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ABSTRACT

Controllable scene generation, i.e., the task of generating images in which objects
are at specific locations, is an active research area with a wide range of applica-
tions. Although Generative Adversarial Networks (GAN) have shown some suc-
cessful results at this task by devising intermediate representations in which spatial
content is disentangled, the quality of the generated images and the mid-level con-
trol they offer remains limited. Diffusion models, on the other hand, have been
able to generate images with an unprecedented level of quality, but their generation
process is hard to control and GAN-based techniques are not directly applicable
to them. In this work, we propose SceneDiffusion, a framework that optimizes
spatially disentangled representations for diffusion models. Our method jointly
denoises multiple scene layouts during diffusion sampling, allowing controllable
scene generation with any off-the-self text-to-image diffusion model. The pro-
posed approach is training-free, has negligible time overhead, and is agnostic to
any specific denoiser architecture. In addition, it further enables in-the-wild spatial
image editing, allowing us to move any object in any given image while keeping
the scene consistent. We build a comprehensive benchmark to quantitatively and
qualitatively evaluate our approach and show that it outperforms previous works
by a large margin on image quality and layout consistency.

1 INTRODUCTION

Controllable scene generation, i.e., the task of generating images in which objects can be placed at
specific locations, is an important topic of generative modeling (Ohta et al., 1978; Yang et al., 2021)
with many commercial applications. Such applications range from content generation and editing
for social media platforms to post-production of visual effects in movies and video games.

In the GAN era, latent spaces have been designed to offer a mid-level control on generated
scenes (Epstein et al., 2022; Wang et al., 2022; Niemeyer & Geiger, 2021; Xu et al., 2023). Such
latent spaces are optimized to provide a disentanglement between scene layout and appearance in an
unsupervised manner. For instance, BlobGAN (Epstein et al., 2022) uses a group of splattering blobs
for 2D layout control, and GIRAFFE (Niemeyer & Geiger, 2021) uses compositional neural fields
for 3D layout control. Although these methods provide good control of the scene layout, they remain
limited in the quality of the generated images and the spatial content disentanglement they offer to
the user. On the other hand, diffusion models have recently shown unprecedented performance at
the text-to-image (T2I) generation task (Ho et al., 2020; Dhariwal & Nichol, 2021; Rombach et al.,
2021; Saharia et al., 2022). Still, they cannot provide fine-grained spatial control due to the lack of
mid-level representations stemming from their fixed forward noising process (Sohl-Dickstein et al.,
2015; Ho et al., 2020).

In this work, we propose a framework to bridge this gap and allow for controllable scene gener-
ation with any pretrained T2I diffusion model. Our method, entitled SceneDiffusion, is based on
the core observation that spatial-content disentanglement can be obtained during the diffusion sam-
pling process by denoising multiple scene layouts at each denoising step. More specifically, at each
SceneDiffusion step t, we optimize a scene representation by first sampling several scene layouts,
running locally-conditioned denoising on each layout in parallel, and then analytically optimize the
representation for the next diffusion step t − 1 to minimize its distance with each of the locally
denoised layouts. We employ a layered scene representation (Isola & Liu, 2013; Lu et al., 2020;
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Figure 1: Our SceneDiffusion framework can generate scene images from a given layout. When the
layout varies, it produces consistent scenes accross frames. SceneDiffusion enables us to precisely
move multiple objects (e.g., the bed and the window) in the image and produce a coherent output.

Kasten et al., 2021), where each layer represents an object with its shape controlled by a mask
and its content controlled by a text description, allowing us to compute object occlusions using
depth ordering, which further provides an in-depth understanding of objects in the generation pro-
cess. Overall SceneDiffusion has negligible time overhead, does not require finetuning on paired
data (Zhang & Agrawala, 2023; Mou et al., 2023b), mask-specific training (Rombach et al., 2021),
or test-time optimization (Poole et al., 2022; Wang et al., 2023), is agnostic to any specific denoiser
architecture and is able to generate scenes in which objects can be moved freely while keeping the
contents visually consistent.

Although this approach can produce consistent scenes in which objects can be moved freely, it
cannot be employed to edit objects’ spatial locations in a reference image directly. To address this,
given a global text prompt for the reference image, we propose to additionally use the sampling
trajectory of the reference image as an anchor in the scene denoising process. When denoising
multiple layouts simultaneously, we increase the weight of the reference layout in the noise update
to keep the scene’s faithfulness to the reference content. By disentangling the spatial location and
visual appearance of the contents, our approach better reduces hallucinations compared to other
baseline methods. An example application of our proposed framework is shown in Figure 1.

