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Abstract
While fine-tuning LLMs on NLI corpora im-001
proves their inferential performance, the un-002
derlying mechanisms driving this improvement003
remain largely opaque. In this work, we con-004
duct a series of experiments to investigate what005
LLMs actually learn during fine-tuning. We006
begin by analyzing predicate frequencies in007
premises and hypotheses across NLI datasets008
and identify a consistent frequency bias, where009
predicates in hypotheses occur more frequently010
than those in premises for positive instances.011
To assess the impact of this bias, we evalu-012
ate both standard and NLI fine-tuned LLMs013
on bias-consistent and bias-adversarial cases.014
We find that LLMs exploit frequency bias for015
inference and perform poorly on adversarial016
instances. Furthermore, fine-tuned LLMs ex-017
hibit significantly increased reliance on this018
bias, suggesting that they are learning these019
frequency patterns from datasets. Finally, we020
compute the frequencies of hyponyms and their021
corresponding hypernyms from WordNet, re-022
vealing a correlation between frequency bias023
and textual entailment. These findings help024
explain why learning frequency patterns can025
enhance model performance on inference tasks.026

1 Introduction027

Natural Language Inference (NLI) is a core task028

in language understanding, aiming to determine029

whether a hypothesis follows logically from a030

premise. The rise of LLMs has driven significant031

progress in NLI (He et al., 2024; Liu et al., 2024),032

with studies (Liu et al., 2020; Li et al., 2025) show-033

ing that training on NLI corpora improves perfor-034

mance on inference benchmarks. Moreover, Cheng035

et al. (2025) introduce counterfactual NLI datasets036

to train LLMs, significantly enhancing their infer-037

ential abilities while reducing hallucinations.038

Despite the widespread use of NLI datasets for039

training, the underlying mechanisms by which040

LLMs acquire inferential capabilities remain un-041

clear. Li et al. (2022) argue that the performance042

gains of LLMs from inference data result from over- 043

fitting to dataset artifacts. Mckenna et al. (2023a) 044

prove that LLMs benefit from memorizing such 045

artifacts and leveraging them as shortcuts for infer- 046

ence. However, these studies fail to account for the 047

finding of Cheng et al. (2025) that training on coun- 048

terfactual reasoning data can still lead to improved 049

inference performance. To further understand the 050

source of LLMs’ performance gains from training 051

on NLI corpora, we conduct a series of controlled 052

experiments analyzing their inferential behavior. 053

First, we examine the frequency of predicates in 054

premises and hypotheses separately across multiple 055

NLI datasets to analyze their underlying distribu- 056

tional properties. Our experiments reveal a clear 057

frequency biases in NLI datasets: predicates in hy- 058

potheses tend to occur with significantly higher fre- 059

quency than those in premises in examples labeled 060

as positive. Second, we evaluate the performance 061

of both standard and NLI-tuned LLMs on inference 062

benchmarks, presenting evidence that these models 063

are sensitive to frequency bias and tend to rely on 064

this bias during inference. We further prove that 065

fine-tuning on NLI datasets amplifies this reliance 066

on frequency bias. Furthermore, we partition the 067

NLI test set based on whether samples are consis- 068

tent with or adversarial to frequency bias. Evalua- 069

tion results show that models fine-tuned on infer- 070

ence data perform poorly on frequency-adversarial 071

inference, proving that training on NLI datasets 072

leads models to learn the frequency bias from NLI 073

datasets. Finally, we present experiments demon- 074

strating a correlation between frequency bias and 075

textual entailment, offering an explanation for why 076

learning frequency bias may serve as a proxy for 077

enhancing inferential capability. 078

The main contributions of this paper are summa- 079

rized as follows: 080

(a) We identify frequency bias in the various NLI 081

data sets, where hypotheses tend to occur more 082

frequently than premises when labeled is positive. 083
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Label = Entail Label = No-Entail

premise hypotheiss more frequent premise hypothesis more frequent
EGs 36.05 209.1 hypothesis 109.35 32.84 premise

Levy/Holt 9.97 24.29 hypothesis 8.38 6.53 premise
RTE 60.89 62.24 hypothesis 73.01 60.09 premise

MNLI 69.30 72.71 hypothesis 69.10 65.80 premise

Table 1: Average predicate frequency in hypothesis and premise across different datasets. Frequencies are computed
separately for positive (Entail) and negative (No-Entail) examples.

