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Abstract

Although information theory is well established in the study of cognitive systems,
the majority of its uses rely on studying the system under open-loop conditions,
where the system is presented with input by the experimenter. However, a crucial
aspect of understanding cognition is understanding the flow of information in the
dynamics of an organism’s closed-loop interaction with its environment. We outline
four key challenges that an information-theoretic framework for embodied cognitive
systems faces. Such a framework must be able to quantify: (1) multivariate
interactions; (2) how information in the system changes dynamically over time;
(3) what specific aspects of the features of the task the information is about; and
(4) information flow in a brain-body-environment system which is coupled in a
closed loop. In this short review, we provide perspectives on these four challenges,
explain their significance, provide examples of how they have been tackled in other
work, and outline the open challenges.

1 Introduction

Although there is a vast and growing amount of data about the neuroanatomy, the neurophysiology,
and the behavior of several model organisms, how cognition works is still poorly understood. Much
research has been dedicated to understanding how information flows through neural systems. However,
with the growing recognition of the central roles that both embodiment and situatedness play in
generating and modulating neural activity, the challenge is even more difficult: to understand how
behavior is grounded in the dynamics of an entire coupled brain-body-environment system. Such
a challenge demands the development of an information-theoretic framework for the analysis of
embodied cognitive systems.

An embodied cognitive system is a dynamic recurrent neural network that is coupled to a body, which
in turn is coupled to an environment, such that together the coupled brain-body-environment dynam-
ical system produces adaptive behavior (Figure[IJA). An understanding of an embodied cognitive
system entails the characterization of how the interactions between the individual components that
make up the neural system, the body, and the environment give rise to adaptive behavior. Thus, the
goal of an information-theoretic analysis is to characterize how information about the relevant features
of the task flow through the complete brain-body-environment system in ways that are relevant for
the generation of the adaptive behavior at hand (Figure[T[C).

There are four main challenges that such an informational characterization of a brain-body-
environment system must meet. First, it must be able to quantify multivariate interactions. Second, it
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Figure 1: Information theory for brain-body-environment systems (BBE). [A] Illustration of a BBE,
showing the brain interacting with the body and the body with the environment. Note information
flows between each of these layers bidirectionally and thus sets up a closed-loop system. [B] De-
composition of multivariate information in the BBE system about task-relevant variable X. Each
inner circle represents information each component (brain, body, environment) has about X . The
overlapping regions represent redundant information across them. The non-overlapping region repre-
sents unique information and the region outside the inner circles represents synergistic information.
[C] Temporal interaction in a BBE system demonstrating reason for information dynamics. Each
component (brain, body, environment) is a dynamical system and when unrolled in time shows the
continuous interaction between them. Each node in this graph can be modeled as a random variable
to study information (decompostion) at every point in time, and hence its dynamics.

must be able to quantify how information in the system changes dynamically over time. Third, it
must be able to quantify what specific aspects of the features of the task the information is about.
Finally, it must be able to quantify information flow in a system that is in a closed loop of interactions
with its environment.

Of these four challenges for an information-theoretic framework to analyze embodied cognitive
systems, the first three have received more attention than the last. This has been in great part driven
by the typical open-loop paradigm employed in experimental settings. As such, progress in this
last challenge has been driven primarily through the use of synthetic data from simulation models.
However, given experimental progress, increasingly model organisms are being studied in a closed-
loop fashion. In this short review, we discuss each of these challenges and the approaches that have
been taken to overcome them to date.

2 Multivariate information

An agent embedded in an environment that is in closed-loop interaction with the environment
(perception informs actions which informs perception, and so on), can be modeled as a recurrent
dynamical system of recurrent dynamical components i.e. the brain, the body, and the environment.
To understand the role of one of those components, one common approach is to perform an ablation
study of that unit. While ablation experiments provide conclusive evidence of that unit’s participa-
tion/requirement in the behavior (see note in the appendix about information ablation), they do not
have any explanatory power. To this end, Partial Information Decomposition (PID) [Williams and
Beer, [2010a] is an information-theoretic framework that allows decomposing the total information
across multiple sources (i.e., brain, body, or environment) about a target variable (i.e., task-relevant
variable) into unique information that each source has about the target, redundant information that
may exist across multiple sources, as well as synergistic information that is only available from refer-
ring to multiple sources at the same time and not from just one source alone. Consider two sources of
information (two random variables) X1 and X 2, about the random variable Y. If X = {X1, X2},
the total mutual information I(X;Y") can be written as follows

I(X:Y)=U(X1;Y)+U(X2:Y) + R(X;Y) + S(X;Y) )

where U denotes unique information, R denotes redundant information and .S denotes synergistic
information from these sources about Y. Naturally, with more than two sources, redundant and syner-



gistic information will be available for all combinations of the different sources. The decomposition
can be better understood when visualized as a Venn diagram as shown in Figure|1|B for three sources:
brain, body, and environment. Also, note that each random variable used in these descriptions is
multi-dimensional.

