Gaussian.loc",par2=1)
thetanew1 = estim$estimator
estim = mmd_est(X,model="Gaussian.loc",par2=1,kernel="Laplace")
thetanew2 = estim$estimator
err[i,] = abs(theta-c(thetamle,thetanew1,thetanew2,thetamed))

}
results = matrix(0,nr=2,nc=4)
results[1,] = colSums(err)/N
for (i in 1:4) results[2,i] = sd(err[,i])
colnames(results) = c('MLE','MMD (Gaussian kernel)','MMD (Laplace kernel)','Median')
rownames(results) = c('MAE','sdAE')
final = as.table(results)
knitr::kable(final,caption="Estimation of the mean in the contaminated case")

Table 2: Estimation of the mean in the contaminated case

MLE MMD (Gaussian kernel) MMD (Laplace kernel) Median

MAE 0.1411296 0.0964510 0.0941981 0.1061498
sdAE 0.2853344 0.0734671 0.0708889 0.0772327

The results are as expected: under no contamination, the MLE is known to be efficient and is therefore395

the best estimator. On the other hand, the MLE (i.e. the empirical mean) is known to be very sensitive396

to outliers. In contrast, the MMD estimators and the median are robust estimators of 𝜃. We refer the397
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reader to (Briol et al. 2019; Chérief-Abdellatif and Alquier 2022) for more discussions and experiments398

on the robustness MMD estimators.399

Note that while the median is a natural robust alternative to the MLE in the Gaussian mean model,400

such an alternative is not always available. Consider for example the estimation of the standard401

deviation of a Gaussian, with known zero mean: 𝒩 (0, 𝜃2). We cannot use (directly) a median in402

this case, while the MMD estimators are available. We repeat similar experiments as above in this403

model. We let 𝑁 and 𝑛 be as above and sample the uncontaminated observations from the 𝒩 (0, 1)404

distributions. We them compare the MLE to the MMD with Gaussian and Laplace kernel both in the405

uncontaminated case and under Cauchy contamination for two observations. The conclusions are406

completely similar to the ones obtained in the Gaussian location experiments.407

N = 200
n = 100
theta=1
err = matrix(data=0,nr=N,nc=3)
for (i in 1:N)
{

X = rnorm(n,0,theta)
thetamle = sqrt(mean(X^2))
estim = mmd_est(X,model="Gaussian.scale",par1=0)
thetanew1 = estim$estimator
estim = mmd_est(X,model="Gaussian.scale",par1=0,kernel="Laplace")
thetanew2 = estim$estimator
err[i,] = abs(theta-c(thetamle,thetanew1,thetanew2))

}
results = matrix(0,nr=2,nc=3)
results[1,] = colSums(err)/N
for (i in 1:3) results[2,i] = sd(err[,i])
colnames(results) = c('MLE','MMD (Gaussian kernel)','MMD (Laplace kernel)')
rownames(results) = c('MAE','sdAE')
final = as.table(results)
knitr::kable(final,caption="Estimation of the standard-deviation in the uncontaminated case")

Table 3: Estimation of the standard-deviation in the uncontaminated case

MLE MMD (Gaussian kernel) MMD (Laplace kernel)

MAE 0.0530777 0.0649238 0.0636323
sdAE 0.0390381 0.0507710 0.0497721

N = 200
n = 100
theta=1
err = matrix(data=0,nr=N,nc=3)
for (i in 1:N)
{

cont = rcauchy(2)
X = c(rnorm(n-2,0,theta),cont)
thetamle = sqrt(mean(X^2))
estim = mmd_est(X,model="Gaussian.scale",par1=0)
thetanew1 = estim$estimator
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estim = mmd_est(X,model="Gaussian.scale",par1=0,kernel="Laplace")
thetanew2 = estim$estimator
err[i,] = abs(theta-c(thetamle,thetanew1,thetanew2))

