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ABSTRACT

In critical applications, it is vital for classifiers to defer decision-making to humans.
We propose a post-hoc method that makes existing classifiers selectively abstain
from predicting certain samples. Our abstaining classifier is incentivized to main-
tain the original accuracy for each sub-population (i.e. no harm) while achieving a
set of group fairness definitions to a user specified degree. To this end, we design
an Integer Programming (IP) procedure that assigns abstention decisions for each
training sample to satisfy a set of constraints. To generalize the abstaining decisions
to test samples, we then train a surrogate model to learn the abstaining decisions
based on the IP solutions in an end-to-end manner. We analyze the feasibility of
the IP procedure to determine the possible abstention rate for different levels of
unfairness tolerance and accuracy constraint for achieving no harm. To the best
of our knowledge, this work is the first to identify the theoretical relationships
between the constraint parameters and the required abstention rate. Our theoretical
results are important since a high abstention rate is often infeasible in practice due
to a lack of human resources. Our framework outperforms existing methods in
terms of fairness disparity without sacrificing accuracy at similar abstention rates.

1 INTRODUCTION

Enabling machine learning (ML) systems to abstain from decision-making is essential in high-stakes
scenarios. The development of classifiers with appropriate abstention mechanisms has recently
attracted significant research attention and found various applications (Herbei & Wegkamp, 2006;
Cortes et al., 2016; Madras et al., 2018a; Lee et al., 2021; Mozannar et al., 2023). In this paper, we
demonstrate that allowing a classifier to abstain judiciously enhances fairness guarantees in model
outputs while maintaining, or even improving, the accuracy for each sub-group in the data.

Our work is primarily anchored in addressing the persistent dilemma of the fairness-accuracy tradeoff
– a prevalent constraint suggesting that the incorporation of fairness into an optimization problem
invariably compromises achievable accuracy (Kleinberg et al., 2016). To circumvent this problem,
we propose to use classifiers with abstentions. Conventionally, the fairness-accuracy tradeoff arises
due to the invariance of data distribution and the rigid model hypothesis space. Intuitively, by
facilitating abstentions within our model, we introduce a framework that permits the relaxation of
both limiting factors (distribution & model space). This transformation occurs as the abstention
mechanism inherently changes the distributions upon which the classifier’s accuracy and fairness are
computed. In addition, since the final model output is a combination of the abstention decision and
the original model prediction, the model hypothesis space expands. This adaptability paves the way
for our approach to breaking the fairness-accuracy curse.

There exist several works that explore abstaining classifiers to achieve better fairness (Madras
et al., 2018b; Lee et al., 2021). In contrast, we aim to achieve the following four requirements
simultaneously, a rather ambitious goal that separates our work from the prior ones:
• Feasibility of Abstention: We need to determine if achieving fairness with no harm is feasible or

not at a given abstention rate.

*Part of the work is done as an intern at Bytedance.
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Related Works Abstention Rate Control Multiple Fairness Fairness Guarantee No Harm

LTD (Madras et al., 2018b) ✓

FSCS (Lee et al., 2021) ✓

FAN (Our work) ✓ ✓ ✓ ✓

Table 1: A summary of key properties of our work and closely related works.

• Compatible with Multiple Common Fairness Definitions: We seek a flexible solution that can
adapt to different fairness definitions.

• Fairness Guarantee: We aim for a solution that provides a strong guarantee for fairness violations,
i.e., impose hard constraint on disparity.

• No Harm: We desire a solution that provably guarantees each group’s accuracy is no worse than
the original (i.e. abstaining-free) classifier.

We propose a post-hoc solution that abstains from a given classifier to achieve the above requirements.
Our solution has two stages. In Stage I, we use an integer programming (IP) procedure that decides
whether it is feasible to satisfy all our requirements with a specific abstention rate. If feasible, Stage
I will return the optimal abstention decisions for each training sample. However, a solution that
satisfies all our constraints might not exist. To expand the feasible space of the solution, we also
selectively flip the model prediction. Stage I informs us how to abstain on the training samples; to
expand the abstention (and flipping) decisions to unseen data, Stage II trains a surrogate model to
encode and generalize the optimal abstention and flipping patterns in an end-to-end manner.

We name our solution as Fair Abstention classifier with No harm (FAN). Compared to the prior works,
our solution guarantees the four desired properties mentioned before, shown in Table 1. To the best of
our knowledge, our method is the first to develop an abstention framework that incorporates a variety
of constraints, including feasible abstention rates, compatibility with different fairness definition,
fairness guarantees and no harm. We theoretically analyze the conditions under which the problem
is feasible - our work is the first to characterize the feasibility region for an abstaining mechanism
to achieve some of the above-listed constraints. We have carried out extensive experiments to
demonstrate the benefits of our solution compared to strong existing baselines.

1.1 RELATED WORK

Fair Classification. Our work relates broadly to fairness in machine learning literature (Dwork et al.,
2012; Hardt et al., 2016; Kusner et al., 2017; Menon & Williamson, 2018; Ustun et al., 2019). Our
work is particularly inspired by the reported fairness-utility tradeoff (Menon & Williamson, 2018;
Kleinberg et al., 2016). One way to resolve the problem is to decouple the training of classifiers
to guarantee each group receives a model that is no worse than the baseline but this line of work
often requires knowing the sensitive attribute at test time and is less flexible to incorporate different
fairness definitions (Ustun et al., 2019). There’s a wide range of approaches available to achieve
fairness, including pre-processing methods (Nabi & Shpitser, 2018; Madras et al., 2018a; Luong et al.,
2011; Kamiran & Calders, 2012), in-processing techniques (Pleiss et al., 2017; Noriega-Campero
et al., 2019; Kim et al., 2018), and post-processing methods (Ustun et al., 2019; Agarwal et al., 2018;
Kamishima et al., 2012). Our work specifically focuses on post-processing techniques.