As one of the first works to study diffusion-based controllable scene generation and spatial image
editing, we build an evaluation benchmark by creating a dataset containing 1,000 text prompts and
approximately 5,000 images, with initial noise, image caption, local descriptions, and mask annota-
tions. We evaluate our proposed approach on this dataset and show that it outperforms prior works
on both image quality and layout consistency metrics by a clear margin when editing the spatial
location of objects in images.

In summary, our contributions are:

• We propose a novel sampling strategy entitled SceneDiffusion that introduces a mid-level
spatial control in the diffusion sampling process with a negligible time overhead.

• We show how our sampling strategy allows for controllable scene generation with any off-
the-shelf T2I diffusion models and spatial image editing of a reference image.

• We build a comprehensive evaluation benchmark to quantify the performance of our
method on the scene generation and the spatial image editing tasks in an open-vocabulary
setting and show that it beats current state-of-the-art approaches by a large margin.
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Figure 2: Method overview. (Upper) The SceneDiffusion framework first optimizes a scene repre-
sentation in the early steps of the diffusion sampling process which is then used as an input to the
final image diffusion steps. (Lower) SceneDiffusion. SceneDiffusion updates the layer represen-
tation of an image through multiple denoising steps. Each layer representation consists of a layout
i.e., a set of binary masks, to present different instances, and also latent instance maps, f (t), for the
visual appearance of each mask. In the illustration f (t) contains 4 features maps, from f1 to f4. In
each denoising step, we randomly sample N layouts from a predefined range and render these lay-
outs via the current latent instance maps. Note that although this rendering process leads to N latent
scene images with noise, we show them in the pixel space as v(t) for a better understanding. We then
denoise the latent scene images using a pretrained diffusion model for one step to get the latent im-
ages, v̂(t−1), which are used to optimize the latent instance maps f (t−1) in the layer-representation.

2 RELATED WORKS

2.1 TEXT-TO-IMAGE DIFFUSION MODELS

Recently, diffusion models have demonstrated unprecedented results on text-to-image genera-
tion (Ho et al., 2020; Nichol et al., 2021; Dhariwal & Nichol, 2021; Rombach et al., 2021; Saharia
et al., 2022), i.e., the task of generating an image from a textual description, by learning to progres-
sively denoise an image from an input standard Gaussian noise. In the literature, T2I models vary
with different design choices, including generation in pixel space (Saharia et al., 2022) or latent
space (Rombach et al., 2021) and different denoiser architectures including U-Net (Ronneberger
et al., 2015)-based (Ho et al., 2020) or transformer (Vaswani et al., 2017)-based (Peebles & Xie,
2022). Unlike previous image editing approaches that leverage attention cues (Hertz et al., 2022;
Tumanyan et al., 2023; Chefer et al., 2023; Epstein et al., 2023) or feature correspondence (Mou
et al., 2023a; Tang et al., 2023; Shi et al., 2023), our approach is agnostic to the specific design
choice of the denoiser.

2.2 CONTROLLABLE SCENE GENERATION

Generating controllable scenes has been an important topic in generative modeling (Ohta et al., 1978;
Yang et al., 2021) and has been extensively studied in the GAN context (Epstein et al., 2022; Wang
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et al., 2022; Niemeyer & Geiger, 2021; Xu et al., 2023). Various approaches have been developed on
applications that include controllable image generation (Epstein et al., 2022; Wang et al., 2022), 3D-
aware image generation (Niemeyer & Geiger, 2021; Chan et al., 2022; Xu et al., 2023; Hong et al.,
2023) and controllable video generation (Menapace et al., 2021). Usually, control at the mid-level is
obtained in an unsupervised manner by building a semantically meaningful latent space. However,
such techniques are not directly applicable to text-to-image diffusion models. Indeed, T2I models
employ a fixed forward process (Sohl-Dickstein et al., 2015; Ho et al., 2020), which constrains the
flexibility of learning a spatially disentangled latent representation, thus making it difficult to build
a mapping from the desired mid-level control to the latent space. In this work, we solve this issue
by optimizing a layered scene representation during the diffusion sampling process.

