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Abstract

While fine-tuning LLMs on NLI corpora im-
proves their inferential performance, the un-
derlying mechanisms driving this improvement
remain largely opaque. In this work, we con-
duct a series of experiments to investigate what
LLMs actually learn during fine-tuning. We
begin by analyzing predicate frequencies in
premises and hypotheses across NLI datasets
and identify a consistent frequency bias, where
predicates in hypotheses occur more frequently
than those in premises for positive instances.
To assess the impact of this bias, we evalu-
ate both standard and NLI fine-tuned LLMs
on bias-consistent and bias-adversarial cases.
We find that LLMs exploit frequency bias for
inference and perform poorly on adversarial
instances. Furthermore, fine-tuned LLMs ex-
hibit significantly increased reliance on this
bias, suggesting that they are learning these
frequency patterns from datasets. Finally, we
compute the frequencies of hyponyms and their
corresponding hypernyms from WordNet, re-
vealing a correlation between frequency bias
and textual entailment. These findings help
explain why learning frequency patterns can
enhance model performance on inference tasks.

1 Introduction

Natural Language Inference (NLI) is a core task
in language understanding, aiming to determine
whether a hypothesis follows logically from a
premise. The rise of LLMs has driven significant
progress in NLI (He et al., 2024; Liu et al., 2024),
with studies (Liu et al., 2020; Li et al., 2025) show-
ing that training on NLI corpora improves perfor-
mance on inference benchmarks. Moreover, Cheng
et al. (2025) introduce counterfactual NLI datasets
to train LLMs, significantly enhancing their infer-
ential abilities while reducing hallucinations.
Despite the widespread use of NLI datasets for
training, the underlying mechanisms by which
LLMs acquire inferential capabilities remain un-
clear. Li et al. (2022) argue that the performance

gains of LLMs from inference data result from over-
fitting to dataset artifacts. Mckenna et al. (2023a)
prove that LLMs benefit from memorizing such
artifacts and leveraging them as shortcuts for infer-
ence. However, these studies fail to account for the
finding of Cheng et al. (2025) that training on coun-
terfactual reasoning data can still lead to improved
inference performance. To further understand the
source of LLMs’ performance gains from training
on NLI corpora, we conduct a series of controlled
experiments analyzing their inferential behavior.

First, we examine the frequency of predicates in
premises and hypotheses separately across multiple
NLI datasets to analyze their underlying distribu-
tional properties. Our experiments reveal a clear
frequency biases in NLI datasets: predicates in hy-
potheses tend to occur with significantly higher fre-
quency than those in premises in examples labeled
as positive. Second, we evaluate the performance
of both standard and NLI-tuned LLMs on inference
benchmarks, presenting evidence that these models
are sensitive to frequency bias and tend to rely on
this bias during inference. We further prove that
fine-tuning on NLI datasets amplifies this reliance
on frequency bias. Furthermore, we partition the
NLI test set based on whether samples are consis-
tent with or adversarial to frequency bias. Evalua-
tion results show that models fine-tuned on infer-
ence data perform poorly on frequency-adversarial
inference, proving that training on NLI datasets
leads models to learn the frequency bias from NLI
datasets. Finally, we present experiments demon-
strating a correlation between frequency bias and
textual entailment, offering an explanation for why
learning frequency bias may serve as a proxy for
enhancing inferential capability.

The main contributions of this paper are summa-
rized as follows:

(a) We identify frequency bias in the various NLI
data sets, where hypotheses tend to occur more
frequently than premises when labeled is positive.



Label =Entail

Label = No-Entail

premise hypotheiss more frequent ‘ premise hypothesis more frequent

EGs 36.05 209.1 hypothesis 109.35 32.84 premise
Levy/Holt 9.97 24.29 hypothesis 8.38 6.53 premise
RTE 60.89 62.24 hypothesis 73.01 60.09 premise
MNLI 69.30 72.71 hypothesis 69.10 65.80 premise

Table 1: Average predicate frequency in hypothesis and premise across different datasets. Frequencies are computed
separately for positive (Entail) and negative (No-Entail) examples.