(b) We evaluate a range of LLMs and their fine-084

tuned counterparts, demonstrating that these mod-085

els tend to exploit frequency bias during inference,086

and that fine-tuning on NLI datasets further ampli-087

fies this reliance.088

(c) We present the relation between frequency089

bias and textual entailment, providing explanations090

why learning frequency bias can improve inference091

performance.092

2 Methods093

2.1 Calculate average frequency of predicates094

For each hypothesis and premise in NLI datsets, we095

compute n-gram frequencies using the WordFreq096

library (Speer, 2022), which aggregates frequency097

data from multiple text sources to provide reliable098

usage statistics. In our experiments, we focus ex-099

clusively on the frequency of verbal predicates, ab-100

stracting away from the specific entity arguments101

that accompany them. We calculate the average102

predicate frequency for each statement. This ap-103

proach enables us to capture general usage patterns104

of predicates across corpora while minimizing ef-105

fects introduced by different subjects or objects1.106

2.2 Metrics107

We calculate frequency bias as the difference be-108

tween the frequencies of the hypothesis and the109

premise, computed as follows:110

Bias(hypo, prem) = Freq(hypo)− Freq(prem)111

where Freq(·) denotes the average frequency of112

predicates in a given statement2.113

3 Experimental Setup114

3.1 Datasets115

We fine-tune LLMs on a range of widely used116

NLI datasets and evaluate their inferential perfor-117

mance. The training sets include RTE (Dagan118

et al., 2006; Wang et al., 2019), MNLI (Williams119

1Our code and used data will be released upon publication.
2To better illustrate the frequency differences, we scale all

frequency values by a factor of 1,000.

et al., 2018; Wang et al., 2019), and Entailment 120

Graphs (EGs) (Hosseini et al., 2018, 2021; Cheng 121

et al., 2025), which is a counterfactual yet logi- 122

cally valid reasoning dataset. For evaluation, we 123

use the Levy/Holt (Levy and Dagan, 2016; Holt, 124

2019) dataset, where each premise–hypothesis pair 125

contains a single predicate with two named entity 126

arguments, allowing for clear analysis of predicate 127

frequency patterns. 128

We adopt the same prompt templates used in 129

prior work (Schmitt and Schütze, 2021; Mckenna 130

et al., 2023a; Cheng et al., 2025) for both fine- 131

tuning and inference, which format samples as bi- 132

nary questions to determine whether the premise 133

entails the hypothesis. A positive label corresponds 134

to Entail, and a negative label to No-Entail. De- 135

tails of the datasets and prompt configurations are 136

provided in Appendix A and B. 137

3.2 Fine-tune LLMs 138

We fine-tune several widely used LLMs on NLI 139

datasets, including DeepSeek-R1-Distill-Llama-8B 140

(DeepSeek-AI et al., 2025), Mistral-7B, LLaMA- 141

3-8B-instruct, and LLaMA-3-70B-instruct. Fine- 142

tuning is conducted using LoRA (Hu et al., 2022) 143

within the PEFT framework (Ding et al., 2023), 144

with a learning rate of 1e−4, 12 training epochs, 145

rank 8, and a dropout rate of 0.05. 146

4 Results 147

4.1 Finding 1: Frequency bias in NLI datasets 148

We analyze average predicate frequency on the 149

various NLI datasets. From Table 1, we ob- 150

serve a consistent pattern: for instances labeled 151

Entail, the hypothesis typically contains predi- 152

cates with higher corpus frequency. Conversely, for 153

No-Entail instances, predicates in the hypothesis 154

tend to be less frequent. This observation present a 155

consistent frequency bias embedded in these NLI 156

datasets. The presence of frequency biases in NLI 157

datasets raise the potential possibility that LLMs 158

may be learning and leveraging these frequency 159

patterns during fine-tuning. 160
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Label = Entail Label = No-Entail

premise hypothesis Bias(hypo,prem) follow bias premise hypothesis Bias(prem,hypo) follow bias
DeepSeek-8B ✓ 20.27 65.84 45.57 consistent 88.98 11.75 77.23 consistent
DeepSeek-8B ✗ 8.27 52.59 44.32 consistent 40.83 24.15 16.68 consistent
LLaMA-3-8B ✓ 17.58 66.18 48.6 consistent 112.15 13.36 98.79 consistent
LLaMA-3-8B ✗ 26.28 33.63 7.35 consistent 45.95 20.07 25.88 consistent