2.3 IMAGE-EDITING WITH DIFFUSION MODELS

Off-the-shelf T2I diffusion models can be powerful image editing tools. With the help of inver-
sion (Song et al., 2020b; Mokady et al., 2023) and subject-centric finetuning (Ruiz et al., 2023;
Gal et al., 2022), various approaches have been proposed to achieve image-to-image translation in-
cluding concept replacement and re-stylization (Meng et al., 2021; Hertz et al., 2022; Tumanyan
et al., 2023; Kawar et al., 2023). However, these approaches are restricted to editing in local regions
around objects, and editing the spatial location of objects has been rarely explored. Moreover, many
of the approaches exploit an attention correspondence (Hertz et al., 2022; Tumanyan et al., 2023;
Chefer et al., 2023; Epstein et al., 2023) or a feature correspondence (Tang et al., 2023; Shi et al.,
2023; Mou et al., 2023a) with the final image, making the approach dependent to a specific denoiser
architecture. To the best of our knowledge, this paper is one of the first to tackle spatial editing while
being agnostic to any specific model architecture.

3 OUR APPROACH

Framework Overview. Our approach is closely related to prior works on diffusion models and
locally conditioned diffusion, which we briefly introduce in Section 3.1. We then discuss our
sampling-based controllable scene generation approach in Section 3.2, which works towards spa-
tial and content disentanglement for off-the-shelf text-to-image diffusion models. Leveraging this
sampling approach, we can disentangle the spatial dependency for any in-the-wild image, and thus
achieve spatial image editing as discussed in Section 3.3.

3.1 PRELIMINARY

Diffusion Models. Diffusion models (Ho et al., 2020) are a type of generative model that learn to
generate data from a random input noise. More specifically, given an image from the data distribu-
tion x0 ∼ p(x0) a fixed forward noising process progressively adds random Gaussian noise to the
data, hence creating a Markov Chain of random latent variable x1, x2, ..., xT following:

q(xt|xt−1) = N (xt;
√

1− βixt−1, βtI), (1)

where β1, ...βT are constants corresponding to the noise schedule chosen so that for a high enough
number of diffusion steps xT is assumed to be a standard Gaussian. We then train a denoiser θ that
learns the backward process, i.e., how to remove the noise from a noisy input (Ho et al., 2020).
At inference time, we can sample an image by starting from a random standard Gaussian noise
xT ∼ N (0; I) and iteratively denoise the image following the Markov Chain, i.e., by consecutively
sampling xt−1 from pθ(xt−1|xt) until x0:

xt−1 = xt −
1− λt√
1− λ̄t

ϵθ(xt, t) +
1− λ̄t−1

1− λ̄t
βtz; z ∼ N (0, I), (2)

where λ̄t =
∏t

s=1 λs, λt = 1− βt. Note that the diffusion sampling process can be accelerated by
various sampling techniques as described in (Song et al., 2020b; Lu et al., 2022).

Locally Conditioned Diffusion. Various approaches have been proposed to generate partial image
content based on dedicated text prompts using pretrained text-to-image diffusion models (Bar-Tal
et al., 2023; Po & Wetzstein, 2023). For K local prompts y = {y1, y2, ..., yK} and binary non-
overlapping masks m = {m1,m2, ...mK}, Locally conditioned diffusion (Po & Wetzstein, 2023)
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proposes to first predict a full image noise ϵθ(xt, t, yk) for each local prompt yk with classifier-free
guidance (Ho & Salimans, 2022), and then assign it to its corresponding region masked by mk:

ϵLCD
θ (xt, t,y,m) =

K∑
k=1

mk ⊙ ϵθ(xt, t, yk), (3)

where ⊙ is element-wise multiplication. In our approach, we employ a similar locally conditioned
noise estimation for each sampled layout.

3.2 CONTROLLABLE SCENE GENERATION

Given a list of ordered object masks and their corresponding text prompts, we would like to generate
a scene where object locations can be changed on the spatial dimensions while keeping the image
content consistent and high quality. We leverage an off-the-shelf T2I diffusion model that generates
in the image space (or latent space) I ∈ Rc×w×h, where c is the number of channels and w and h
the width and height of the latent image, respectively. To achieve controllable scene generation, we
introduce a layered scene representation in Section 3.2.1 for mid-level control and propose a new
sampling strategy in Section 3.2.2 for optimization.

