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ABSTRACT

Semantic watermarking methods enable the direct integration of watermarks into
the generation process of latent diffusion models by only modifying the initial la-
tent noise. One group of watermarks such as Gaussian Shading (GS) and Pseudo-
random Codes Watermarks (PRCW) relies on cryptographic primitives to ensure
provable undetectability. However, we find that the use of randomness in these
schemes has pitfalls, which leads to a flaw in the proof of Gaussian Shading and
to ambiguity in the literature. We propose a novel, general framework based on
IND$-CPA security which highlights the effect of randomness and reveals that
reusing it makes watermarks trivially detectable. As a direct consequence, we
obtain an undetectable but inefficient deployment mode for GS. To regain practi-
cability, we propose several speed-ups for GS and provide extensive experiments
to compare those with other undetectable watermarks in robustness, speed, and
quality.

1 INTRODUCTION

The rapid progress of generative AI for image generation—particularly latent diffusion models
(LDMs)—has made it increasingly difficult to distinguish real and synthetic media. While these
technologies enable valuable applications, they also create new risks. Deepfakes, for instance, are
now being used to commit fraud, spread disinformation, and manipulate public opinion (Marchal
et al., 2024). This creates an urgent need to identify whether media is synthetic and to trace which
system or user produced it. Watermarking has emerged as a promising strategy for this purpose, and
major players such as Google are already deploying it (Google DeepMind, 2024).

Semantic watermarks based on diffusion inversion are a novel watermark paradigm for LDM-
generated images (Wen et al., 2023; Yang et al., 2024b; Ci et al., 2024; Gunn et al., 2025). Here,
a specific watermark pattern is embedded into the initial latent noise during generation, so that the
watermark becomes deeply rooted in the generated image and is expressed via high-level features
such as image composition. This is in contrast to common post-hoc watermarks which are added as
an imperceptible noise pattern on top of images. To check for watermark presence, the denoising
process in a diffusion model is inverted and the recovered latent noise is checked for the watermark
pattern. Importantly, these methods do not require training and support plug-and-play deployment.

The semantic watermark methods differ in how they modify the initial latent noise (zT ) and can
be categorised into two groups. Distribution-changing methods such as Tree-Ring (Wen et al.,
2023) and RingID (Ci et al., 2024) add fixed circular patterns into the frequency spectrum of zT .
This changes the distribution of zT , and consequently, the distribution of the generated images.
In contrast, distribution-preserving methods such as Gaussian Shading (Yang et al., 2024b, GS)
and Pseudo Random Code Watermarking (Gunn et al., 2025, PRCW) keep the distribution of zT
unchanged. For this, they critically rely on cryptographic primitives to generate a pseudorandom
sequence that steers the sampling process of zT .

However, we find that the cryptographic foundation is not properly specified and that practical de-
ployment considerations have been overlooked in previous work. In this work, we therefore clarify
key aspects of the use of cryptographic primitives for semantic watermarking and urge to include
practical deployment considerations. More specifically, we found some problems with the proof
provided by Yang et al. (2024b), as well as an inexact cryptographic specification, leading to open
questions about practical deployment. To address these shortcomings, we provide a novel proof of

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

undetectability (i.e. that watermarked images are indistinguishable from images without watermark)
and propose modifications that allow for correct usage in practice. In detail, our contributions are as
follows:

• Theoretical insights for cryptographic schemes: We revisit the usage of cryptography in
semantic watermarking providing a proper foundation for future research. We provide a
general framework for their construction and give a new proof of undetectability based on
IND$-CPA which requires the correct use of randomness.

• Deployment: We outline the implications on practical deployment resulting from the pro-
posed cryptographic framework. Our analysis shows that the randomness requirements are
not fulfilled in the current deployment of GS. Therefore, we propose techniques to fix this
issue while still allowing for an efficient runtime.

• Evaluation: We perform a comprehensive evaluation comparing undetectable watermarks
in terms of runtime, watermark verification, robustness against common image transforma-
tions, and impact on generation quality.

2 BACKGROUND

We shortly revisit the relevant basics of LDMs, coding theory, and cryptography. Then, we build a
framework to describe recently proposed semantic watermarking methods that rely on cryptography
and that thus fall into the scope of our work.

2.1 LATENT DIFFUSION MODELS AND SAMPLING

Latent Diffusion Models (LDM) are a class of generative models that operate in the latent space
of an image autoencoder. A diffusion model generates data by reversing a gradual noising process.
During generation, first an initial latent zT ∼ N (0, I) is sampled. Subsequently, multiple iterations
of denoising are applied. In every step, the image zt with a noise strength associated with denoising
step t is used to predict a slightly less noisy version zt−1. The final latent z0 is then passed through
the VAE decoder to produce the final pixel image x. The image generation process can be condi-
tioned, e. g., on a prompt π. We denote the entire generation process by G(zT , π) = x. Various
samplers have been proposed, such as the prominent deterministic DDIM sampler (Ho et al., 2020).

DDIM Inversion (Mokady et al., 2023) tries to invert the generation process and to recover a match-
ing latent ẑT to a given image. At each inversion step, it tries to find the most likely previous latent
ẑt given ẑt−1.We denote this inversion process as I(x) = ẑT . The inversion does not consider the
prompt and performs some approximations so that the original latent is not necessarily recovered.

However, exact Inversion (Hong et al., 2024) improves inversion accuracy at the cost of much slower
runtime due to optimisation within every inversion step. reduces the added reconstruction noise.
While it still does not take the prompt into account, at each step it runs gradient descent to account
for some of the dropped factors. While more exact, this procedure is a lot slower than DDIM
Inversion.

2.2 CODING THEORY AND CRYPTOGRAPHY

Pseudorandomness A bit string is called pseudorandom if one cannot distinguish it from a truly
random bit string in polynomial time with non-negligible success probability. An algorithm that is
used to generate pseudorandom numbers is called a pseudorandom number generator (PRNG).

