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ABSTRACT

Top-K sparse softmax gating mixture of experts has been widely used for scaling
up massive deep-learning architectures without increasing the computational cost.
Despite its popularity in real-world applications, the theoretical understanding of
that gating function has remained an open problem. The main challenge comes
from the structure of the top-K sparse softmax gating function, which partitions
the input space into multiple regions with distinct behaviors. By focusing on a
Gaussian mixture of experts, we establish theoretical results on the effects of the
top-K sparse softmax gating function on both density and parameter estimations.
Our results hinge upon defining novel loss functions among parameters to capture
different behaviors of the input regions. When the true number of experts k∗
is known, we demonstrate that the convergence rates of density and parameter
estimations are both parametric on the sample size. However, when k∗ becomes
unknown and the true model is over-specified by a Gaussian mixture of k experts
where k > k∗, our findings suggest that the number of experts selected from
the top-K sparse softmax gating function must exceed the total cardinality of a
certain number of Voronoi cells associated with the true parameters to guarantee
the convergence of the density estimation. Moreover, while the density estimation
rate remains parametric under this setting, the parameter estimation rates become
substantially slow due to an intrinsic interaction between the softmax gating and
expert functions.

1 INTRODUCTION

Introduced by Jacobs et al. (1991) and Jordan & Jacobs (1994), the mixture of experts (MoE) has
been known as a statistical machine learning design that leverages softmax gating functions to blend
different expert networks together in order to establish a more intricate model. Recently, there has
been a huge interest in a variant of this model called top-K sparse softmax gating MoE, which
activates only the best K expert networks for each input based on sparse gating functions (Shazeer
et al., 2017; Fedus et al., 2022a; Chen et al., 2023). Thus, this surrogate can be seen as a form of
conditional computation (Bengio, 2013; Cho & Bengio, 2014) since it significantly scales up the
model capacity while avoiding a proportional increase in the computational cost. These benefits
have been empirically demonstrated in several deep learning applications, including natural language
processing (Lepikhin et al., 2021; Du et al., 2022; Fedus et al., 2022b; Zhou et al., 2023; Pham et al.,
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2024), speech recognition (Peng et al., 1996; Gulati et al., 2020; You et al., 2022), computer vision
(Dosovitskiy et al., 2021; Riquelme et al., 2021; Liang et al., 2022; Bao et al., 2022), multi-task
learning (Hazimeh et al., 2021; Gupta et al., 2022) and other applications (Rives et al., 2021; Chow
et al., 2023; Li et al., 2023; Han et al., 2024). Nevertheless, to the best of our knowledge, the full
theoretical analysis of the top-K sparse softmax gating function has remained missing in the literature.
In this paper, we aim to shed new light on the theoretical understanding of that gating function from a
statistical perspective via the convergence analysis of maximum likelihood estimation (MLE) under
the top-K sparse softmax gating Gaussian MoE.

There have been previous efforts to study the parameter estimation problem in Gaussian MoE models.
Firstly, Ho et al. (2022) utilized the generalized Wasserstein loss functions Villani (2003; 2008) to
derive the rates for estimating parameters in the input-free gating Gaussian MoE. They pointed out
that due to an interaction among expert parameters, these rates became increasingly slow when the
number of extra experts rose. Subsequently, Nguyen et al. (2023) and Nguyen et al. (2024) took
into account the Gaussian MoE with softmax gating and Gaussian gating functions, respectively.
Since these gating functions depended on the input, another interaction between gating parameters
and expert parameters arose. Therefore, they designed Voronoi loss functions to capture these
interactions and observe that the convergence rates for parameter estimation under these settings can
be characterized by the solvability of systems of polynomial equations (Sturmfels, 2002).

Turning to the top-K sparse softmax gating Gaussian MoE, the convergence analysis of the MLE,
however, becomes substantially challenging due to the sophisticated structure of the top-K sparse
softmax gating function compared to those of softmax gating and Gaussian gating functions. To
comprehend these obstacles better, let us introduce the formal formulation of that model.

Problem setup. Suppose that (X1, Y1), . . . , (Xn, Yn) ∈ Rd × R are i.i.d. samples of size n from
the top-K sparse softmax gating Gaussian MoE of order k∗ with the conditional density function

gG∗(Y |X) =

k∗∑
i=1

Softmax(TopK((β∗
1i)

⊤X,K;β∗
0i)) · f(Y |(a∗i )⊤X + b∗i , σ

∗
i ), (1)

where G∗ :=
∑k∗

i=1 exp(β
∗
0i)δ(β∗

1i,a
∗
i ,b

∗
i ,σ

∗
i )

is a true but unknown mixing measure of order k∗ (i.e.,
a linear combination of k∗ Dirac measures δ) associated with true parameters (β∗

0i, β
∗
1i, a

∗
i , b

∗
i , σ

∗
i )

for i ∈ {1, 2, . . . , k∗}. Here, h1(X, a, b) := a⊤X + b is referred to as an expert function, while
we denote f(·|µ, σ) as an univariate Gaussian density function with mean µ and variance σ (The
results for other settings of f(·|µ, σ) are in Appendix E). Additionally, we define for any vectors
v = (v1, . . . , vk∗) and u = (u1, . . . , uk∗) in Rk∗ that Softmax(vi) := exp(vi)/

∑k∗
j=1 exp(vj) and

TopK(vi,K;ui) :=

{
vi + ui, if vi is in the top K elements of v;
−∞, otherwise.

More specifically, before applying the softmax function in equation (1), we keep only the top K values
of (β∗

11)
⊤X, . . . , (β∗

1k∗
)⊤X and their corresponding bias vectors among β∗

01, . . . , β
∗
0k∗

, while we set
the rest to −∞ to make their gating values vanish. An instance of the top-K sparse softmax gating
function is given in equation (3). Furthermore, linear expert functions considered in equation (1) are
only for the simplicity of presentation. With similar proof techniques, the results in this work can
be extended to general settings of the expert functions, including deep neural networks. In order to
obtain an estimate of G∗, we use the following maximum likelihood estimation (MLE):

Ĝn ∈ argmax
G

1

n

n∑
i=1

log(gG(Yi|Xi)). (2)

Under the exact-specified settings, i.e., when the true number of expert k∗ is known, the maximum
in equation (2) is subject to the set of all mixing measures of order k∗ denoted by Ek∗(Ω) := {G =∑k∗

i=1 exp(β0i)δ(β1i,ai,bi,σi) : (β0i, β1i, ai, bi, σi) ∈ Ω}. On the other hand, under the over-specified
settings, i.e., when k∗ is unknown and the true model is over-specified by a Gaussian mixture of k
experts where k > k∗, the maximum is subject to the set of all mixing measures of order at most k,
i.e., Ok(Ω) := {G =

∑k′

i=1 exp(β0i)δ(β1i,ai,bi,σi) : 1 ≤ k′ ≤ k, (β0i, β1i, ai, bi, σi) ∈ Ω}.

Universal assumptions. For the sake of theory, we impose four main assumptions on the parameters:
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(U.1) Convergence of MLE: To ensure the convergence of parameter estimation, we assume that the
parameter space Ω is compact subset of R×Rd ×Rd ×R×R+, while the input space X is bounded.

(U.2) Identifiability: Next, we assume that β∗
1k∗

= 0d and β∗
0k∗

= 0 so that the top-K sparse softmax
gating Gaussian mixture of experts is identifiable. Under that assumption, we show in Appendix C
that if G and G′ are two mixing measures such that gG(Y |X) = gG′(Y |X) for almost surely (X,Y ),
then it follows that that G ≡ G′. Without that assumption, the result that G ≡ G′ does not hold,
which leads to unncessarily complicated loss functions (see [Proposition 1,Nguyen et al. (2023)]).

(U.3) Distinct Experts: To guarantee that experts in the mixture (1) are different from each other, we
assume that parameters (a∗1, b

∗
1, σ

∗
1), . . . , (a

∗
k∗
, b∗k∗

, σ∗
k∗
) are pairwise distinct.

(U.4) Input-dependent Gating Functions: To make sure that the gating functions depend on
the input X , we assume that at least one among parameters β∗

11, . . . , β
∗
1k∗

is different from zero.
Otherwise, the gating functions would be independent of the input X , which simplifies the problem
significantly. In particular, the model (1) would reduce to an input-free gating Gaussian mixture of
experts, which was already studied in Ho et al. (2022).

Challenge discussion. In our convergence analysis, there are two main challenges attributed to the
structure of the top-K sparse softmax gating function. (1) First, since this gating function divides the
input space into multiple regions and each of which has different convergence behavior of density
estimation, there could be a mismatch between the values of the top-K sparse softmax gating function
in the density estimation gĜn

and in the true density gG∗ (see Figure 1). (2) Second, under the over-

specified settings, each component of G∗ could be fitted by at least two components of Ĝn. Therefore,
choosing only the best K experts in the formulation of gĜn

(Y |X) is insufficient to estimate the
true density gG∗(Y |X). As a result, it is of great importance to figure out the minimum number of
experts selected in the top-K sparse softmax gating function necessary for ensuring the convergence
of density estimation.

Contributions. In this work, we provide rigorous statistical guarantees for density estimation and
parameter estimation in the top-K sparse softmax gating Gaussian MoE under both the exact-specified
and over-specified settings. Our contributions are two-fold and can be summarized as follows (see
also Table 1):

1. Exact-specified settings: When the true number of experts k∗ is known, we point out that
the density estimation gĜn

converges to the true density gG∗ under the Hellinger distance h at the

parametric rate, that is, EX [h(gĜn
(·|X), gG∗(·|X))] = Õ(n−1/2). Then, we propose a novel Voronoi

metric D1 defined in equation (5) to characterize the parameter estimation rates. By establishing
the Hellinger lower bound EX [h(gG(·|X), gG∗(·|X))] ≳ D1(G,G∗) for any mixing measure G ∈
Ek∗(Θ), we arrive at another bound D1(Ĝn, G∗) = Õ(n−1/2), which indicates that the rates for
estimating true parameters exp(β∗

0i), β
∗
1i, a

∗
i , b

∗
i , σ

∗
i are of the optimal order Õ(n−1/2).

2. Over-specified settings: When k∗ is unknown and the true model is over-specified by a Gaussian
of k experts where k > k∗, we demonstrate that the density estimation gĜn

converges to the true
density gG∗ only if the number of experts chosen from gĜn

, denoted by K, is greater than the
total cardinality of a certain number of Voronoi cells generated by the support of G∗. Given these
results, the density estimation rate is shown to remain parametric on the sample size. Additionally,
by designing a novel Voronoi loss function D2 in equation (8) to capture an interaction between
parameters of the softmax gating and expert functions, we prove that the MLE Ĝn converges to
the true mixing measure G∗ at a rate of Õ(n−1/2). Then, it follows from the formulation of D2

that the estimation rates for true parameters β∗
1j , a

∗
j , b

∗
j , σ

∗
j depend on the solvability of a system of

polynomial equations arising from the previous interaction, and turn out to be significantly slow.

High-level proof ideas. Following from the challenge discussion, to ensure the convergence of
density estimation under the exact-specified settings (resp. over-specified settings), we show that
the input regions divided by the true gating functions match those divided by the estimated gating
functions in Lemma 1 (resp. Lemma 2). Then, we leverage fundamental results on density estimation
for M-estimators in (van de Geer, 2000) to derive the parametric density estimation rate under the
Hellinger distance in Theorem 1 (resp. Theorem 3). Regarding the parameter estimation problem,
a key step is to decompose the density discrepancy gĜn

(Y |X)− gG∗(Y |X) into a combination of
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Table 1: Summary of density estimation and parameter estimation rates under the top-K sparse
softmax gating Gaussian MoE model. Here, the function r̄(·) stands for the solvability of the system
of polynomial equations (7), and Cj is a Voronoi cell defined in equation (4). If |Cj | = 2, then we
have r̄(|Cj |) = 4. Meanwhile, if |Cj | = 3, then we get r̄(|Cj |) = 6.

Setting gG∗(Y |X) exp(β∗
0j) β∗

1j , b
∗
j a∗j , σ

∗
j

Exact-specified O(n−1/2) O(n−1/2) O(n−1/2) O(n−1/2)

Over-specified O(n−1/2) O(n−1/2) O(n−1/2r̄(|Cj |)) O(n−1/r̄(|Cj |))

1n 1*2n 2*

3n 3*

Figure 1: Illustration of two partitions of the input space with respect to the TopK function in the
density estimation gĜn

(left) and the true density gG∗ (right) under the exact-specified settings when

k∗ = 3 and K = 1. Here, the regions labelled as 1n and 1∗ contain X ∈ X such that (β̂n
11)

⊤X and
(β∗

11)
⊤X are the top-1 elements of ((β̂n

1i)
⊤X)3i=1 and ((β∗

1i)
⊤X)3i=1, respectively. Other regions

are defined similarly. Assume that β̂n
1i → β∗

1i as n → ∞ for any i ∈ {1, 2, 3}, then the regions
1n,2n,3n should respectively match their counterparts 1∗,2∗,3∗ to guarantee the convergence of
gĜn

to gG∗ . Lemma 1 reads that this property holds when the sample size n is sufficiently large.

linearly independent terms. Thus, when the density estimation gĜn
(Y |X) converges to the true

density gG∗(Y |X), the coefficients in that combination also tend to zero, which leads to our desired
parameter estimation rates in Theorem 2 (resp. Theorem 4).

Organization. The rest of our paper is organized as follows. In Section 2, we establish the
convergence rates of density estimation and parameter estimation for the top-K sparse softmax gating
Gaussian MoE under the exact-specified settings, while the results for the over-specified settings are
presented in Section 3. Subsequently, we provide practical implications of those results in Section 4
before concluding the paper and discussing some future directions in Section 5. Finally, full proofs,
numerical experiments and additional results are deferred to the supplementary material.

Notations. For any natural numbers m ≥ n, we denote [n] := {1, 2, . . . , n} and
(
m
n

)
:= m!

n!(m−n!) .

Next, for any vector u, v ∈ Rd, we let |u| :=
∑d

i=1 ui, u! := u1! . . . ud!, uv := uv1
1 . . . uvd

d
and denote ∥u∥ as its 2-norm value. Meanwhile, we define |A| as the cardinality of some set
A. Then, for any two probability densities f1 and f2 dominated by the Lebesgue measure ν,
we denote V (f1, f2) := 1

2

∫
|f1 − f2|dν as their Total Variation distance, whereas h2(f1, f2) :=

1
2

∫
(
√
f1 −

√
f2)

2dν represents the squared Hellinger distance. Finally, for any two sequences
of positive real numbers (an) and (bn), the notations an = O(bn) and an ≲ bn both stand for
an ≤ Cbn for all n ∈ N for some constant C > 0, while the notation an = Õ(bn) indicates that the
previous inequality may depend on some logarithmic term.

2 EXACT-SPECIFIED SETTINGS

In this section, we characterize respectively the convergence rates of density estimation and parameter
estimation in the top-K sparse softmax gating Gaussian MoE under the exact-specified settings,
namely when the true number of experts k∗ is known.

To begin with, let us introduce some essential notations and key results to deal with the top-K sparse
softmax gating function. It can be seen from equation (1) that whether (a∗i )

⊤X+b∗i belongs to the top
K experts in the true density gG∗(Y |X) or not is determined based on the ranking of (β∗

1i)
⊤X + β∗

0i,
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which depends on the input X . Additionally, it is also worth noting that there are a total of q :=
(
k∗
K

)
different potential choices of top K experts. Thus, we first partition the input space X into q regions
in order to specify the top K experts and obtain an according representation of gG∗(Y |X) in each
region. In particular, for each ℓ ∈ [q], we denote {ℓ1, ℓ2, . . . , ℓK} as an K-element subset of [k∗] and
{ℓK+1, . . . , ℓk∗} := [k∗] \ {ℓ1, ℓ2, . . . , ℓK}. Then, the ℓ-th region of X is defined as

X ∗
ℓ :=

{
x ∈ X : (β∗

1i)
⊤x ≥ (β∗

1i′)
⊤x, ∀i ∈ {ℓ1, . . . , ℓK}, i′ ∈ {ℓK+1, . . . , ℓk∗}

}
,

for any ℓ ∈ [q]. From this definition, we observe that if X ∈ X ∗
ℓ for some ℓ ∈ [q] such that

{ℓ1, . . . , ℓK} = [K], then it follows that TopK((β∗
1i)

⊤X,K;β∗
0i) = (β∗

1i)
⊤X+β∗

0i for any i ∈ [K].
As a result, (a∗1)

⊤X + b∗1, . . . , (a
∗
K)⊤X + b∗K become the top K experts, and the true conditional

density gG∗(Y |X) is reduced to:

gG∗(Y |X) =

K∑
i=1

exp((β∗
1i)

⊤X + β∗
0i)∑K

j=1 exp((β
∗
1j)

⊤X + β∗
0j)

· f(Y |(a∗i )⊤X + b∗i , σ
∗
i ). (3)

Subsequently, we assume that the MLE Ĝn takes the form Ĝn :=
∑k∗

i=1 exp(β̂
n
0i)δ(β̂n

1i,â
n
i ,̂b

n
i ,σ̂

n
i ),

where the MLE’s component ω̂n
i := (β̂n

0i, β̂
n
1i, â

n
i , b̂

n
i , σ̂

n
i ) converges to the true component ω∗

i :=
(β∗

0i, β
∗
1i, a

∗
i , b

∗
i , σ

∗
i ) for any i ∈ [k∗]. We figure out in the following lemma a relation between the

values of the TopK function in gG∗(Y |X) and gĜn
(Y |X):

Lemma 1. For any i ∈ [k∗], let β1i, β
∗
1i ∈ Rd such that ∥β1i − β∗

1i∥ ≤ ηi for some sufficiently small
ηi > 0. Then, for any ℓ ∈ [q], unless the set X ∗

ℓ has measure zero, we obtain that X ∗
ℓ = Xℓ where

Xℓ := {x ∈ X : (β1i)
⊤x ≥ (β1i′)

⊤x, ∀i ∈ {ℓ1, . . . , ℓK}, i′ ∈ {ℓK+1, . . . , ℓk∗}}.