3.2.1 LAYERED SCENE REPRESENTATION

We decompose a controllable scene into K layers [lk]Kk=1, ordered by the depth of the objects. Each
layer lk has 1) a fixed object-centric binary mask mk ∈ {0, 1}c×w×h (e.g., a bounding box or
segmentation mask) to show the geometric property of the object, 2) a two-element offset, ok ∈
[0;µk] × [0; νk], indicating its spatial locations, with µk and νk defining the horizontal and vertical
movement range, and 3) a latent feature map f

(t)
k ∈ Rc×w×h representing its visual appearance at

diffusion step t.

We name the masks and their associated offsets as a layout. The masks mk can be generated
automatically from segmentation models (Kirillov et al., 2023), or from user input, as illustrated
in Section 4.3. The offset ok of each layer can be randomly sampled from the movement range
[0;µk]× [0; νk]. Note that we set the last layer lK as the background so that mK = {1}c×w×h and
oK = [0, 0]. Besides, the latent visual map f

(T )
k is independently initialized from a standard Gaus-

sian noise N (0, I) across all the layers. We update f
(t)
k in a sequential denoising process, detailed

in Section 3.2.2.

When a layered presentation for the scene is determined, we can render it to a single latent scene
image and then decode the latent into the pixel space. Similarly to prior works in controllable
scene generation (Epstein et al., 2022) and video editing (Kasten et al., 2021), we use α-blending
to composite all the layers. More concretely, the latent scene image v, denoted as view, can be
calculated as:

v(t) =

K∑
k=1

αk ⊙ move(f (t)
k , ok); αk = move(mk, ok)

k−1∏
j=1

(1− move(mj , oj)). (4)

Each element in αk ∈ {0, 1}w×h indicates that the visibility of that location in the k-th latent feature
map, and the function move(·, o) means that we spatially shift the values of the feature map f or
mask m by o. The rendering process can be applied to the layer presentation at any diffusion step,
resulting in a latent scene image with a certain noise level. Mathematically, since α is binary and∑K

k=1 α
2
k = 1, it can be proven that the rendered latent image from the initial layer presentation still

follows the standard Gaussian distribution. This allows us to denoise directly on the latent images
using pretrained diffusion models and update the layer presentation accordingly.

3.2.2 GENERATING SCENES IN DIFFUSION SAMPLING

We propose SceneDiffusion to optimize the latent feature maps in the layer representation from
Gaussian noise. Given a layered representation, each SceneDiffusion step renders multiple latent
scene images denoted as views, estimates the noise from the views, and updates the latent feature
maps from the estimation.

5



Under review as a conference paper at ICLR 2024

Specifically, SceneDiffusion samples N groups of offset [o1,n, o2,n, · · · , oK,n]
N
n=1, with each offset

ok,n being an element of the movement range [0;µk]× [0; νk]. This leads to N layout variants from
the original one. Note that different sampling methods are compared in Section 4.3, and we observe
that uniform sampling in a legitimate region works the best. Meanwhile, a higher number of layouts
helps the denoiser locate a better mode while also increasing the computational cost, as shown in
Section 4.3. From the K latent feature maps, we render the layouts as N latent images vn ∈ V :

V (t) ≡ {v(t)1 , ..., v
(t)
N }; v(t)n =

K∑
k=1

αk ⊙ move(f (t)
k , ok,n) (5)

Each view v
(t)
n follows a standard Gaussian noise, allowing us to use them as input into pretrained

T2I diffusion models. Finally, we stack all the view images in each SceneDiffusion step and predict
the noise {ϵ̂n}Nn=1 using locally conditioned diffusion (Po & Wetzstein, 2023) described in Equa-
tion 3:

ϵ̂(t)n = ϵLCD
θ (v(t)n , t,m,y),∀n ∈ {1, 2, · · · , N} (6)

where m are the object masks, and y are local text prompts for each layer. Since we can run
multiple layout denoising in parallel, computing {ϵ̂n}Nn=1 brings little time overhead, while costing
an additional memory consumption proportional to N . We then update the views v

(t)
n from the

estimated noise ϵ̂
(t)
n using Equation 2 to get v̂(t−1)

n .