Stream Cipher A stream cipher is an encryption algorithm that encrypts a message m one bit at
a time, thus allowing for immediate encryption and decryption and arbitrary message sizes. During
encryption, a stream cipher encrypts the message m using bitwise XOR. That is, the encrypted
message (i.e. the ciphertext) is given by c = K ⊕ m. Here, K = PRNG(k, η) is a sequence of
pseudorandom bits referred to as the keystream, where k is the secret key and η is a public nonce.
Because K is a pseudorandom bit string, c must also be pseudorandom. The pseudorandomness of
c can be used to achieve practically distribution-preserving sampling while carrying a message (like
in Gaussian Shading Yang et al. (2024b)). For decryption, the receiver can recover the original
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message using bitwise XOR: m = K ⊕ c. To do so, the receiver must generate the exact same
keystream K and thus needs to know the secret key k and the nonce η.

Error Correcting Codes An error correcting code (ECC) is a method that allows the encoded
message c to be slightly altered but still be decoded to the original message m. A simple ECC
consists of replicating the message ρ times, Replρ(m) = m||m|| . . . ||m, which can be decoded by
majority voting at every position.

State-of-the-art ECCs with real-world applications (WiFi, 5G) are among others low-density parity-
check (LDPC) codes (Gallager, 1962). An LDPC is defined by the parity-check matrix H ∈
{0, 1}(|c|−|m|)×|c| that is chosen to be sparse for efficient decoding. The encoded message c consists
of the original message m concatenated with parity bits. The parity-check matrix H is used to en-
force that the encoded messages c ∈ {0, 1}|c| satisfy HcT = 0 (mod 2). For encoding, a generator
matrix G can be derived from H and the encoded message is computed by c = mG (mod 2). G is
defined such that c satisfies the constraints defined by H . Decoding uses belief propagation in order
to reconstruct the uncorrupted c by modifying the received c to fit this constraint.

2.3 INVERSION-BASED SEMANTIC WATERMARKING

Watermarks typically operate in a post-hoc manner by adding an imperceptible pattern on top of
an image. The generation of images from scratch, however, provides the possibility to create
in-generation watermarks that are already inserted during the generation process. Recently proposed
semantic watermarking methods alter the LDM generation process by embedding a watermark pat-
tern into the initial latent zT (Wen et al., 2023; Yang et al., 2024b; Gunn et al., 2025; Yang et al.,
2025). Thus, after generation, the watermark becomes realised as higher-level image features, such
as the image’s composition, object shapes, and edge details. The watermark’s presence is verified
by inverting the denoising process and by checking for the watermark in the recovered latent noise.

Formally, we define a watermarked generation algorithm as a function WMk,M(m, η, π) = x.
The inputs are a message m, a nonce η potentially, and a prompt π. The output is a watermarked
image x. Internally, the function WM uses a secret key k and a generative modelM (Zhao et al.,
2025). For this work, we consider the verification of a watermark as the extraction of its message,
i.e., m̂ = WM−1

k,M(x).

Distribution-Preserving Semantic Watermarking In this work, we focus on the group of
distribution-preserving semantic watermarks. They rely on a cryptographic algorithm to drive the
sampling of a watermarked zT that is then used for generation. The cryptographic algorithms allow
generating pseudorandom bitstrings, which in turn can be exploited to sample zT from the original
unwatermarked initial latent distribution (typicallyN (0, I)). This ensures that the generator’s output
distribution is practically identical to the unwatermarked distribution1. Informally, a watermark is
called undetectable if it is impossible to distinguish between multiple watermarked and unwater-
marked images in polynomial time without access to the secret. This also implies that there is no
quality metric (on polynomially many samples) that measures any difference. A watermark is called
distortion free if it is impossible to distinguish it based on a single image.

Watermarking schemes based on cryptographic primitives generally consists of three modules as
depicted in Figure 1 (top part). The first is a cryptographic unit that takes as input a message m,
a secret key k and (potentially) a nonce η, and outputs a long bit string c (e.g. as many bits as
latent pixels). The output fulfils the following properties: It should be pseudorandom, such that
it hides the original message cryptographically, and it should be robust to perturbations, meaning
that one can recover the original message even in the presence of a certain amount of bit flips.
The second module is a sampler S. It takes the bit string from the cryptographic unit and uses it
to sample an initial latent zT that follows a standard Gaussian distribution. It is crucial that the
sampler produces an unbiased Gaussian output given an unbiased binary input. The final module is
the normal generation procedure G of the modelM. It applies diffusion to obtain an output image

1Note that none of the discussed methods can be truly distribution preserving since they restrict the number
of possible latent sign combinations (e.g. 2256 for 256-bit PRNG seeds vs 24×64×64 theoretically possible
latent sign combinations. However, they can still satisfy cryptographic notions of undetectability, with the
ability to yield practically identical distributions that are indistinguishable in polynomial time.
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Cryptographic Unit C Sampler S Generator G
message m

secret k
nonce η π

c
zT

x(m)

Inversion I Quantizer S−1 Cryptographic Unit C−1 verifyx′ k
η

ẑT
ĉ

m̂

Figure 1: Diagram showing the typical generation (top) and watermark verification (bottom) proce-
dures of a distribution-preserving inversion-based watermark.

x from the initial latent zT . To verify a watermark, all modules are inverted in order. Finally, a
statistical check is performed to verify if x′ is actually watermarked and how well it matches a valid
message in case of a multi-bit watermark (see Figure 1, bottom).