(b) We evaluate a range of LLLMs and their fine-
tuned counterparts, demonstrating that these mod-
els tend to exploit frequency bias during inference,
and that fine-tuning on NLI datasets further ampli-
fies this reliance.

(c) We present the relation between frequency
bias and textual entailment, providing explanations
why learning frequency bias can improve inference
performance.

2 Methods

2.1 Calculate average frequency of predicates

For each hypothesis and premise in NLI datsets, we
compute n-gram frequencies using the WordFreq
library (Speer, 2022), which aggregates frequency
data from multiple text sources to provide reliable
usage statistics. In our experiments, we focus ex-
clusively on the frequency of verbal predicates, ab-
stracting away from the specific entity arguments
that accompany them. We calculate the average
predicate frequency for each statement. This ap-
proach enables us to capture general usage patterns
of predicates across corpora while minimizing ef-
fects introduced by different subjects or objects!.

2.2 Metrics

We calculate frequency bias as the difference be-
tween the frequencies of the hypothesis and the
premise, computed as follows:

Bias(hypo, prem) = Freq(hypo) — Freq(prem)

where Freq(-) denotes the average frequency of
predicates in a given statement?.

3 Experimental Setup

3.1 Datasets

We fine-tune LLMs on a range of widely used
NLI datasets and evaluate their inferential perfor-
mance. The training sets include RTE (Dagan
et al., 2006; Wang et al., 2019), MNLI (Williams

'Our code and used data will be released upon publication.
To better illustrate the frequency differences, we scale all
frequency values by a factor of 1,000.

et al., 2018; Wang et al., 2019), and Entailment
Graphs (EGs) (Hosseini et al., 2018, 2021; Cheng
et al., 2025), which is a counterfactual yet logi-
cally valid reasoning dataset. For evaluation, we
use the Levy/Holt (Levy and Dagan, 2016; Holt,
2019) dataset, where each premise—hypothesis pair
contains a single predicate with two named entity
arguments, allowing for clear analysis of predicate
frequency patterns.

We adopt the same prompt templates used in
prior work (Schmitt and Schiitze, 2021; Mckenna
et al., 2023a; Cheng et al., 2025) for both fine-
tuning and inference, which format samples as bi-
nary questions to determine whether the premise
entails the hypothesis. A positive label corresponds
to Entail, and a negative label to No-Entail. De-
tails of the datasets and prompt configurations are
provided in Appendix A and B.

3.2 Fine-tune LLMs

We fine-tune several widely used LLMs on NLI
datasets, including DeepSeek-R1-Distill-Llama-8B
(DeepSeek-Al et al., 2025), Mistral-7B, LLaMA-
3-8B-instruct, and LLaMA-3-70B-instruct. Fine-
tuning is conducted using LoRA (Hu et al., 2022)
within the PEFT framework (Ding et al., 2023),
with a learning rate of 1e™*, 12 training epochs,
rank 8, and a dropout rate of 0.05.

4 Results

4.1 Finding 1: Frequency bias in NLI datasets

We analyze average predicate frequency on the
various NLI datasets. From Table 1, we ob-
serve a consistent pattern: for instances labeled
Entail, the hypothesis typically contains predi-
cates with higher corpus frequency. Conversely, for
No-Entail instances, predicates in the hypothesis
tend to be less frequent. This observation present a
consistent frequency bias embedded in these NLI
datasets. The presence of frequency biases in NLI
datasets raise the potential possibility that LLMs
may be learning and leveraging these frequency
patterns during fine-tuning.



Label =Entail

Label = No-Entail

premise hypothesis  Bias(hypo,prem) follow bias | premise hypothesis Bias(prem,hypo) follow bias