This approach could be applied simply within each component of the BBE system. For instance,
within just the brain, all neurons feeding into another neuron can be analyzed by a set of sources
feeding information to the target neuron about the variable of interest. This allows us to evaluate
the unique, redundant, and synergistic information that the target neuron receives from the source
neurons about the variable of interest. Furthermore, when these variables are offset in time, as
shown in Figure[T|C, partial information decomposition has been shown to be equivalent to transfer
entropy [Schreiber, 2000}, Williams and Beer, |2011]]. In neuroscience, PID has been utilized to study
task-relevant changes in fMRI [Lizier et al.l 2011} |/Anzellotti and Coutanchel [2018]], information
distribution dissociated cultures [Sherrill et al., |2021]] and importantly in neural models of BBE
systems [Beer and Williams| [2015].

While PID scales well for high-dimensional systems, open challenges with analyzing multivariate
systems involve scaling up the number of sources of information. If one were to decompose the BBE
system into a three-source PID framework as shown in Figure[I]B, each source can be any dimensional
random variable. However, if one were to decompose it further into the individual sub-units within
each of those sources, then PID would not scale well (imagine what a 7 source Venn diagram would
look like).

3 Dynamic information

All living organisms performing cognitive or adaptive behavior are doing so over time, where timing is
typically a crucial component of whether the behavior is adaptive or not. As such, the tools of analysis
for understanding cognitive systems must take time and timing into consideration. Counter-intuitively,
the majority of ways in which information theory is used to analyze cognitive systems discard time
and timing, typically gathering data over time to make a distribution. However, the framework of
information theory can be easily unrolled over time.

Unrolling information over time involves modeling variables of interest as random processes rather
than random variables. In other words, a variable of interest at specific temporal landmarks of a task
(or even better, along each time point of the task) is modeled as random variables and information-
theoretic analyses are performed at those time points by estimating probability densities at these time
points (each node the temporal graph shown in Figure [TIC would be a random variable). This has
been applied in a few different contexts: Williams and Beer| [2010b]] demonstrate how information
measured over time allows us to identify when a decision about catch/avoid is made in an artificial
agent optimized to perform a relational categorization task; [zquierdo et al.|[2015] show the dynamics
of information in a computation model of C. elegans, demonstrating how information about the
chemosensory stimulus flows through its neural circuitry over time. Based on the graph in Figure[T|C,
information at time ¢ in the brain about task-relevant variable X would include two other sources of
information N (¢ — 1) and B(t — 1). Using the PID framework discussed in the previous section, the
decomposition of multivariate information of these three sources allows us to study the origin and
flow of information across the BBE system components in time.

The main challenge here is that the source of information in dynamical systems can quickly get
obscured in time [Amblard and Michel, 2012]]. In a system where the agent and environment are
continuously interacting, a signal that arises in the environment (or agent) quickly gets reflected in the
agent’s (or environment’s) dynamics thus making it impossible to disentangle the source. Candadai
and Izquierdol|[2020]] show this phenomenon in a simulated setting where the environment drives a
dynamical neural network model or vice versa (i.e. even when the behavior does not involve mutual
interaction between agent and environment). Consequently, information quantities measured across
time become estimates of the generalized correlation between those two random variables and do not
reveal the direction of information flow i.e. causation. Thus, it becomes crucial to study temporal
fluctuation in information across components of the BBE system to track the source of information.
In other words, unrolling information in time allows us to identify when specific milestones occur
over the course of a task and where they are initiated.



There are also challenges in the temporal analysis of information quantities on the experimental
side; accurate measurements of variables of interest at specific landmarks during tasks over multiple
trials (to build a distribution) is challenging. However, with increasingly advanced technology
becoming available, such experiments are starting to become viable thus further increasing the scope
for application of information theory [Yawo et al.,[2013|Wang et al., [2011]].