Mistral-7B ✓ 20.06 66.83 46.77 consistent 92.87 18.31 74.56 consistent
Mistral-7B ✗ 11.02 50.71 39.69 consistent 36.39 18.25 18.14 consistent

LLaMA-3-70B ✓ 17.13 67.96 50.83 consistent 77.56 19.37 58.19 consistent
LLaMA-3-70B ✗ 24.66 39.15 14.49 consistent 44.03 16.75 27.28 consistent

DeepSeek-8BEG ✓ 15.78 79.85 64.07 consistent 95.18 8.26 86.92 consistent
DeepSeek-8BEG ✗ 25.64 15.55 -10.09 adversarial 26.50 30.06 -3.56 adversarial
LLaMA-3-8BEG ✓ 14.92 66.27 51.35 consistent 130.86 8.26 122.6 consistent
LLaMA-3-8BEG ✗ 69.18 23.45 -45.73 adversarial 38.01 22.10 15.91 consistent

Mistral-7BEG ✓ 18.23 75.67 57.44 consistent 96.69 8.02 88.67 consistent
Mistral-7BEG ✗ 18.39 15.66 -2.73 adversarial 28.49 29.88 -1.39 adversarial

LLaMA-3-70BEG ✓ 13.83 103.23 89.4 consistent 71.65 9.76 61.89 consistent
LLaMA-3-70BEG ✗ 23.60 16.02 -7.58 adversarial 19.67 64.88 -45.21 adversarial

Table 2: Frequency of premise and hypothesis when evaluating the Levy/Holt dataset using different LLMs and
their EG-tuned variants (EG). ✓ indicates correct predictions, while ✗ indicates incorrect predictions.

Label = Entail Label = No-Entail

premise hypothesis Bias(hypo,prem) premise hypothesis Bias(prem,hypo)
DeepSeek-8B ✓ 20.27 65.84 45.57 88.98 11.75 77.23
DeepSeek-8B ✗ 8.27 52.59 44.32 40.83 24.15 16.68

DeepSeek-8BEG ✓ 15.78 79.85 64.07 95.18 8.26 86.92
DeepSeek-8BEG ✗ 25.64 15.55 -10.09 26.50 30.06 -3.56

DeepSeek-8BRTE ✓ 21.17 75.42 54.25 73.99 10.86 63.13
DeepSeek-8BRTE ✗ 12.97 42.14 29.17 44.88 31.68 13.2

DeepSeek-8BMNLI ✓ 19.62 71.14 51.52 86.89 8.86 78.03
DeepSeek-8BMNLI ✗ 9.29 13.88 4.59 51.33 23.25 28.08

Table 3: Frequency of premise and hypothesis when evaluating the Levy/Holt using LLMs fine-tuned on different
NLI datasets. ✓ denotes correct predictions, while ✗ indicates incorrect predictions.

4.2 Finding 2: LLMs are sensitive to161

frequency bias162

We evaluate a range of LLMs and their EGs-tuned163

variants on Levy/Holt. Model predictions are clas-164

sified as either correct (✓) or incorrect (✗), and we165

analyze frequency bias across these categories.166

We reports the frequency biases in Table 2. The167

results reveal a clear trend: both standard and fine-168

tuned LLMs can make correct predictions when169

test samples are consistent with the frequency bias.170

In contrast, when this bias is reduced or adversarial,171

the likelihood of incorrect predictions increases. It172

shows that LLMs’ performance is sensitive to the173

frequency bias. Furthermore, we observe that the174

sensitivity is especially pronounced in EG-tuned175

models, where the frequency bias is higher in cor-176

rect predictions and more reduced in incorrect ones,177

compared to standard LLMs.178

We also evaluate LLMs fine-tuned on different179

NLI datasets. As shown in Table 3, we observe180

that models consistently tend to make correct pre-181

dictions on samples with stronger frequency bias,182

but are more likely to produce incorrect predictions183

Hypothesis: 
The ash contains iron.

Premise:   
the ash is rich with iron.

Label: Entail

Frequency:
contains > is rich with 

Hypothesis: 
Comte discussed mathematics.

Premise:   
Comte taught mathematics.