Proof of Lemma 1 is in Appendix A.3. This lemma indicates that for almost surely X ,
TopK((β∗

1i)
⊤X,K;β∗

0i) = (β∗
1i)

⊤X + β∗
0i is equivalent to TopK((β̂n

1i)
⊤X,K; β̂n

0i) = (β̂n
1i)

⊤X +

β̂n
0i, for any i ∈ [k∗] and sufficiently large n. Based on this property, we provide in Theorem 1 the

rate for estimating the true conditional density function gG∗ :

Theorem 1 (Density estimation rate). Given the MLE Ĝn defined in equation (2), the convergence
rate of the conditional density estimation gĜn

to the true conditional density gG∗ under the exact-
specified settings is illustrated by the following inequality:

P
(
EX [h(gĜn

(·|X), gG∗(·|X))] > C
√
log(n)/n

)
≲ n−c,

where C > 0 and c > 0 are some universal constants that depend on Ω and K.

Proof of Theorem 1 can be found in Appendix A.1. It follows from the result of Theorem 1 that
the conditional density estimation gĜn

converges to its true counterpart gG∗ under the Hellinger

distance at the parametric rate of order Õ(n−1/2). This rate plays a critical role in establishing the
convergence rates of parameter estimation. In particular, if we are able to derive the following lower
bound: EX [h(gG(·|X), gG∗(·|X))] ≳ D1(G,G∗) for any mixing measure G ∈ Ek∗(Ω), where the
metric D1 will be defined in equation (5), we will achieve our desired parameter estimation rates.
Before going into further details, let us introduce the formulation of Voronoi metric D1 that we use
for our convergence analysis under the exact-specified settings.

Voronoi metric. Given an arbitrary mixing measure G with k′ components, we distribute those
components to the following Voronoi cells generated by the components of G∗ Manole & Ho (2022):

Cj ≡ Cj(G) := {i ∈ [k′] : ∥θi − θ∗j ∥ ≤ ∥θi − θ∗j′∥,∀j′ ̸= j}, (4)

where θi := (β1i, ai, bi, σi) and θ∗j := (β∗
1j , a

∗
j , b

∗
j , σ

∗
j ) for any j ∈ [k∗]. Recall that under the

exact-specified settings, the MLE Ĝn belongs to the set Ek∗(Ω). Therefore, we consider k′ = k∗ in
this case. Then, the Voronoi metric D1 is defined as follows:

D1(G,G∗) := max
{ℓj}K

j=1⊂[k∗]

K∑
j=1

[ ∑
i∈Cℓj

exp(β0i)
(
∥∆β1iℓj∥+ ∥∆aiℓj∥+ ∥∆biℓj∥+ ∥∆σiℓj∥

)

+
∣∣∣ ∑
i∈Cℓj

exp(β0i)− exp(β∗
0ℓj )

∣∣∣]. (5)
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Here, we denote ∆β1iℓi := β1i − β∗
1ℓj

, ∆aiℓj := ai − a∗ℓj , ∆biℓj := bi − b∗ℓj and ∆σiℓj := σi −σ∗
ℓj

.
Additionally, the above maximum operator helps capture the behaviors of all input regions separated
by the top-K sparse softmax gating function. Now, we are ready to characterize the convergence rates
of parameter estimation in the top-K sparse softmax gating Gaussian MoE.
Theorem 2 (Parameter estimation rate). Under the exact-specified settings, the Hellinger lower bound
EX [h(gG(·|X), gG∗(·|X))] ≳ D1(G,G∗) holds for any mixing measure G ∈ Ek∗(Ω). Consequently,
we can find a universal constant C1 > 0 depending only on G∗, Ω and K such that

P
(
D1(Ĝn, G∗) > C1

√
log(n)/n

)
≲ n−c1 ,

where c1 > 0 is a universal constant that depends only on Ω.

Proof of Theorem 2 is in Appendix A.2. This theorem reveals that the Voronoi metric D1 between the
MLE Ĝn and the true mixing measure G∗, i.e. D1(Ĝn, G∗), vanishes at the parametric rate of order
Õ(n−1/2). As a result, the rates for estimating ground-truth parameters exp(β∗

0i), β
∗
1i, a

∗
i , b

∗
i , σ

∗
i are

optimal at Õ(n−1/2) for any i ∈ [k∗].

3 OVER-SPECIFIED SETTINGS

In this section, we continue to carry out the same convergence analysis for the top-K sparse softmax
gating Gaussian MoE as in Section 2 but under the over-specificed settings, that is, when the true
number of experts k∗ becomes unknown.

Recall that under the over-specified settings, we look for the MLE Ĝn within Ok(Ω), i.e. the set of all
mixing measures with at most k components, where k > k∗. Thus, there could be some components
(β∗

1i, a
∗
i , b

∗
i , σ

∗
i ) of the true mixing measure G∗ approximated by at least two fitted components

(β̂n
1i, â

n
i , b̂

n
i , σ̂

n
i ) of the MLE Ĝn. Moreover, since the true density gG∗(Y |X) is associated with

top K experts and each of which corresponds to one component of G∗, we need to select more
than K experts in the formulation of density estimation gĜn

(Y |X) to guarantee its convergence to

gG∗(Y |X). In particular, for any mixing measure G =
∑k′

i=1 exp(β0i)δ(β1i,ai,bi,σi) ∈ Ok(Ω), let
us consider a new formulation of conditional density used for estimating the true density under the
over-specified settings as follows:

gG(Y |X) :=

k′∑
i=1

Softmax(TopK((β1i)
⊤X,K;β0i)) · f(Y |(ai)⊤X + bi, σi).

Here, gG(Y |X) is equipped with top-K sparse softmax gating, where 1 ≤ K ≤ k′ is fixed and
might be different from K. Additionally, the definition of MLE in equation (2) also changes
accordingly to this new density function. Then, we demonstrate in Proposition 1 an interesting
phenomenon that the density estimation gĜn

converges to gG∗ under the Hellinger distance only if

K ≥ max{ℓ1,...,ℓK}⊂[k∗]

∑K
j=1 |Cℓj |, where Cℓj is a Voronoi cell defined in equation (4).

Proposition 1. If K < max{ℓ1,...,ℓK}⊂[k∗]

∑K
j=1 |Cℓj |, then the following inequality holds true:

inf
G∈Ok(Ω)

EX [h(gG(·|X), gG∗(·|X))] > 0.

Proof of Proposition 1 is deferred to Appendix B.3. Following from the result of Proposition 1, we
will consider only the regime when max{ℓj}K

j=1⊂[k∗]

∑K
j=1 |Cℓj | ≤ K ≤ k in the rest of this section

to ensure the convergence of density estimation. As the number of experts chosen in the density
estimation changes from K to K, it is necessary to partition the input space X into q :=

(
k
K

)
regions.

More specifically, for any ℓ ∈ [q], we denote {ℓ1, ℓ2, . . . , ℓK} as an K-element subset of [k] and
{ℓK+1, . . . , ℓk} := [k] \ {ℓ1, ℓ2, . . . , ℓK}. Then, we define the ℓ-th region of X as follows:

X ℓ := {x ∈ X : (β1i)
⊤x ≥ (β1i′)

⊤x, ∀i ∈ {ℓ1, . . . , ℓK}, i′ ∈ {ℓK+1, . . . , ℓk}}.
Inspired by the result of Lemma 1, we continue to present in Lemma 2 a relation between the values
of the TopK functions in the density estimation gĜn

and the true density gG∗ .
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Lemma 2. For any j ∈ [k∗] and i ∈ Cj , let β1i, β
∗
1j ∈ Rd that satisfy ∥β1i − β∗

1j∥ ≤ ηj for some
sufficiently small ηj > 0. Additionally, for max{ℓj}K

j=1⊂[k∗]

∑K
j=1 |Cℓj | ≤ K ≤ k, we assume that

there exist ℓ ∈ [q] and ℓ ∈ [q] such that {ℓ1, . . . , ℓK} = Cℓ1 ∪ . . .∪ CℓK . Then, if the set X ∗
ℓ does not

have measure zero, we achieve that X ∗
ℓ = X ℓ.

Proof of Lemma 2 is in Appendix B.4. Different from Lemma 1, we need to impose on Lemma 2 an
assumption that there exist indices ℓ ∈ [q] and ℓ ∈ [q] that satisfy {ℓ1, . . . , ℓK} = Cℓ1 ∪ . . . ∪ CℓK .
This assumption means that each component (β̂n

1i, â
n
i , b̂

n
i , σ̂

n
i ) corresponding to the top K experts

in gĜn
must converge to some true component which corresponds to the top K experts in gG∗ .

Consequently, for X ∈ X ∗
ℓ , if TopK((β∗

1j)
⊤X,K;β∗

0j) = (β∗
1j)

⊤X + β∗
0j holds true, then we

achieve that TopK((β̂n
1i)

⊤X,K; β̂n
0i) = (β̂n

1i)
⊤X + β̂n

0i and vice versa, for any j ∈ [k∗] and i ∈ Cj .
Given the result of Lemma 2, we are now able to derive the convergence rate of the density estimation
gĜn

to its true counterpart gG∗ under the over-specified settings in Theorem 3.

Theorem 3 (Density estimation rate). Under the over-specified settings, the conditional density
estimation gĜn

converges to the true density gG∗ under the Hellinger distance at the following rate:

P
(
EX [h(gĜn

(·|X), gG∗(·|X))] > C ′
√

log(n)/n
)
≲ n−c′ ,

where C ′ > 0 and c′ > 0 are some universal constants that depend on Ω and K.

Proof of Theorem 3 is in Appendix B.1. Although there is a modification in the number of experts
chosen from gĜn

, Theorem 3 verifies that the convergence rate of this density estimation to gG∗ under
the over-specified settings remains the same as that under the exact-specified settings, which is of
order Õ(n−1/2). Subsequently, we will leverage this result for our convergence analysis of parameter
estimation under the over-specified settings, which requires us to design a new Voronoi metric.

Voronoi metric. Regarding the top-K sparse softmax gating function, challenges comes not only
from the TopK function but also from the Softmax function. In particular, there is an intrinsic
interaction between the numerators of softmax weights and the expert functions in the Gaussian
density. Moreover, Gaussian density parameters also interacts with each other. These two interactions
are respectively illustrated by the following partial differential equations (PDEs):

∂2s(X,Y )

∂β1∂b
=

∂s(X,Y )

∂a
;

∂s(X,Y )

∂σ
=

1

2
· ∂

2s(X,Y )

∂b2
, (6)

where we denote s(X,Y ) := exp(β⊤
1 X) · f(Y |a⊤X+ b, σ). These PDEs arise when we decompose

the density difference gĜn
(Y |X) − gG∗(Y |X) into a linear combination of linearly independent

terms using Taylor expansions. However, the above PDEs indicates that derivative terms which
admit the forms in equation (6) are linearly dependent. Therefore, we have to group these terms
by taking the summation of their coefficients, and then arrive at our desired linear combination
of linearly independent elements. Consequently, when gĜn

(Y |X)− gG∗(Y |X) converges to zero,
all the coefficients in this combination also tend to zero, which leads to the following system of
polynomial equations with unknown variables {z1j , z2j , z3j , z4j , z5j}mi=1:

m∑
i=1

∑
(α1,α2,α3,α4)∈Jη1,η2

z25i z
α1
1i zα2

2i zα3
3i zα4

4i

α1! α2! α3! α4!
= 0, (7)

for all (η1, η2) ∈ Nd × N such that 0 ≤ |η1| ≤ r, 0 ≤ η2 ≤ r − |η1| and |η1| + η2 ≥ 1, where
Jη1,η2 := {(α1, α2, α3, α4) ∈ Nd × Nd × N× N : α1 + α2 = η1, |α2|+ α3 + α4 = η2}.

Here, a solution to the above system is called non-trivial if all of variables z5i are different from zero,
whereas at least one among variables z3i is non-zero. For any m ≥ 2, let r(m) be the smallest natural
number r such that the above system does not have any non-trivial solution. In a general case when
d ≥ 1 and m ≥ 2, it is non-trivial to determine the exact value of r(m) Sturmfels (2002). However,
when m is small, Nguyen et al. (2023) show that r(2) = 4 and r(3) = 6. Additionally, since r(m) is
a monotonically increasing function of m, they also conjecture that r(m) = 2m for any m ≥ 2 and
d ≥ 1.

7
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Given the above results, we design a Voronoi metric D2 to capture the convergence rates of parameter
estimation in the top-K sparse softmax gating Gaussian MoE under the over-specified settings as

D2(G,G∗) := max
{ℓj}K

j=1⊂[k∗]

{ ∑
j∈[K],
|Cℓj

|=1

∑
i∈Cℓj

exp(β0i)
[
∥∆β1iℓj∥+ ∥∆aiℓj∥+ |∆biℓj |+ |∆σiℓj |

]

+
∑

j∈[K],
|Cℓj

|>1

∑
i∈Cℓj

exp(β0i)
[
∥∆β1iℓj∥

r̄(|Cℓj
|) + ∥∆aiℓj∥

r̄(|Cℓj
|)

2 + |∆biℓj |
r̄(|Cℓj

|) + |∆σiℓj |
r̄(|Cℓj

|)

2

]

+

K∑
j=1

∣∣∣ ∑
i∈Cℓj

exp(β0i)− exp(β∗
0ℓj )

∣∣∣}, (8)

for any mixing measure G ∈ Ok(Ω). The above maximum operator allows us to capture the behaviors
of all input regions partitioned by the top-K sparse softmax gating function in gG∗ . Then, we show in
the following theorem that parameter estimation rates vary with the values of the function r(·)
Theorem 4 (Parameter estimation rate). Under the over-specified settings, the Hellinger lower
bound EX [h(gG(·|X), gG∗(·|X))] ≳ D2(G,G∗) holds for any mixing measure G ∈ Ok(Ω). As a
consequence, we can find a universal constant C2 > 0 depending only on G∗, Ω and K such that

P
(
D2(Ĝn, G∗) > C2

√
log(n)/n

)
≲ n−c2 ,

where c2 > 0 is a universal constant that depends only on Ω.

Proof of Theorem 4 is in Appendix B.2. A few remarks on this theorem are in order.

(i) Under the over-specified settings, the MLE Ĝn converges to the true mixing measure G∗ at the
rate of order Õ(n−1/2) under the Voronoi metric D2. Let us denote Cn

j = Cj(Ĝn), then this result
indicates that the estimation rates for ground-truth parameters exp(β∗

0j), β
∗
1j , a

∗
j , b

∗
j , σ

∗
j fitted by only

one component, i.e. |Cn
j | = 1, remain the same at Õ(n−1/2) as those in the exact-specified settings.

(ii) However, for ground-truth parameters which are approximated by at least two components, i.e.
|Cn

j | > 1, the rates for estimating them depend on their corresponding Voronoi cells, and become
significantly low when the cardinality of those Voronoi cells increase. In particular, both β∗

1j and b∗j
admit the estimation rate of order Õ(n−1/2r(|Cn

j |)). Meanwhile, the convergence rates of estimating
a∗j and σ∗

j are of the same order O(n−1/r(|Cn
j |)). For instance, assume that (β∗

1j , a
∗
j , b

∗
j , σ

∗
j ) has three

fitted components, which means that |Cn
j | = 3 and therefore, r(|Cn

j |) = 6. Then, the estimation rates
for β∗

1j , b
∗
j and a∗j , σ

∗
j are Õ(n−1/12) and Õ(n−1/6), respectively.

4 PRACTICAL IMPLICATIONS

In this section, we present three main practical implications of our theoretical results for the use of
top-K sparse softmax gating function in mixture of experts as follows:

1. No trade-off between model capacity and model performance: In the top-K sparse softmax
gating Gaussian mixture of experts, since the gating function is discontinuous and only a portion of
experts are activated for each input to scale up the model capacity, the parameter estimation rates
under that model are expected to be slower than those under the dense softmax gating Gaussian
mixture of experts (Nguyen et al., 2023). However, from our theories it turns out that the parameter
estimation rates under these two models are the same under both the exact-specified and over-specified
settings. As a result, we point out that using the top-K sparse softmax gating function allows us to
scale up the model capacity without sacrificing the computational cost as well as the convergence
rates of parameter and density estimation.

2. Favourable gating function: As mentioned in Section 3, due to an intrinsic interaction between
gating parameters and expert parameters via the first PDE in equation (6), the rates for estimating
those parameters under the over-specified settings are determined by the solvability of the system of

8
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polynomial equations (7), which are significantly slow. However, if we use the top-1 sparse softmax
gating function, i.e. activating only a single expert for each input, then the gating value is either one
or zero. As a result, the previous interaction no longer occurs, which helps improve the parameter
estimation rates. This partially accounts for the efficacy of top-1 sparse softmax gating mixture of
experts in scaling up deep learning architectures (see (Fedus et al., 2022b)).

3. True/ Minimal number of experts: Another challenge is to choose the true/ minimal number
of experts, which can be partially addressed using theories developed from the paper. In particular,
suppose that the MLE Ĝn consists of k̂n components. When the sample size n goes to infinity, every
Voronoi cell among Cn

1 , . . . , Cn
k∗

contains at least one element. Since the total number of elements
of those Voronoi cells is k̂n, the maximum cardinality of a Voronoi cell turns out to be k̂n − k∗ + 1.
This maximum value is attained when there is exactly one ground-truth component (β∗

1j , a
∗
j , b

∗
j , σ

∗
j )

fitted by more than one component. An instance for this scenario is when |Cn
1 | = k̂n − k∗ + 1 and

|Cn
2 | = . . . = |Cn

k∗
| = 1. Under this setting, the first true parameters β∗

11, b
∗
1 and a∗1, σ

∗
1 achieve their

worst possible estimation rates of order Õ(n−1/2r(k̂n−k∗+1)) and Õ(n−1/r(k̂n−k∗+1)), respectively,
which become significantly slow when the difference k̂n − k∗ increases. As a consequence, the
estimated number of experts k̂n should not be very large compared to the true number of experts k∗.