4 Specific information

Mutual information measures how much information X has about Y. In most cognitive systems,
breaking down the analysis in this way is simply not sufficient to understand the operation of the
nervous system. Typically, we would like to also know what information specifically X has about
Y. For example, let’s imagine that we are studying a decision-making task involving temperature
in the environment and we observe that two different neurons have the same amount of mutual
information about temperature. Ideally, we would like to further probe the system to learn whether
the information that both neurons have about temperature is the same or overlaps, or whether each
neuron has information about a different range of temperatures that are relevant to the task. Although
specific information is not often used to study cognitive systems, information theory does allow us to
unroll information about the specific features of the task-relevant variable.

The main challenge that opens up when we consider specific information in embodied and dynamic
cognitive systems is that it can reveal complex, distributed, dynamic ways of ways in which the
nervous system can contain information about the task at hand. For instance, population coding
could be regarded as distributed where some neurons store information about a certain slice of the
overall distribution of the variable of interest whereas other neurons could encode information about
other slices. Measuring information about specific values of the variable of interest would enable
acquiring a more granular explanation of the operation of a BBE system (X in Figure[IB, could refer
to only a specific value of that task relevant variable). This involves, as one might expect, building a
distribution of the BBE variables in response to several trials of a particular value (or a set of values)
of the task-relevant variable, and then simply measuring the same information quantities such as
mutual information. Ma et al.|[2017]] and |Steinmetz et al.| [2019] are examples of studies where spatial
distribution of neural encoding was studied but all data required to perform a specific information
study was available.

5 Embodied information

An agent embedded in an environment that is in closed-loop interaction with the environment
(perception informs actions which informs perception, and so on), can be modeled as a recurrent
dynamical system of recurrent dynamical components i.e. the brain, the body and the environment. To
understand the role of one of those components, namely the brain, in such a setting requires answering
questions along the lines of: Where in the system does information about X originate? When does
it originate? Where does it exist at a given point in time? In order to answer these questions using
the tools of information theory, unrolling information over time, over multiple variables, and over
specific aspects of task-relevant variables, we must gather data from the cognitive system by opening
up the loop of interaction, providing the system of interest with certain stimuli at certain times and
tracking the flow of information over time. If the task-relevant variable of interest is independent
of the embodied cognitive system (for example, an agent that has to decide to catch an object based
on its size, where the task-relevant variable is the size of the object), then studying the flow of
information in the system while breaking open the loop can be an appropriate approximation to the
operation of the circuit in closed-loop interaction. However, when the task-relevant variable depends
on the behavior of the system (for example, an agent moving in a temperature gradient, where the
temperature perceived by the agent is the task-relevant variable), then studying the information flow
of the system while it is decoupled from its environment is no longer as informative of the operation
of the original embodied system. Unfortunately, there is little to no work in using information
theory in the latter condition. As such, these remains one of the most unexplored challenges in the
information-theoretic analysis of embodied cognitive systems.



6 Conclusion

In summary, this short review outlines four major challenges that an informational characterization
of an embodied cognitive system must address. Information theory with its Partial Information
Decomposition extension provides the framework to address these challenges. Of the four challenges
discussed, the first three have received more attention but are still underused in the context of
understanding embodied cognitive systems. The fourth challenge has been less explored and remains
most unaddressed. In addition, there is plenty of ongoing research that helps expand the field of
information theory through the use of better estimators, better ways of studying polyadic interactions,
and tools that allow for easier ways to study these complex systems, as well as better ways of scaling
the calculations computationally (we provide references to some software tools in the appendix).
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A Appendix

A.1 Information ablation

Information in natural systems is often encoded in the distribution of a signal rather that just its
presence. To this end, to better mimic absence of information from a particular source, rather
then completely remove any signal coming from that source we could manipulate the source signal
distribution. A natural way to achieve this between two neurons would be to replace the signal from
source neuron to target neuron to be equal to the source neuron’s activity’s expected value rather than
0. This helps remove confounds that physical lesions can bring, such as in situations where a source
neuron while providing no information could still act as a constant clamp-like input to a target neuron
to drive the behavior - physical lesions alone would not be able to detect such behavior.

A.2 Software packages for information theoretic analyses

1. infotheory - C++/Python; PID measures as well as transfer entropy estimation for upto 3
sources [Candadai and Izquierdo, [2019]

2. dit - Python; PID for discrete variables [James et al., | 2018]]
3. IDTxL - Python; PID and transfer entropy for upto 2 sources [Wollstadt et al., 2019]

4. JDIT - JAVA; primarily designed for measuring transfer entropy but also includes other
measures such as entropies and mutual information [Lizier, 2014]

5. TRENTOOL - MATLAB toolbox which primarily caters to analog neural data such as
MEG [Lindner et al., 2011]]
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