Label: Entail
Frequency:

discussed < taught

𝐿𝑒𝑣𝑦/𝐻𝑜𝑙𝑡!"#

𝐿𝑒𝑣𝑦/𝐻𝑜𝑙𝑡$%&'

Figure 1: A sample in Levy/Holtcons and Levy/Holtadv .

when the bias is reduced. The phenomenon is con- 184

sistently more pronounced in LLMs fine-tuned on 185

NLI datasets compared to standard models. 186

4.3 Finding 3: NLI-tuned LLMs struggle with 187

frequency-adversarial inference 188

To further measure the impact of frequency bias, we 189

divide the Levy/Holt dataset into two subsets: those 190

consistent with the frequency bias (Levy/Holtcons) 191

and those that are adversarial to it (Levy/Holtadv). 192

As illustrated in Figure 1, in Levy/Holtcons samples 193

labeled Entail, the predicate in the hypothesis is 194

more frequent than that in the premise. In contrast, 195
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Models Levy/Holtcons Levy/Holtadv ∆

LLaMA-3-8B 74.0 61.74 -12.26
DeepSeek-8B 73.51 64.99 -8.52

Mistral-7B 65.31 57.23 -8.08
LLaMA-3-70B 84.25 70.55 -13.7

LLaMA-3-8BEG 85.2 62.5 -22.7
DeepSeek-8BEG 80.8 62.18 -18.62

Mistral-7BEG 83.61 58.79 -24.82
LLaMA-3-70BEG 85.25 69.67 -15.58

Table 4: AUC scores on the frequency-consistent and
frequency-adversarial Levy/Holt.

Levy/Holtadv contains cases, where the premise is196

more frequent than the hypothesis.197

We evaluate model performance separately on198

Levy/Holtcons and Levy/Holtadv, and report the199

Area Under the Curve (AUC) scores in Table 4.200

Results show a substantial drop in AUC scores201

on Levy/Holtadv for both standard and fine-tuned202

LLMs. This performance gaps on Levy/Holtcons203

and Levy/Holtadv suggests that LLMs rely on fre-204

quency bias as a shortcut, performing well on rea-205

soning from low-frequency to high-frequency state-206

ments but struggling when this pattern is reversed.207

Compared to standard LLMs, EG-tuned LLMs ex-208

hibit a more substantial performance gaps, indicat-209

ing that training on EGs reinforces their reliance210

on the frequency bias in datasets. We further fine-211

tune LLMs on additional NLI datasets and observe212

consistent findings, as shown in Appendix D.213

These results highlight two key findings: (1)214

LLMs perform well on bias-consistent cases but215

struggle with adversarial ones, indicating that they216

exploit frequency bias as a proxy for inference.217

(2) After fine-tuned on NLI datasets, LLMs ex-218

hibit increased reliance on frequency bias. This219

suggests that fine-tuning process encourages learn-220

ing frequency-based patterns from these datasets,221

which reinforces inferences from low-frequency to222

high-frequency statements while diminishing the223

ability to reason in the opposite direction.224

4.4 Finding 4: Frequency bias is a proxy for225

gradient of semantic generalization226

To further investigate the relationship between pred-227

icate frequency and entailment relation, we analyze228

the frequency of hyponym–hypernym pairs3 ex-229

tracted from WordNet (Miller, 1994). These pairs230

represent a specific form of upward semantic entail-231

ment, namely generalization, where a more specific232

3Unlike Mckenna et al. (2023b), we focus on verb pairs to
examine generalization and specificity, as verbs often involve
more abstract and dynamic semantic shifts than nouns.

Hyponyms Hypernyms
WordNet 4.13 12.18

Table 5: Average frequency of Hyponym-Hypernym in
WordNet. The results prove that more general concepts
(hypernym) have higher frequency.