Gaussian Shading The cryptographic unit of GS takes the user id m as message and replicates
it such that the replicated message has the same number of elements as zT . Subsequently, the
replicated message is encrypted using a stream cipher as outlined above. The resulting ciphertext
c is then used to steer sampling of zT : the sampler S divides the standard normal distribution
in 2ℓ bins2 with equal probability mass and selects bins according to the bits in c. For watermark
verification of an image x′, the model provider performs a full DDIM inversion I to get an estimated
latent noise ẑT = I(x′). Next, the inverse sampling process S−1 is done where ẑT is quantized
to obtain the encrypted message bits ĉ. Afterwards, decryption and error correction are applied to
recover a user id m̂ = Repl−1(ĉ⊕PRNG(k, η)). The final stage is to check if m̂ matches with any
user id m known by the service provider. This is done by comparing the number of matched bits
between m̂ and every known m. A match is found if the number of matching bits exceeds a pre-
defined threshold, which depends on the total amount of users/messages and guarantees sufficient
statistical significance.

Pseudo Random Codes Watermark Pseudorandom Error-Correcting Codes (PRC, Christ &
Gunn (2024)) extend LDPC codes and combine error-correction with pseudorandomness. They
were specifically developed for AI watermarking and steganography. Gunn et al. (2025) adapted
PRC for in-generation watermarking of diffusion models, a technique known as PRCW. When sam-
pling a new image, a user id m is encoded to a pseudorandom codeword c using a PRC (as opposed
to replication error-correction and stream cipher encryption in GS). Subsequently, sampling and
generation are done as in Gaussian Shading. For verification, PRCW provides algorithms for both
detection (is a PRCW watermark present?) and decoding (recovering the message m). The latter
is slower since it relies on belief propagation. Both detection and decoding require inversion of
the denoising process and quantization similarly to Gaussian Shading. However, PRCW uses exact
DDIM inversion (Hong et al., 2024), which is more accurate than regular DDIM inversion used in
GS, but causes a significant increase in runtime.

Gaussian Shading++ Gaussian Shading++ (Yang et al., 2025, GS++) is an improvement over GS
which is based on a fusion with PRC. Crucially, GS uses a nonce η for the stream cipher. In GS++,
this nonce is included into the watermark as the message of a PRC. So half of the latent values are
used to represent a PRC which encodes just η, the other half is used for a GS watermark which uses
a pseudorandom expansion (i.e. hash) of this η and contains the actual user ID as message m. To
verify the watermark, GS++ first decodes the PRC watermark to get back η and uses this to extract
m from the GS watermark. To be able to decode the PRC, it also relies on exact inversion.

2For ℓ = 1, we have two bins and randomly sample either a negative or a positive value zT [i] from the
Gaussian distribution depending on the binary value of c[i].
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PrivKIND$−CPA
D,WM (λ)

k ← $; b←R {0, 1}

x(mi) =
WMk,M(mi, ηi, πi) for
each (mi, ηi, πi)

if b = 1:
x = WMk,M(m, η, π)

else:
r ← $
x = G(S(r), π)

Output 1 if b = b′, 0 else

D

Choose (m1, η1, π) to
(mq, ηq, π) adaptively

Choose (m, η, π)

b′ ∈ {0, 1}

1n

(mi, ηi, πi)

x(mi)

(m, η, π)

x

b′

Figure 2: IND$-CPA game for a watermarking scheme WM

3 REVISITING CRYPTOGRAPHY FOR SEMANTIC WATERMARKING

While cryptographic primitives such as stream ciphers and PRCs can ensure pseudorandomness and
thereby undetectability of the watermarking schemes, they only do so if used correctly. We provide a
formal definition of undetectability for nonce-based semantic watermarks and relate it to prior work.

3.1 UNDETECTABILITY FOR NONCE-BASED WATERMARKING SCHEMES

In cryptography, a standard security assumption is Indistinguishability under Chosen Plaintext At-
tack (IND-CPA). Informally, this means that an distinguisher D cannot determine which message
was encrypted, even if D knows the two possible messages and has observed encryptions of other
(not necessarily different) messages before (Katz & Lindell, 2015). IND$-CPA (Rogaway, 2004) is
a slightly stronger assumption, stating that D cannot distinguish the encryption of a known message
from a random bit string without knowing the key. Formally, we define the game PrivKIND$−CPA

D,WM (λ),
which is a polynomial time algorithm and depicted in Figure 2. It uses the watermarking algorithm
WMk,M(m, η, π) to output a watermarked image using the secret key and a nonce which intro-
duces randomness. In the beginning, it generates a random secret key k and transmits the security
parameter as 1λ to D.

In the oracle phase of the game, the distinguisher can request up to q watermarked images for
messages, nonces, and prompts (mi, ηi, πi) that D provides. The inputs can be identical or different
and for each image the game responds with the corresponding watermarked image x(mi). In the
challenge phase, the distinguisher provides a message m, a nonce η, and a prompt π. Based on
the random bit b, x is returned, which is either an image containing m as watermark or an image
generated from an initial latent S(r) for a distribution-preserving sampler S and a random seed
r. Finally, D outputs a guess b′ if x is watermarked or not, and the game checks if this is correct
(b = b′). Overall, a watermarking scheme is called IND$-CPA-secure with a security parameter λ,
if Pr[PrivKIND$−CPA

D,WM (λ) = 1] = 1
2 + negl(λ), where negl(λ) is a negligible function, i.e., 2−λ.

A distinguisher D is called nonce-respecting if D never queries the same nonce multiple times.
Note that a practical distinguisher usually has no control over the nonce if a watermarking scheme
is designed securely. However, in this way we can simulate different behaviour under different
nonce-choosing strategies.
Theorem 1. Let C be an IND$-CPA secure cryptographic unit, let S be a distribution preserving
sampler. If the distinguisher D is nonce-respecting, the watermarking scheme is undetectable in the
IND$-CPA notion. If D′ is not nonce respecting, it cannot be undetectable in the IND$-CPA notion.