Since each view corresponds to a different layout and is denoised independently, conflict can happen
in overlapping mask regions. Therefore, we propose to optimize each latent feature map f

(t−1)
k so

that the rendered view from Eq 5 is close to denoised views by optimizing the following objective:

f (t−1) = argmin
f̃(t−1)

N∑
n=1

||v̂(t−1)
n −

K∑
k=1

αk ⊙ move(f̃ (t−1)
k , ok,n)||22 (7)

This least square problem has a closed-form solution that we obtain by updating f with a weighted
average of the estimated noise on each view, as shown in Eq. 8. Note that we use move(x,−o) to
denote the values in x translated in the reverse direction of o. The derivation for this solution is
similar to the discussion in Bar-Tal et al. (2023).

f
(t−1)
k =

∑N
n=1 move(αk ⊙ v̂

(t−1)
n ,−ok,n)∑N

n=1 move(αk,−ok,n)
, ∀k ∈ {1, · · · ,K} (8)

3.2.3 IMAGE DIFFUSION WITH SCENEDIFFUSION

Despite improving consistency across different views, using SceneDiffusion througout the full dif-
fusion process leads to degraded visual quality especially in lighting and shadowing. To mitigate
this side effect, we use SceneDiffusion only in the early stage of the diffusion process and then run
vanilla image sampling for τ steps in the later stage. We find the resulting images to be more natural
and aligned with text prompts while preserving consistency. Adjusting the value of τ can control
the consistency-quality trade-off. According to our ablation in Sec. 4.3, a value of τ in 25% to 50%
of the total diffusion steps strikes the best balance.

3.3 APPLICATION TO IMAGE EDITING

One advantage of our SceneDiffusion is that we keep an implicit expression of scene views during
diffusion, which allows further controls on the views. For instance, SceneDiffusion can be condi-
tioned on a given image as an anchor view, allowing us to change the layout of an existing image,
an essential task in image editing. Concretely, when a scene image is given along with an existing
layout, we take its latent feature map as the optimization target final state of an anchor view, denoted
as v̂(0)a . Then, we add Gaussian noise to this view at the diffusion noise levels, creating a sequence
of anchor views for the target as different denoising steps.

v̂(t)a =
√

1− βtv̂
(0)
a + βtϵ; ϵ ∼ N (0, 1),∀t ∈ [1, · · · , T ]. (9)
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In each sampling step, we use the corresponding anchor view v̂
(t)
a to further constraint f (t−1), which

leads to an extra weighted term in Eq. 7, as shown in Eq. 10.

f (t−1) = argmin
f̃(t−1)
.

∑
n

wn||v̂(t−1)
n −

K∑
k=1

αkmove(f̃ (t−1)
k , ok,n)||22;wn =

{
w if n = a,

1 otherwise.
(10)

Here n ∈ {1, · · · , N} ∪ {a}, ok,a can be computed from the layout of the given image, and w

controls the importance of v̂(t)a . The closed form solution of this equation is similar to Eq. 8 and can
be found in Appendix.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Dataset. We curate a dataset of 5,092 generated images associated with image captions, object
masks, local descriptions for each mask, and the initial diffusion latent noise. This is achieved by
first generating 1k image captions using a Large Language Model (LLM). The LLM is instructed
to describe only a single subject, in a single scene, in the following format: ”[CAPTION] Subject:
[SUBJECT]. Scene: [SCENE].” in order to provide prompts for local regions (see appendix for
examples of such prompts). Then, we employ a 512×512 publicly available text-to-image diffusion
model to generate ten images for each caption using the deterministic DDIM (Song et al., 2020a)
sampler. This process results in a set of 10k images with their corresponding initial random noise.
Finally, we employ an off-the-shelf open-vocabulary segmentation model Kirillov et al. (2023) to
generate a subject mask for each image and apply a rule-based filter to remove low-quality images,
which results in a dataset of 5,092 high-quality subject-centric images.

Metrics. Our main metrics for controllable scene generation are Mask IoU, Consistency, LPIPS,
and SSIM. Mask IoU measures the layout accuracy of the generated image. Other metrics compare
multiple generated images and evaluate their differences: Consistency for the layout, LPIPS for
perceptual, and SSIM for structural changes. Moreover, in the image editing experiment, we report
FID and KID to measure the similarity of the edited images to the original ones, and CLIP score to
measure the text alignment degradation in the edited area.

Please see the Appendix for more details on our dataset construction and metrics selection.

4.2 IMPLEMENTATION

We implement our approach on the Diffusers library using publicly available text-to-image latent
diffusion models. Two model variants are used, one employs a 64×64 latent and generates 512×512
image, and the other one employs a 128× 128 latent space and generates 1024× 1024 images. For
classifier-free guidance (Ho & Salimans, 2022), we set the guidance scale to 7.5 for the 512 × 512
model and 12.5 for the 1024 × 1024 model. We employ the DDIM sampler (Song et al., 2020b)
and the number of sampling steps is 50. We run the experiment on a single machine equipped with
8 32GB NVIDIA V100 GPUs. The total running time of a scene image generation process ranges
from 5 to 30 seconds.