concept (hyponym) entails its corresponding gen- 233

eral one (hypernym). For example, “whisper” is a 234

hyponym of “talk”, so the statement “X whisper 235

to Y” semantically entails “X talk to Y”. 236

Table 5 reports the average frequency of hy- 237

ponyms and hypernyms separately. Hypernyms 238

occur more frequently than their corresponding hy- 239

ponyms, indicating that more general concept are 240

more frequent in natural language. This finding 241

suggests that frequency bias may serve as a proxy 242

for the generalization gradient, whereby inferences 243

from lower-frequency to higher-frequency predi- 244

cates reflect a generalization from specific to more 245

abstract concepts. In NLI datasets, we also ob- 246

serve that when the label is Entail, hypotheses 247

often contain more hypernyms than corresponding 248

premises, as shown in Appendix C. This suggests 249

that most samples in NLI datasets require inference 250

from more specific concepts to more general ones. 251

These findings offer an explanation for why train- 252

ing LLMs on NLI datasets can serve as a proxy for 253

enhancing inferential capability: LLMs learn fre- 254

quency biases from datasets during training and 255

these biases align with a generalization gradient 256

that supports entailment from specific to more gen- 257

eral concepts. Although LLMs can learn frequency 258

bias as a proxy to enhance their inferential capa- 259

bility, learning this bias limits model robustness in 260

frequency-adversarial settings, as observed in §4.3. 261

5 Conclusion 262

In this work, we investigate what LLMs actually 263

learn during the fine-tuning process. First, we 264

identify significant frequency bias in various NLI 265

datasets. Next we prove that LLMs exploit this bias 266

for inference, and that fine-tuning further increases 267

their reliance on such patterns. Finally, we show 268

a strong correlation between frequency bias and a 269

particular variety of entailment that is common in 270

NLI datasets, namely hyponym-to-hypernym gen- 271

eralization. It offers an explanation for why learn- 272

ing these frequency patterns can enhance model 273

inference performance. Our work also reveals that 274

a key limitation of LLMs is their vulnerability to 275

frequency-adversarial inference cases. 276
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Limitations277

In this work, our findings suggest that LLMs in-278

ternalize frequency biases from training data and279

utilize them as a proxy for inference. However,280

due to computational constraints, our experiments281

are limited to a range of smaller LLMs with 8B282

variants and a single extremely large-scale model,283

LLaMA-3-70B. This restricts our ability to draw284

conclusions about extremely large models. In fu-285

ture work, we will explore broader model scales to286

assess the consistency of these trends.287
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A Dataset453