We sketch an outline of the proof in the following and give the full proof in Section A in the Sup-
plementary Material. In the undetectable case, and nonce-respecting distinguisher D with inversion
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capabilities can basically make the model transparent by inverting. Thus, it interacts directly with
the cryptographic unit C. As this is IND$-CPA secure, D cannot gain more than negligible advan-
tage. However, if an distinguisher D′ is not nonce-respecting, D′ can reuse a message-nonce pair
(m, η) both in the oracle and challenge phase. In the oracle phase, it is guaranteed to observe the
watermarked image x(m). In the challenge phase, it inverts the image x and compares whether it is
similar to x(m) or not3. This distinction has a very high success probability (close to one instead of
negligible) and make the watermarking scheme detectable.

Note however, that it can still be distortion-free as for this a distinguisher does not get any queries in
the oracle phase. However, in practice, users and thus distinguishers can generate multiple images.
Our new definition holds for this case. In summary, if we do not choose a new nonce for every
generated image, it is easy to distinguish these images from a random one as their latents are highly
similar. However, if we alter the nonce for every image, the watermark stays hidden.

3.2 APPLICATION TO WATERMARKING SCHEMES

The cryptographic unit of GS relies on ChaCha20 (Bernstein et al., 2008). We assume that it is
IND$-CPA secure, as no non-generic attacks are known so far4. As the deployed sampler is distri-
bution preserving, GS is clearly undetectable if the nonce η is chosen different at each step. How-
ever, its original proof only covers the case of q = 0 and only proved distortion-freeness Yang et al.
(2024b). Zhao et al. (2025) and Gunn et al. (2025) use a different notion of undetectability, which is
broader but weaker. They build on IND-CPA (WM-IND-CPA) and consider a distinguisher D that
has access to two image generators. One is the plain modelM. D needs to distinguish whether the
second one is also just the plain modelM or some watermarking scheme WMk,M. We formally
include this definition in Appendix B and discuss its relation to IND$-CPA in the following.
Theorem 2. LetM be a model with truly random latents. Then IND$-CPA is at least as strong as
WM-IND-CPA.

The proof is provided in Appendix C. From this theorem follows that every watermarking scheme
that is IND$-CPA is also WM-IND-CPA. Christ & Gunn (2024) show that PRC is undetectable under
WM-IND-CPA given suitable parameters. However, we can show that PRCW is not IND$-CPA:
Theorem 3. PRCW is not IND$-CPA.

The proof is based on finding a successful attack on PRCW and can be found in Appendix D. Note,
that not being IND$-CPA does not harm PRCWs undetectablity in most deployments in practice.
However, based on Theorem 2 and Theorem 3 we can formulate the following theoretical peroperty:
Corollary 1. IND$-CPA is strictly stronger than WM-IND-CPA.

Yang et al. (2025) provide a proof of IND$-CPA for GS++. They encode the nonce of GS with a
PRC. However, they shorten the nonce in PRC and use a pseudorandom expansion function on both
the secret key k and the nonce. This gives IND$-CPA undetectability.

Tree-Ring like schemes (Wen et al., 2023; Ci et al., 2024; Arabi et al., 2025a) are neither unde-
tectable nor distortion-free in any of those definitions. The main reason for this is that they alter the
distribution of zT by introducing a pattern there, which is not cryptographically hidden. Therefore,
they can be detected by a distinguisher D. Nevertheless, Tree-Ring like schemes still have compa-
rable performance in practice as the changes to the distribution are so subtle that they do not harm
the image quality and variability a lot.

3.3 IMPLICATIONS FOR NONCE MANAGEMENT

Our novel proof of undetectability gives a blueprint of how to deploy cryptographic units and specif-
ically, how to choose nonces. Any cipher should normally be used in a same key, new nonce con-
figuration. This means the provider creates a fixed secret key k once. Given a fixed message m and

3Note that D′ could even use a proxy model for inversion instead of the original model (Müller et al., 2025).
4Note that no real world symmetric cipher fulfils that definition in a strict sense. Nevertheless, the best

known attacks require O(2λ/2) time (Boura & Naya-Plasencia, 2023) which we consider infeasible for any
practically relevant attack. Therefore, it can only guess a key with negligible success probability or needs to
observe the encryption for one of its q requested nonces.
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the fixed key k, the provider has to use a new nonce η to control the sampling process for every
generated image. In a normal message exchange setting, the sender could transmit the unencrypted
nonce together with the encrypted message c. However, this is generally not possible in watermark-
ing since the nonce would have to be transmitted in (removable) meta-data. An equivalent way in the
semantic watermarking setup is the new key, new nonce configuration. However, this configuration
has no cryptographic benefits compared to the previous configuration if the nonce is long enough,
and only to save every key in addition. Finally, there is the same key, same nonce configuration.
With fixed key k and nonce η, the stream cipher always produces the same keystream K, and thus
the same ciphertext c if the message m stays the same. This significantly impacts image variety and
makes the watermark detectable.

4 CRYPTOGRAPHY FOR WATERMARKS IN PRACTICE

Originally, Yang et al. (2024b) evaluated GS in the new key, new nonce configuration (Yang et al.,
Accessed: Feb. 2025) and stated key management as an open problem. In this section, we highlight
the challenges associated with key and nonce management and discuss possible solutions.

In addition, subsequent publications (Gunn et al., 2025; Yang et al., 2024a; Zhao et al., 2025; Shehata
et al., 2025) always assumed a same key, same nonce configuration, which is neither undetectable
nor does it preserve image variety (as confirmed in Section E in the Supplementary Material). This
fails to capture the potential of GS or similar cryptographic approaches and raises confusion in the
community.

4.1 KEY AND NONCE MANAGEMENT

In order to enable the distribution-preserving properties of cryptography-based semantic water-
marks, we must draw a new nonce for every newly generated image. The challenge is how to
associate the nonce with a generated image for reliable verification. Publishing generated images
can subject them to various transformations that can strip meta-data and distort the image. Thus,
storing the nonce in meta-data or encoding with a steganographic approach weaker than the water-
mark is not a robust protection.