}
results = matrix(0,nr=2,nc=3)
results[1,] = colSums(err)/N
for (i in 1:3) results[2,i] = sd(err[,i])
colnames(results) = c('MLE','MMD (Gaussian kernel)','MMD (Laplace kernel)')
rownames(results) = c('MAE','sdAE')
final = as.table(results)
knitr::kable(final,caption="Estimation of the standard-deviation in the contaminated case")

Table 4: Estimation of the standard-deviation in the contaminated case

MLE MMD (Gaussian kernel) MMD (Laplace kernel)

MAE 0.4608255 0.0678643 0.0668497
sdAE 1.7910074 0.0503154 0.0495938

4.2 Robust linear regression408

4.2.1 Dataset and model409

To illustrate the use of the regMMD package to perform robust linear regression we use the R built-in410

dataset airquality. The dataset contains daily measurements of four variables related to air quality411

in New York, namely the ozone concentration (variable Ozone), the temperature (variable Temp), the412

wind speed (variable Wind) and the solar radiation (variable Solar.R). Observations are reported for413

the period ranging from the 1st of May 1973 to the 30th of September 1973, resulting in a total of 153414

observations. The dataset contains 42 observations with missing values, which we remove from the415

sample.416

air.data = na.omit(airquality)
hist(air.data$Ozone,breaks=20)

Histogram of air.data$Ozone

air.data$Ozone
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We report the histogram of the log of the variable Ozone:418

hist(log(air.data$Ozone),breaks=20)

Histogram of log(air.data$Ozone)
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From this plot we observe that there is one isolated observation (i.e. outlier), for which the log of the420

observed value of Ozone is 0.421

Our aim is to study the link between the level of ozone concentration and the other three variables422

present in the dataset using the following linear regression model:423

log(Ozone) = 𝛼 + 𝛽1Temp + 𝛽2(Temp)2 + 𝛽3Wind + 𝛽4(Wind)2

+ 𝛽5Solar.R + 𝛽6(Solar.R)2 + 𝜖

where 𝜖 ∼ 𝒩 (0, 𝜎2). The noise variance 𝜎2 is assumed to be unknown so that the model contains 8424

parameters that need to be estimated from the data.425

4.2.2 Data preparation426

We prepare the vector y containing the observations for the response variable as well as the design427

matrix X:428

y = log(air.data[,1])
X = as.matrix(air.data[,-c(1,5,6)])
X = cbind(poly(air.data[,2], degree=2),poly(air.data[,3], degree=2),poly(air.data[,4], degree=2))

4.2.3 OLS estimation429

We first estimate the model with the ordinary least squares (OLS) approach, using bot the full dataset430

and the one obtained by removing the outlier:431

ols.full = lm(y~X)
ii = which(y<1)
ols = lm(y[-ii]~X[-ii,])
results = cbind(ols.full$coefficients,ols$coefficients)
print(results)

15



su
bm
itte
d

[,1] [,2]432

(Intercept) 3.4159273 3.4361465433

X1 2.6074060 2.2885974434

X2 -1.2034322 -0.8487403435

X1 -2.2633108 -2.5209875436

X2 1.2894833 1.1009511437

X1 4.2120018 3.9218225438

X2 0.4501812 0.8936152439

As expected, the OLS estimates are sensitive to the presence of outliers in the data. In particular, we440

observe that the unique outlier in the data has a non-negligible impact on the estimated regression441

coefficient of the variables (Temp)2 and (Solar.R)2.442

4.2.4 MMD estimation with the default settings443

Using the default settings of the mmd_reg function, the computationally cheap estimator ̃𝜃reg with a444

Gaussian kernel 𝑘𝑌(𝑦 , 𝑦 ′) is used, and the model is estimated as follows:445

mmd.tilde = mmd_reg(y,X)
summary(mmd.tilde)