A.1 Train set454

Entailment Graphs (EGs) (Berant et al., 2010,455

2011; Hosseini et al., 2018, 2021) are symbolic456

graphs to preserve the textual entailment in open-457

domain corpora. These graphs contain entailment458

between predicates, formatted as triples consisting459

of predicate pairs and their typed arguments. Cheng460

et al. (2025) propose a method to initialize the461

extracted EGs into inference datasets for training462

LLMs. The datasets comprise premise–hypothesis463

pairs, with each hypothesis being counterfactual464

yet logically entailed by its corresponding premise.465

Fine-tuning LLMs on this data has been shown to466

substantially enhance inferential capability while467

reducing hallucinations (Cheng et al., 2025).468

RTE (Dagan et al., 2006; Wang et al., 2019) is469

a NLI benchmark dataset designed for evaluating470

models on the task of recognizing textual entail-471

ment (RTE). It consists of sentence-level premise-472

hypothesis pairs collected from various sources,473

which are collected from various sources such as474

news articles and information extraction tasks.475

MNLI (Williams et al., 2018; Wang et al., 2019)476

is a widely used benchmark for evaluating lan-477

guage models on NLI, It consists of sentence-level478

premise-hypothesis pairs, with premises drawn479

from diverse sources and hypotheses manually writ-480

ten.In our experiments, we fine-tune LLMs using481

the MNLI training split.482

A.2 Test set483

Levy/Holt (Levy and Dagan, 2016; Holt, 2019)484

dataset is a widely used for NLI, which comprises485

premise-hypothesis pairs structured in a specific486

task format: “Given [premise P ], is it true that487

[hypothesis H]?”. Each P - and H-statement has488

the property of containing one predicate with two489

named entity arguments, where the same entities490

appear in both P and H . The Levy/Holt dataset491

contains inverse of all entailment pairs. In our492

experiments, we study the challenging directional493

subset, where the entailments hold in one direction494

but not both.495

B Prompts Used in Experiments496

Prompt templates are widely acknowledged for497

their significant and sometimes decisive impact on498

the behavior of LLMs. In our experiments, we cate-499

gorize the prompt templates into two distinct types500

based on their usage: prompt templates for fine- 501

tuning LLMs and prompt templates used during 502

inference. 503

B.1 prompt template for fine-tuning 504

We follow the fine-tuning setup of Cheng et al. 505

(2025), adopting the same prompt templates used 506

in prior inference studies (Schmitt and Schütze, 507

2021; Mckenna et al., 2023a; Cheng et al., 2025), 508

which follow the format outlined below: 509

If [PREMISE], then [HYPOTHESIS]. 510

To make LLMs better understanding the task, we 511

format it as Boolean questions and include indica- 512

tor words such as “Question:" and “Answer:". For 513

each option, we automatically provide explanations 514

for every answer by adding affirmation or negation 515

to the propositions. As a result, the NLI training 516

data is structured as shown in Table 8. We fine-tune 517

our models using these templates. 518

B.2 prompt template for inference 519

Following the evaluation settings of prior works 520

(Schmitt and Schütze, 2021; Mckenna et al., 2023a; 521

Cheng et al., 2025), we use the same few-shot ex- 522

amples in our inference prompts for NLI tasks, con- 523

sisting of two positive and two negative instances. 524

The examples are shown in Table 9. 525

C Hyponymn-Hypernym Pairs in NLI 526

datasets 527

We analyze the distribution of hyponym–hypernym 528

pairs in the NLI dataset by counting the occur- 529

rences of hypernyms and hyponyms in premises 530

and hypotheses. We focus our analysis on the 531

EG and Levy/Holt datasets because their samples 532

contain explicit predicate structures, unlike MNLI 533

and RTE, which are at the sentence level and lack 534

clearly defined predicates. As shown in Table 6, we 535

observe that for instances labeled as Entail, hy- 536

pernyms appear more frequently in the hypothesis 537

than in the premise. Conversely, for No-Entail 538

instances, hypernyms are more frequent in the 539

premise. These results suggest that hypotheses tend 540

to contain more abstract concepts than premises in 541

positive examples, aligning with the observed fre- 542

quency bias and reinforcing the findings discussed 543

in §4.4. 544
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when Label = Entail when Label = No-Entail
Hypernmys Hyponyms Hypernmys Hyponyms

Levy/Holt 92 65 56 101
EG 93 64 31 61

Table 6: Counts of Hypernyms and Hyponyms in hy-
potheses and premises of Levy/Holt and EGs. We ex-
tract all hyponym–hypernym pairs from the data. For
samples labeled as Entail, hypotheses tend to con-
tain more hypernyms, indicating a more general state-
ment. In contrast, for No-Entail samples, premises
typically include more hypernyms, suggesting that the
corresponding hypotheses are more specific or less gen-
eral.

Models Levy/Holtcons Levy/Holtadv ∆

DeepSeek-R1-8B 73.51 64.99 -8.52
DeepSeek-R1-8BEG 80.8 62.18 -18.62

DeepSeek-R1-8BRTE 73.12 61.74 -11.38
DeepSeek-R1-8BMNLI 74.09 61.85 -12.24

LLaMA-3-8B 74.0 61.74 -12.26
LLaMA-3-8BEG 85.2 62.5 -22.7

LLaMA-3-8BRTE 73.97 57.49 -16.48
LLaMA-3-8BMNLI 72.33 58.91 -13.42

Table 7: AUC scores on the frequency-consistent and
frequency-adversarial Levy/Holt.

D Fine-tuned LLMs Performance on545

Frequency-adversarial Inference546

Table 7 presents the performance of LLMs fine-547

tuned on various NLI datasets, consistently show-548

ing that these models struggle with frequency-549

adversarial inference.550

E Computing Costs551

We fine-tuned the LLaMA-3-70B model on the552

EGs dataset using four NVIDIA RTX A6000 GPUs553

over 21 hours. Fine-tuning on the MNLI dataset554

required approximately 46 hours. For inference,555

evaluation on the Levy/Hot datasets takes around556

30 minutes.557
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Question: If [PREMISE], then [HYPOTHESIS]. Is that true or false?
(A) True; (B) false

label=True
(A) True.
Yes, it is true. [PREMISE] entails [HYPOTHESIS].

label=False
(B) False.
No, it is false. [PREMISE] does not entail [HYPOTHESIS].

Table 8: The table present the prompt template using in our training steps.

Few-shot Examples Instantiated Prompt for Inference Task
If Google bought Youtube, then Google owns Youtube. Is that true or false?
A) True
B) False
Answer: A) True. Owning is a consequence of buying.
If Google owns Youtube, then Google bought Youtube. Is that true or false?
A) True
B) False
Answer: B) False. Owning does not imply buying, the ownership may come
from other means.
If John went to the mall, then John drove to the mall. Is that true or false?
A) True
B) False
Answer: B) False. John may have gone to the mall by other means.
If John drove to the mall, then John went to the mall. Is that true or false?
A) True
B) False
Answer: A) true. Driving is a means of going to the mall.
If John F. Kennedy was killed in Dallas, then John F. Kennedy died in Dallas.
Is that true or false?
A) True
B) False
Answer:

Table 9: Example instantiated prompts in Few-shot settings, for the sample “PREMISE: [Google bought Youtube],
HYPOTHESIS: [Google owns Youtube]”.
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