Another possibility is to keep track of all used nonces. This would require maintaining an internal
database. However, in principle, this should not be an issue since we assume that the watermark
verification service is kept private in order to prevent attacks on the watermark. In addition, genera-
tive services typically already store all user-generated images on their servers so the cost of storing
nonces is negligible in comparison. This is the solution we further explore in this section, start-
ing with a naive baseline as implied by Yang et al. (2024b), and presenting other, more efficient
solutions.

Baseline As a baseline (”GS Reference”), we consider the case where all user ids and nonces are
stored separately. In this case, in order to retrieve the user id, the verification procedure must iterate
over all nonces and try to decrypt the message. Subsequently, since by default we have no way of
knowing that the decrypted message is valid (that the nonce was correct), we must iterate over all
user ids to find the closest matching one. If we consider N users which generated M images in total,
it runs in time O(MN)5.

Randomness check In the baseline, we search over all user ids for every nonce we try. However,
this is not necessary since we can exploit the repetition code of GS to check how likely it is that the
matching nonce was found. We search over the user ids only for the most promising nonces. Con-
cretely, given the recovered encrypted bitstring ĉ, a candidate decryption s is obtained by decrypting
with a candidate nonce η′. If η′ was correct we s is encoded message, if not a pseudorandom bit-
string. We perform a statistical test (see Appendix F) to determine whether s is likely to be an
encoded message and only then decode and search the user ids. This method (”GS Rand Check”)
lowers the runtime to O(M +N) and doesn’t require any additional stored data structures.

5Note that it is possible to speed up user id search using advanced retrieval techniques, like LSH.
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Database lookup Another optimization of the user id lookup procedure would be to use a database
to associate the nonces to the corresponding user ids (recall that every generated image has its own
nonce and is generated by exactly one user). Verification still requires iterating over all nonces, until
a nonce is found for which the associated user id matches the user id recovered from the image. This
(”GS DB Lookup”) lowers the complexity to O(M), but at the cost of O(M) additional data.

Sorting by perceptual hashes All previous methods require searching through all the nonces
linearly. This can be improved by using feature-based image lookup, which should greatly speed-up
nonce retrieval for large-scale collections. In our experiments, we use DINO (Caron et al., 2021)
to compute image feature for every generated image and store these features in a vector database
(we use Chroma6). User ids and nonces are stored alongside DINO features. During verification,
the DINO features of the incoming image are computed, and used to retrieve database entries with
the most feature vectors. Starting from most similar entry, we decode with the stored nonce, and
verify whether the stored user id matches the decrypted user id. This method (”GS Chroma”) runs
in O(logM + k), with O(M) additional entries in a database.

4.2 EXPERIMENTAL SETUP

We set the number of images M = 10, 000 and number of users N = 1, 000, where every user
creates images according to a normal distribution with mean 10 and σ = 3. We measured the
performance of the watermarking schemes in terms of bit accuracy and time. We measure both
the runtime of the cryptographic part as well as the runtime of the inversion, since PRC and GS++
depend on exact inversion, which is much more costly.

We measure the runtime in three scenarios to accommodate three typical cases when a semantic
watermark is deployed. First, we consider the case where nonces are iterated in the best possible
order. This case is relevant if a service provider sorts the nonces according to the creation date to
account for the probability that recently created images are also more likely to be checked. We define
this case as best case. We consider finding it within the first 100 tries. Second, we consider the worst
case. This precisely means that the nonce was not found, since the image was not watermarked by
the service, as it e.g. was not generated by it. In this case, we always check all nonces and should not
find a matching user id. Third, we consider the average case. We did this by selecting the nonces
to be equally spaced within the M nonces we considered. We used Stable Diffusion 2.1 (Rombach
et al., 2022) to ensure comparability to previous work (Yang et al., 2024b; Gunn et al., 2025; Yang
et al., 2025). Details on the computing infrastructure and exact software versions can be found in
Section G in the Supplementary Material.

4.3 RESULTS

TPR Verification Time (s) Inversion + Verification Time (s)

Best Avg. Worst Best Avg. Worst Best Avg. Worst

GS++ 0.95 0.61 0.00 0.04 0.06 0.04 85.07 85.09 85.07
PRCW 1.00 1.00 0.00 0.45 0.45 0.45 85.48 85.47 85.48
GS Reference 1.00 1.00 0.00 41.14 40.13 40.06 46.14 45.12 45.05
GS Rand Check 1.00 1.00 0.00 0.03 2.73 4.70 5.02 7.72 9.70
GS DB Lookup 1.00 1.00 0.00 0.01 1.21 2.46 5.01 6.20 7.45
GS Chroma 1.00 1.00 0.00 3.38 4.45 3.38 8.38 9.44 8.38

Table 1: Performance comparison of watermark verification methods.

Without noise, most schemes perform fairly well in terms of accuracy, as shown in Table 1. However,
there are differences with respect to time. The verification of GS Reference always takes worst case
time as it always searches all the user ids. This is not applicable for larger scale, but can be mitigated
to some extent by our proposed improvements. While PRCW is not the fastest, it is constant time,

6Chroma builds on SQLite3 but supports k approximate nearest neighbour search on vector embeddings
with Hierarchical Navigable Small Worlds (Malkov & Yashunin, 2020). Code is available at https://
github.com/chroma-core/chroma
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Figure 3: Robustness of watermarking schemes. The recommended inverison is solid. In case of
GS++ and PRCW, we also included DDIM inversion as dashed.

which is a very desirable property in large scale applications. However, GS++ is even faster due
to lower complexity of the involved ECCs. Nevertheless, there is a trade-off involved: PRCW and
GS++ depend on exact inversion, which is magnitudes slower than DDIM inversion, such that their
runtime was entirely dominated by it. If we assess the robustness with the default choice of inversion
technique (see Figure 3, we observe that the robustness is dominated by the inversion method. While
all schemes are tolerant to a small amount of noise, DDIM inversion fails to provide accurate latents
for larger noise levels. However, if we compare schemes in terms of DDIM inverison only (dashed
lines for PRCW and GS++), we see that those schemes are in fact less robust than GS.