Abstain Classifier. Existing literature provides an expansive exploration of abstention or selective
classifiers (Cortes et al., 2016; Chow, 1957; Hellman, 1970; Herbei & Wegkamp, 2006; Geifman
& El-Yaniv, 2017). Typically, selective classification predicts outcomes for high-certainty samples
and abstains on lower ones, where the softmax outputs of the classifier are employed (Cordella et al.,
1995; El-Yaniv et al., 2010). Interestingly, (Jones et al., 2020) highlights a potential pitfall, suggesting
that selective classifiers can inadvertently exacerbate fairness problems if not used judiciously. This
finding underscores the importance of careful application and has inspired various fair selective
methodologies (Shah et al., 2022; Lee et al., 2021; Schreuder & Chzhen, 2021; Mozannar & Son-
tag, 2020; Madras et al., 2018b). However, these methodologies primarily focus on regression or
incorporate fairness constraints in their optimization objectives to create selective classifiers. For
instance, LTD (Madras et al., 2018b) introduces a penalty term to address high abstention rates and
unfairness. However, it lacks robust mechanisms for controlling both abstention rates and fairness.
On the other hand, FSCS (Lee et al., 2021) presents an abstention framework specifically designed
to reduce precision disparities among different groups, but it does not accommodate other fairness
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Figure 1: Overview of FAN. We first get the baseline classifier h’s confidence score on data, i.e.
s = h(x). We then forward the confidence scores to Abstention Block AB where a model hA either
tells us to abstain (i.e. hA(x, s) = 0) or to pass to the Flip Block FB (i.e. hA(x, s) = 1). If abstained,
then it is the final outcome. Otherwise, FB will decided on the unabstained samples if their predicted
labels ŷb = s ≥ t0 should be flipped or not. ŷ is the final outcome.

definitions. Additionally, neither of these approaches offers a way to monitor or control the accuracy
reduction for each group.

Our paper proposes a novel approach that first utilizes exact integer programming to establish the
optimal classifier that satisfies all the aforementioned constraints, then trains a surrogate model
on the output of said IP. The most relevant work to ours is (Mozannar et al., 2023), which applies
Mixed-Integer Programming (MIP) to the selective classification problem, but differs in terms of the
fairness, no harm, and feasibility guarantees. Furthermore, we introduce distinctive strategies that
can be deployed without requiring knowledge of the true label. These strategies involve training a
model based on the IP’s output, which not only enhances efficiency but also substantially reduces
computational requirements, especially in large-scale problems. Whereas the MIP design proposed
in Mozannar et al. (2023) is limited to moderately-sized problems and relies on the availability of
true labels at the inference time.

2 PRELIMINARIES AND OVERVIEW

Let D be a data distribution defined for a set of random variables (X,Z, Y ), representing each
feature (e.g., application profile in a loan application), protected attribute (e.g., gender or race), and
label (qualified or not in a loan application), respectively. Consider a discrete Z ∈ Z and a binary
classification problem where Y = 1 indicates the model predicts positive (i.e. to the favorable
outcome) on the sample, Y = 0 indicates negative (i.e., unfavorable), and X ∈ X . We assume a
training dataset sampled i.i.d. from D with N samples: (x1, z1, y1), (x2, z2, y2), · · · , (xN , zN , yN ).
We aim to develop a post-hoc framework, named FAN, that takes in a trained classifier h : X → [0, 1],
i.e. the baseline classifier, and outputs its abstaining decisions. Denote S = h(X) ∈ [0, 1] the
confidence score for individual X , and the predicted label Ŷb = 1[h(X) ≥ t0] based on a user-
specified threshold t0.

Figure 1 shows the overview of FAN. We will use two modules, Abstention Block (AB) and Flip Block
(FB), to determine from which samples the classifier should abstain. The goal of AB is to decide
which samples to abstain in order to satisfy our set of constraints; the goal of FB is to expand the
feasibility region of the final decision outcomes, enabling a larger feasibility region of the formulated
problem (see Section 3.1 for the explanation).

AB, i.e. hA : [X , h(X )] → {0, 1}, takes the feature X of the given individual, and the corresponding
confidence score S predicted from the baseline model as inputs, and decides whether to abstain the
prediction. hA (X,h(X)) = 0 indicates that the prediction should abstain. Samples that are not
abstained by AB will be forwarded to FB. FB, i.e. hF : [X , h(X )] → {0, 1} decides whether to flip
the prediction of h or not, which is the final decision of FAN:

Ŷ =

{
1− Ŷb if hF (X,h(X)) = 1

Ŷb otherwise
(1)
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3 METHOD

We explain how we formulate the problem to achieve our goal and our two-stage algorithm.

3.1 PROBLEM FORMULATION

In general, improving fairness often results in decreased accuracy (Kleinberg et al., 2016). In our
case, though, we enable abstention, which allows us to prioritize fairness while still maintaining
accuracy. Furthermore, we desire a formulation that imposes hard constraints for both fairness and
accuracy, as compared to prior works that only incorporate a soft penalty term into the objective
function (Madras et al., 2018b; Lee et al., 2021).