5 CONCLUSION AND FUTURE DIRECTIONS

In this paper, we provide a convergence analysis for density estimation and parameter estimation
in the top-K sparse softmax gating Gaussian MoE. To overcome the complex structure of top-K
sparse softmax gating function, we first establish a connection between the outputs of TopK function
associated with the density estimation and the true density in each input region partitioned by
the gating function, and then construct novel Voronoi loss functions among parameters to capture
different behaviors of these input regions. Under the exact-specified settings, we show that the rates
for estimating the true density and true parameters are both parametric on the sample size. On the
other hand, although the density estimation rate remains parametric under the over-specified settings,
the parameter estimation rates witness a sharp drop because of an interaction between the softmax
gating and expert functions.

Based on the results of this paper, there are a few potential future directions. Firstly, as we mentioned
in Section 4, a question of how to estimate the true number of experts k∗ and the number of experts
selected in the top-K sparse softmax gating function K naturally arises from this work. Since the
parameter estimation rates under the over-specified settings decrease proportionately to the number
of fitted experts k, one possible approach to estimating k∗ is to reduce k until these rates reach
the optimal order Õ(n−1/2). That reduction can be done by merging close estimated parameters
within their convergence rates to the true parameters (Guha et al., 2021) or by penalizing the log-
likelihood function of the top-K sparse softmax gating Gaussian MoE using the differences among
the parameters (Manole & Khalili, 2021). As a result, the number of experts chosen in the density
estimation K also decreases accordingly and approximates the value of K. Secondly, the theoretical
results established in the paper are under the assumption that the data are assumed to be generated
from a top-K sparse softmax gating Gaussian MoE, which can be violated in real-world settings when
the data are not necessarily generated from that model. Under those misspecified settings, the MLE
converges to a mixing measure G ∈ argminG∈Ok(Ω) KL(P (Y |X)||gG(Y |X)) where P (Y |X) is
the true conditional distribution of Y given X and KL stands for the Kullback-Leibler divergence.
As the space Ok(Ω) is non-convex, the existence of G is not unique. Furthermore, the current
analysis of the MLE under the misspecified settings of statistical models is mostly conducted when
the function space is convex (van de Geer, 2000), which is inapplicable to the current non-convex
misspecified settings. Thus, it is necessary to develop a new analysis and a new metric to establish
the convergence rate of the MLE to the set of G. Finally, since the log-likelihood function of the
top-K sparse softmax gating Gaussian MoE is highly non-concave, the EM algorithm is used to
approximate the MLE. While the statistical guarantee of the EM has been established for vanilla
Gaussian mixture models (Balakrishnan et al., 2017; Dwivedi et al., 2020b;a), to the best of our
knowledge such guarantee has not been studied in the setting of top-K sparse softmax gating Gaussian
MoE. A potential approach to this problem is to utilize the population-to-sample analysis that has
been widely used in previous works to study the EM algorithm Balakrishnan et al. (2017); Ho et al.
(2023). We leave that direction for the future work.
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Supplement to “Statistical Perspective of
Top-K Sparse Softmax Gating Mixture of Experts”

In this supplementary material, we first provide rigorous proofs for all results under the exact-specified
settings in Appendix A, while those for the over-specified settings are then presented in Appendix B.
Next, we study the identifiability of the top-K sparse softmax gating Gaussian mixture of experts
(MoE) in Appendix C. We then carry out several numerical experiments in Appendix D to empirically
justify our theoretical results. Finally, we establish the theories for parameter and density estimation
beyond the settings of top-K sparse softmax Gaussian MoE in Appendix E.

A PROOF FOR RESULTS UNDER THE EXACT-SPECIFIED SETTINGS

In this appendix, we present the proofs for Theorem 1 in Appendix A.1, while that for Theorem 2 is
then given in Appendix A.2. Lastly, the proof of Lemma 1 is provided in Appendix A.3.

A.1 PROOF OF THEOREM 1

In this appendix, we conduct a convergence analysis for density estimation in the top-K sparse
softmax gating Gaussian MoE using proof techniques in (van de Geer, 2000). For that purpose, it is
necessary to introduce some essential notations and key results first.

Let Pk∗(Θ) := {gG(Y |X) : G ∈ Ek∗(Ω)} be the set of all conditional density functions of mixing
measures in Ek∗(Ω). Next, we denote by N(ε,Pk∗(Ω), ∥ · ∥1) the covering number of metric space
(Pk∗(Ω), ∥ · ∥1). Meanwhile, HB(ε,Pk∗(Ω), h) represents for the bracketing entropy of Pk∗(Ω)
under the Hellinger distance. Then, we provide in the following lemma the upper bounds of those
terms.
Lemma 3. If Ω is a bounded set, then the following inequalities hold for any 0 < η < 1/2:

(i) logN(η,Pk∗(Ω), ∥ · ∥1) ≲ log(1/η);

(ii) HB(η,Pk∗(Ω), h) ≲ log(1/η).

Proof of Lemma 3 is in Appendix A.1.2. Subsequently, we denote

P̃k∗(Ω) := {g(G+G∗)/2(Y |X) : G ∈ Ek∗(Ω)};

P̃1/2
k∗

(Ω) := {g1/2(G+G∗)/2
(Y |X) : G ∈ Ek∗(Ω)}.

In addition, for each δ > 0, we define a Hellinger ball centered around the conditional density
function gG∗(Y |X) and met with the set P̃1/2

k∗
(Ω) as

P̃1/2
k∗

(Ω, δ) := {g1/2 ∈ P̃1/2
k∗

(Ω) : h(g, gG∗) ≤ δ}.
To capture the size of the above Hellinger ball, van de Geer (2000) suggest using the following
quantity:

JB(δ, P̃1/2
k∗

(Ω, δ)) :=

∫ δ

δ2/213
H

1/2
B (t, P̃1/2

k∗
(Ω, t), ∥ · ∥)dt ∨ δ, (9)

where t∨ δ := max{t, δ}. Given those notations, let us recall a standard result for density estimation
in van de Geer (2000).

Lemma 4 (Theorem 7.4, van de Geer (2000)). Take Ψ(δ) ≥ JB(δ, P̃1/2
k∗

(Ω, δ)) such that Ψ(δ)/δ2 is
a non-increasing function of δ. Then, for some sequence (δn) and universal constant c which satisfy√
nδ2n ≥ cΨ(δ), we obtain that

P
(
EX

[
h(gĜn

(·|X), gG∗(·|X))
]
> δ

)
≤ c exp(−nδ2/c2),

for any δ ≥ δn

Proof of Lemma 4 can be found in van de Geer (2000). Now, we are ready to provide the proof for
convergence rate of density estimation in Theorem 1 in Appendix A.1.1.
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A.1.1 MAIN PROOF

It is worth noting that for any t > 0, we have

HB(t, P̃1/2
k∗

(Ω, t), ∥ · ∥) ≤ HB(t,Pk∗(Ω, t), h).

Then, the integral in equation (9) is upper bounded as follows:

JB(δ, P̃1/2
k∗

(Ω, δ)) ≤
∫ δ

δ2/213
H

1/2
B (t,Pk∗(Ω, t), h)dt ∨ δ ≲

∫ δ

δ2/213
log(1/t)dt ∨ δ, (10)

where the second inequality follows from part (ii) of Lemma 3.

As a result, by choosing Ψ(δ) = δ ·
√
log(1/δ), we can verify that Ψ(δ)/δ2 is a non-increasing

function of δ. Furthermore, the inequality in equation (10) indicates that Ψ(δ) ≥ JB(δ, P̃1/2
k∗

(Ω, δ)).
Next, let us consider a sequence (δn) defined as δn :=

√
log(n)/n. This sequence can be validated

to satisfy the condition
√
nδ2n ≥ cΨ(δ) for some universal constant c. Therefore, by Lemma 4, we

reach the conclusion of Theorem 1:

P
(
EX [h(gĜn

(·|X), gG∗(·|X))] > C
√
log(n)/n

)
≲ n−c,

for some universal constant C depending only on Ω.

A.1.2 PROOF OF LEMMA 3

Part (i). In this part, we will derive the following upper bound for the covering number of metric
space (Pk∗(Ω), ∥ · ∥1) for any 0 < η < 1/2 given the bounded set Ω:

logN(η,Pk∗(Ω), ∥ · ∥1) ≲ log(1/η).

To begin with, we define Θ := {(a, b, σ) ∈ Rd × R × R+ : (β0, β1, a, b, σ) ∈ Ω}. Note that Ω
is a bounded set, then Θ also admits this property. Thus, there exists an η-cover of Θ, denoted by
Θη. Additionally, we also define ∆ := {(β0, β1) ∈ R× Rd : (β0, β1, a, b, σ) ∈ Ω}, and ∆η be an
η-cover of ∆. Then, it can be validated that |Θη| ≤ O(η−(d+1)k∗) and |∆η| ≤ O(η−(d+3)k∗).

Subsequently, for each G =
∑k∗

i=1 exp(β0i)δ(β1i,ai,bi,σi) ∈ Ek∗(Ω), we take into account
two other mixing measures. The first measure is G′ =

∑k∗
i=1 exp(β0i)δ(β1i,ai,bi,σi)

, where
(ai, bi, σi) ∈ Θη is the closest points to (ai, bi, σi) in this set for all i ∈ [k∗]. The second one
is G :=

∑k∗
i=1 exp(β0i)δ(β1i,ai,bi,σi)

in which (β0i, β1i) ∈ ∆η for any i ∈ [k∗]. Next, let us define

T := {gG ∈ Pk∗(Ω) : (β0i, β1i) ∈ ∆η, (ai, bi, σi) ∈ Θη,∀i ∈ [k∗]},
then it is obvious that gG ∈ T . Now, we will show that T is an η-cover of metric space (Pk∗(Ω), ∥·∥1)
with a note that it is not necessarily the smallest cover. Indeed, according to the triangle inequality,

∥gG − gG∥1 ≤ ∥gG − gG′∥1 + ∥gG′ − gG∥1. (11)

The first term in the right hand side can be upper bounded as follows:

∥gG − gG′∥1 ≤
k∗∑
i=1

∫
X×Y

∣∣∣f(Y |a⊤i X + bi, σi)− f(Y |a⊤i X + bi, σi)
∣∣∣d(X,Y )

≲
k∗∑
i=1

∫
X×Y

(
∥ai − ai∥+ ∥bi − bi∥+ ∥σi − σi∥

)
d(X,Y )

=

k∗∑
i=1

(
∥ai − ai∥+ ∥bi − bi∥+ ∥σi − σi∥

)
≲ η. (12)

Next, we will also demonstrate that ∥gG′ − gG∥1 ≲ η. For that purpose, let us consider q :=
(
k
K

)
K-element subsets of {1, . . . , k}, which are assumed to take the form {ℓ1, ℓ2, . . . , ℓK} for any ℓ ∈ [q].
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Additionally, we also denote {ℓK+1, . . . , ℓk} := {1, . . . , k} \ {ℓ1, . . . , ℓK} for any ℓ ∈ [q]. Then,
we define

Xℓ := {x ∈ X : β⊤
1ix ≥ β⊤

1i′x : i ∈ {ℓ1, . . . , ℓK}, i′ ∈ {ℓK+1, . . . , ℓk∗}},

X̃ℓ := {x ∈ X : β
⊤
1ix ≥ β

⊤
1i′x : i ∈ {ℓ1, . . . , ℓK}, i′ ∈ {ℓK+1, . . . , ℓk∗}}.

By using the same arguments as in the proof of Lemma 1 in Appendix A.3, we achieve that either
Xℓ = X̃ℓ or Xℓ has measure zero for any ℓ ∈ [q]. As the Softmax function is differentiable, it is a
Lipschitz function with some Lipschitz constant L ≥ 0. Since X is a bounded set, we may assume
that ∥X∥ ≤ B for any X ∈ X . Next, we denote

πℓ(X) :=
(
β⊤
1ℓix+ β⊤

0ℓi

)K

i=1
; πℓ(X) :=

(
β
⊤
1ℓix+ β

⊤
0ℓi

)K

i=1
,

for any K-element subset {ℓ1, . . . ℓK} of {1, . . . , k∗}. Then, we get

∥Softmax(πℓ(X))− Softmax(πℓ(X))∥ ≤ L · ∥πℓ(X)− πℓ(X)∥

≤ L ·
K∑
i=1

(
∥β1ℓi − β1ℓi∥ · ∥X∥+ |β0ℓi − β0ℓi |

)
≤ L ·

K∑
i=1

(
ηB + η

)
≲ η.

Back to the proof for ∥gG′ − gG∥1 ≲ η, it follows from the above results that

∥gG′ − gG∥1 =

∫
X×Y

|gG′(Y |X)− gG(Y |X)| d(X,Y )

≤
q∑

ℓ=1

∫
Xℓ×Y

|gG′(Y |X)− gG(Y |X)| d(X,Y )

≤
q∑

ℓ=1

∫
Xℓ×Y

K∑
i=1

∣∣∣Softmax(πℓ(X)i)− Softmax(πℓ(X)i)
∣∣∣ · ∣∣∣f(Y |a⊤ℓiX + bℓi , σℓi)

∣∣∣ d(X,Y )

≲ η, (13)

From the results in equations (11), (12) and (13), we deduce that ∥gG − gG∥1 ≲ η. This implies that
T is an η-cover of the metric space (Pk∗(Ω), ∥ · ∥1). Consequently, we achieve that

N(η,Pk∗(Ω), ∥ · ∥1) ≲ |∆η| × |Θη| ≤ O(1/η(d+3)k),

which induces the conclusion of this part

logN(η,Pk∗(Ω), ∥ · ∥1) ≲ log(1/η).

Part (ii). Moving to this part, we will provide an upper bound for the bracketing entropy of Pk∗(Ω)
under the Hellinger distance:

HB(η,Pk∗(Ω), h) ≲ log(1/η).

Recall that Θ and X are bounded sets, we can find positive constants −γ ≤ a⊤X + b ≤ γ and
u1 ≤ σ ≤ u2. Let us define

Q(Y |X) :=

{
1√
2πu1

exp
(
− Y 2

8u2

)
, for |Y | ≥ 2γ

1√
2πu1

, for |Y | < 2γ

Then, it can be validated that f(Y |a⊤X + b, σ) ≤ Q(X,Y ) for any (X,Y ) ∈ X × Y .

Next, let τ ≤ η which will be chosen later and {g1, . . . , gN} be an τ -cover of metric space
(Pk∗(Ω), ∥ · ∥1) with the covering number N := N(τ,Pk∗(Ω), ∥ · ∥1). Additionally, we also
consider brackets of the form [ΨL

i (Y |X),ΨU
i (Y |X)] where

ΨL
i (Y |X) := max{gi(Y |X)− τ, 0}

ΨU
i (Y |X) := max{gi(Y |X) + τ,Q(Y |X)}.
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Then, we can check that Pk∗(Ω) ⊆
⋃N

i=1[Ψ
L
i (Y |X),ΨU

i (Y |X)] and ΨU
i (Y |X) − ΨL

i (Y |X) ≤
min{2η,Q(Y |X)}. Let S := max{2γ,

√
8u2} log(1/τ), we have for any i ∈ [N ] that

∥ΨU
i −ΨL

i ∥1 =

∫
|Y |<2γ

[ΨU
i (Y |X)−ΨL

i (Y |X)] dXdY +

∫
|Y |≥2γ

[ΨU
i (Y |X)−ΨL

i (Y |X)] dXdY

≤ Sτ + exp
(
− S2

2u2

)
≤ S′τ,

where S′ is some positive constant. This inequality indicates that

HB(S
′τ,Pk∗(Ω), ∥ · ∥1) ≤ logN(τ,Pk∗(Ω), ∥ · ∥1) ≤ log(1/τ).

By setting τ = η/S′, we obtain that HB(η,Pk∗(Ω), ∥ · ∥1) ≲ log(1/η). Finally, since the norm ∥ · ∥1
is upper bounded by the Hellinger distance, we reach the conclusion of this part:

HB(η,Pk∗(Ω), h) ≲ log(1/η).

Hence, the proof is completed.

A.2 PROOF OF THEOREM 2

Since the Hellinger distance is lower bounded by the Total Variation distance, that is h ≥ V , we will
prove the following Total Variation lower bound:

EX [V (gG(·|X), gG∗(·|X))] ≳ D1(G,G∗),

which is then respectively broken into local part and global part as follows:

inf
G∈Ek∗ (Ω):D1(G,G∗)≤ε′

EX [V (gG(·|X), gG∗(·|X))]

D1(G,G∗)
> 0, (14)

inf
G∈Ek∗ (Ω):D1(G,G∗)>ε′

EX [V (gG(·|X), gG∗(·|X))]

D1(G,G∗)
> 0, (15)

for some constant ε′ > 0.

Proof of claim (14): It is sufficient to show that

lim
ε→0

inf
G∈Ek∗ (Ω):D1(G,G∗)≤ε

EX [V (gG(·|X), gG∗(·|X))]

D1(G,G∗)
> 0.