======================== Summary ========================446

Model: linearGaussian447

Estimator: theta tilde (bdwth.x=0)448

---------------------------------------------------------449

Coefficients Estimate450

---------------------------------------------------------451

(Intercept) 3.427452

X1 2.3448453

X2 -0.8132454

X3 -2.329455

X4 1.0565456

X5 4.1788457

X6 0.8369458

---------------------------------------------------------459

Std. dev. of Gaussian noise : 0.4484 (estimated)460

---------------------------------------------------------461

Kernel for y: Gaussian with bandwidth 0.5821462

=========================================================463

As expected from the robustness properties of MMD based estimators, we observe that the estimated464

values of the regression coefficients are similar to those obtained by OLS on the dataset without the465

outlier. The summary command also returns the value of the bandwidth parameter 𝛾𝑌 obtained with466

the median heuristic and used to compute the estimator.467

To estimate the model using the alternative estimator ̂𝜃reg we need to choose a non-zero value for468

bdwth.x. Using the default setting, this estimator is computed as follows:469

mmd.hat = mmd_reg(y,X,bdwth.x="auto")
summary(mmd.hat)

======================== Summary ========================470

Model: linearGaussian471

Estimator: theta hat (bdwth.x>0)472
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---------------------------------------------------------473

Coefficients Estimate474

---------------------------------------------------------475

(Intercept) 3.4269476

X1 2.3444477

X2 -0.8131478

X3 -2.3297479

X4 1.056480

X5 4.1786481

X6 0.8374482

---------------------------------------------------------483

Std. dev. of Gaussian noise : 0.4482 (estimated)484

---------------------------------------------------------485

Kernel for y: Gaussian with bandwidth 0.5821486

Kernel for x: Laplace with bandwidth 0.0215487

=========================================================488

We remark that the value for bdwth.x selected by the default setting is very small, and thus the two489

MMD estimators provide very similar estimates of the model parameters.490

4.2.5 Tuning the fit in MMD estimation491

Above, the estimator ̂𝜃reg was computed using a Laplace kernel for𝑘𝑋(𝑥, 𝑥′) and a Gaussian kernel492

𝑘𝑌(𝑦 , 𝑦 ′), and using a data driven approach to select their bandwidth parameters 𝛾𝑋 and 𝛾𝑌. If, for493

instance, we want to use a Cauchy kernel for 𝑘𝑋(𝑥, 𝑥′) with bandwidth parameter 𝛾𝑋 = 0.2 and a494

Laplace kernel for 𝑘𝑌(𝑦 , 𝑦 ′) with bandwidth parameter 𝛾𝑌 = 0.5, we can proceed as follows:495

mmd.hat = mmd_reg(y,X,bdwth.x=0.1,bdwth.y=0.5,kernel.x="Cauchy",kernel.y="Laplace")
summary(mmd.hat)

======================== Summary ========================496

Model: linearGaussian497

Estimator: theta hat (bdwth.x>0)498

---------------------------------------------------------499

Coefficients Estimate500

---------------------------------------------------------501

(Intercept) 3.4106502

X1 2.4541503

X2 -0.8421504

X3 -2.3274505

X4 1.1086506

X5 4.2962507

X6 0.9091508

---------------------------------------------------------509

Std. dev. of Gaussian noise : 0.4483 (estimated)510

---------------------------------------------------------511

Kernel for y: Laplace with bandwidth 0.5512

Kernel for x: Cauchy with bandwidth 0.1513

=========================================================514

We recall that different choices for the kernels 𝑘𝑌(𝑦 , 𝑦 ′) and 𝑘𝑋(𝑥, 𝑥′) lead to differentMMD estimators,515

which explains why the estimates obtained here are different from those obtained in Section 4.2.4.516
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4.3 Robust Poisson regression517

4.3.1 Dataset and model518

As a last example we consider the same dataset and task as in Section 4.2, but now assume the519

following Poisson regression model:520

Ozone ∼ Poisson( exp (𝛼 + 𝛽1Temp + 𝛽2(Temp)2 + 𝛽3Wind + 𝛽4(Wind)2

+ 𝛽5Solar.R + 𝛽6(Solar.R)2)).