Specifically, we use the following optimization problem to obtain hA, hF in our AB and FB:

min
hA,hF

ED

[(
hF (X,h(X))

(
1− Ŷb

)
+
(
1− hF (X,h(X))

)
Ŷb

)
̸= Y | hA (X,h(X)) = 1

]
(Error Rate)

s.t. D(hA, hF , z, z
′) ≤ E , ∀z, z′ ∈ Z (Disparity)

ED

[
hA (X,h(X)) | Z = z

]
≥ 1− δz, ∀z ∈ Z (Abstention Rate)

ED

[(
hF (X,h(X))

(
1− Ŷb

)
+
(
1− hF (X,h(X))

)
Ŷb

)
̸= Y | hA (X,h(X)) = 1, Z = z

]
≤ e′z,∀z ∈ Z, (No Harm)

where e′z = (1+ ηz)ez . ez = ED [h(X) ̸= Y | Z = z] is the error rate of baseline optimal classifier
h, δz . ηz is a “slack" we allow for the no harm constraint and is chosen such that 0 ≤ (1+ ηz)ez ≤ 1.

Error Rate. Our main objective is to minimize 0-1 loss for all samples that are not abstained.

Disparity. We enforce a fairness constraint between every pair of groups z, z′ ∈ Z , by bounding
the disparity D within the predefined design parameter E . There are several fairness definitions that
can be applied. In this paper, we utilize three specific fairness notions, Demographic Parity (DP)
(Dwork et al., 2012), Equal Opportunity (EOp) (Hardt et al., 2016), Equalized Odds (EOd) (Hardt
et al., 2016). Details are shown in Table 3.

Abstention Rate. Although abstention can lead to better model performance, a high abstention rate
can be impractical due to a lack of human resources. Therefore, it is crucial to limit the abstention
rate. To address this issue, we set a maximum threshold for the proportion of instances that the system
can abstain in each group. The abstention rate should not exceed a user-specified threshold δz for
each group z. Intuitively, this means that we cannot simply decide to forgo giving predictions on the
majority of the samples (or the majority from a certain group), because even though it would satisfy
all the other constraints it would not be practically useful. Note that to introduce more flexibility, we
enable independent control of the abstention rates for each group.

No Harm. We ensure the classifier does not compromise the accuracy of the groups. The extent of
relaxation is determined by a user-specified ηz , which establishes the maximum allowable reduction
in accuracy. When ηz > 0, IP permits a certain degree of relaxation on the error rate bound for each
group. Conversely, when ηz < 0, it implies that a lower group error rate is mandated.

Why Need FB.The fairness and no harm constraints specified in Disparity and No Harm jointly impose
challenging constraints for the decision rule to satisfy. For instance, the no harm constraint only
allows certain predictions to be abstained, as this constraint essentially requires us to abstain more
from wrongly predicted samples. When a classifier is relatively accurate, and when the abstention
rate is constrained, we are left with only a small feasibility region. The FB block opens up more
design space for the abstention policy, as we flip properly, the disparity and no harm conditions could
become easier to satisfy. Note that flipping model predictions is a popular post hoc way of expanding
the model decision space towards improving fairness (Menon & Williamson, 2018). We illustrate it
using the following example:
Example 3.1. Consider Demographic Parity (DP) as the fairness measure, imagine a system with
two groups, where the allowed abstention rate is δ1 = δ2 = 0.1. If we set ε = 0.1 as the permissible
disparity in demographic parity (DP), according to the baseline classifier, the acceptance rate for
group 1 and 2 are 0.3 and 0.7 respectively. Even if we abstain only from the positive samples in
group 2, the adjusted acceptance rates would be 0.3 and 0.6 respectively, while the resulting disparity
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(0.3) is still greater than ε. However, if flipping is allowed, we can further flip 0.2 positive samples of
group 2 to negative, resulting in final adjusted acceptance rates of 0.3 and 0.4. *

3.2 TWO-STAGE PROCEDURE
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Figure 2: Illustration of the two-stage design.

Directly solving the optimization problem in Sec-
tion 3.1 is challenging because it would require joint
training of hA and hF . In addition, the analysis of
its feasibility would also highly rely on the hypoth-
esis space for learning hA and hF . Lastly, the com-
position of multiple sets of constraints adds to the
difficulty of solving and analyzing it. To solve those
challenges, we propose a two-stage approach to train
hA and hF . Instead of solving the inflexible and
costly optimization problem on the fly, it learns the
optimal abstention patterns end to end.

Stage I: Integer Programming. For a dataset with N individuals, the goal of Stage I is to learn
two N-length vectors: ω = {ωn}N and f = {fn}N , which represent predictions of hA(X,h(X))
and hF (X,h(X)) on this dataset, respectively. In other words, ωn = hA(xn, h(xn)) ∈ {0, 1}, and
fn = hF (xn, h(xn)) ∈ {0, 1}.

min
ω,f

N∑
n=1

ωn · 1[ŷn ̸= yn] :=

N∑
n=1

ωn · 1 [(ŷbn(1− fn) + (1− ŷbn)fn) ̸= yn] (IP-Main)

s.t. D̄ ≤ Ē , ∀z, z′ ∈ Z (Disparity)∑N
n=1 ωn · 1[zn = z]∑N

n=1 1[zn = z]
≥ (1− δz), ∀z ∈ Z (Abstention Rate)

N∑
n=1

ωn · 1[ŷn ̸= yn, zn = z] ≤

(
N∑

n=1

ωn · 1[zn = z]

)
· (1 + ηz)ez,∀z ∈ Z (No Harm)

ωn ∈ {0, 1}, fn ∈ {0, 1}, ∀n.

Solving it gives us the abstention (i.e. ω) and flipping decision (i.e. f ) for each of the training data.
The empirical version of the (Disparity) constraints can be found in Table 4 in the Appendix.

Stage II: Learning to Abstain. Although IP results offer an optimal solution for the training data,
they are not applicable at inference time. This is due to two main reasons. First, accessing the ground
truth label y is impossible during inference, which is a necessary input for IP. Second, solving IP is
too time-consuming to perform during inference. To solve this problem, we train surrogate models to
learn the abstaining and flipping patterns in an end-to-end manner (i.e. from features to abstention
and flipping decisions). We use the IP solutions (on the training samples) as the surrogate models’
training data, and we want the surrogate model to generalize the patterns to the unseen test samples.
Figure 2 illustrates our design and we will describe the details in Appendix B.