Assume that this inequality does not hold, then since the number of experts k∗ is known in this case,
there exists a sequence of mixing measure Gn :=

∑k∗
i=1 exp(β

n
0i)δ(βn

1i,a
n
i ,b

n
i ,σ

n
i ) ∈ Ek∗(Ω) such

that both D1(Gn, G∗) and EX [V (gGn
(·|X), gG∗(·|X))]/D1(Gn, G∗) approach zero as n tends to

infinity. Now, we define

Cn
j = Cj(Gn) := {i ∈ [k∗] : ∥ωn

i − ω∗
j ∥ ≤ ∥ωn

i − ω∗
s∥, ∀s ̸= j},

for any j ∈ [k∗] as k∗ Voronoi cells with respect to the mixing measure Gn, where we denote
ωn
i := (βn

1i, a
n
i , b

n
i , σ

n
i ) and ω∗

j := (β∗
1j , a

∗
j , b

∗
j , σ

∗
j ). As we use asymptotic arguments in this proof,

we can assume without loss of generality (WLOG) that these Voronoi cells does not depend on n,
that is, Cj = Cn

j . Next, it follows from the hypothesis D1(Gn, G∗) → 0 as n → ∞ that each Voronoi
cell contains only one element. Thus, we continue to assume WLOG that Cj = {j} for any j ∈ [k∗],
which implies that (βn

1j , a
n
j , b

n
j , σ

n
j ) → (β∗

1j , a
∗
j , b

∗
j , σ

∗
j ) and exp(βn

0j) → exp(β∗
0j) as n → ∞.

Subsequently, to specify the top K selection in the formulations of gGn
(Y |X) and gG∗(Y |X), we

divide the covariate space X into some subsets in two ways. In particular, we first consider q :=
(
k∗
K

)
different K-element subsets of [k∗], which are assumed to take the form {ℓ1, . . . , ℓK}, for ℓ ∈ [q].
Additionally, we denote {ℓK+1, . . . , ℓk∗} := [k∗] \ {ℓ1, . . . , ℓK}. Then, we define for each ℓ ∈ [q]
two following subsets of X :

Xn
ℓ :=

{
x ∈ X : (βn

1j)
⊤x ≥ (βn

1j′)
⊤x : ∀j ∈ {ℓ1, . . . , ℓK}, j′ ∈ {ℓK+1, . . . , ℓk∗}

}
,

X ∗
ℓ :=

{
x ∈ X : (β∗

1j)
⊤x ≥ (β∗

1j′)
⊤x : ∀j ∈ {ℓ1, . . . , ℓK}, j′ ∈ {ℓK+1, . . . , ℓk∗}

}
.
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Since (βn
0j , β

n
1j) → (β∗

0j , β
∗
1j) as n → ∞ for any j ∈ [k∗], we have for any arbitrarily small ηj > 0

that ∥βn
1j − β∗

1j∥ ≤ ηj and |βn
0j − β∗

0j | ≤ ηj for sufficiently large n. By applying Lemma 1, we
obtain that Xn

ℓ = X ∗
ℓ for any ℓ ∈ [q] for sufficiently large n. WLOG, we assume that

D1(Gn, G∗) =

K∑
i=1

[
exp(βn

0i)
(
∥∆βn

1i∥+ ∥∆ani ∥+ ∥∆bni ∥+ ∥∆σn
i ∥

)
+

∣∣∣ exp(βn
0i)− exp(β∗

0i)
∣∣∣],

where we denote ∆βn
1i := βn

1i − β∗
1i, ∆ani := ani − a∗i , ∆bni := bni − b∗i and ∆σn

i := σn
i − σ∗

i .

Let ℓ ∈ [q] such that {ℓ1, . . . , ℓK} = {1, . . . ,K}. Then, for almost surely (X,Y ) ∈ X ∗
ℓ × Y , we

can rewrite the conditional densities gGn
(Y |X) and gG∗(Y |X) as

gGn
(Y |X) =

K∑
i=1

exp((βn
1i)

⊤X + βn
0i)∑K

j=1 exp((β
n
1j)

⊤X + βn
0j)

· f(Y |(ani )⊤X + bni , σ
n
i ),

gG∗(Y |X) =

K∑
i=1

exp((β∗
1i)

⊤X + β∗
0i)∑K

j=1 exp((β
∗
1j)

⊤X + β∗
0j)

· f(Y |(a∗i )⊤X + b∗i , σ
∗
i ).

Now, we break the rest of our arguments into three steps:

Step 1 - Taylor expansion:

In this step, we take into account Hn :=
[∑K

i=1 exp((β
∗
1i)

⊤X + β∗
0i)

]
· [gGn

(Y |X)− gG∗(Y |X)].
Then, Hn can be represented as follows:

Hn =

K∑
i=1

exp(βn
0i)

[
exp((βn

1i)
⊤X)f(Y |(ani )⊤X + bni , σ

n
i )− exp((β∗

1i)
⊤X)f(Y |(a∗i )⊤X + b∗i , σ

∗
i )
]

−
K∑
i=1

exp(βn
0i)

[
exp((βn

1i)
⊤X)gGn(Y |X)− exp((β∗

1i)
⊤X)gGn(Y |X)

]
+

K∑
i=1

[
exp(βn

0i)− exp(β∗
0i)

][
exp((β∗

1i)
⊤X)f(Y |(a∗i )⊤X + b∗i , σ

∗
i )− exp((β∗

1i)
⊤X)gGn(Y |X)

]
.

By applying the first-order Taylor expansion to the first term in the above representation, which is
denoted by An, we get that

An =

K∑
i=1

∑
|α|=1

exp(βn
0i)

α!
· (∆βn

1i)
α1(∆ani )

α2(∆bni )
α3(∆σn

i )
α4

×Xα1+α2 exp((β∗
1i)

⊤X) · ∂|α2|+α3+α4f

∂h
|α2|+α3

1 ∂σα4

(Y |(a∗i )⊤X + b∗i , σ
∗
i ) +R1(X,Y ),

where R1(X,Y ) is a Taylor remainder that satisfies R1(X,Y )/D′
1(X,Y ) → 0 as n → ∞. Recall

that f is the univariate Gaussian density, then we have
∂α4f

∂σα4
(Y |(a∗i )⊤X + b∗i , σ

∗
i ) =

1

2α4
· ∂

2α4f

∂h2α4
1

(Y |(a∗i )⊤X + b∗i , σ
∗
i ),

which leads to

An =

K∑
i=1

∑
|α|=1

exp(βn
0i)

2α4α!
· (∆βn

1i)
α1(∆ani )

α2(∆bni )
α3(∆σn

i )
α4

×Xα1+α2 exp((β∗
1i)

⊤X) · ∂
|α2|+α3+2α4f

∂h
|α2|+α3+2α4

1

(Y |(a∗i )⊤X + b∗i , σ
∗
i ) +R1(X,Y )

=

K∑
i=1

2∑
|η1|+η2=1

∑
α∈Jη1,η2

exp(βn
0i)

2α4α!
· (∆βn

1i)
α1(∆ani )

α2(∆bni )
α3(∆σn

i )
α4

×Xη1 exp((β∗
1i)

⊤X) · ∂
η2f

∂hη2

1

(Y |(a∗i )⊤X + b∗i , σ
∗
i ) +R1(X,Y ), (16)
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where we denote η1 = α1 + α2 ∈ Nd, η2 = |α2|+ α3 + 2α4 ∈ N and an index set

Jη1,η2 := {(αi)
4
i=1 ∈ Nd × Nd × N× N : α1 + α2 = η1, α3 + 2α4 = η2 − |α2|}. (17)

By arguing in a similar fashion for the second term in the representation of Hn, we also get that

Bn := −
K∑
i=1

∑
|γ|=1

exp(βn
0i)

γ!
(∆βn

1i) ·Xγ exp((βn
1i)

⊤X)gGn(Y |X) +R2(X,Y ),

where R2(X,Y ) is a Taylor remainder such that R2(X,Y )/D1(Gn, G∗) → 0 as n → ∞. Putting
the above results together, we rewrite the quantity Hn as follows:

Hn =

K∑
i=1

∑
0≤|η1|+η2≤2

Un
i,η1,η2

·Xη1 exp((β∗
1i)

⊤X)
∂η2f

∂hη2

1

(Y |(a∗i )⊤X + b∗i , σ
∗
i )

+

K∑
i=1

∑
0≤|γ|≤1

Wn
i,γ ·Xγ exp((β∗

1i)
⊤X)gGn

(Y |X) +R1(X,Y ) +R2(X,Y ), (18)

in which we respectively define for each i ∈ [K] that

Un
i,η1,η2

:=
∑

α∈Jη1,η2

exp(βn
0i)

2α4α!
· (∆βn

1i)
α1(∆ani )

α2(∆bni )
α3(∆σn

i )
α4 ,

Wn
i,γ := −exp(βn

0i)

γ!
(∆βn

1i)
γ ,

for any (η1, η2) ̸= (0d, 0) and |γ| ≠ 0d. Otherwise, Un
i,0d,0

= −Wn
i,0d

:= exp(βn
0i)− exp(β∗

0i).

Step 2 - Non-vanishing coefficients:

Moving to the second step, we will show that not all the ratios Un
i,η1,η2

/D1(Gn, G∗) tend to zero
as n goes to infinity. Assume by contrary that all of them approach zero when n → ∞, then for
(η1, η2) = (0d, 0), it follows that

1

D1(Gn, G∗)
·

K∑
i=1

∣∣∣ exp(βn
0i)− exp(β∗

0i)
∣∣∣ = K∑

i=1

|Un
j,η1,η2

|
D1(Gn, G∗)

→ 0. (19)

Additionally, for tuples (η1, η2) where η1 ∈ {e1, e2, . . . , ed} with ej := (0, . . . , 0, 1︸︷︷︸
j−th

, 0, . . . , 0)

and η2 = 0, we get

1

D1(Gn, G∗)
·

K∑
i=1

exp(βn
0i)∥∆βn

1i∥1 =

K∑
i=1

|Un
j,η1,η2

|
D1(Gn, G∗)

→ 0.

By using similar arguments, we end up having

1

D1(Gn, G∗)
·

K∑
i=1

exp(βn
0i)

[
∥∆βn

1i∥1 + ∥∆ani ∥1 + |∆bni |+ |∆σn
i |
]
→ 0.

Due to the topological equivalence between norm-1 and norm-2, the above limit implies that

1

D1(Gn, G∗)
·

K∑
i=1

exp(βn
0i)

[
∥∆βn

1i∥+ ∥∆ani ∥+ |∆bni |+ |∆σn
i |
]
→ 0. (20)

Combine equation (19) with equation (20), we deduce that D1(Gn, G∗)/D1(Gn, G∗) → 0, which is
a contradiction. Consequently, at least one among the ratios Un

i,η1,η2
/D1(Gn, G∗) does not vanish as

n tends to infinity.

Step 3 - Fatou’s contradiction:

Let us denote by mn the maximum of the absolute values of Un
i,η1,η2

/D1(Gn, G∗) and
Wn

i,γ/D1(Gn, G∗). It follows from the result achieved in Step 2 that 1/mn ̸→ ∞.
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Recall from the hypothesis that EX [V (gGn
(·|X), gG∗(·|X))]/D1(Gn, G∗) → 0 as n → ∞. Thus,

by the Fatou’s lemma, we have

0 = lim
n→∞

EX [V (gGn(·|X), gG∗(·|X))]

D1(Gn, G∗)
≥ 1

2
·
∫

lim inf
n→∞

|gGn(Y |X)− gG∗(Y |X)|
D1(Gn, G∗)

dXdY.

This result indicates that |gGn(Y |X)− gG∗(Y |X)|/D1(Gn, G∗) tends to zero as n goes to infinity
for almost surely (X,Y ). As a result, it follows that

lim
n→∞

Hn

mnD1(Gn, G∗)
= lim

n→∞

|gGn(Y |X)− gG∗(Y |X)|
mnD1(Gn, G∗)

= 0.

Next, let us denote Un
i,η1,η2

/[mnD1(Gn, G∗)] → τi,η1,η2 and Wn
i,γ/[mnD1(Gn, G∗)] → κi,γ with

a note that at least one among them is non-zero. From the formulation of Hn in equation (18), we
deduce that

K∑
i=1

∑
0≤|η1|+η2≤2

τi,η1,η2 ·Xη1 exp((β∗
1i)

⊤X)
∂η2f

∂hη2

1

(Y |(a∗i )⊤X + b∗i , σ
∗
i )

+

K∑
i=1

∑
0≤|γ|≤1

κi,γ ·Xγ exp((β∗
1i)

⊤X)gG∗(Y |X) = 0, (21)

for almost surely (X,Y ). This equation is equivalent to

K∑
i=1

∑
0≤|η1|≤1

 ∑
0≤η2≤2−|γ|

τi,η1,η2

∂η2f

∂hη2

1

(Y |(a∗i )⊤X + b∗i , σ
∗
i ) + κi,η1

gG∗(Y |X)


× Xη1 exp((β∗

1i)
⊤X) = 0,

for almost surely (X,Y ). Note that β∗
11, . . . , β

∗
1K admits pair-wise different values, then

{exp((β∗
1i)

⊤X) : i ∈ [K]} is a linearly independent set, which leads to

∑
0≤|η1|≤1

 ∑
0≤η2≤2−|γ|

τi,η1,η2

∂η2f

∂hη2

1

(Y |(a∗i )⊤X + b∗i , σ
∗
i ) + κi,η1

gG∗(Y |X)

Xη1 = 0,

for any i ∈ [K] for almost surely (X,Y ). It is clear that the left hand side of the above equation is a
polynomial of X belonging to the compact set X . As a result, we get that∑

0≤η2≤2−|γ|

τi,η1,η2

∂η2f

∂hη2

1

(Y |(a∗i )⊤X + b∗i , σ
∗
i ) + κi,η1gG∗(Y |X) = 0,

for any i ∈ [K], 0 ≤ |η1| ≤ 1 and almost surely (X,Y ). Since (a∗1, b
∗
1, σ

∗
1), . . . , (a

∗
K , b∗K , σ∗

K) have
pair-wise distinct values, those of ((a∗1)

⊤X + b∗1, σ
∗
1), . . . , ((a

∗
K)⊤X + b∗K , σ∗

K) are also pair-wise

different. Thus, the set
{

∂η2f
∂h

η2
1

(Y |(a∗i )⊤X + b∗i , σ
∗
i ), gG∗(Y |X) : i ∈ [K]

}
is linearly independent.

Consequently, we obtain that τi,η1,η2
= κi,γ = 0 for any i ∈ [K], 0 ≤ |η1|+η2 ≤ 2 and 0 ≤ |γ| ≤ 1,

which contradicts the fact that at least one among these terms is different from zero.

Hence, we can find some constant ε′ > 0 such that

inf
G∈Ek∗ (Ω):D1(G,G∗)≤ε′

EX [V (gG(·|X), gG∗(·|X))]

D1(G,G∗)
> 0.

Proof of claim (15): Assume by contrary that this claim is not true, then we can seek a sequence
G′

n ∈ Ek∗(Ω) such that D1(G
′
n, G∗) > ε′ and

lim
n→∞

EX [V (gG′
n
(·|X), gG∗(·|X))]

D1(G′
n, G∗)

= 0,

which directly implies that EX [V (gG′
n
(·|X), gG∗(·|X))] → 0 as n → ∞. Recall that Ω is a compact

set, therefore, we can replace the sequence G′
n by one of its subsequences that converges to a mixing

measure G′ ∈ Ek∗(Ω). Since D1(G
′
n, G∗) > ε′, this result induces that D1(G

′, G∗) > ε′.
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Subsequently, by means of the Fatou’s lemma, we achieve that

0 = lim
n→∞

EX [2V (gG′
n
(·|X), gG∗(·|X))] ≥

∫
lim inf
n→∞

∣∣∣gG′
n
(Y |X)− gG∗(Y |X)

∣∣∣ dµ(Y )ν(X).

It follows that gG′(Y |X) = gG∗(Y |X) for almost surely (X,Y ). From Proposition 2, we know that
the top-K sparse softmax gating Gaussian mixture of experts is identifiable, thus, we obtain that
G′ ≡ G∗. As a consequence, D1(G

′, G∗) = 0, contradicting the fact that D1(G
′, G∗) > ε′ > 0.

Hence, the proof is completed.

A.3 PROOF OF LEMMA 1

Let ηi = Miε, where ε is some fixed positive constant and Mi will be chosen later. For an arbitrary
ℓ ∈ [q], since X and Ω are bounded sets, there exists some constant c∗ℓ ≥ 0 such that

min
x,i,i′

[
(β∗

1i)
⊤x− (β∗

1i′)
⊤x

]
= c∗ℓε, (22)

where the minimum is subject to x ∈ X ∗
ℓ , i ∈ {ℓ1, . . . , ℓK} and i′ ∈ {ℓK+1, . . . , ℓk∗}. We will

point out that c∗ℓ > 0. Assume by contrary that c∗ℓ = 0. For x ∈ X ∗
ℓ , we may assume for any

1 ≤ i < j ≤ k∗ that

(β∗
1ℓi)

⊤x ≥ (β∗
1ℓj )

⊤x.

Since c∗ℓ = 0, it follows from equation (22) that (β∗
1ℓK

)⊤x− (β∗
1ℓK+1

)⊤x = 0, or equivalently

(β∗
1ℓK − β∗

1ℓK+1
)⊤x = 0.

In other words, X ∗
ℓ is a subset of

Z := {x ∈ X : (β∗
1ℓK − β∗

1ℓK+1
)⊤x = 0}.

Since β1ℓK − β1ℓK+1
̸= 0d and the distribution of X is continuous, it follows that the set Z has

measure zero. Since X ∗
ℓ ⊆ Z , we can conclude that X ∗

ℓ also has measure zero, which contradicts the
hypothesis of Lemma 1. Therefore, we must have c∗ℓ > 0.

As X is a bounded set, we assume that ∥x∥ ≤ B for any x ∈ X . Let x ∈ X ∗
ℓ , then we have for any

i ∈ {ℓ1, . . . , ℓK} and i′ ∈ {ℓK+1, . . . , ℓk∗} that

β⊤
1ix = (β1i − β∗

1i)
⊤x+ (β∗

1i)
⊤x

≥ −MiεB + (β∗
1i′)

⊤x+ c∗ℓε

= −MiεB + c∗ℓε+ (β∗
1i′ − β1i′)

⊤x+ β⊤
1i′x

≥ −2MiεB ++c∗ℓε+ β⊤
1i′x.