4.3 LAYOUT-CONDITIONED SCENE GENERATION

Task. For controllable scene generation, we evaluate our approach on the task of generating scenes
where the subject mask is placed at two different spatial locations. The overall content of the scene
is expected to be invariant to the mask location. For this, we start by generating a given scene using
local prompts and giving a location to the object of interest. Then we apply a random shift in [-0.2,
0.2] of the image size in both vertical and horizontal directions to generate the target scene. Note
that for this task, we use a subset of our dataset which consists of 100 prompts and 231 images.

Baselines. We compare our approach to MultiDiffusion (Bar-Tal et al., 2023). Following the same
protocol, we use a 20% solid color bootstrapping strategy. Concretely, in the first 10 steps of the
50-step DDIM scheduling, we fill the area outside the object mask with a random solid color. For the
initialization, instead of initializing the two target layouts with two independent random noises, we
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Table 1: Controllable scene generation. We compare with MultiDiffusion (Bar-Tal et al., 2023) on
controllable scene. †: without the solid color bootstrapping (Bar-Tal et al., 2023)

Method Mask IoU ↑ Consistency↑ LPIPS ↓ SSIM ↑

MultiDiffusion† 0.262 ± 0.008 0.267 ± 0.012 0.517 ± 0.009 0.456 ± 0.009
MultiDiffusion 0.453 ± 0.024 0.426 ± 0.011 0.506 ± 0.010 0.493 ± 0.012

Ours† 0.298 ± 0.017 0.605 ± 0.009 0.192 ± 0.003 0.769 ± 0.004
Ours 0.515 ± 0.010 0.723 ± 0.016 0.211 ± 0.002 0.767 ± 0.003

MultiDiffusionLayout 1 MultiDiffusionLayout 2 OursOurs

“A bag” “A sunny day after the snow”

Figure 3: Qualitative comparison for controllable scene generation. Between layout 1 and 2
Multidiffusion (Bar-Tal et al., 2023) is able to move the backpack to the target location, but both the
scene and the object change. Our method can produce coherent and consistent images with minimal
visual appearance difference.

Reference Image: we swap 
the burger and the ice cream

' = 25 '	 = 35

Figure 4: Spatial Image editing with Anchored Fusion. We swap the locations of two objects from
a reference image and stop the SceneDiffusion at an early and a late step, e.g., 25 vs. 35. Stopping
SceneDiffusion at a later step tends to prevent hallucination on the objects (Right image). Prompt:
A burger and an ice cream cone floating in the ocean.

use the layer representation to ensure the consistency between foreground and background, which
leads to better cross-view consistency. For all approaches, we use a 50-step DDIM scheduler.

Results. We present quantitative results in Table 1. All experiments are repeated with 5 random
seeds and we report the mean and standard deviation. The results show that SceneDiffusion signifi-
cantly outperforms MultiDiffusion on all metrics. A qualitative comparison is enlisted in Figure 3.

4.4 IMAGE-CONDITIONED SCENE GENERATION: MOVING OBJECT

Task. For object moving, our task is to move the subject in the reference image to a new target
location. This task differs from the previous controllable scene generation task in that image contents
are given, and only the overall scene prompts are used. Our task is therefore to measure not only
if the object content is consistent but also whether the overall scene is close to the reference image.
Similar to the aforementioned procedures, we randomly sample a mask offset from [-0.2, 0.2] of
image size for both horizontal and vertical directions. We use the full test dataset for evaluation.
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Table 2: Object moving comparison. We compare with inpainting approaches on object moving in
a reference image. Our method achieves the best result accross all metrics.

Method FID ↓ KID ×103 ↓ Mask IOU ↑ Clip Score ↑ LPIPS ↓ SSIM ↑

Inpainting 10.267 ± 0.020 1.167 ± 0.026 0.620 ± 0.001 0.321 ± 0.000 0.278 ± 0.001 0.671 ± 0.000
Inpainting† 6.383 ± 0.039 0.099 ± 0.014 0.747 ± 0.002 0.321 ± 0.000 0.264 ± 0.001 0.680 ± 0.001

Ours 5.289 ± 0.022 0.059 ± 0.014 0.817 ± 0.003 0.321 ± 0.000 0.263 ± 0.001 0.709 ± 0.000

Table 3: Ablation on controllable scene generation. We compare our method by varying the num-
ber of views and SceneDiffusion steps τ . †: Layout using deterministic sampling at fixed intervals.