We conclude that there is a trade-off. PRCW and GS++ provide a slow but constant-time verification,
which is very robust to perturbations because of an expensive inversion routine. GS on the other hand
can be deployed with faster DDIM inversion and has good performance if only a medium amount of
images needs to be produced.

5 RELATED WORK

Watermarking for images has been studied for decades now (Cox et al., 2002; 2007; Al-Haj, 2007;
Zhang et al., 2019).More recently, watermarking specifically for generative AI has been stud-
ied (Huang et al., 2024; Song et al., 2021; Feng et al., 2024). SEAL Watermark Arabi et al. (2025b)
is a single bit watermark which uses perceptual hashes to include the image content. CLUE water-
mark Shehata et al. (2025) is a single-bit watermark which directly builds on a hard cryptographic
problem and is a continuous extension to PRCs. However, its generalisation to a multi-bit setting
is unclear. There exist Gaussian Shading derivates for tabular data generation Zhu et al. (2025) and
for video generation Hu et al. (2025), to which our results extend as well. Aremu et al. (2025);
Yang et al. (2024a) experimentally attacked watermarks by exploiting patterns. They provide empir-
ical evidence that same key, same nonce watermarking schemes are detectable, but did not provide
theoretical insights.

For LLMs, there exist different constructions of undetectable watermarks. Generally, they bias the
token distribution in an undetectable way. Christ et al. (2024) were the first to achieve this based on
cryptographic one way functions, which was later extended by Fairoze et al. (2025). PRC Christ &
Gunn (2024) also includes usage as an undetectable watermarking scheme for LLMs.

6 CONCLUSION

We provide a framework for the general understanding of cryptography-based semantic watermarks.
We further establish undetectability under IND$-CPA for watermarking that explicitly considers the
use of randomness. We show that this is crucial for the undetectability of schemes like Gaussian
Shading and Gaussian Shading++. We make explicit that GS—while designed as an undetectable
watermark—was not used as such in subsequent literature because of a different deployment mode.
Further we relate IND$-CPA to existing literature and find that it is an even stronger notion of unde-
tectability. We propose lightweight modifications to Gaussian Shading to make it still applicable in
practise and compare this to existing schemes. GS can be used with a faster and less robust DDIM
inversion. With our modifications, we also achieve runtime advantages which makes it suitable for
small scale deployment schemes. However, for large scale deployments, PRCW and GS++ are a
better choice as they provide constant time watermark verification.
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A PROOF OF THEOREM 1

We show that if the sampler is distribution preserving, a distinguisher D is nonce respecting and the
watermarking scheme uses an IND$-CPA secure cryptographic unit C, the watermarking scheme is
undetectable under IND$-CPA.

Formally, we get

Pr[PrivKIND$−CPA
D,WM (λ) = 1] = Pr[b = 1]Pr[D(x) = 1] + Pr[b = 0]Pr[D(x) = 0] (1)

=
1

2
Pr[D(WMk,M(m, η, π)) = 1] +

1

2
Pr[D(G(S(r))) = 0] . (2)

On a real random input (second term), D cannot obtain any information and therefore just guesses
with probability 1

2 . On a watermarked input (first term), D needs to recognize the output of IND$-
CPA secure cryptographic unit for an unknown key, which is hard by assumption. Therefore, the
right hand side gets

=
1

2
(
1

2
+ (q + 1) negl(λ)) +

1

2
· 1
2
=

1

2
+ negl(n) . (3)

If we consider a distinguisher D′ that is not nonce-respecting, there is an obvious attack. First, D′

chooses m⋆, η⋆, and π⋆ and passes this as (m1, η1, π1) and as (m, η, π). D′ obtains x(m1) and x.
Next, D′ uses inversion and the inverse sampler to recover the ciphertexts c1 = S−1(I(x(m1))) and
c = S−1(I(x)). Idealized, if they both match, D′ has found that this image is watermarked and
outputs 1, otherwise 0. Usually, they will not be exactly the same due to error in the recovery. How-
ever, they are close enough such that recovery is possible, i.e., c ≈ c1. We compute the probability
for the distinguisher D′ and find that

Pr[PrivKIND$−CPA
D′,WM (λ) = 1] = Pr[b = 1]Pr[D′(x) = 1] + Pr[b = 0]Pr[D′(x) = 0] (4)

=
1

2
Pr[D′(WMk,M(m, η, π)) = 1] +

1

2
Pr[D′(G(S(r))) = 0] (5)

=
1

2
· 1 + 1

2
(1− negl(n)) (6)

= 1− 1

2
negl(n) . (7)

Clearly, D′ has a non-negligible success probability—which is in fact close to 1 even with just one
watermarked image—and can therefore easily distinguish between an unwatermarked image and a
watermarked one.

B GENERAL DEFINITION OF DISTRIBUTION-PRESERVING WATERMARKS

We provide a game based definition of WM-IND-CPA, which equivalent to the is the undetectability
notion used by Zhao et al. (2025) and Gunn et al. (2025).

The game is depicted in Figure 4 and works as follows: A distinguisher is either given access to a
plain image generation modelM or to a watermarking scheme WMk,M depending on a coin flip by
the game. It can request up to q arbitrary adaptive messages and prompts. If it has access toM, the
messages are ignored. WM is called undetectable if there does not exist a distinguisher that can win
the game PrivKWM−IND−CPA

D,WM (λ) with more than negligible advantage. Formally, we require that for
every polynomial time distinguisher D, Pr[PrivKWM−IND−CPA

D,WM (λ)] = 1
2 + negl(λ).