By setting Mi ≤
c∗ℓ
2B

, we get that x ∈ Xℓ, which means that X ∗
ℓ ⊆ Xℓ. Similarly, assume that there

exists some constant cℓ ≥ 0 that satisfies

min
x,i,i′

[
(β∗

1i)
⊤x− (β∗

1i′)
⊤x

]
= c∗ℓε.

Here, the above minimum is subject to x ∈ Xℓ, i ∈ {ℓ1, . . . , ℓK} and i′ ∈ {ℓK+1, . . . , ℓk∗}. If
Mi ≤

cℓ
2B

, then we also receive that Xℓ ⊆ X ∗
ℓ .

Hence, if we set Mi =
1

2B
min{c∗ℓ , cℓ}, we reach the conclusion that X ∗

ℓ = Xℓ.

B PROOF FOR RESULTS UNDER OVER-SPECIFIED SETTINGS

In this appendix, we first provide the proofs of Theorem B.1 and Theorem 4 in Appendix B.1 and
Appendix B.2, respectively. Subsequently, we present the proof for Proposition 1 in Appendix B.3,
while that for Lemma 2 is put in Appendix B.4.
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B.1 PROOF OF THEOREM 3

In this appendix, we follow proof techniques presented in Appendix A.1 to demonstrate the result of
Theorem 3. Recall that under the over-specified settings, the MLE Ĝn belongs to the set of all mixing
measures with at most k > k∗ components, i.e. Ok(Ω). Interestingly, if we can adapt the result of
part (i) of Lemma 3 to the over-specified settings, then other results presented in Appendix A.1 will
also hold true. Therefore, our main goal is to derive following bound for any 0 < η < 1/2 under the
over-specified settings:

logN(η,Pk(Ω), ∥ · ∥1) ≲ log(1/η),

where Pk(Ω) := {gG(Y |X) : G ∈ Ok(Ω)}. For ease of presentation, we will reuse the notations
defined in Appendix A.1 with Ek∗(Ω) being replaced by Ok(Ω). Now, let us recall necessary notations
for this proof.

Firstly, we define Θ = {(a, b, σ) ∈ Rd × R× R+ : (β0, β1, a, b, σ) ∈ Ω}, and Θη is an η-cover of
Θ. Additionally, we also denote ∆ := {(β0, β1) ∈ Rd × R : (β0, β1, a, b, σ) ∈ Ω}, and ∆η be an
η-cover of ∆. Next, for each mixing measure G =

∑k
i=1 exp(β0i)δ(β1i,ai,bi,σi) ∈ Ok(Ω), we denote

G′ =
∑k

i=1 exp(β0i)δ(β1i,ai,bi,σi)
in which (ai, bi, σi) ∈ Θη is the closest point to (ai, bi, σi) in this

set for any i ∈ [k]. We also consider another mixing measure G :=
∑k

i=1 exp(β0i)δ(β1i,ai,bi,σi)
∈

Ok(Ω) where (β0i, β1i) ∈ ∆η is the closest point to (β0i, β1i) in this set for any i ∈ [k].

Subsequently, we define

L := {gG ∈ Pk(Ω) : (β0i, β1i) ∈ ∆η, (ai, bi, σi) ∈ Θη}.
We demonstrate that L is an η-cover of the metric space (Pk(Ω), ∥ · ∥1), that is, for any gG ∈ Pk(Ω),
there exists a density gG ∈ L such that ∥gG − gG∥1 ≤ η. By the triangle inequality, we have

∥gG − gG∥1 ≤ ∥gG − gG′∥1 + ∥gG′ − gG∥1. (23)

From the formulation of G′, we get that

∥gG − gG′∥1 ≤
k∑

i=1

∫
X×Y

∣∣∣f(Y |a⊤i X + bi, σi)− f(Y |a⊤i X + bi, σi)
∣∣∣d(X,Y )

≲
k∑

i=1

∫
X×Y

(
∥ai − ai∥+ |bi − bi|+ |σi − σi|

)
d(X,Y )

≲ η (24)

Based on inequalities in equations (23) and (24), it is sufficient to show that ∥gG′ − gG∥1 ≲ η. For
any ℓ ∈ [q], let us define

X ℓ := {x ∈ X : (β1i)
⊤x ≥ (β1i′)

⊤x, ∀i ∈ {ℓ1, . . . , ℓK}, i′ ∈ {ℓK+1, . . . , ℓk}},
X ′

ℓ
:= {x ∈ X : (β1i)

⊤x ≥ (β1i′)
⊤x, ∀i ∈ {ℓ1, . . . , ℓK}, i′ ∈ {ℓK+1, . . . , ℓk}}.

Since the Softmax function is differentiable, it is a Lipschitz function with some Lipschitz constant
L ≥ 0. Assume that ∥X∥ ≤ B for any X ∈ X and denote

πℓ(X) :=
(
β⊤
1ℓi

x+ β⊤
0ℓi

)K

i=1
; πℓ(X) :=

(
β
⊤
1ℓix+ β

⊤
0ℓi

)K

i=1
,

for any K-element subset {ℓ1, . . . ℓK} of {1, . . . , k}. Then, we have

∥Softmax(πℓ(X))− Softmax(πℓ(X))∥ ≤ L · ∥πℓ(X)− πℓ(X)∥

≤ L ·
K∑
i=1

(
∥β1ℓi

− β1ℓi
∥ · ∥X∥+ |β0ℓi

− β0ℓi
|
)

≤ L ·
K∑
i=1

(
ηB + η

)
≲ η.
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By arguing similarly to the proof of Lemma 2 in Appendix B.4, we receive that either X ℓ = X ′
ℓ

or
X ℓ has measure zero for any ℓ ∈ [q]. As a result, we deduce that

∥gG′ − gG∗
∥1 ≤

q∑
ℓ=1

∫
X ℓ×Y

|gG′(Y |X)− gG(Y |X)|d(X,Y )

≤
q∑

ℓ=1

∫
X ℓ×Y

K∑
i=1

∣∣∣Softmax(πℓ(X)i)− Softmax(πℓ(X)i)
∣∣∣ · ∣∣∣f(Y |a⊤

ℓi
X + bℓi , σℓi

)
∣∣∣d(X,Y )

≲ η.

Thus, L is an η-cover of the metric space (Pk(Ω), ∥ · ∥1), which implies that

N(η,Pk(Ω), ∥ · ∥1) ≲ |∆η| × |Θη| ≤ O(η−(d+1)k)×O(η−(d+3)k) = O(η−(2d+4)k). (25)

Hence, logN(η,Pk(Ω), ∥ · ∥1) ≲ log(1/η).

B.2 PROOF OF THEOREM 4

Similar to the proof of Theorem 2 in Appendix A, our objective here is also to derive the Total
Variation lower bound adapted to the over-fitted settings:

EX [V (gG(·|X), gG∗(·|X))] ≳ D2(G,G∗).

Since the global part of the above inequality can be argued in the same fashion as in Appendix A, we
will focus only on demonstrating the following local part via the proof by contradiction method:

lim
ε→0

inf
G∈Ok(Θ):D2(G,G∗)≤ε

EX [V (gG(·|X), gG∗(·|X))]

D2(G,G∗)
> 0. (26)

Assume that the above claim does not hold true, then we can find a sequence of mixing
measures Gn :=

∑kn

i=1 exp(β
n
0i)δ(βn

1i,a
n
i ,b

n
i ,σ

n
i ) ∈ Ok(Ω) such that both D2(Gn, G∗) and

EX [V (gGn
(·|X), gG∗(·|X))]/D2(Gn, G∗) vanish when n goes to infinity. Additionally, by abuse of

notation, we reuse the set of Voronoi cells Cj , for j ∈ [k∗], defined in Appendix A. Due to the limit
D2(Gn, G∗) → 0 as n → ∞, it follows that for any j ∈ [k∗], we have

∑
i∈Cj

exp(βn
0i) → exp(β∗

0j)

and (βn
1i, a

n
i , b

n
i , σ

n
i ) → (β∗

1j , a
∗
j , b

∗
j , σ

∗
j ) for all i ∈ Cj . WLOG, we may assume that

D2(Gn, G∗) =
∑

j∈[K],
|Cj |>1

∑
i∈Cj

exp(βn
0i)

[
∥∆βn

1ij∥r̄(|Cj |) + ∥∆anij∥
r̄(|Cj |)

2 + |∆bnij |r̄(|Cj |) + |∆σn
ij |

r̄(|Cj |)
2

]

+
∑

j∈[K],
|Cj |=1

∑
i∈Cj

exp(βn
0i)

[
∥∆βn

1ij∥+ ∥∆anij∥+ |∆bnij |+ |∆σn
ij |
]
+

K∑
j=1

∣∣∣ ∑
i∈Cj

exp(βn
0i)− exp(β∗

0j)
∣∣∣.

Regarding the top-K selection in the conditional density gG∗ , we partition the covariate space X in
a similar fashion to Appendix A. More specifically, we consider q =

(
k∗
K

)
subsets {ℓ1, . . . , ℓK} of

{1, . . . , k∗} for any ℓ ∈ [q], and denote {ℓK+1, . . . , ℓk∗} := [k∗] \ {ℓ1, . . . , ℓK}. Then, we define

X ∗
ℓ :=

{
x ∈ X : (β∗

1j)
⊤x ≥ (β∗

1j′)
⊤x, ∀j ∈ {ℓ1, . . . , ℓK}, j′ ∈ {ℓK+1, . . . , ℓk∗}

}
,

for any ℓ ∈ [q]. On the other hand, we need to introduce a new partition method of the covariate
space for the weight selection in the conditional density gGn

. In particular, let K ∈ N such that
max{ℓj}K

j=1⊂[k∗]

∑K
j=1 |Cℓj | ≤ K ≤ k and q :=

(
k
K

)
. Then, for any ℓ ∈ [q], we denote (ℓ1, . . . , ℓk)

as a subset of [k] and {ℓK+1, . . . , ℓk} := [k] \ {ℓ1, . . . , ℓK}. Additionally, we define

Xn
ℓ
:=

{
x ∈ X : (βn

1i)
⊤x ≥ (βn

1i′)
⊤x, ∀i ∈ {ℓ1, . . . , ℓK}, i′ ∈ {ℓK+1, . . . , ℓk}

}
.
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Let X ∈ X ∗
ℓ for some ℓ ∈ [q] such that {ℓ1, . . . , ℓK} = {1, . . . ,K}. If {ℓ1, . . . ℓK} ≠ C1 ∪ . . .∪CK

for any ℓ ∈ [q], then EX [V (gGn
(·|X), gG∗(·|X))]/D2(Gn, G∗) ̸→ 0 as n tends to infinity. This

contradicts the fact that this term must approach zero. Therefore, we only need to consider the
scenario when there exists ℓ ∈ [q] such that {ℓ1, . . . ℓK} = C1 ∪ . . . ∪ CK . Recall that we have
(βn

0i, β
n
1i) → (β∗

0j , β
∗
1j) as n → ∞ for any j ∈ [k∗] and i ∈ Cj . Thus, for any arbitrarily small

ηj > 0, we have that ∥βn
1i − β∗

1j∥ ≤ ηj and |βn
0i − β∗

0j | ≤ ηj for sufficiently large n. Then, it follows
from Lemma 2 that X ∗

ℓ = Xn
ℓ

for sufficiently large n. This result indicates that X ∈ Xn
ℓ

.

Then, we can represent the conditional densities gG∗(Y |X) and gGn
(Y |X) for any sufficiently large

n as follows:

gG∗(Y |X) =

K∑
j=1

exp((β∗
1j)

⊤X + β∗
0j)∑K

j′=1 exp((β
∗
1j′)

⊤X + β∗
0j′)

· f(Y |(a∗j )⊤X + b∗j , σ
∗
j ),

gGn
(Y |X) =

K∑
j=1

∑
i∈Cj

exp((βn
1i)

⊤X + βn
0i)∑K

j′=1

∑
i′∈Cj′

exp((βn
1i′)

⊤X + βn
0i′)

· f(Y |(ani )⊤X + bni , σ
n
i ).

Now, we reuse the three-step framework in Appendix A.

Step 1 - Taylor expansion:

Firstly, by abuse of notations, let us consider the quantity

Hn :=
[ K∑
j=1

exp((β∗
1j)

⊤X + β∗
0j)

]
· [gGn

(Y |X)− gG∗(Y |X)].

Similar to Step 1 in Appendix A, we can express this term as

Hn =

K∑
j=1

∑
i∈Cj

exp(βn
0i)

[
exp((βn

1i)
⊤X)f(Y |(ani )⊤X + bni , σ

n
i )− exp((β∗

1j)
⊤X)f(Y |(a∗j )⊤X + b∗j , σ

∗
j )
]

−
K∑
j=1

∑
i∈Cj

exp(βn
0i)

[
exp((βn

1i)
⊤X)gGn(Y |X)− exp((β∗

1j)
⊤X)gGn(Y |X)

]

+

K∑
j=1

[ ∑
i∈Cj

exp(βn
0i)− exp(β∗

0j)
][

exp((β∗
1j)

⊤X)f(Y |(a∗i )⊤X + b∗i , σ
∗
i )− exp((β∗

1j)
⊤X)gGn

(Y |X)
]

:= An +Bn + En.

Next, we proceed to decompose An based on the cardinality of the Voronoi cells as follows:

An =
∑

j:|Cj |=1

∑
i∈Cj

exp(βn
0i)

[
exp((βn

1i)
⊤X)f(Y |(ani )⊤X + bni , σ

n
i )− exp((β∗

1j)
⊤X)f(Y |(a∗j )⊤X + b∗j , σ

∗
j )
]

+
∑

j:|Cj |>1

∑
i∈Cj

exp(βn
0i)

[
exp((βn

1i)
⊤X)f(Y |(ani )⊤X + bni , σ

n
i )− exp((β∗

1j)
⊤X)f(Y |(a∗j )⊤X + b∗j , σ

∗
j )
]
.

By applying the Taylor expansions of order 1 and r̄(|Cj |) to the first and second terms of An,
respectively, and following the derivation in equation (16), we arrive at

An =
∑

j:|Cj |=1

∑
i∈Cj

∑
1≤|η1|+η2≤2

∑
α∈Jη1,η2

exp(βn
0i)

2α4α!
· (∆βn

1i)
α1(∆ani )

α2(∆bni )
α3(∆σn

i )
α4

×Xη1 exp((β∗
1i)

⊤X) · ∂
η2f

∂hη2

1

(Y |(a∗i )⊤X + b∗i , σ
∗
i ) +R3(X,Y )

+
∑

j:|Cj |>1

∑
i∈Cj

∑
1≤|η1|+η2≤2r̄(|Cj |)

∑
α∈Jη1,η2

exp(βn
0i)

2α4α!
· (∆βn

1i)
α1(∆ani )

α2(∆bni )
α3(∆σn

i )
α4

×Xη1 exp((β∗
1i)

⊤X) · ∂
η2f

∂hη2

1

(Y |(a∗i )⊤X + b∗i , σ
∗
i ) +R4(X,Y ),
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where the set Jη1,η2
is defined in equation (17) while Ri(X,Y ) is a Taylor remainder such that

Ri(X,Y )/D2(Gn, G∗) → 0 as n → ∞ for i ∈ {3, 4}. Similarly, we also decompose Bn according
to the Voronoi cells as An but then invoke the Taylor expansions of order 1 and 2 to the first term and
the second term, respectively. In particular, we get

Bn = −
∑

j:|Cj |=1

∑
i∈Cj

∑
|γ|=1

exp(βn
0i)

γ!
(∆βn

1i) ·Xγ exp((βn
1i)

⊤X)gGn(Y |X) +R5(X,Y )

−
∑

j:|Cj |>1

∑
i∈Cj

∑
1≤|γ|≤2

exp(βn
0i)

γ!
(∆βn

1i) ·Xγ exp((βn
1i)

⊤X)gGn(Y |X) +R6(X,Y ),

where R5(X,Y ) and R6(X,Y ) are Taylor remainders such that their ratios over D2(Gn, G∗) ap-
proach zero as n → ∞. Subsequently, let us define

Sn
j,η1,η2

:=
∑
i∈Cj

∑
α∈Jη1,η2

exp(βn
0i)

2α4α!
· (∆βn

1i)
α1(∆ani )

α2(∆bni )
α3(∆σn

i )
α4 ,

Tn
j,γ :=

∑
i∈Cj

exp(βn
0i)

γ!
(∆βn

1i)
γ ,

for any (η1, η2) ̸= (0d, 0) and |γ| ≠ 0d, while for (η1, η2) = (0d, 0) we set

Sn
i,0d,0

= −Tn
i,0d

:=
∑
i∈Cj

exp(βn
0i)− exp(β∗

0i).

As a consequence, it follows that

Hn =

K∑
j=1

2r̄(|Cj |)∑
|η1|+η2=0

Sn
j,η1,η2

·Xη1 exp((β∗
1i)

⊤X) · ∂
η2f

∂hη2

1

(Y |(a∗i )⊤X + b∗i , σ
∗
i )

+

K∑
j=1

1+1{|Cj |>1}∑
|γ|=0

Tn
j,γ ·Xγ exp((βn

1i)
⊤X)gGn(Y |X) +R5(X,Y ) +R6(X,Y ). (27)

Step 2 - Non-vanishing coefficients:

In this step, we will prove by contradiction that at least one among the ratios Sn
j,η1,η2

/D2(Gn, G∗)
does not converge to zero as n → ∞. Assume that all these terms go to zero, then by employing
arguments for deriving equations (19) and (20), we get that

1

D2(Gn, G∗)
·
[ K∑
j=1

∣∣∣ ∑
i∈Cj

exp(βn
0i)− exp(β∗

0j)
∣∣∣

+
∑

j:|Cj |=1

∑
i∈Cj

exp(βn
0i)

(
∥∆βn

1ij∥+ ∥∆anij∥+ |∆bnij |+ |∆σn
ij |
)]

→ 0.