Views Step τ Mask IoU ↑ Consistency↑ LPIPS ↓ SSIM ↑

2 25 0.477 ± 0.020 0.619 ± 0.017 0.274 ± 0.004 0.697 ± 0.004
8† 25 0.485 ± 0.006 0.638 ± 0.011 0.269 ± 0.002 0.699 ± 0.004
8 25 0.499 ± 0.005 0.657 ± 0.012 0.274 ± 0.001 0.689 ± 0.004

2 25 0.477 ± 0.020 0.619 ± 0.017 0.274 ± 0.004 0.697 ± 0.004
2 37 0.483 ± 0.024 0.661 ± 0.023 0.227 ± 0.004 0.753 ± 0.003
2 50 0.501 ± 0.015 0.699 ± 0.019 0.208 ± 0.005 0.778 ± 0.004

8 50 0.515 ± 0.010 0.723 ± 0.016 0.211 ± 0.002 0.767 ± 0.003

Baselines. We use inpainting-based approaches as our baseline. Specifically, we first crop the
subject from the reference image, paste it to the target location and then inpaint the blank areas.
To better blend the subject with the background, we dilate the edge of the subject for 30 pixels for
all candidates. We compare our approach with two inpainting models: a standard text-to-image
diffusion model using the RePaint technique (Lugmayr et al., 2022), and a specialized inpainting
model trained with masking. For both inpainting models, we use the default 25-step DPM solver.

Results. We report quantitative results in Table 2. The experiment is repeated on 5 random seeds and
the mean and standard deviation are recorded. Our approach outperforms the standard inpainting
model by a large margin. Compared to a specifically fine-tuned model, our approach also demon-
strates a clear advantage on all metrics. A qualitative comparison is shown in Figure 4.

4.5 DISCUSSION

Ablation on N and τ . In Table 3, we analyze the effect of the number of views and SceneDif-
fusion steps. We observe that having more views and more SceneDiffusion steps leads to a better
disentanglement between the subject and the background of the scene, as indicated by higher Mask
IoU and Consistency. Please see the Appendix for more ablation experiments on the image editing.

Limitation. Our method presents several limitations. Firstly, in the alpha compositing, we assume
the masks to be binary. Our method is therefore not handling transparent objects in the scene.
In addition, the object’s appearance may not fit tightly to the mask in the final rendered image.
Finally, our approach requires a large amount of memory to simultaneously denoise multiple layouts,
restricting the applications in resource-limited user cases.

5 CONCLUSION

We proposed SceneDiffusion, a method capable of achieving controllable scene generation using
off-the-shelf T2I diffusion models. At the core of our method, we use a pretrained diffusion model
to optimize a layered scene representation during the early stages of the diffusion sampling pro-
cess. Thanks to the layered representation, spatial and appearance information are disentangled
which allows to generate controllable scenes. By additionally leveraging the sampling trajectory of
a reference image as an anchor, we can condition SceneDiffusion on a reference image to allow for
spatial image editing tasks. Compared to baseline approaches like MultiDiffusion and Inpaiting, our
approach achieves significantly better generation quality and layout consistency on our proposed
benchmark while having negligible time overhead.
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A DATASET AND METRICS

A.1 CAPTION GENERATION

The prompt we used to generate image captions is as follows:

Please give me 100 image captions that describe a single subject in a scene. The format is as
follows: “A cat is sitting in a museum. Subject: cat. Scene: museum.”. “Cat” is the subject and
“museum” is the scene.

Example image captions are as follows:

1. A bird is perched on a windowsill. Subject: bird. Scene: windowsill.
2. A goldfish swims in a bowl. Subject: goldfish. Scene: bowl.
3. A kite soars above the beach. Subject: kite. Scene: beach.
4. A bicycle leans against a brick wall. Subject: bicycle. Scene: brick wall.
5. A turtle crawls along a sandy path. Subject: turtle. Scene: sandy path.
6. A sunflower stands tall in a garden. Subject: sunflower. Scene: garden.
7. A butterfly rests on a blooming flower. Subject: butterfly. Scene: blooming flower.
8. A tree casts its shadow on a playground. Subject: tree. Scene: playground.
9. A cloud drifts over a mountain peak. Subject: cloud. Scene: mountain peak.