DeepSeek-8B 20.27 65.84 45.57 consistent 88.98 11.75 77.23 consistent
DeepSeek-8B X 8.27 52.59 44.32 consistent 40.83 24.15 16.68 consistent
LLaMA-3-8B 17.58 66.18 48.6 consistent  112.15 13.36 98.79 consistent
LLaMA-3-8B X 26.28 33.63 7.35 consistent 45.95 20.07 25.88 consistent
Mistral-7B 20.06 66.83 46.77 consistent 92.87 18.31 74.56 consistent
Mistral-7B X 11.02 50.71 39.69 consistent 36.39 18.25 18.14 consistent
LLaMA-3-70B 17.13 67.96 50.83 consistent 77.56 19.37 58.19 consistent
LLaMA-3-70B X 24.66 39.15 14.49 consistent 44.03 16.75 27.28 consistent
DeepSeek-8B i 15.78 79.85 64.07 consistent 95.18 8.26 86.92 consistent
DeepSeek-8Brg X 25.64 15.55 -10.09 adversarial ~ 26.50 30.06 -3.56 adversarial
LLaMA-3-8Bra 14.92 66.27 51.35 consistent  130.86 8.26 122.6 consistent
LLaMA-3-8Bgg X 69.18 23.45 -45.73 adversarial  38.01 22.10 15.91 consistent
Mistral-7B g 18.23 75.67 57.44 consistent 96.69 8.02 88.67 consistent
Mistral-7B g X 18.39 15.66 -2.73 adversarial ~ 28.49 29.88 -1.39 adversarial
LLaMA-3-70Bga 13.83 103.23 89.4 consistent 71.65 9.76 61.89 consistent
LLaMA-3-70Bgg X 23.60 16.02 -7.58 adversarial 19.67 64.88 -45.21 adversarial

Table 2: Frequency of premise and hypothesis when evaluating the Levy/Holt dataset using different LLMs and

their EG-tuned variants (g¢).

indicates correct predictions, while X indicates incorrect predictions.

Label = Entail

Label = No-Entail

premise hypothesis  Bias(hypo,prem) ‘ premise hypothesis  Bias(prem,hypo)

DeepSeek-8B 20.27 65.84 45.57 88.98 11.75 77.23
DeepSeek-8B X 8.27 52.59 44.32 40.83 24.15 16.68
DeepSeek-8B g 15.78 79.85 64.07 95.18 8.26 86.92
DeepSeek-8Bpa X 25.64 15.55 -10.09 26.50 30.06 -3.56
DeepSeek-8Brrp 21.17 75.42 54.25 73.99 10.86 63.13
DeepSeek-8Brrp X 12.97 42.14 29.17 44.88 31.68 13.2
DeepSeek-8B /N1 19.62 71.14 51.52 86.89 8.86 78.03
DeepSeek-8Bysnrr X 9.29 13.88 4.59 51.33 23.25 28.08

Table 3: Frequency of premise and hypothesis when evaluating the Levy/Holt using LLMs fine-tuned on different

NLI datasets.

4.2 Finding 2: LLMs are sensitive to
frequency bias

We evaluate a range of LLMs and their EGs-tuned
variants on Levy/Holt. Model predictions are clas-
sified as either correct (V') or incorrect (X), and we
analyze frequency bias across these categories.

We reports the frequency biases in Table 2. The
results reveal a clear trend: both standard and fine-
tuned LLMs can make correct predictions when
test samples are consistent with the frequency bias.
In contrast, when this bias is reduced or adversarial,
the likelihood of incorrect predictions increases. It
shows that LLMs’ performance is sensitive to the
frequency bias. Furthermore, we observe that the
sensitivity is especially pronounced in EG-tuned
models, where the frequency bias is higher in cor-
rect predictions and more reduced in incorrect ones,
compared to standard LLMs.

We also evaluate LLMs fine-tuned on different
NLI datasets. As shown in Table 3, we observe
that models consistently tend to make correct pre-
dictions on samples with stronger frequency bias,
but are more likely to produce incorrect predictions

denotes correct predictions, while X indicates incorrect predictions.

Hypothesis:
The ash contains iron. Levy/Holtcons
Premise:

the ash is rich with iron. Frequency:

contains > is rich with

Label: Entail

Hypothesis: Levy/Holt
Comte discussed mathematics. v/ adv

Premise:

Comte taught mathematics. Frequency:

Label: Entail discussed < taught

Figure 1: A sample in Levy/Holt.,,s and Levy/Holt,g,.

when the bias is reduced. The phenomenon is con-
sistently more pronounced in LLMs fine-tuned on
NLI datasets compared to standard models.