Note that we only need to solve IP-Main and train surrogate models during the training process, and
when we deploy FAN, we only need to run inference on the trained AB and FB, and therefore the
inference overhead is small.

4 THEORETICAL ANALISIS: FEASIBILITY AND FAIRNESS IN ABSTENTION

The selection of design parameters (including δz, ηz, ε), plays a crucial role in training AB and FB,
therefore the overall performance of FAN. A higher level of disparity restriction can intuitively result
in a higher rate of data samples being abstained from classification, while a more stringent accuracy
requirement can also increase the abstention rate and make the problem infeasible. In this section, we
focus on theoretically analysis of Stage I, Specifically we answer the following research questions:

*To keep the example simple, we do not consider accuracy here. While in our formulation, Error Rate and No
Harm together ensure that flipping would not cause harm but rather incentivize improvements in accuracy.
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Under what conditions will Problem IP-Main become feasible for each fairness notion? What is
the relationship between the design parameters?

We derive the feasibility condition for the IP formulation (IP-Main) in Stage I. The task of theoreti-
cally bounding the performance gap between predictions (surrogate models in Stage II) and ground
truth (IP solution in Stage I) is generally challenging as the models are neural networks, therefore we
study it empirically in Section 5.

We summarize the key parameters used in this section:

ε δz ez ηz τz (TBD in 4.1)
Fairness Abstention rate Error rate for z Error rate slack or Qualification rate
Disparity allowed for z by h restrictiveness compared to baseline of group z

4.1 FEASIBILITY

Define τz =
∑

n 1[zn=z]yn∑
n 1[zn=z] the proportion of qualified individuals of group z, i.e., qualification rate of

group z. We prove the following results for demographic parity:

Theorem 4.1. (Feasibility of Demographic Parity (DP)) (IP-Main) is feasible under DP if and only
if ∀z̄, z ∈ Z such that τz̄ ≥ τz ,

δz̄ ≥ 1−
1 + ε+ (1 + ηz)ez − τz̄ + τz

1− (1 + ηz̄)ez̄
. (2)

Theorem 4.1 demonstrates the feasibility of the IP to achieve Demographic Parity. Specifically, the
theorem establishes the minimum value of δz that is allowed, subject to upper bounds on disparity
and a relaxation parameter for the error rate. This highlights the importance of abstention by the
more qualified group (higher qualification rate) for achieving a fair model without compromising
accuracy, while the less qualified group need not abstain. Later in Section 4.2, we provide further
treatment to remedy the concern over an imbalanced abstention rate.

Specifically, for the two group scenario (Z = {z̄, z}), our results demonstrate that increasing the
values of ηz and ηz will lead to smaller values of δz̄ , indicating that a relaxation of the error rate
can allow the more qualified group to abstain from fewer samples. Additionally, a looser bound
on disparity will also enable the more qualified group to abstain from fewer samples. In practice,
determining an appropriate value of δz̄ is of paramount importance. To this end, we present the
following illustrative example.

Example 4.2. a) If τz̄ = τz , i.e., the dataset is balanced, and (1 + ηz̄)ez̄ < 1, we have that
1 − 1+ε+(1+ηz)ez−τz̄+τz

1−(1+ηz̄)ez̄
< 0, therefore the problem is always feasible. b) If τz̄ − τz = 0.3,

ez̄ = ez = 0.1, ηz̄ = ηz = 0, when ε = 0.05, δz̄ ⩾ 0.056; when ε = 0.1, δz̄ has no restriction.

Further for Equal Opportunity and Equalized Odds we have the following results:

Theorem 4.3. (Feasibility of Equal Opportunity (EOp)) IP-Main is always feasible under EOp.

Theorem 4.4. (Feasibility of Equalized Odds (EOd)) IP-Main is always feasible under EOd.

Theorems 4.3 and 4.4 demonstrate the feasibility of the IP under Equal Opportunity and Equalized
Odds. Specifically, regardless of the design parameters’ values, our results indicate that a feasible
solution to the IP problem always exists. Notably, our results imply that even when the abstention rate
is 0, the IP can solely adjust the flip decisions fn to satisfy constraints on disparate impact, abstention
rate, and no harm. More discussion on this can be found in Appendix C.

4.2 EQUAL ABSTENTION RATE

An objection may arise that the model’s excessive abstention from a particular group, while not
abstaining from others. Moreover, if such abstention occurs solely on data samples with positive
or negative labels, further concerns may be raised. In this section, we delve into a scenario where
differences in abstention rates across groups and labels are constrained. We show that under equal
abstention rate constraints, the performance of IP will become worse (higher overall error rate)
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compared to Problem IP-Main.
min
ω,f

IP-Main (3)

s.t.a.

∣∣∣∣∣
∑N

n=1 ωn1[zn = z, yn = y]∑N
n=1 1[zn = z, yn = y]

−
∑N

n=1 ωn1[zn = z′, yn = y]∑N
n=1 1[zn = z′, yn = y]

∣∣∣∣∣ ≤ σy,∀z, z′ ∈ Z, y ∈ {0, 1}

Theorem 4.5. (Feasibility of Demographic Parity with Constraint Disparity of Abstention Rate) A
sufficient condition for Problem 3 being feasible is ∀z̄, z ∈ Z such that τz̄ ≥ τz ,

δz̄ ≤ τz̄σ1, δz ≤ τzσ1, δz̄ ≥ 1−
1 + ε+ (1 + ηz)ez − τz̄ + τz

1− (1 + ηz̄)ez̄
. (4)

We similarly show that for Equal Opportunity and Equalized Odds the problem remains feasible even
under equal abstention rate constraints. We defer these details to Appendix.