This definition is an equivalent formulation of Zhao et al. (2025).

While this definition is more generic, is does not explicitly expose the nonce of a watermarking
scheme to our analysis, which is why we choose to introduce nonce-based IND$-CPA.

C REDUCTION FROM IND$-CPA TO WM-IND-CPA UNDETECTABILITY

We now consider the relation between WM-IND-CPA (see Appendix B) and IND$-CPA.
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PrivKWM−IND−CPA
D,WM (λ)

k ← $; b←R {0, 1}
for each (mi, πi)

if b = 1:
xi = WMk,M(mi, πi)

else:
xi =M(πi)

Output 1 if b = b′, 0 else

DWM−IND−CPA

Choose
(m1, π1), . . . , (mq, πq)

b′ ∈ {0, 1}

1λ

(mi, πi)

xi

b′

Figure 4: WM-IND-CPA undetectability.

We show that IND$-CPA is at least as strong as the WM-IND-CPA. We assume that the unwater-
marked model actually uses truly random initial latents zT . Otherwise all watermarking schemes
proposed so far are delectable. Under this assumption, distinguishing outputs fromM is equivalent
to distinguishing images from random seeds (see ”else case” in Figure 2). We start with identify-
ing the WM-IND-CPA with q-IND$-CPA by making the following observation. It does not matter
whether a distinguisher which can request an arbitrary polynomial amount of images requests these
upfront in the oracle phase or all of them in the query phase. It is equivalent to a distinguisher that
requests up to 2q images.

It is a well known fact in cryptography, that such a distinguisher has an advantage of 2q times
over a distinguisher which just has access to one image in the oracle phase Katz & Lindell (2015).
We achieved the canonical IND$-CPA game which does not require nonces (we write c-IND$-
CPA). This undetectability notion does contain an oracle phase to query watermarked images and
a challenge phase in which a distinguisher needs to tell for one challenge image whether it was
watermarked or not.

The final step reduces our nonce-based undetectability to c-IND$-CPA. This is straight forward.
All the reduction needs to do is for every query simulate a nonce respecting choice of nonces. We
assume a strategy that chooses them distinct by some deterministic scheduling. In this case, the
reduction perfectly simulates the c-IND$-CPA such that the advantage transfers.

To summarise, we have shown that nonce-based IND$-CPA undetectability is at least as strong
as WM-IND-CPA undetectability under the assumption that the model actually chooses perfectly
random initial seeds.

D PRCW IS NOT IND$-CPA UNDETECTABLE

Next, we are going to show that PRCW is not undetectable under nonce-based IND$-CPA. More
precisely we show that a nonce-respecting distinguisher D can break the pseudorandomness if it
chooses nonces distinct but non-random.

In order to do so, we first provide a more detailed definition of a PRCW code word. Then, we
provide an attack on PRCW as proof. Finally, we outline its consequences on both PRCW and
GS++.

PRCW A PRC extends a normal LDPC code first by encoding a concatenation of a message m,
some check bits β and a nonce η. The check bits are used to ensure a desired FPR on detecting
watermarks in general. They are always the same and matched upon watermark verification. The
nonce ensures that if the same m is encoded twice, its values differ. Furthermore, it contains a
sparse binary error vector e ∼ Bin(|c|, δ) for a small δ, which ensures that recovering G from some
c is computationally hard. Finally, it contains a random but fixed bit string otp of length |c| that
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ensures a technical independence property. As an encoding, we get the following equation over bits.
c = G(β||m||η)T ⊕ e⊕ otp.

Proof of Theorem 3 The attack works as follows: First,D requests code words for a fixed message
m (e.g. m = 0) and for four nonces η1, . . . , η4 with the property that

⊕4
i=1 ηi = 0. It requests the

first three in the first phase to obtain the valid PRC code words for these and the last one in phase
two. Afterwards, D XORs all the received codewords ci. If all four of them are code words, the
resulting bitstring should only contain a small amount of ones. Otherwise, it should be fairly large.

In more detail, we assume that b = 1 and therefore all four code words are valid. We end up with
the XOR of the noise vectors ei. Not that for any constant, the XOR of an even number of it is zero,
e.g.

⊕4
i=1 otp = 0.

4⊕
i=1

ci =

4⊕
i=1

G(β|ηi|m)T ⊕ ei ⊕ otp

= G

(
4⊕

i=1

(β|ηi|m)T

)
⊕

4⊕
i=1

ei

= G · 0⊕
4⊕

i=1

ei =

4⊕
i=1

ei

If code word is random, we expect about half of the bits to be one. If not, it should be the XOR of
four independent noise vectors from Bin(|c|, δ), which contain less than 4|c|δ ones on expectation,
which far from n

2 . How far depends on the specific choice of parameters for δ and |c|, however
a possible configuration for our experimental section (see section 4.2 is |c| = 214 = 16, 384 and
δ = 0.0081. It is obvious to see that the probability of D being able to distinguish is far from
negligible and more close to one.

Consequences for PRCW and GS++ Our attack strategy is not valid if D chooses nonces uni-
formly at random, which is how PRCW was proposed by Gunn et al. (2025). In this case, the best
strategy is a meet in the middle attack, but the nonce length of a PRC is chosen such that it is infeasi-
ble in accordance with the security parameter λ. As a consequence, PRCW is undetectable if nonces
η are chosen uniformly at random every time, but does not fulfil the stronger notion of IND$-CPA
security.

This extends to GS++. There, a PRC is used but without any form of check bits β, additional nonce
η or otp. Instead, its encoded message it the nonce of the entire scheme. However, this nonce
is shorter. It is used as a salt in a hash function together with the secret key k to expand it to a
full pair of stream cipher key and nonce. If at this point a pseudorandom expansion function like
SHAKE-128 (Bertoni et al., 2009) is used, the nonce is actually pseudorandom at each step. This
gives IND$-CPA.