4.3 Finding 3: NLI-tuned LLMs struggle with
frequency-adversarial inference

To further measure the impact of frequency bias, we
divide the Levy/Holt dataset into two subsets: those
consistent with the frequency bias (Levy/Holtop,s)
and those that are adversarial to it (Levy/Holt,q,).
As illustrated in Figure 1, in Levy/Holt,.,,s samples
labeled Entail, the predicate in the hypothesis is
more frequent than that in the premise. In contrast,



Models Levy/Holt.ons Levy/Holt,g, A
LLaMA-3-8B 74.0 61.74 -12.26
DeepSeek-8B 73.51 64.99 -8.52

Mistral-7B 65.31 57.23 -8.08
LLaMA-3-70B 84.25 70.55 -13.7
LLaMA-3-8Bgg 85.2 62.5 -22.7
DeepSeek-8B ¢ 80.8 62.18 -18.62

Mistral-7B g 83.61 58.79 -24.82
LLaMA-3-70Bgc 85.25 69.67 -15.58

Table 4: AUC scores on the frequency-consistent and
frequency-adversarial Levy/Holt.

Levy/Holt,g, contains cases, where the premise is
more frequent than the hypothesis.

We evaluate model performance separately on
Levy/Holt.,,s and Levy/Holt,g,, and report the
Area Under the Curve (AUC) scores in Table 4.
Results show a substantial drop in AUC scores
on Levy/Holt,g, for both standard and fine-tuned
LLMs. This performance gaps on Levy/Holt s
and Levy/Holt,, suggests that LLLMs rely on fre-
quency bias as a shortcut, performing well on rea-
soning from low-frequency to high-frequency state-
ments but struggling when this pattern is reversed.
Compared to standard LLMs, EG-tuned LLMs ex-
hibit a more substantial performance gaps, indicat-
ing that training on EGs reinforces their reliance
on the frequency bias in datasets. We further fine-
tune LLMs on additional NLI datasets and observe
consistent findings, as shown in Appendix D.

These results highlight two key findings: (1)
LLMs perform well on bias-consistent cases but
struggle with adversarial ones, indicating that they
exploit frequency bias as a proxy for inference.
(2) After fine-tuned on NLI datasets, LLMs ex-
hibit increased reliance on frequency bias. This
suggests that fine-tuning process encourages learn-
ing frequency-based patterns from these datasets,
which reinforces inferences from low-frequency to
high-frequency statements while diminishing the
ability to reason in the opposite direction.

4.4 Finding 4: Frequency bias is a proxy for
gradient of semantic generalization

To further investigate the relationship between pred-
icate frequency and entailment relation, we analyze
the frequency of hyponym-hypernym pairs’ ex-
tracted from WordNet (Miller, 1994). These pairs
represent a specific form of upward semantic entail-
ment, namely generalization, where a more specific

3Unlike Mckenna et al. (2023b), we focus on verb pairs to
examine generalization and specificity, as verbs often involve
more abstract and dynamic semantic shifts than nouns.

Hyponyms
4.13

Hypernyms
12.18

WordNet

Table 5: Average frequency of Hyponym-Hypernym in
WordNet. The results prove that more general concepts
(hypernym) have higher frequency.

concept (hyponym) entails its corresponding gen-
eral one (hypernym). For example, “whisper” is a
hyponym of “talk”, so the statement “X whisper
to Y” semantically entails “X talk to Y.

Table 5 reports the average frequency of hy-
ponyms and hypernyms separately. Hypernyms
occur more frequently than their corresponding hy-
ponyms, indicating that more general concept are
more frequent in natural language. This finding
suggests that frequency bias may serve as a proxy
for the generalization gradient, whereby inferences
from lower-frequency to higher-frequency predi-
cates reflect a generalization from specific to more
abstract concepts. In NLI datasets, we also ob-
serve that when the label is Entail, hypotheses
often contain more hypernyms than corresponding
premises, as shown in Appendix C. This suggests
that most samples in NLI datasets require inference
from more specific concepts to more general ones.