5 EXPERIMENTS

In this section, we evaluate FAN using various real-world datasets, comparing it against baselines and
to better understand its components. We start by explaining our experimental settings and then move
on to how FAN performs in comparison to other methods. We also analyze the separate components
of FAN to get a clearer picture of how each contributes to the overall performance. Additionally, we
compare our trained models, specifically AB and FB, with integer programming (IP) solutions. †

In our study, we primarily focus on a setting involving only two distinct groups. We set the same
abstention rate across all groups, i.e., δz = δ. FAN is evaluated against two baselines: LTD (Madras
et al., 2018b) and FSCS (Lee et al., 2021), shown in Table 1. For LTD, we employ the learning-to-
reject framework, specifically referring to Equation 4 in (Madras et al., 2018b)‡. We adopt three
real-world datasets: Adult (Dua & Graff, 2017), Compas (Bellamy et al., 2018), and Law (Bellamy
et al., 2018). During training, Equalized Odds incorporate two separate constraints, while to facilitate
a straightforward interpretation, the average disparity is shown. The details of data preprocessing and
model setting can be found in Appendix E.

Baseline Optimal. For FAN, we use an optimal classifier trained solely to minimize the loss as the
baseline h, naming it “baseline optimal”. We use Multi-Layer Perceptron (MLP) to train baseline
optimal, AB, and FB. Details can be found in Appendix E. Table 6 in Appendix shows the performance
of the baseline optimal model on both the training and test datasets (including overall accuracy and
group accuracy, along with disparities measured under DP, EOp, and EOd.) Specifically, the overall
training accuracy on Adult, Compas and Law are 92.08%, 72.33%, 82.86%, respectively.

Overall Performance. Figure 3 illustrates how FAN compares to LTD and FSCS across different
datasets and abstention rates. In the LTD method, abstention is introduced as a penalty term in the
objective function, making it difficult to precisely control the abstention rate. To work around this, we
adjust the penalty term’s coefficient and chart the resulting actual abstention rate. The first row of the
figure highlights the disparity reduction each algorithm achieves compared to the baseline optimal h.
The second row shows the minimum increase in group accuracy for all groups. Generally, FAN yields
the most significant reduction in disparity without sacrificing much accuracy, unlike FSCS and LTD,
which focus more on fairness at the cost of accuracy. Using the no-harm constraint No Harm, FAN
often matches or even surpasses the baseline optimal classifier in terms of accuracy. Nevertheless,
there are a few instances where accuracy slightly drops, which we discuss further below.

Stage II Analysis: Performance of Surrogate Model. The no-harm constraint is imposed to
encourage FAN to maintain or even improve group-level accuracy when compared to the baseline.
The integer programming formulation in Equation IP-Main is designed to strictly satisfy this
constraint. However, FAN may not strictly meet this due to the surrogate model training of AB and
FB in what we refer to as Stage II. As seen in the second row of Figure 3, there are instances where
accuracy slightly decreases. Table 2 provides insights into this by illustrating the training accuracy of
AB and FB. This suggests that the surrogate models are effective at learning from the IP outcomes.
Figure 17 also shows the loss of AB and FB on Adult under Demographic parity, as an example.

†Code: https://github.com/tsy19/FAN
‡Learning-to-defer schema requires an additional Decision Maker, which does not apply to our focal scenario.
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Figure 3: Comparison of FAN with baseline algorithms. The 1st row depicts disparity reduction, and
the 2nd row presents the minimum group accuracy increase, both compared to baseline optimal. (a)
Evaluation on the Adult under Equalized Odds. (b) Evaluation on the Compas under Demographic
Parity. (c) Evaluation on the Law under Demographic Parity. For FAN, ηz is set to 0.

Accuracy (%) Adult Compas Law
DP EOp EOd DP EOp EOd DP EOp EOd

δ = 0.1
AB 94.23 93.29 93.55 90.26 90.32 95.22 96.09 91.42 92.03
FB 94.26 94.01 94.54 79.87 79.57 76.15 88.12 91.38 90.14

δ = 0.2
AB 92.20 89.93 88.48 82.94 90.32 91.44 96.12 95.75 92.11
FB 97.79 95.33 95.86 86.07 79.63 77.03 87.90 87.90 90.29

δ = 0.3
AB 89.94 87.42 87.43 80.28 79.99 82.82 86.50 86.39 94.82
FB 97.18 96.31 96.33 87.72 88.55 85.53 93.00 93.92 88.17

Table 2: Performance Evaluation of Surrogate Model Training. We use MLP as the network structure
for both AB and FB. Each cell displays the average training accuracy (from 5 individual runs) of
AB (first row) and FB (second row) for specific δ, fairness notion, and dataset employed. Generally,
both AB and FB demonstrate a strong ability to learn the IP outcomes effectively and achieve high
accuracy, underscoring the success of Stage II. It is worth mentioning that, under some settings, the
accuracy on the Compas is low, for example the training accuracy of FB under EOd on Compas
with abstention rate 0.1 is 76.15%. However, the issue lies not with our Stage II design but rather
with the limitations of the MLP. As demonstrated in Table 6, the performance of the baseline optimal
classifier (training accuracy 72.33%) on the Compas is also low.

Comparison to Baseline Optimal Classifier. We conduct a comprehensive set of experiments
to examine the impact of FAN on both disparity and accuracy. Figure 4 depicts the performance
metrics when applying EOp on the training and test data for the Adult dataset. These results offer
a comparative benchmark against the baseline optimal classifier h, assessing how FAN enhances
model performance regarding fairness and accuracy. The figure shows FAN successfully optimizes
for a more equitable model without sacrificing accuracy. Notably, as the permissible abstention rate
(δ) increases, both groups experience a significant improvement in accuracy, while simultaneously
reducing the overall disparity. These findings indicate that FAN has the ability to train models that
are both fairer and more effective, particularly when higher levels of abstention are allowed.