Combine this limit with the representation of D2(Gn, G∗), we have that
1

D2(Gn, G∗)
·

∑
j:|Cj |>1

∑
i∈Cj

exp(βn
0i)

(
∥∆βn

1ij∥r̄(|Cj |) + ∥∆anij∥
r̄(|Cj |)

2 + |∆bnij |r̄(|Cj |) + |∆σn
ij |

r̄(|Cj |)
2

)
̸→ 0.

This result implies that we can find some index j′ ∈ [K] : |Cj′ | > 1 that satisfies
1

D2(Gn, G∗)
·
∑
i∈Cj′

exp(βn
0i)

(
∥∆βn

1ij′∥r̄(|Cj′ |) + ∥∆anij′∥
r̄(|C

j′ |)
2 + |∆bnij′ |r̄(|Cj′ |) + |∆σn

ij′ |
r̄(|C

j′ |)
2

)
̸→ 0.

For simplicity, we may assume that j′ = 1. Since Sn
1,η1,η2

/D2(Gn, G∗) vanishes as n → ∞ for any
(η1, η2) ∈ Nd × N such that 1 ≤ |η1|+ η2 ≤ r̄(|Cj |), we divide this term by the left hand side of the
above equation and achieve that∑

i∈C1

∑
α∈Jη1,η2

exp(βn
0i)

2α4α!
(∆βn

1i1)
α1(∆ani1)

α2(∆bni1)
α3(∆σn

i1)
α4∑

i∈C1
exp(βn

0i)
(
∥∆bni1∥r̄(|C1|) + ∥∆ani1∥

r̄(|C1|)
2 + |∆bni1|r̄(|C1|) + |∆σn

i1|
r̄(|C1|)

2

) → 0, (28)
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for any (η1, η2) ∈ Nd × N such that 1 ≤ |η1|+ η2 ≤ r̄(|C1|).

Subsequently, we define Mn := max{∥∆βn
1i1∥, ∥∆ani1∥1/2, |∆bni1|, |∆σn

i1|1/2 : i ∈ C1} and pn :=
max{exp(βn

0i) : i ∈ C1}. As a result, the sequence exp(βn
0i)/pn is bounded, which indicates that

we can substitute it with its subsequence that admits a positive limit z25i := limn→∞ exp(βn
0i)/pn.

Therefore, at least one among the limits z25i equals to one. Furthermore, we also denote

(∆βn
1i1)/Mn → z1i, (∆ani1)/Mn → z2i, (∆bni1)/Mn → z3i, (∆σn

i1)/(2Mn) → z4i.

From the above definition, it follows that at least one among the limits z1i, z2i, z3i and z4i equals to
either 1 or −1. By dividing both the numerator and the denominator of the term in equation (28) by
pnM

|η1|+η2
n , we arrive at the following system of polynomial equations:∑

i∈C1

∑
α∈Jη1,η2

z25i z
α1
1i zα2

2i zα3
3i zα4

4i

α1! α2! α3! α4!
= 0,

for all (η1, η2) ∈ Nd × N : 1 ≤ |η1| + η2 ≤ r̄(|C1|). Nevertheless, from the definition of r̄(|C1|),
we know that the above system does not admit any non-trivial solutions, which is a contradiction.
Consequently, not all the ratios Sn

j,η1,η2
/D2(Gn, G∗) tend to zero as n goes to infinity.

Step 3 - Fatou’s contradiction:

It follows from the hypothesis that EX [V (gGn
(·|X), gG∗(·|X))]/D2(Gn, G∗) → 0 as n → ∞.

Then, by applying the Fatou’s lemma, we get

0 = lim
n→∞

EX [V (gGn
(·|X), gG∗(·|X))]

D2(Gn, G∗)
=

1

2
·
∫

lim inf
n→∞

|gGn
(Y |X)− gG∗(Y |X)|
D2(Gn, G∗)

dXdY,

which implies that |gGn
(Y |X)−gG∗(Y |X)|/D2(Gn, G∗) → 0 as n → ∞ for almost surely (X,Y ).

Next, we define mn as the maximum of the absolute values of Sn
j,η1,η2/D2(Gn,G∗)

. It follows from
Step 2 that 1/mn ̸→ ∞. Moreover, by arguing in the same way as in Step 3 in Appendix A, we
receive that

Hn/[mnD2(Gn, G∗)] → 0 (29)

as n → ∞. By abuse of notations, let us denote

Sn
j,η1,η2

/[mnD2(Gn, G∗)] → τj,η1,η2
,

Tn
j,γ/[mnD2(Gn, G∗)] → κj,γ .

Here, at least one among τj,η1,η2
, κj,γ is non-zero. Then, by putting the results in equations (27) and

(29) together, we get

K∑
i=1

2r̄(|Cj |)∑
|η1|+η2=0

τi,η1,η2 ·Xη1 exp((β∗
1i)

⊤X)
∂η2f

∂hη2

1

(Y |(a∗i )⊤X + b∗i , σ
∗
i )

+

K∑
i=1

1+1{|Cj |>1}∑
|γ|=0

κi,γ ·Xγ exp((β∗
1i)

⊤X)gG∗(Y |X) = 0.

Arguing in a similar fashion as in Step 3 of Appendix A, we obtain that τj,η1,η2
= κj,γ = 0 for any

j ∈ [K], 0 ≤ |η1| + η2 ≤ 2r̄(|Cj |) and 0 ≤ |γ| ≤ 1 + 1{|Cj |>1}. This contradicts the fact that at
least one among them is non-zero. Hence, the proof is completed.

B.3 PROOF OF PROPOSITION 1

Since the Hellinger distance is lower bounded by the Total Variation distance, i.e. h ≥ V , it is
sufficient to show that

inf
G∈Ok(Ω)

EX [V (gG(·|X), gG∗(·|X))] > 0.
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For that purpose, we first demonstrate that

lim
ε→0

inf
G∈Ok(Ω):D2(G,G∗)≤ε

EX [V (g(·|X), gG∗(·|X))] > 0. (30)

Assume by contrary that the above claim is not true, then we can find a sequence Gn =∑kn

i=1 exp(β
n
0i)δ(βn

1i,a
n
i ,b

n
i ,σ

n
i ) ∈ Ok(Ω) that satisfies D2(Gn, G∗) → 0 and

EX [V (gGn
(·|X), gG∗(·|X))] → 0

when n tends to infinity. By applying the Fatou’s lemma, we have

0 = lim
n→∞

EX [V (gGn
(·|X), gG∗(·|X))]

≥ 1

2

∫
X×Y

lim inf
n→∞

|gGn
(Y |X)− gG∗(Y |X)|d(X,Y ). (31)

The above results indicates that gGn
(Y |X)− gG∗(Y |X) → 0 as n → ∞ for almost surely (X,Y ).

WLOG, we may assume that

max
{ℓ1,...,ℓK}

K∑
j=1

|Cℓj | = |C1|+ |C2|+ . . .+ |CK |.

Let us consider X ∈ X ∗
ℓ , where ℓ ∈ [q] such that {ℓ1, . . . , ℓK} = {1, . . . ,K}. Since D2(Gn, G∗)

converges to zero, it follows that (βn
1i, a

n
i , b

n
i , σ

n
i ) → (β∗

1j , a
∗
j , b

∗
j , σ

∗
j ) and

∑
i∈Cj

exp(βn
0i) →

exp(β∗
0j) for any i ∈ Cj and j ∈ [k∗]. Thus, we must have that X ∈ X ℓ for some ℓ ∈ [q] such that

{ℓ1, . . . , ℓK} = C1 ∪ . . . ∪ CK . Otherwise, gGn
(Y |X)− gG∗(Y |X) ̸→ 0, which is a contradiction.

However, as K <
∑K

j=1 |Cj |, the fact that {ℓ1, . . . , ℓK} = C1 ∪ . . . ∪ CK cannot occur. Therefore,
we reach the claim in equation (30). Consequently, there exists some positive constant ε′ such that

inf
G∈Ok(Ω):D2(G,G∗)≤ε′

EX [V (gG(·|X), gG∗(·|X))] > 0.

Given the above result, it suffices to point out that

inf
G∈Ok(Ω):D2(G,G∗)>ε′

EX [V (gG(·|X), gG∗(·|X))] > 0. (32)

We continue to use the proof by contradiction method here. In particular, assume that the inequal-
ity (32) does not hold, then there exists a sequence of mixing measures G′

n ∈ Ok(Ω) such that
D2(G

′
n, G∗) > ε′ and

EX [V (gG′
n
(·|X), gG∗(·|X))] → 0.

By invoking the Fatou’s lemma as in equation (31), we get that gG′
n
(Y |X) − gG∗(Y |X) → 0

as n → ∞ for almost surely (X,Y ). Since Ω is a compact set, we can substitute (Gn) with its
subsequence which converges to some mixing measure G′ ∈ Ok(Ω). Then, the previous limit
implies that gG′(Y |X) = gG∗(Y |X) for almost surely (X,Y ). From the result of Proposition 2 in
Appendix C, we know that the top-K sparse softmax gating Gaussian MoE is identifiable. Therefore,
we obtain that G′ ≡ G∗, or equivalently, D2(G

′, G∗) = 0

On the other hand, due to the hypothesis D2(G
′
n, G∗) > ε′ for any n ∈ N, we also get that

D2(G
′, G∗) > ε′ > 0, which contradicts the previous result. Hence we reach the claim in equa-

tion (32) and totally completes the proof.

B.4 PROOF OF LEMMA 2

Let ηj = Mjε, where ε is some fixed positive constant and Mi will be chosen later. As X and Ω are
bounded sets, we can find some constant c∗ℓ ≥ 0 such that

min
x,j,j′

[
(β∗

1j)
⊤x− (β∗

1j′)
⊤x

]
= c∗ℓε,

where the above minimum is subject to x ∈ X ∗
ℓ , j ∈ {ℓ1, . . . , ℓK} and j′ ∈ {ℓK+1, . . . , ℓk∗}. By

arguing similarly to the proof of Lemma 1 in Appendix A.3, we deduce that c∗ℓ > 0.
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Since X is a bounded set, we may assume that ∥x∥ ≤ B for any x ∈ X . Let x ∈ X ∗
ℓ and ℓ ∈ [q]

such that {ℓ1, . . . , ℓK} = Cℓ1 ∪ . . . ∪ CℓK . Then, for any i ∈ {ℓ1, . . . , ℓK} and i′ ∈ {ℓK+1, . . . , ℓk},
we have that

β⊤
1ix = (β1i − β∗

1j)
⊤x+ (β∗

1j)
⊤x

≥ −MiεB + (β∗
1j′)

⊤x+ c∗ℓε

= −MiεB + c∗ℓε+ (β∗
1j′ − β1i′)

⊤x+ β⊤
1i′x

≥ −2MiεB + c∗ℓε+ β⊤
1i′x,

where j ∈ {ℓ1, . . . , ℓK} and j′ ∈ {ℓK+1, . . . , ℓk∗} such that i ∈ Cj and i′ ∈ Cj′ . If Mj ≤
c∗ℓ
2B

, then

we get that x ∈ Xℓ, which leads to X ∗
ℓ ⊆ X ℓ.

Analogously, assume that there exists some constant cℓ ≥ 0 such that

min
x,j,j′

[
(β∗

1j)
⊤x− (β∗

1j′)
⊤x

]
= c∗ℓε,

where the minimum is subject to x ∈ X ℓ, i ∈ {ℓ1, . . . , ℓK} and i′ ∈ {ℓK+1, . . . , ℓk}. Then, if

Mj ≤
cℓ
2B

, then we receive that X ℓ ⊆ X ∗
ℓ .

As a consequence, by setting Mj =
1

2B
min{c∗ℓ , cℓ}, we achieve the conclusion that X ℓ = X ∗

ℓ .

C IDENTIFIABILITY OF THE TOP-K SPARSE SOFTMAX GATING GAUSSIAN
MIXTURE OF EXPERTS

In this appendix, we study the identifiability of the top-K sparse softmax gating Gaussian MoE, which
plays an essential role in ensuring the convergence of the MLE Ĝn to the true mixing measure G∗
under Voronoi loss functions.

Proposition 2 (Identifiability). Let G and G′ be two arbitrary mixing measures in Ok(Θ). Suppose
that the equation gG(Y |X) = gG′(Y |X) holds for almost surely (X,Y ) ∈ X × Y , then it follows
that G ≡ G′.

Proof of Proposition 2. First, we assume that two mixing measures G and G′ take the follow-
ing forms: G =

∑k
i=1 exp(β0i)δ(β1i,ai,bi,σi) and G′ =

∑k′

i=1 exp(β
′
0i)δ(β′

1i,a
′
i,b

′
i,σ

′
i)

. Recall that
gG(Y |X) = gG′(Y |X) for almost surely (X,Y ), then we have

k∑
i=1

Softmax(TopK((β1i)
⊤X,K;β0i)) · f(Y |a⊤i X + bi, σi)

=

k′∑
i=1

Softmax(TopK((β′
1i)

⊤X,K;β′
0i)) · f(Y |(a′i)⊤ + b′i, σ

′
i). (33)

Due to the identifiability of the location-scale Gaussian mixtures Teicher (1960; 1961; 1963), we get
that k = k′ and{
Softmax(TopK((β1i)

⊤X,K;β0i)) : i ∈ [k]
}
≡

{
Softmax(TopK((β′

1i)
⊤X,K;β′

0i)) : i ∈ [k]
}
,

for almost surely X . WLOG, we may assume that

Softmax(TopK((β1i)
⊤X,K;β0i)) = Softmax(TopK((β′

1i)
⊤X,K;β′

0i)), (34)

for almost surely X for any i ∈ [k]. Since the Softmax function is invariant to translations, it follows
from equation (34) that β1i = β′

1i + v1 and β0i = β′
0i + v0 for some v1 ∈ Rd and v0 ∈ R. Notably,

from the assumption of the model, we have β1k = β′
1k = 0d and β0k = β′

0k = 0, which implies that
v1 = 0d and v0 = 0. As a result, we obtain that β1i = β′

1i and β0i = β′
0i for any i ∈ [k].
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Let us consider X ∈ Xℓ where ℓ ∈ [q] such that {ℓ1, . . . , ℓK} = {1, . . . ,K}. Then, equation (33)
can be rewritten as

K∑
i=1

exp(β0i) exp(β
⊤
1iX)f(Y |a⊤i X + bi, σi) =

K∑
i=1

exp(β0i) exp(β
⊤
1iX)f(Y |(a′i)⊤X + b′i, σ

′
i),

(35)

for almost surely (X,Y ). Next, we denote J1, J2, . . . , Jm as a partition of the index set [k], where
m ≤ k, such that exp(β0i) = exp(β0i′) for any i, i′ ∈ Jj and j ∈ [m]. On the other hand, when
i and i′ do not belong to the same set Jj , we let exp(β0i) ̸= exp(β0i′). Thus, we can reformulate
equation (35) as

m∑
j=1

∑
i∈Jj

exp(β0i) exp(β
⊤
1iX)f(Y |a⊤i X + bi, σi)

=

m∑
j=1

∑
i∈Jj

exp(β0i) exp(β
⊤
1iX)f(Y |(a′i)⊤X + b′i, σ

′
i),

for almost surely (X,Y ). This results leads to {((ai)⊤X + bi, σi) : i ∈ Jj} ≡ {((a′i)⊤X + b′i, σ
′
i) :

i ∈ Jj}, for almost surely X for any j ∈ [m]. Therefore, we have

{(ai, bi, σi) : i ∈ Jj} ≡ {(a′i, b′i, σ′
i) : i ∈ Jj},

for any j ∈ [m]. As a consequence,

G =

m∑
j=1

∑
i∈Jj

exp(β0i)δ(β1i,ai,bi,σi) =

m∑
j=1

∑
i∈Jj

exp(β′
0i)δ(β′

1i,a
′
i,b

′
i,σ

′
i)
= G′.

Hence, we reach the conclusion of this proposition.

D NUMERICAL EXPERIMENTS

In this appendix, we conduct a few numerical experiments to illustrate the theoretical convergence
rates of the MLE Ĝn to the true mixing measure G∗ under both the exact-specified and the over-
specified settings.

D.1 EXPERIMENTAL SETUP

Synthetic Data. First, we assume that the true mixing measure G∗ =
∑k∗

i=1 exp(β
∗
0i)δ(β∗

1i,a
∗
i ,b

∗
i ,σ

∗
i )

is of order k∗ = 2 and associated with the following ground-truth parameters:

β∗
01 = −8, β∗

11 = 25, a∗1 = −20, b∗1 = 15, σ∗
1 = 0.3,

β∗
02 = 0, β∗

12 = 0, a∗2 = 20, b∗2 = −5, σ∗
2 = 0.4.

Then, we generate i.i.d samples {(Xi, Yi)}ni=1 by first sampling Xi’s from the uniform distribution
Uniform[0, 1] and then sampling Yi’s from the true conditional density gG∗(Y |X) of top-K sparse
softmax gating Gaussian mixture of experts (MoE) given in equation (1). In Figure 2, we visualize
the relationship between X and Y when the numbers of experts chosen from gG∗(Y |X) are K = 1
(Figure 2a) and K = 2 (Figure 2b), respectively. However, throughout the following experiments,
we will consider only the scenario when K = 1, that is, we choose the best expert from the true
conditional density gG∗(Y |X).

Maximum Likelihood Estimation (MLE). A popular approach to determining the MLE Ĝn for
each set of samples is to use the EM algorithm Dempster et al. (1977). However, since there are not
any closed-form expressions for updating the gating parameters β0i, β1i in the maximization steps,
we have to leverage an EM-based numerical scheme, which was previously used in Chamroukhi et al.
(2009). In particular, we utilize a simple coordinate gradient descent algorithm in the maximization
steps. Additionally, we select the convergence criterion of ϵ = 10−6 and run a maximum of 2000
EM iterations.
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Figure 2: A visual representation showcasing the relationship between X and Y , along with their
respective marginal distributions when K = 1 and K = 2.