E IMPACT OF WATERMARK CONFIGURATIONS ON IMAGE DIVERSITY

To show the impact of different watermarking schemes and their configurations on image diversity,
we evaluate two metrics empirically. First, we calculate the FID (Heusel et al., 2017) between five
non-overlapping sets of 2.000 watermarked and unwatermarked images taken from a total of 10.000
images each and report mean and standard deviation. Generation prompts are taken randomly from
the Stable Diffusion Prompts dataset7 and are aligned in each set, meaning images in both sets are
generated from the same list of prompts. Second, we calculate the mean pairwise LPIPS (Zhang
et al., 2018) scores between pairs of images within sets of 100 images 10 times, generated from
10 different prompts and report mean and standard deviation from the 10 runs. Like in the main
experiments, we use Stable Diffusion V2.1, the DPM sampler8, as well as default guidance scale
(7.5) and inference steps (50).

7Stable Diffusion Prompts
8DPMSolverMultistepScheduler
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Results All watermarking schemes show FID and LPIPS scores comparable to unwatermarked
generation with the exception of Gaussian Shading setup with same keys and same nonces. For this
setup, the FID scores are higher and LPIPS scores are lower, indicating more similar outputs which
is due to similar initial latents

FID ↓ LPIPS ↑
No Watermark 25.1281±0.3018 0.5921±0.0333

GS Reference 25.0959±0.2396 0.5946±0.0315

GS - New key, new nonce 25.0658±0.2101 0.5945±0.0318

GS - Same key, same nonce 25.4393±0.3335 0.5861±0.0321

GS++ 25.0975±0.1872 0.5932±0.0313

PRCW 25.1470±0.1485 0.5950±0.0319

Table 2: Experiments on image diversity under different watermarking schemes and settings.

F RANDOMNESS CHECK

We start with the following observation: by inversion, we recover a long bitstring ĉ. If it gets
decrypted with a wrong nonce, we will obtain a pseudorandom bitstring. This is the case because
PRNG(k, η′) is a new pseudorandom sequence, so s̃ = ĉ⊕ PRNG(k, η′) is a new encryption of ĉ
instead of a decryption. Since our stream cipher is secure, this is pseudorandom. Hence, the amount
of ones in each strip of length ρ is binomially distributed according to Bin(ρ, 1

2 ). If we chose the
correct nonce, we will get a repetition code where each bit is repeated ρ times (see Section 2.2) up
to some error.

We therefore observe the amount of ones in each block of ρ consecutive bits and determine the
probability, that this was generated by a binomial distribution with Bin(ρ, 1

2 ) (random bits) or by
a biased one (potentially an encoded bit). We choose a standard test power of 80%. There are |m|
blocks in s̃. If it was indeed random, we expect each individual test to fail with a probability of 20%.
We examine whether more tests failed than one would expect from |m| samples from Bin(ρ, 1

2 ) by
performing an additional one-sided test over all. We set our FPR to 0.01, since false positives are
costly in runtime, but false negatives would imply a missed detection. If we consider the s̃ non-
random, we assume that we actually found the correct nonce η and continue with the verification.
This gives the runtime of O(M +N).

Our method involves a trade-off: If we choose FPR too small, we essentially lower the error correc-
tion capabilities of the underlying repetition code and make GS less robust. However, if we choose
FPR too large, we have higher runtime. We empirically found 0.01 a valid choice.

G FULL EXPERIMENTAL DETAILS

All experiments were conducted on a server with 4 Nvidia A40 GPUs, 32 AMD EPYC 7282 16-
Core Processors, and 500 GB RAM, running Ubuntu 20.04.6 LTS. The exact Python version and
package requirements can be found in our project repository (https://anonymous.4open.
science/r/submission-F475/).

Across all experiments, the image sizes and the latent sizes are set to 512 × 512 and 4 × 64 × 64,
respectively.

For all watermarking schemes, we set a message length of 256 and false positive rate of 10−6.

The exact parameters used for individual schemes are as follows:

• PRCW
– sparsity t: 3
– error probability δ: 0.0081
– length of nonce η: 39 bits
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– length of check bits β: 30 bits
– Decoding iterations: 8

• GS++
– sparsity t: 7
– error probability δ: 0.0176
– length of nonce η (ChaCha): 96 bits
– length of nonce in PRC (PRC): 256 bits
– Hash function: SHAKE-128

• GS
– Key length: 256 bits
– Nonce length: 96 bits

We furthermore set both denoising steps and inversion steps to 50, both for regular DDIM inversion
as well as exact inversion.

All prompts used for experiments are taken from the Stable Diffusion Prompts dataset9.

H EXAMPLE IMAGES

(a) random seed (b) GS++ (c) PRCW (d) GS (e) (f)

Figure 5: Comparison of different watermarking schemes. (e) is GS in the same key, same nonce
setting. (f) is GS in the new key, new nonce setting.

9Stable Diffusion Prompts

17

https://huggingface.co/datasets/Gustavosta/Stable-Diffusion-Prompts

	Introduction
	Background
	Latent Diffusion Models and Sampling
	Coding Theory and Cryptography
	Inversion-based Semantic Watermarking

	Revisiting Cryptography For Semantic Watermarking
	Undetectability for Nonce-based Watermarking schemes
	Application to Watermarking Schemes
	Implications for nonce management

	Cryptography for Watermarks in Practice
	Key and Nonce Management
	Experimental Setup
	Results

	Related Work
	Conclusion
	Proof of Theorem 1
	General Definition of Distribution-Preserving Watermarks
	Reduction from IND$-CPA to WM-IND-CPA Undetectability
	PRCW is not IND$-CPA undetectable
	Impact of Watermark Configurations on Image Diversity
	Randomness Check
	Full Experimental Details
	Example Images