Noting that the response variable is now Ozone and not its logarithm as in Section ??, we modify the521

vector y accordingly:522

y = air.data[,1]

In the histogram above we observe that there is one isolated observation (i.e.~outlier), for which the523

observed value of Ozone is larger than 150.524

4.3.2 GLM estimation525

We start by estimating the model with the generalized least squares (GLS) approach, using both on526

the full dataset and the one obtained by removing the outlier:527

glm.full = glm(y~X,family=poisson)
ii = which(y>150)
glm = glm(y[-ii]~X[-ii,],family=poisson)
results = cbind(glm.full$coefficients,glm$coefficients)
print(results)

[,1] [,2]528

(Intercept) 3.5168945 3.506950377529

X1 2.4621470 2.332854309530

X2 -0.8796456 -0.827578293531

X1 -2.4753279 -2.167010600532

X2 0.9498002 0.559589428533

X1 4.0664346 4.289933463534

X2 -0.3247376 -0.003300254535

It is well-known that the GLM estimator is sensitive to outliers and, as a result, we observe that the536

unique outlier present in the data has a non-negligible impact on the estimated regression coefficients537

of the model.538

4.3.3 MMD estimation with default setting539

We first estimate the model parameter using the estimator ̃𝜃reg. Using the default setting of mmd_reg540

this is done as follow:541

mmd.tilde = mmd_reg(y,X,model="poisson")

Warning in mmd_reg(y, X, model = "poisson"): Warning: The maximum number of542

iterations has been reached.543

summary(mmd.tilde)
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======================== Summary ========================544

Model: poisson545

Estimator: theta tilde (bdwth.x=0)546

---------------------------------------------------------547

Coefficients Estimate548

---------------------------------------------------------549

(Intercept) 3.3754550

X1 2.4766551

X2 -1.0967552

X3 -2.3401553

X4 0.3289554

X5 4.7545555

X6 0.0784556

---------------------------------------------------------557

---------------------------------------------------------558

Kernel for y: Laplace with bandwidth 18.3848559

=========================================================560

As for the linear regression example, we observe that the estimated values of the regression coefficients561

are similar to those obtained by GLM on the dataset without the outlier data point.562

Finally, we estimate the model parameters using the estimator ̂𝜃reg with its default setting:563

mmd.hat = mmd_reg(y,X,model="poisson",bdwth.x="auto")

Warning in mmd_reg(y, X, model = "poisson", bdwth.x = "auto"): Warning: The564

maximum number of iterations has been reached.565

In this case, we obtain a warning message indicating that the maximum number of iterations maxit566

allowed for the optimization algorithm has been reach. The value of maxit, set by default to 50, 000,567

can be increased using the control argument of mmd_reg. For instance, setting maxit=10^6 remove568

the warning message:569

mmd.hat = mmd_reg(y,X,model="poisson",bdwth.x="auto",control=list(maxit=10^6))
summary(mmd.hat)

======================== Summary ========================570

Model: poisson571

Estimator: theta hat (bdwth.x>0)572

---------------------------------------------------------573

Coefficients Estimate574

---------------------------------------------------------575

(Intercept) 3.368576

X1 2.4909577

X2 -1.0501578

X3 -2.386579

X4 0.3063580

X5 4.7321581

X6 -0.0961582

---------------------------------------------------------583

---------------------------------------------------------584

Kernel for y: Laplace with bandwidth 18.3848585

Kernel for x: Laplace with bandwidth 0.0215586
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=========================================================587

As for the linear regression model, the value of bdwth.x selected by the data driven approach588

implemented in mmd_reg is close to zero and the estimate values of the model parameters are589

therefore similar to those above obtained with the estimator ̃𝜃reg.590
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