IP Solution. Figure 5 is the IP solution corresponding to Figure 4. All constraints are strictly satisfied.
As ε increases, the impact on reducing disparity diminishes due to the inherent allowance for greater
disparity in the IP formulation. As δ increases, the accuracy improvement for both demographic
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Figure 4: Disparity reduction and increased accuracy for each group performed on Adult, compared
to baseline optimal. The first row shows the performance on the training data while the second row is
on test data. (a) demonstrates the disparity reduction in terms of EOp, while (b) and (c) showcase the
increases in accuracy for both groups. x-axis represents δ, while y-axis represents ε.
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Figure 5: This figure illustrates the result of the IP solution, under the same setting of Figure 4.

groups stays stable across configurations, mainly due to already nearing optimality in this experiment.
Comparison between Figure 5 and Figure 4 underscores the successful learning of the IP solution by
the AB and FB models in the second stage.

6 CONCLUSION & DISCUSSION

In this work, we develop an algorithm for training classifiers that abstain to obtain a favorable fairness
guarantee. Simultaneously, we show that our abstaining process incurs much less harm to each
individual group’s baseline accuracy, compared to existing algorithms. We theoretically analyzed the
feasibility of our goal and relate multiple system design parameters to the required abstention rates.
We empirically verified the benefits of our proposal. Interesting future directions for our research
involve extending our method beyond binary classification tasks to encompass multi-class scenarios.
Preliminary considerations suggest transforming the problem into a series of binary classification
tasks, with additional design required to refine the flipping mechanism. Another avenue is to include
a human subject study, incorporating human annotation for abstained samples into the performance
evaluation. Additionally, exploring the reduction of IP constraints could further reduce computational
complexity, providing valuable insights for future developments.
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A FAIRNESS NOTION

Fairness Notion D E

Demographic Parity
∣∣∣P(Ŷ = 1|Z = z)− P(Ŷ = 1|Z = z′)

∣∣∣ ε

Equal Opportunity |P(Ŷ = 1|Y = 1, Z = z)− P(Ŷ = 1|Y = 1, Z = z′)| ε

Equalized Odds
(

|P(Ŷ = 1|Y = 1, Z = z)− P(Ŷ = 1|Y = 1, Z = z′)|
|P(Ŷ = 0|Y = 0, Z = z)− P(Ŷ = 0|Y = 0, Z = z′)|

) (
ε
ε

)
Table 3: Fairness notion utilized for Constraint Disparity. We utilize three specific fairness notions,
Demographic Parity (DP) (Dwork et al., 2012), Equal Opportunity (EOp) (Hardt et al., 2016),
Equalized Odds (EOd) (Hardt et al., 2016).

Fairness Notion D̄ Ē

Demographic Parity |
∑N

n=1 ωn·1[ŷn=1,zn=z]∑N
i=1 1[zn=z]

−
∑N

n=1 ωn·1[ŷn=1,zn=z′]∑N
n=1 1[zn=z′]

| ε

Equal Opportunity |
∑N

n=1 ωn·1[ŷn=1,yn=1,zn=z]∑N
i=1 1[zn=z,yn=1]

−
∑N

n=1 ωn·1[ŷn=1,yn=1,zn=z′]∑N
n=1 1[zn=z′,yn=1]

| ε

Equalized Odds

 |
∑N

n=1 ωn·1[ŷn=1,yn=1,zn=z]∑N
i=1 1[zn=z,yn=1]

−
∑N

n=1 ωn·1[ŷn=1,yn=1,zn=z′]∑N
n=1 1[zn=z′,yn=1]

|

|
∑N

n=1 ωn·1[ŷn=0,yn=0,zn=z]∑N
i=1 1[zn=z,yn=0]

−
∑N

n=1 ωn·1[ŷn=0,yn=0,zn=z′]∑N
n=1 1[zn=z′,yn=0]

|

 (
ε
ε

)

Table 4: The emperical version of fairness notions utilized for Constraint Disparity in IP-Main.

Tables 3 and 4 display the formulation of three fairness notions we have adopted. It’s worth mentioning
that all fairness measurements are not conditioned on hA. This means that fairness is measured across
the entire dataset, not just for non-abstained samples. We now provide an example of Demographic
Parity (Disparity of accept rate) to demonstrate why we take this approach.
Example A.1. Consider a group with an acceptance rate of 0.3 from the baseline classifier. If FAN
abstains at a rate of 0.1 on samples with negative predictions, our measurement of the acceptance
rate, not conditioned on abstentions, should yield a unchanged acceptance rate of 0.3. However, if
we condition it on non-abstentions, the new acceptance rate should be 0.3/(0.3 + 0.6) ≈ 0.33. The
former is a more valid measure than the latter, as it takes into account the presence of abstained
samples still in the system and the abstention on the negative samples should not impact the accept
rate.

B DETAILS OF TWO-STAGE TRAINING

Solving Problem IP-Main provides us with two N -dimensional vectors, namely ω and f . The vector
ω denotes whether to abstain from predicting for every input in the training data, while the vector f
represents whether the final prediction ŷ needs to be flipped compared to the baseline optimal model
h. As we have illustrated in Figure 2, we will utilize ω and f as labels, paired with X, Ŷ as training
features, to train the Abstention Block hA (X,h(X)) and the Flip Block hF (X,h(X)).