10. A snake slithers through the tall grass. Subject: snake. Scene: tall grass.
11. A boat floats on a serene lake. Subject: boat. Scene: lake.
12. A moon illuminates a silent forest. Subject: moon. Scene: silent forest.
13. A star shines brightly in the evening sky. Subject: star. Scene: evening sky.
14. A ladybug crawls atop a green leaf. Subject: ladybug. Scene: green leaf.
15. A guitar rests against a campfire. Subject: guitar. Scene: campfire.
16. A watch lays on a wooden table. Subject: watch. Scene: wooden table.
17. A windmill spins in the midst of a field. Subject: windmill. Scene: field.
18. A lighthouse stands sentinel over the coast. Subject: lighthouse. Scene: coast.
19. A cactus stands alone in the desert. Subject: cactus. Scene: desert.
20. A book lies open on a park bench. Subject: book. Scene: park bench.

A.2 IMAGE FILTERING

The following filters are used in GroundedSAM (Liu et al., 2023) to remove images with no or
ambiguous foreground objects when constructing the test dataset:

• No bounding box detected.
• Bounding box confidence lower than 0.5.
• Bounding box area is larger than 60% of the image size.
• Segmentation mask is smaller than 5% of the image size.

A.3 METRICS

Mask IoU. We employ the segmentation model to predict the subject mask on the generated images.
One of the two target layouts contains the original annotated mask. We can, therefore, compute a
mask IoU between the annotated mask and the shifted mask.

Consistency. We compute the mask IoU between the subject masks for the two generated images.
To compensate for masks that move out of the canvas, we align the masks in two different layouts
respectively and take maximum IoU.
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Table 4: Object moving ablation. We compare our method with inpainting approaches on object
moving for varying number of views and SceneDiffusion steps τ

Views Steps τ FID ↓ KID ↓ Mask IOU ↑ Clip Score ↑ LPIPS ↓ SSIM ↑

2 25 5.918 ± 0.018 -0.020 ± 0.004 0.788 ± 0.003 0.322 ± 0.000 0.294 ± 0.001 0.672 ± 0.001
8 25 5.890 ± 0.032 -0.010 ± 0.004 0.794 ± 0.002 0.321 ± 0.000 0.289 ± 0.001 0.676 ± 0.000

2 12 7.401 ± 0.025 -0.079 ± 0.009 0.667 ± 0.003 0.322 ± 0.000 0.368 ± 0.001 0.598 ± 0.001
2 25 5.918 ± 0.018 -0.020 ± 0.004 0.788 ± 0.003 0.322 ± 0.000 0.294 ± 0.001 0.672 ± 0.001
2 37 5.289 ± 0.022 0.059 ± 0.014 0.817 ± 0.003 0.321 ± 0.000 0.263 ± 0.001 0.709 ± 0.000
2 50 5.320 ± 0.029 0.182 ± 0.020 0.836 ± 0.003 0.322 ± 0.000 0.255 ± 0.001 0.722 ± 0.001

LPIPS. We compute the LPIPS distance between the two generated views to examine the cross-view
perceptual consistency.

SSIM. We compute the SSIM similarity between the two generated views to examine the structural
similarity. We compute the FID between the edited images and the test dataset to evaluate the image
quality.

KID. Similar to FID, we report KID as well for image quality evaluation.

Clip Score. We measure the similarity between the image embedding and the text embedding to
ensure that the text alignment does not degrade after editing.

B ADDITIONAL QUALITATIVE RESULTS

Additional qualitative results for the object moving task are presented in Figure 5.

C ADDITIONAL ABLATION EXPERIMENTS

Ablation for image editing experiment. In Table 4, we show that the multi-layout joint diffusion
is crucial to achieve strong quantitative performance.

D CLOSED-FORM SOLUTIONS

Solution to Eq. 10. The analytical solution to this problem is:

f
(t−1)
k =

∑
n wnmove(αk ⊙ v̂

(t−1)
n ,−ok,n)∑

n wnmove(αk,−oi,n)
; ∀k ∈ {1, · · · ,K}. (11)

Here n ∈ {1, · · · , N} ∪ {a}, ok,a can be computed from the layout of the given image.
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Reference image and mask Inpainting Ours (2 views) Ours (8 views)

Figure 5: Qualitative comparison for object moving on the 1024 × 1024 diffusion model. We
move the object mask to the right of the image. Inpainting methods create repetitive textures or
hallucinations in the background, while our method can produce coherent and consistent images
with minimal visual difference.
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