These findings offer an explanation for why train-
ing LLMs on NLI datasets can serve as a proxy for
enhancing inferential capability: LLMs learn fre-
quency biases from datasets during training and
these biases align with a generalization gradient
that supports entailment from specific to more gen-
eral concepts. Although LLMs can learn frequency
bias as a proxy to enhance their inferential capa-
bility, learning this bias limits model robustness in
frequency-adversarial settings, as observed in §4.3.

5 Conclusion

In this work, we investigate what LLMs actually
learn during the fine-tuning process. First, we
identify significant frequency bias in various NLI
datasets. Next we prove that LLMs exploit this bias
for inference, and that fine-tuning further increases
their reliance on such patterns. Finally, we show
a strong correlation between frequency bias and a
particular variety of entailment that is common in
NLI datasets, namely hyponym-to-hypernym gen-
eralization. It offers an explanation for why learn-
ing these frequency patterns can enhance model
inference performance. Our work also reveals that
a key limitation of LLMs is their vulnerability to
frequency-adversarial inference cases.



Limitations

In this work, our findings suggest that LLMs in-
ternalize frequency biases from training data and
utilize them as a proxy for inference. However,
due to computational constraints, our experiments
are limited to a range of smaller LLMs with 8B
variants and a single extremely large-scale model,
LLaMA-3-70B. This restricts our ability to draw
conclusions about extremely large models. In fu-
ture work, we will explore broader model scales to
assess the consistency of these trends.
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A Dataset

A.1 Train set

Entailment Graphs (EGs) (Berant et al., 2010,
2011; Hosseini et al., 2018, 2021) are symbolic
graphs to preserve the textual entailment in open-
domain corpora. These graphs contain entailment
between predicates, formatted as triples consisting
of predicate pairs and their typed arguments. Cheng
et al. (2025) propose a method to initialize the
extracted EGs into inference datasets for training
LLMs. The datasets comprise premise—hypothesis
pairs, with each hypothesis being counterfactual
yet logically entailed by its corresponding premise.
Fine-tuning LLMs on this data has been shown to
substantially enhance inferential capability while
reducing hallucinations (Cheng et al., 2025).

RTE (Dagan et al., 2006; Wang et al., 2019) is
a NLI benchmark dataset designed for evaluating
models on the task of recognizing textual entail-
ment (RTE). It consists of sentence-level premise-
hypothesis pairs collected from various sources,
which are collected from various sources such as
news articles and information extraction tasks.

MNLI (Williams et al., 2018; Wang et al., 2019)
is a widely used benchmark for evaluating lan-
guage models on NLI, It consists of sentence-level
premise-hypothesis pairs, with premises drawn
from diverse sources and hypotheses manually writ-
ten.In our experiments, we fine-tune LLMs using
the MNLI training split.

A.2 Test set

Levy/Holt (Levy and Dagan, 2016; Holt, 2019)
dataset is a widely used for NLI, which comprises
premise-hypothesis pairs structured in a specific
task format: “Given [premise P], is it true that
[hypothesis H]?”. Each P- and H -statement has
the property of containing one predicate with two
named entity arguments, where the same entities
appear in both P and H. The Levy/Holt dataset
contains inverse of all entailment pairs. In our
experiments, we study the challenging directional
subset, where the entailments hold in one direction
but not both.

B Prompts Used in Experiments

Prompt templates are widely acknowledged for
their significant and sometimes decisive impact on
the behavior of LLMs. In our experiments, we cate-
gorize the prompt templates into two distinct types

based on their usage: prompt templates for fine-
tuning LL.Ms and prompt templates used during
inference.

B.1 prompt template for fine-tuning

We follow the fine-tuning setup of Cheng et al.
(2025), adopting the same prompt templates used
in prior inference studies (Schmitt and Schiitze,
2021; Mckenna et al., 2023a; Cheng et al., 2025),
which follow the format outlined below:

If [PREMISE], then [HYPOTHESIS].

To make LLMSs better understanding the task, we
format it as Boolean questions and include indica-
tor words such as “Question:" and “Answer:". For
each option, we automatically provide explanations
for every answer by adding affirmation or negation
to the propositions. As a result, the NLI training
data is structured as shown in Table 8. We fine-tune
our models using these templates.