B.1 ELIMINATING RANDOMNESS OF IP OUTCOMES USING PREDICTION ADJUSTMENT

Although IP provides an optimal solution in terms of ω and f , this section discusses the non-
uniqueness of this solution in most cases. As a result, randomness can affect the ability of AB and
FB to learn IP decisions effectively.

The input of IP is z, y, s. The way IP uses confidence score s is mapping it to ŷb = 1[s ≥ t0]. Note
that IP is not using the feature x directly. Instead, the information of x is captured by ŷb. Therefore the
IP solution exhibits a certain degree of randomness. Specifically, the IP model does not differentiate
between data samples with identical labels and optimal predictions, if they belong to the same group
(i.e., y1 = y2, ŷb1 = ŷb2, z1 = z2). If the decisions for two samples x1 and x2 are interchanged, the
resulting solution would still be optimal for IP. This characteristic can hinder the complete capture
of feature information and adversely affect the performance of model training for AB and FB. We
provide an illustrative figure for this observation in Figure 7a.
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Figure 6: Illustration of Prediction Ad-
justment.

To mitigate the effects of randomness in the IP solution,
a Prediction Adjustment (PA) step is incorporated after
solving the IP and before the model training, outlined in
Algorithm 1 and illurstrated in Figure 6. The core idea of
PA is that we abstain from predicting those with the low-
est confidence scores predicted by the optimal classifier
according to the optimal fraction we learned from the IP
solver. Of the remaining, we further select the samples
with the lowest confidence scores for flipping (FB). Sam-
ples with the highest confidence scores, on the other hand,
will remain unaffected by this process. This approach is
founded on the premise that the highest confidence scores
correspond to the most certain predictions made by the
optimal classifier. Therefore, it is prudent to prioritize abstaining and flipping those with lower
confidence scores first. Specifically, for each (y, ŷb, z) tuples, PA procedure takes the following
steps:
• Count the number of individuals that have been abstained, i.e., n0 =

∑
i 1[ωi = 0]; the number

that has not been abstained but the decision is flipped, i.e., n11 =
∑

n 1[ωn = 1, fn = 1].
• Sort the individuals based on their confidence score predicted by baseline optimal h.
• Abstain n0 individuals with lowest confidence; for the rest, flip the decision of n11 individuals.

Algorithm 1 Prediction Adjustment

Input: (x, y, z), ŷb, h, ω, f
for a ∈ Z do

for y1 ∈ {0, 1} do
for y2 ∈ {0, 1} do
(x̄, ȳ, w̄, f̄) contains all data samples with zn = a, yn = y1, ŷb,n = y2.
For all data samples with ω̄n = 0, set f̄n = 0.
n11 = number of the data samples with ωn = 1, fn = 1.
n10 = number of the data samples with ωn = 1, fn = 0.
n0 = number of the data samples with ωn = 0.
Compute the confidence score h(x̄).
Adjust ω, f : With increasing in confidence score, reassign n0 data samples with ωn = 0,
n10 samples with ωn = 1, fn = 0, n11 samples with ωn = 1, fn = 1, sequentially.

end for
end for

end for
Return ω, f .

Robustness: Prediction Consistency. The Prediction adjustment technique not only mitigates the
randomness introduced by the Iterative Pruning algorithm but also preserves prediction consistency
when changes are made to the training data. In practical scenarios, when new data points are
added to the training set, sampled from the same distribution D , they are expected to be distributed
proportionally across all regions as illustrated in Figure 7b. The Prediction adjustment policy
guarantees that the labels of the original data in the training set remain unchanged while incorporating
the new data points. For experiment verification of Prediction Consistency see Appendix E.
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Figure 7: Illustration of the Non-Uniqueness of IP Solutions (a) and prediction consistency Concept
(b): (a) The figure depicts the inherent randomness of IP solutions. For a given group z, IP can only
observe the ground truth label y and the predicted label ŷb. Hence, for instances x with the same
y and ŷb, IP cannot differentiate between them. For example, swapping the decisions of x1 and x2

yields a new optimal solution. (b) This figure depicts the concept of prediction consistency, wherein
newly sampled data, obtained from the same distribution as the original data, are incorporated into
the training set. Given that the newly sampled data are independent and identically distributed (iid),
they are expected to be distributed proportionally across all regions. The Prediction adjustment policy
is employed to ensure that the labels of the original data remain unchanged.

B.2 LINEAR INTEGER PROGRAMMING

In Problem IP-Main, the presence of quadratic terms in the form of ŷnωn incurs higher computational
costs and renders the problem more difficult to solve than a linear IP. In this section, we present a
methodology to transform Problem IP-Main into an equivalent linear IP problem. To achieve this,
we employ McCormick envelopes and define un = ŷnωn. Since ŷn and ωn are binary, the following
set of linear constraints can be used to represent un:

un = ŷnωn ⇔
{

un ≥ 0 , un ≤ ωn , un ≤ hn

(1− ŷn)(1− ωn) ≥ 0 ⇔ un ≥ ŷn + ωn − 1
(5)

Intuitively, because we are in the binary setting, we are able to turn a quadratic optimization problem
into a linear one. It is important to note that Equation 5 does not introduce any relaxation. Moreover,
all the constraints in Equation 5 are linear. Thus, we can replace all the quadratic terms in Problem
IP-Main with un and incorporate the linear constraints specified in Equation 5.

C NON-TRIVIALITY

At the end of Section 4.1, our results indicate that a feasible solution to the IP problem always exists
for equal opportunity and equalized odds, regardless of the design parameter values. Notably, our
results imply that even when the abstention rate is 0, the IP can solely adjust the flip decisions fn to
satisfy constraints on disparate impact, abstention rate, and no harm. This is because IP has access to
the true label y.