Initialization. For each k ∈ {k∗, k∗ + 1}, we randomly distribute elements of the set {1, 2, ..., k}
into k∗ different Voronoi cells C1, C2, . . . , Ck∗ , each contains at least one element. Moreover, we
repeat this process for each replication. Subsequently, for each j ∈ [k∗], we initialize parameters
β1i by sampling from a Gaussian distribution centered around its true counterpart β∗

1j with a small
variance, where i ∈ Cj . Other parameters β0i, ai, bi, σi are also initialized in a similar fashion.

D.2 EXACT-SPECIFIED SETTINGS

Under the exact-specified settings, we conduct 40 sample generations for each configuration, across
a spectrum of 200 different sample sizes n ranging from 102 to 105. It can be seen from Figure 3a
that the MLE Ĝn empirically converges to the true mixing measure G∗ under the Voronoi metric D1

at the rate of order Õ(n−1/2), which perfectly matches the theoretical parametric convergence rate
established in Theorem 2.

D.3 OVER-SPECIFIED SETTINGS

Under the over-specified settings, we continue to generate 40 samples of size n for each setting,
given 100 different choices of sample size n ∈ [102, 105]. As discussed in Section 3, to guarantee
the convergence of density estimation to the true density, we need to select K = 2 experts from
the density estimation. As far as we know, existing works, namely Kwon et al. (2019); Kwon &
Caramanis (2020); Kwon et al. (2021), only focus on the global convergence of the EM algorithm for
parameter estimation under the input-free gating MoE, while that under the top-K sparse softmax
gating MoE has remained poorly understood. Additionally, it is worth noting that the sample size
must be sufficiently large so that the empirical convergence rate of the MLE returned by the EM
algorithm aligns with the theoretical rate of order Õ(n−1/2) derived in Theorem 4.

E ADDITIONAL RESULTS

In this appendix, we study the convergence rates of parameter estimation under the model (1) when f
is a probability density function of an arbitrary location-scale distribution. For that purpose, we first
characterize the family of probability density functions of location-scale distributions

F := {f(Y |h1(X, a, b), σ) : (a, b, σ) ∈ Θ}, (36)
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(a) Exact-specified settings with K = 1
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Figure 3: Log-log scaled plots illustrating simulation results under the exact-specified and the over-
specified settings. We analyze the MLE Ĝn across 40 independent samples, spanning sample sizes
from 102 to 105. The blue curves depict the mean discrepancy between the MLE Ĝn and the true
mixing measure G∗, accompanied by error bars signifying two empirical standard deviations under
the exact-specified settings. Additionally, an orange dash-dotted line represents the least-squares
fitted linear regression line for these data points.

where h1(X, a, b) := a⊤X + b stands for the location, σ denotes the scale and Θ is a compact subset
of Rd×R×R+, based on the following notion of strong identifiability, which was previously studied
in Manole & Ho (2022) and Ho & Nguyen (2016):

Definition 1 (Strong Identifiability). We say that the family F is strongly identifiable if the probability
density function f(Y |h1(X, a, b), σ) is twice differentiable w.r.t its parameters and the following
assumption holds true:

For any k ≥ 1 and k pairwise different tuples (a1, b1, σ1), . . . , (ak, bk, σk) ∈ Θ, if there exist real
coefficients α(i)

ℓ1,ℓ2
, for i ∈ [k∗] and 0 ≤ ℓ1 + ℓ2 ≤ 2, such that

k∑
i=1

2∑
ℓ1+ℓ2=0

α
(i)
ℓ1,ℓ2

· ∂ℓ1+ℓ2f

∂hℓ1
1 ∂σℓ2

(Y |h1(X, ai, bi), σ(X,σi)) = 0,

for almost surely (X,Y ), then we obtain that α(i)
ℓ1,ℓ2

= 0 for any i ∈ [k∗] and 0 ≤ ℓ1 + ℓ2 ≤ 2.

Example 1. The families of Student’s t-distributions and Laplace distributions are strongly identifi-
able, while the family of location-scale Gaussian distributions is not.

In high level, we need to establish the Total Variation lower bound EX [V (gG(·|X), gG∗(·|X))] ≳
D(G,G∗) for any G ∈ Ok(Ω). Then, this bound together with the density estimation rate in
Theorem 1 (resp. Theorem 3) leads to the parameter estimation rates in Theorem 2 (resp. Theorem 4).
Here, the key step is to decompose the difference gĜn

(Y |X) − gG∗(Y |X) into a combination of
linearly independent terms using Taylor expansions. Therefore, we have to involve the above notion
of strong identifiability, and separate our convergence analysis based on that notion.

Subsequently, since the convergence rates of maximum likelihood estimation when F is a family of
location-scale Gaussian distributions, which is not strongly identifiable, have already been studied in
Section 2 and Section 3, we will focus on the scenario when the family F is strongly identifiable
in the sequel. Under that assumption, the density f(Y |h1, σ) is twice differentiable in (h1, σ),
therefore, it is also Lipschitz continuous. As a consequence, the density estimation rates under both
the exact-specified and over-specified in Theorem 1 and Theorem 3 still hold true. Therefore, we aim
to establish the parameter estimation rates under those settings in Appendix E.1 and Appendix E.2,
respectively.
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E.1 EXACT-SPECIFIED SETTINGS

In this appendix, by using the Voronoi loss function D1(G,G∗) defined in equation (5), we demon-
strate in the following theorem that the rates for estimating true parameters exp(β∗

0i), β
∗
1i, a

∗
i , b

∗
i , σ

∗
i

are of parametric order Õ(n−1/2), which totally match those in Theorem 2.

Theorem 5. Under the exact-specified settings, if the family F is strongly identifiable, then the
Hellinger lower bound EX [h(gG(·|X), gG∗(·|X))] ≳ D1(G,G∗) holds for any mixing measure
G ∈ Ek∗(Ω). Consequently, we can find a universal constant C3 > 0 depending only on G∗, Ω and
K such that

P
(
D1(Ĝn, G∗) > C3

√
log(n)/n

)
≲ n−c3 ,

where c3 > 0 is a universal constant that depends only on Ω.

Proof of Theorem 5 is in Appendix E.3.1.

E.2 OVER-SPECIFIED SETTINGS

In this appendix, we capture the convergence rates of parameter estimation under the over-specified
settings when the family F is strongly identifiable.

Voronoi metric. It is worth noting that when F is strongly identifiable, the interaction among expert
parameters in the second PDE (6) no longer holds true. As a result, it is not necessary to involve the
solvability of the system (7) in the formulation of the Voronoi loss as in equation (8). Instead, let us
consider the Voronoi loss function D3(G,G∗) defined as

D3(G,G∗) := max
{ℓj}K

j=1⊂[k∗]

{ ∑
j∈[K],
|Cℓj

|=1

∑
i∈Cℓj

exp(β0i)
[
∥∆β1iℓj∥+ ∥∆aiℓj∥+ |∆biℓj |+ |∆σiℓj |

]

+
∑

j∈[K],
|Cℓj

|>1

∑
i∈Cℓj

exp(β0i)
[
∥∆β1iℓj∥2 + ∥∆aiℓj∥2 + |∆biℓj |2 + |∆σiℓj |2

]

+

K∑
j=1

∣∣∣ ∑
i∈Cℓj

exp(β0i)− exp(β∗
0ℓj )

∣∣∣}, (37)

for any mixing measure G ∈ Ok(Ω). Equipped with loss function, we are ready to illustrate the
convergence behavior of maximum likelihood estimation in the following theorem:

Theorem 6. Under the over-specified settings, if the family F is strongly identifiable, then the
Hellinger lower bound EX [h(gG(·|X), gG∗(·|X))] ≳ D2(G,G∗) holds for any mixing measure
G ∈ Ok(Ω). As a consequence, we can find a universal constant C4 > 0 depending only on G∗, Ω
and K such that

P
(
D3(Ĝn, G∗) > C4

√
log(n)/n

)
≲ n−c4 ,

where c4 > 0 is a universal constant that depends only on Ω.

Proof of Theorem 6 is in Appendix E.3.2. Theorem 6 indicates that true parameters β∗
1i, a

∗
i , b

∗
i , σ

∗
i ,

which are fitted by a single component, share the same estimation rates of order Õ(n−1/2) as those
in Theorem 4. By contrast, the estimation rates for true parameters β∗

1i, a
∗
i , b

∗
i , σ

∗
i , which are fitted by

more than one component, are of order Õ(n−1/4). Notably, these rates are no longer determined by
the solvability of the system (7). Thus, they are significantly faster than those in Theorem 4. The
main reason for this improvement is when F is strongly identifiable, the interaction among expert
parameters via the second PDE in equation (6) does not occur.
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E.3 PROOFS OF ADDITIONAL RESULTS

E.3.1 PROOF OF THEOREM 5

Following from the result of Theorem 1 and since the Hellinger distance is lower bounded by the Total
Variation distance, i.e. h ≥ V , it is sufficient to demonstrate for any mixing measure G ∈ Ok(Θ) that

EX [V (gG(·|X), gG∗(·|X))] ≳ D1(G,G∗),

which is then respectively broken into local part and global part as follows:

inf
G∈Ek∗ (Ω):D1(G,G∗)≤ε′

EX [V (gG(·|X), gG∗(·|X))]

D1(G,G∗)
> 0, (38)

inf
G∈Ek∗ (Ω):D1(G,G∗)>ε′

EX [V (gG(·|X), gG∗(·|X))]

D1(G,G∗)
> 0, (39)

for some constant ε′ > 0. Subsequently, we will prove only the local part (38), while the proof of the
global part (39) can be done similarly to that in Appendix A.2.

Proof of claim (38): It is sufficient to show that

lim
ε→0

inf
G∈Ek∗ (Ω):D1(G,G∗)≤ε

EX [V (gG(·|X), gG∗(·|X))]

D1(G,G∗)
> 0.

Assume that this inequality does not hold, then since the number of experts k∗ is known in this case,
there exists a sequence of mixing measure Gn :=

∑k∗
i=1 exp(β

n
0i)δ(βn

1i,a
n
i ,b

n
i ,σ

n
i ) ∈ Ek∗(Ω) such

that both D1(Gn, G∗) and EX [V (gGn(·|X), gG∗(·|X))]/D1(Gn, G∗) approach zero as n tends to
infinity. Since D1(Gn, G∗) → 0 as n → ∞, each Voronoi cell contains only one element. Thus,
we may assume WLOG that Cj = {j} for any j ∈ [k∗], which implies that (βn

1j , a
n
j , b

n
j , σ

n
j ) →

(β∗
1j , a

∗
j , b

∗
j , σ

∗
j ) and exp(βn

0j) → exp(β∗
0j) as n → ∞. WLOG, we assume that

D1(Gn, G∗) =

K∑
i=1

[
exp(βn

0i)
(
∥∆βn

1i∥+ ∥∆ani ∥+ ∥∆bni ∥+ ∥∆σn
i ∥

)
+

∣∣∣ exp(βn
0i)− exp(β∗

0i)
∣∣∣],

where we denote ∆βn
1i := βn

1i − β∗
1i, ∆ani := ani − a∗i , ∆bni := bni − b∗i and ∆σn

i := σn
i − σ∗

i .

Subsequently, by arguing in the same fashion as in Appendix A.2, we obtain that Xn
ℓ = X ∗

ℓ , where

Xn
ℓ :=

{
x ∈ X : (βn

1j)
⊤x ≥ (βn

1j′)
⊤x : ∀j ∈ {ℓ1, . . . , ℓK}, j′ ∈ {ℓK+1, . . . , ℓk∗}

}
,

X ∗
ℓ :=

{
x ∈ X : (β∗

1j)
⊤x ≥ (β∗

1j′)
⊤x : ∀j ∈ {ℓ1, . . . , ℓK}, j′ ∈ {ℓK+1, . . . , ℓk∗}

}
,

for any ℓ ∈ [q] for sufficiently large n.

Let ℓ ∈ [q] such that {ℓ1, . . . , ℓK} = {1, . . . ,K}. Then, for almost surely (X,Y ) ∈ X ∗
ℓ × Y , we

can rewrite the conditional densities gGn
(Y |X) and gG∗(Y |X) as

gGn
(Y |X) =

K∑
i=1

exp((βn
1i)

⊤X + βn
0i)∑K

j=1 exp((β
n
1j)

⊤X + βn
0j)

· f(Y |(ani )⊤X + bni , σ
n
i ),

gG∗(Y |X) =

K∑
i=1

exp((β∗
1i)

⊤X + β∗
0i)∑K

j=1 exp((β
∗
1j)

⊤X + β∗
0j)

· f(Y |(a∗i )⊤X + b∗i , σ
∗
i ).

Now, we break the rest of our arguments into three steps:

Step 1 - Taylor expansion:
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In this step, we take into account Hn :=
[∑K

i=1 exp((β
∗
1i)

⊤X + β∗
0i)

]
· [gGn

(Y |X)− gG∗(Y |X)].
Note that the quantity Hn can be represented as follows:

Hn =

K∑
i=1

exp(βn
0i)

[
exp((βn

1i)
⊤X)f(Y |(ani )⊤X + bni , σ

n
i )− exp((β∗

1i)
⊤X)f(Y |(a∗i )⊤X + b∗i , σ

∗
i )
]

−
K∑
i=1

exp(βn
0i)

[
exp((βn

1i)
⊤X)gGn

(Y |X)− exp((β∗
1i)

⊤X)gGn
(Y |X)

]
+

K∑
i=1

[
exp(βn

0i)− exp(β∗
0i)

][
exp((β∗

1i)
⊤X + β∗

0i)f(Y |(a∗i )⊤X + b∗i , σ
∗
i )− exp((β∗

1i)
⊤X)gGn

(Y |X)
]
.

By applying the first-order Taylor expansion to the first term in the above representation, which is
denoted by An, we get that

An =

K∑
i=1

∑
|α|=1

exp(βn
0i)

α!
· (∆βn

1i)
α1(∆ani )

α2(∆bni )
α3(∆σn

i )
α4

×Xα1+α2 exp((β∗
1i)

⊤X) · ∂|α2|+α3+α4f

∂h
|α2|+α3

1 ∂σα4

(Y |(a∗i )⊤X + b∗i , σ
∗
i ) +R1(X,Y ),

where R1(X,Y ) is a Taylor remainder that satisfies R1(X,Y )/D1(X,Y ) → 0 as n → ∞. Let
η1 = α1 + α2 ∈ Nd, η2 = |α2|+ α3 ∈ N and η3 = α4 ∈ N, then we can rewrite An as follows:

An =

K∑
i=1

1∑
η3=0

2−η3∑
|η1|+η2=1−η3

∑
α∈Iη1,η2,η3

exp(βn
0i)

α!
· (∆βn

1i)
α1(∆ani )

α2(∆bni )
α3(∆σn

i )
α4

×Xη1 exp((β∗
1i)

⊤X) · ∂η2+η3f

∂hη2

1 ∂ση3
(Y |(a∗i )⊤X + b∗i , σ

∗
i ) +R1(X,Y ), (40)

where we define

Iη1,η2,η3 := {(αi)
4
i=1 ∈ Nd × Nd × N× N : α1 + α2 = η1, |α2|+ α3 = η2, α4 = η3}. (41)

By arguing in a similar fashion for the second term in the representation of Hn, we also get that

Bn := −
K∑
i=1

∑
|γ|=1

exp(βn
0i)

γ!
(∆βn

1i) ·Xγ exp((βn
1i)

⊤X)gGn(Y |X) +R2(X,Y ),

where R2(X,Y ) is a Taylor remainder such that R2(X,Y )/D1(Gn, G∗) → 0 as n → ∞. Putting
the above results together, we rewrite the quantity Hn as follows:

Hn =

K∑
i=1

1∑
η3=0

2−η3∑
|η1|+η2=0

Un
i,η1,η2,η3

·Xη1 exp((β∗
1i)

⊤X)
∂η2+η3f

∂hη2

1 ∂ση3
(Y |(a∗i )⊤X + b∗i , σ

∗
i )

+

K∑
i=1

∑
0≤|γ|≤1

Wn
i,γ ·Xγ exp((β∗

1i)
⊤X)gGn(Y |X) +R1(X,Y ) +R2(X,Y ), (42)

in which we respectively define for each i ∈ [K] that

Un
i,η1,η2,η3

:=
∑

α∈Iη1,η2,η3

exp(βn
0i)

α!
· (∆βn

1i)
α1(∆ani )

α2(∆bni )
α3(∆σn

i )
α4 ,

Wn
i,γ := −exp(βn

0i)

γ!
(∆βn

1i)
γ ,

for any (η1, η2, η3) ̸= (0d, 0, 0) and |γ| ≠ 0d. Additionally, Un
i,0d,0,0

= −Wn
i,0d

:= exp(βn
0i) −

exp(β∗
0i).
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Step 2 - Non-vanishing coefficients:

Moving to the second step, we will show that not all the ratios Un
i,η1,η2,η3

/D1(Gn, G∗) tend to zero
as n goes to infinity. Assume by contrary that all of them approach zero when n → ∞, then for
(η1, η2, η3) = (0d, 0, 0), it follows that

1

D1(Gn, G∗)
·

K∑
i=1

∣∣∣ exp(βn
0i)− exp(β∗

0i)
∣∣∣ = K∑

i=1

|Un
j,η1,η2,η3

|
D1(Gn, G∗)

→ 0. (43)

Additionally, for tuples (η1, η2, η3) where η1 ∈ {e1, e2, . . . , ed} with ej := (0, . . . , 0, 1︸︷︷︸
j−th

, 0, . . . , 0)

and η2 = η3 = 0, we get

1

D1(Gn, G∗)
·

K∑
i=1

exp(βn
0i)∥∆βn

1i∥1 =

K∑
i=1

∑
η1∈{e1,...,ed}

|Un
j,η1,0,0

|
D1(Gn, G∗)

→ 0.