B.2 prompt template for inference

Following the evaluation settings of prior works
(Schmitt and Schiitze, 2021; Mckenna et al., 2023a;
Cheng et al., 2025), we use the same few-shot ex-
amples in our inference prompts for NLI tasks, con-
sisting of two positive and two negative instances.
The examples are shown in Table 9.

C Hyponymn-Hypernym Pairs in NLI
datasets

We analyze the distribution of hyponym-hypernym
pairs in the NLI dataset by counting the occur-
rences of hypernyms and hyponyms in premises
and hypotheses. We focus our analysis on the
EG and Levy/Holt datasets because their samples
contain explicit predicate structures, unlike MNLI
and RTE, which are at the sentence level and lack
clearly defined predicates. As shown in Table 6, we
observe that for instances labeled as Entail, hy-
pernyms appear more frequently in the hypothesis
than in the premise. Conversely, for No-Entail
instances, hypernyms are more frequent in the
premise. These results suggest that hypotheses tend
to contain more abstract concepts than premises in
positive examples, aligning with the observed fre-
quency bias and reinforcing the findings discussed
in §4.4.



when Label = Entail when Label = No-Entail

Hypernmys Hyponyms | Hypernmys Hyponyms
Levy/Holt 92 65 56 101
EG 93 64 31 61

Table 6: Counts of Hypernyms and Hyponyms in hy-
potheses and premises of Levy/Holt and EGs. We ex-
tract all hyponym—hypernym pairs from the data. For
samples labeled as Entail, hypotheses tend to con-
tain more hypernyms, indicating a more general state-
ment. In contrast, for No-Entail samples, premises
typically include more hypernyms, suggesting that the
corresponding hypotheses are more specific or less gen-
eral.

Models Levy/Holt.,,s Levy/Holt,g, A
DeepSeek-R1-8B 73.51 64.99 -8.52
DeepSeek-R1-8Bg¢ 80.8 62.18 -18.62
DeepSeek-R1-8Brrr 73.12 61.74 -11.38
DeepSeek-R1-8B sy s 74.09 61.85 -12.24
LLaMA-3-8B 74.0 61.74 -12.26
LLaMA-3-8Bgq 85.2 62.5 -22.7
LLaMA-3-8Brrr 73.97 57.49 -16.48
LLaMA-3-8By/nir 72.33 58.91 -13.42

Table 7: AUC scores on the frequency-consistent and
frequency-adversarial Levy/Holt.

D Fine-tuned LLMs Performance on
Frequency-adversarial Inference

Table 7 presents the performance of LLMs fine-
tuned on various NLI datasets, consistently show-
ing that these models struggle with frequency-
adversarial inference.

E Computing Costs

We fine-tuned the LLaMA-3-70B model on the
EGs dataset using four NVIDIA RTX A6000 GPUs
over 21 hours. Fine-tuning on the MNLI dataset
required approximately 46 hours. For inference,
evaluation on the Levy/Hot datasets takes around
30 minutes.



Question: If [PREMISE], then [HYPOTHESIS]. Is that true or false?
(A) True; (B) false

(A) True.

Yes, it is true. [PREMISE] entails [HYPOTHESIS].

(B) False.

No, it is false. [PREMISE] does not entail [HYPOTHESIS].

label=True

label=False

Table 8: The table present the prompt template using in our training steps.

Few-shot Examples Instantiated Prompt for Inference Task

If Google bought Youtube, then Google owns Youtube. Is that true or false?
A) True

B) False

Answer: A) True. Owning is a consequence of buying.

If Google owns Youtube, then Google bought Youtube. Is that true or false?
A) True

B) False

Answer: B) False. Owning does not imply buying, the ownership may come
from other means.

If John went to the mall, then John drove to the mall. Is that true or false?
A) True

B) False

Answer: B) False. John may have gone to the mall by other means.

If John drove to the mall, then John went to the mall. Is that true or false?
A) True

B) False

Answer: A) true. Driving is a means of going to the mall.

If John F. Kennedy was killed in Dallas, then John F. Kennedy died in Dallas.
Is that true or false?

A) True

B) False

Answer:

Table 9: Example instantiated prompts in Few-shot settings, for the sample “PREMISE: [Google bought Youtube],
HYPOTHESIS: [Google owns Youtube]”.