By using similar arguments, we end up with

1

D1(Gn, G∗)
·

K∑
i=1

exp(βn
0i)

[
∥∆βn

1i∥1 + ∥∆ani ∥1 + |∆bni |+ |∆σn
i |
]
→ 0.

Due to the topological equivalence between norm-1 and norm-2, the above limit implies that

1

D1(Gn, G∗)
·

K∑
i=1

exp(βn
0i)

[
∥∆βn

1i∥+ ∥∆ani ∥+ |∆bni |+ |∆σn
i |
]
→ 0. (44)

Combine equation (43) with equation (44), we deduce that D1(Gn, G∗)/D1(Gn, G∗) → 0, which is
a contradiction. Consequently, at least one among the ratios Un

i,η1,η2,η3
/D1(Gn, G∗) does not vanish

as n tends to infinity.

Step 3 - Fatou’s contradiction:

Let us denote by mn the maximum of the absolute values of Un
i,η1,η2,η3

/D1(Gn, G∗) and
Wn

i,γ/D1(Gn, G∗). It follows from the result achieved in Step 2 that 1/mn ̸→ ∞.

Recall from the hypothesis that EX [V (gGn
(·|X), gG∗(·|X))]/D1(Gn, G∗) → 0 as n → ∞. Thus,

by the Fatou’s lemma, we have

0 = lim
n→∞

EX [V (gGn
(·|X), gG∗(·|X))]

D1(Gn, G∗)
=

1

2
·
∫

lim inf
n→∞

|gGn
(Y |X)− gG∗(Y |X)|
D1(Gn, G∗)

dXdY.

This result indicates that |gGn
(Y |X)− gG∗(Y |X)|/D1(Gn, G∗) tends to zero as n goes to infinity

for almost surely (X,Y ). As a result, it follows that

lim
n→∞

Hn

mnD(Gn, G∗)
=

[ K∑
i=1

exp((β∗
1i)

⊤X + β∗
0i)

]
· lim
n→∞

|gGn(Y |X)− gG∗(Y |X)|
mnD1(Gn, G∗)

= 0.

Next, let us denote Un
i,η1,η2,η3

/[mnD1(Gn, G∗)] → τi,η1,η2,η3
and Wn

i,γ/[mnD1(Gn, G∗)] → κi,γ

with a note that at least one among them is non-zero. From the formulation of Hn in equation (42),
we deduce that

K∑
i=1

1∑
η3=0

2−η3∑
|η1|+η2=0

τi,η1,η2,η3
·Xη1 exp((β∗

1i)
⊤X)

∂η2+η3f

∂hη2

1 ∂ση3
(Y |(a∗i )⊤X + b∗i , σ

∗
i )

+

K∑
i=1

∑
0≤|γ|≤1

κi,γ ·Xγ exp((β∗
1i)

⊤X)gG∗(Y |X) = 0,

for almost surely (X,Y ). This equation is equivalent to
1∑

|η1|=0

[ K∑
i=1

2−|η1|∑
η2+η3=0

τi,η1,η2,η3 exp((β
∗
1i)

⊤X)
∂η2+η3f

∂hη2

1 ∂ση3
(Y |(a∗i )⊤X + b∗i , σ

∗
i )

+ κi,η1
exp((β∗

1i)
⊤X)gG∗(Y |X)

]
×Xη1 = 0,
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for almost surely (X,Y ). It is clear that the left hand side of the above equation is a polynomial of X
belonging to the compact set X . As a result, we get that

K∑
i=1

2−|η1|∑
η2+η3=0

τi,η1,η2,η3
exp((β∗

1i)
⊤X)

∂η2+η3f

∂hη2

1 ∂ση3
(Y |(a∗i )⊤X + b∗i , σ

∗
i )

+ κi,η1
gG∗(Y |X) exp((β∗

1i)
⊤X) = 0,

for any i ∈ [K], 0 ≤ |η1| ≤ 1 and almost surely (X,Y ). Since (a∗1, b
∗
1, σ

∗
1), . . . , (a

∗
K , b∗K , σ∗

K) have
pair-wise distinct values and the family F is strongly identifiable, the set{ ∂η2+η3f

∂hη2

1 ∂ση3
(Y |(a∗i )⊤X + b∗i , σ

∗
i ) : i ∈ [K], 0 ≤ η2 + η3 ≤ 2− |η1|

}
is linearly independent w.r.t (X,Y ). Consequently, we obtain that τi,η1,η2,η3

= κi,η1
= 0 for any

i ∈ [K], 0 ≤ |η1| ≤ 1 and 0 ≤ η2 + η3 ≤ 2− |η1|, which contradicts the fact that at least one among
these terms is different from zero.

Hence, we reach the desired conclusion.

E.3.2 PROOF OF THEOREM 6

Similar to the proof of Theorem 5 in Appendix E.3.1, our objective here is also to derive the local
part of the following Total Variation lower bound:

EX [V (gG(·|X), gG∗(·|X))] ≳ D3(G,G∗),

for any G ∈ Ok(Θ). In particular, we aim to show that

lim
ε→0

inf
G∈Ok(Θ):D3(G,G∗)≤ε

EX [V (gG(·|X), gG∗(·|X))]

D2(G,G∗)
> 0. (45)

Assume that the above claim does not hold true, then we can find a sequence of mixing
measures Gn :=

∑kn

i=1 exp(β
n
0i)δ(βn

1i,a
n
i ,b

n
i ,σ

n
i ) ∈ Ok(Ω) such that both D3(Gn, G∗) and

EX [V (gGn
(·|X), gG∗(·|X))]/D3(Gn, G∗) vanish when n goes to infinity. Then, it follows that

for any j ∈ [k∗], we have
∑

i∈Cj
exp(βn

0i) → exp(β∗
0j) and (βn

1i, a
n
i , b

n
i , σ

n
i ) → (β∗

1j , a
∗
j , b

∗
j , σ

∗
j ) for

all i ∈ Cj . WLOG, we may assume that

D3(Gn, G∗) =
∑

j∈[K],
|Cj |>1

∑
i∈Cj

exp(βn
0i)

[
∥∆βn

1ij∥2 + ∥∆anij∥2 + |∆bnij |2 + |∆σn
ij |2

]

+
∑

j∈[K],
|Cj |=1

∑
i∈Cj

exp(βn
0i)

[
∥∆βn

1ij∥+ ∥∆anij∥+ |∆bnij |+ |∆σn
ij |
]
+

K∑
j=1

∣∣∣ ∑
i∈Cj

exp(βn
0i)− exp(β∗

0j)
∣∣∣.

Subsequently, let X ∈ X ∗
ℓ for some ℓ ∈ [q] such that {ℓ1, . . . , ℓK} = {1, . . . ,K}, where

X ∗
ℓ :=

{
x ∈ X : (β∗

1j)
⊤x ≥ (β∗

1j′)
⊤x, ∀j ∈ {ℓ1, . . . , ℓK}, j′ ∈ {ℓK+1, . . . , ℓk∗}

}
.

Then, for any ℓ ∈ [q], we denote (ℓ1, . . . , ℓk) as a permutation of (1, . . . , k) and

Xn
ℓ
:=

{
x ∈ X : (βn

1i)
⊤x ≥ (βn

1i′)
⊤x, ∀i ∈ {ℓ1, . . . , ℓK}, i′ ∈ {ℓK+1, . . . , ℓk}

}
.

If {ℓ1, . . . ℓK} ≠ C1 ∪ . . . ∪ CK for any ℓ ∈ [q], then V (gGn
(·|X), gG∗(·|X))/D3(Gn, G∗) ̸→ 0 as

n tends to infinity. This contradicts the fact that this term must approach zero. Therefore, we only
need to consider the scenario when there exists ℓ ∈ [q] such that {ℓ1, . . . ℓK} = C1 ∪ . . . ∪ CK . By
using the same arguments as in Appendix B.2, we obtain that X ∈ Xn

ℓ
.
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Then, we can represent the conditional densities gG∗(Y |X) and gGn
(Y |X) for any sufficiently large

n as follows:

gG∗(Y |X) =

K∑
j=1

exp((β∗
1j)

⊤X + β∗
0j)∑K

j′=1 exp((β
∗
1j′)

⊤X + β∗
0j′)

· f(Y |(a∗j )⊤X + b∗j , σ
∗
j ),

gGn
(Y |X) =

K∑
j=1

∑
i∈Cj

exp((βn
1i)

⊤X + βn
0i)∑K

j′=1

∑
i′∈Cj′

exp((βn
1i′)

⊤X + βn
0i′)

· f(Y |(ani )⊤X + bni , σ
n
i ).

Now, we reuse the three-step framework in Appendix E.3.1.

Step 1 - Taylor expansion:

Firstly, by abuse of notations, let us consider the quantity

Hn :=
[ K∑
j=1

exp((β∗
1j)

⊤X + β∗
0j)

]
· [gGn

(Y |X)− gG∗(Y |X)].

Similar to Step 1 in Appendix A, we can express this term as

Hn =

K∑
j=1

∑
i∈Cj

exp(βn
0i)

[
exp((βn

1i)
⊤X)f(Y |(ani )⊤X + bni , σ

n
i )− exp((β∗

1j)
⊤X)f(Y |(a∗j )⊤X + b∗j , σ

∗
j )
]

−
K∑
j=1

∑
i∈Cj

exp(βn
0i)

[
exp((βn

1i)
⊤X)gGn(Y |X)− exp((β∗

1j)
⊤X)gGn(Y |X)

]

+

K∑
j=1

[ ∑
i∈Cj

exp(βn
0i)− exp(β∗

0j)
][

exp((β∗
1j)

⊤X)f(Y |(a∗i )⊤X + b∗i , σ
∗
i )− exp((β∗

1j)
⊤X)gGn

(Y |X)
]

:= An +Bn + En.

Next, we proceed to decompose An based on the cardinality of the Voronoi cells as follows:

An =
∑

j:|Cj |=1

∑
i∈Cj

exp(βn
0i)

[
exp((βn

1i)
⊤X)f(Y |(ani )⊤X + bni , σ

n
i )− exp((β∗

1i)
⊤X)f(Y |(a∗i )⊤X + b∗i , σ

∗
i )
]

+
∑

j:|Cj |>1

∑
i∈Cj

exp(βn
0i)

[
exp((βn

1i)
⊤X)f(Y |(ani )⊤X + bni , σ

n
i )− exp((β∗

1i)
⊤X)f(Y |(a∗i )⊤X + b∗i , σ

∗
i )
]
.

By applying the Taylor expansions of first and second orders to the first and second terms of An,
respectively, and following the derivation in equation (40), we arrive at

An =
∑

j:|Cj |=1

∑
i∈Cj

1∑
η3=0

2−η3∑
|η1|+η2=1−η3

∑
α∈Iη1,η2,η3

exp(βn
0i)

α!
· (∆βn

1ij)
α1(∆anij)

α2(∆bnij)
α3(∆σn

i )
α4

×Xη1 exp((β∗
1j)

⊤X) · ∂η2+η3f

∂hη2

1 ∂ση3
(Y |(a∗j )⊤X + b∗j , σ

∗
j ) +R3(X,Y )

+
∑

j:|Cj |>1

∑
i∈Cj

2∑
η3=0

4−η3∑
|η1|+η2=1−1{η3>0}

∑
α∈Iη1,η2,η3

exp(βn
0i)

α!
· (∆βn

1ij)
α1(∆anij)

α2(∆bnij)
α3(∆σn

ij)
α4

×Xη1 exp((β∗
1j)

⊤X) · ∂η2+η3f

∂hη2

1 ∂ση3
(Y |(a∗j )⊤X + b∗j , σ

∗
j ) +R4(X,Y ),

where the set Iη1,η2,η3 is defined in equation (41) while Ri(X,Y ) is a Taylor remainder such that
Ri(X,Y )/D3(Gn, G∗) → 0 as n → ∞ for i ∈ {3, 4}. Similarly, we also decompose Bn as

Bn = −
∑

j:|Cj |=1

∑
i∈Cj

∑
|γ|=1

exp(βn
0i)

γ!
(∆βn

1i) ·Xγ exp((β∗
1j)

⊤X)gGn
(Y |X) +R5(X,Y )

−
∑

j:|Cj |>1

∑
i∈Cj

∑
1≤|γ|≤2

exp(βn
0i)

γ!
(∆βn

1i) ·Xγ exp((β∗
1j)

⊤X)gGn
(Y |X) +R6(X,Y ),
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where R5(X,Y ) and R6(X,Y ) are Taylor remainders such that their ratios over D3(Gn, G∗) ap-
proach zero as n → ∞. Subsequently, let us define

Sn
j,η1,η2,η3

:=
∑
i∈Cj

∑
α∈Iη1,η2,η3

exp(βn
0i)

α!
· (∆βn

1ij)
α1(∆anij)

α2(∆bnij)
α3(∆σn

ij)
α4 ,

Tn
j,γ := −

∑
i∈Cj

exp(βn
0i)

γ!
(∆βn

1ij)
γ = −Sn

j,γ,0,0,

for any (η1, η2, η3) ̸= (0d, 0, 0) and |γ| ≠ 0d, while for (η1, η2, η3) = (0d, 0) we set

Sn
i,0d,0

= −Tn
i,0d

:=
∑
i∈Cj

exp(βn
0i)− exp(β∗

0i).

As a consequence, it follows that

Hn =

K∑
j=1

1+1{|Cj |>1}∑
η3=0

2(1+1{|Cj |>1})−η3∑
|η1|+η2=0

Sn
j,η1,η2,η3

·Xη1 exp((β∗
1j)

⊤X) · ∂
η2f

∂hη2

1

(Y |(a∗j )⊤X + b∗j , σ
∗
j )

+

K∑
j=1

1+1{|Cj |>1}∑
|γ|=0

Tn
j,γ ·Xγ exp((β∗

1j)
⊤X)gGn(Y |X) +R5(X,Y ) +R6(X,Y ). (46)

Step 2 - Non-vanishing coefficients:

In this step, we will prove by contradiction that at least one among the ratios Sn
j,η1,η2,η3

/D3(Gn, G∗)
does not converge to zero as n → ∞. Assume that all these terms go to zero, then by employing
arguments for deriving equations (43) and (44), we get that

1

D3(Gn, G∗)
·
[ K∑
j=1

∣∣∣ ∑
i∈Cj

exp(βn
0i)− exp(β∗

0j)
∣∣∣

+
∑

j:|Cj |=1

∑
i∈Cj

exp(βn
0i)

(
∥∆βn

1ij∥+ ∥∆anij∥+ |∆bnij |+ |∆σn
ij |
)]

→ 0.

Next, let ej := (0, . . . , 0, 1︸︷︷︸
j−th

, 0, . . . , 0) for any j ∈ [d]. Then, we have

1

D3(Gn, G∗)
·

K∑
i=1

exp(βn
0i)∥∆βn

1ij∥2 =

K∑
i=1

∑
η1∈{2e1,...,2ed}

|Un
j,η1,0,0

|
D3(Gn, G∗)

→ 0.

Similarly, we also get that

1

D3(Gn, G∗)
·

K∑
i=1

exp(βn
0i)∥∆bnij∥2 → 0,

1

D3(Gn, G∗)
·

K∑
i=1

exp(βn
0i)∥∆σn

ij∥2 → 0

Moreover, note that

1

D3(Gn, G∗)
·

K∑
i=1

exp(βn
0i)∥∆anij∥2 =

K∑
i=1

∑
η1∈{2e1,...,2ed}

|Un
j,η1,2,0

|
D3(Gn, G∗)

→ 0.

Gathering all the above limits, we obtain that 1 = D3(Gn, G∗)/D3(Gn, G∗) → 0 as n → ∞, which
is a contradiction. Thus, at least one among the terms Sn

j,η1,η2,η3
/D3(Gn, G∗) does not converge to

zero as n → ∞
Step 3 - Fatou’s contradiction:

It follows from the hypothesis that EX [V (gGn
(·|X), gG∗(·|X))]/D3(Gn, G∗) → 0 as n → ∞.

Then, by applying the Fatou’s lemma, we get

0 = lim
n→∞

EX [V (gGn
(·|X), gG∗(·|X))]

D3(Gn, G∗)
=

1

2
·
∫

lim inf
n→∞

|gGn
(Y |X)− gG∗(Y |X)|
D3(Gn, G∗)

dXdY,
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which implies that |gGn
(Y |X)−gG∗(Y |X)|/D3(Gn, G∗) → 0 as n → ∞ for almost surely (X,Y ).

Next, we define mn as the maximum of the absolute values of Sn
j,η1,η2/D3(Gn,G∗)

. It follows from
Step 2 that 1/mn ̸→ ∞. Moreover, by arguing in the same way as in Step 3 in Appendix E.1, we
receive that

Hn/[mnD3(Gn, G∗)] → 0 (47)

as n → ∞. By abuse of notations, let us denote

Sn
j,η1,η2,η3

/[mnD3(Gn, G∗)] → τj,η1,η2,η3

Here, at least one among τj,η1,η2,η3
is non-zero. Then, by putting the results in equations (46) and

(47) together, we get

K∑
j=1

1+1{|Cj |>1}∑
η3=0

2(1+1{|Cj |>1})−η3∑
|η1|+η2=0

τj,η1,η2,η3
·Xη1 exp((β∗

1j)
⊤X)

∂η2+η3f

∂hη2

1 ∂ση3
(Y |(a∗j )⊤X + b∗j , σ

∗
j )

+

K∑
j=1

1+1{|Cj |>1}∑
|γ|=0

−τnj,γ,0,0 ·Xγ exp((β∗
1j)

⊤X)gG∗(Y |X) = 0,

for almost surely (X,Y ). Arguing in a similar fashion as in Step 3 of Appendix E.1, we obtain that
τj,η1,η2,η3

= 0 for any j ∈ [K], 0 ≤ |η1|+ η2 + η3 ≤ 2(1+1{|Cj |>1}) and 0 ≤ |γ| ≤ 1+1{|Cj |>1}.
This contradicts the fact that at least one among them is non-zero. Hence, the proof is completed.
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