However, this causes problem. For example, to achieve a “perfect” classifier, IP doesn’t abstain from
individuals but only flips the decision of ŷb to make the final outcome exactly equal to y, resulting
in a 100% accuracy across all groups. Additionally, the true positive rate and true negative rate will
both be 100%, eliminating any disparities. However, such a "perfect" classifier is trivial. It requires a
strong FB to memorize the flipping decision. To eliminate such trivial solutions, a more reasonable
approach is to ensure that the IP solution is no better than the optimal classifier

ho = argmin
h′∈H

ED[L(h′(X), Y )], (6)

without considering abstentions.
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We introduce a non-triviality constraint to the IP with Equal Opportunity as an example:

min
ω,f

IP-Main (Equal Opportunity) (7)

s.t.a.
N∑

n=1

1[ŷn ̸= yn, zn = z] ≥

(
N∑

n=1

1[zn = z]

)
· eo,z, ∀z ∈ Z (Non-triviality)

Here eo,z is the error rate of the optimal classifier for group z. In above s.t.a. stands for “subject to
additional" constraints. The non-triviality constraint enforces a realistic requirement that our flipping
module alone should not lead to a higher group accuracy compared to the optimal classifier. We
prove the following theorem:

Theorem C.1. When the baseline is optimal, i.e., h = ho, if for all z ∈ Z , ez ≤ 1− τz , τz(1− ε) +
(1− ez)(1− δz) ≤ 1, and ηz = 0, problem 7 is feasible.

D PROOF

D.1 NOTATIONS

For simplicity, we introduce some notations that will be used in the proof. Figure 8 illustrates the
distribution ratios of different regions of two groups.

Figure 8: Division of individuals into four regions based on their sensitive attribute and label. The
ratio, denoted as rzijk, represents the proportion of individuals of group z with specific combinations
of y = i, ω = j, and ŷ = k. For ω = 0, define rzi0 = rzi00 + rzi01. By definition, rz111 + rz110 + rz10 +
rz011 + rz010 + rz00 = 1 holds true, ensuring the sum of all ratios within group z is equal to one. Define
rz = {rz111, rz110, rz10, rz011, rz010, rz00}.

Note that e′z = (1 + ηz)ez . For notation simplicity, define a′z = 1− e′z .

D.2 PROOF OF LEMMA D.1

Lemma D.1. Under fairness notion Demographic Parity or Equal Opportunity, if Problem IP-Main
is feasible, there must exist a solution such that the resulting classifier does not abstain any samples
with label 0, i.e., for all n such that yn = 0, it holds that ωn = 1.

Lemma D.1 indicates abstaining data samples with label 0 are not required by IP.

Proof. Without loss of generality, we consider group 0. Since Problem IP-Main is feasible, there
exist a r0 that Constraints Abstention Rate, Disparity, No Harm hold.
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Constraint No Harm can be written as

r0110 + r0011
r0111 + r0110 + r0011 + r0010

≤ e′0 ⇔ a′0(r
0
110 + r0011) ≤ e′0(r

0
111 + r0010) (8)

Constraint Abstention Rate can be written as

r010 + r000 ≤ δ0 (9)

For Demographic Parity, constraint Disparity indicates

rz111 + rz011 − ε ≤ r0111 + r0011 ≤ rz111 + rz011 + ε, ∀z (10)

If the feasible solution r000 > 0, define r0′010 = r0010 + r000, r0′00 = 0, then it’s not hard to verify that
constraints 8, 9 and 10 still hold for r0′010 and r0′00 = 0. r0′00 = 0 indicates abstaining no individual
with label 0.

For Equal Opportunity, constraint Disparity indicates

rz111
τz

− ε ≤ r0111
τ0

≤ rz111
τz

+ ε, ∀z (11)

Similarly, if the feasible solution r000 > 0, define r0′010 = r0010 + r000, r0′00 = 0, then it’s not hard to
verify that constraints 8, 9 and 11 still hold for r0′010 and r0′00 = 0. r0′00 = 0 indicates abstaining no
individual with label 0.

D.3 PROOF OF THEOREM 4.1

By Lemma D.1, we have Problem IP-Main is feasible iff there exist a solution that rz00 = 0,∀z.

For any two group z = 0, 1, without loss of generality, assume τ1 ≤ τ0. Define ∆τ = τ0 − τ1.

Similar to 9, 8 and 10, the constraint of IP-Main can be written as



r0111 − r0010 −∆τ − ε ≤ r1111 − r1010

r0111 − r0010 −∆τ + ε ≥ r1111 − r1010

r110 ≤ δ1

r010 ≤ δ0

a′0(r
0
110 + r0011) ≤ e′0(r

0
111 + r0010)

a′1(r
1
110 + r1011) ≤ e′1(r

1
111 + r1010)

r1111 + r110 + r1110 = τ1

r0111 + r010 + r0110 = τ0

r1010 + r1011 = 1− τ1

r0010 + r0011 = 1− τ0

r1, r0 ≥ 0

, (12)

Let r1011 = 1− τ1 − r1010, r
0
011 = 1− τ0 − r0010, r

1
110 = τ1 − r1111 − r110, r

0
110 = τ0 − r0111 − r010, 12

becomes
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r0111 − r0010 −∆τ − ε ≤ r1111 − r1010

r0111 − r0010 −∆τ + ε ≥ r1111 − r1010

r110 ≤ δ1

r010 ≤ δ0

r1111 + a′1r
1
10 + r1010 ≥ a′1

r0111 + a′0r
0
10 + r0010 ≥ a′0

r1111 + r110 ≤ τ1

r0111 + r010 ≤ τ0

r1010 ≤ 1− τ1

r0010 ≤ 1− τ0

r1111, r
1
10, r

1
010, r

0
111, r

0
10, r

0
010 ≥ 0

, (13)

Extract the condition of r110 from 13, we have


0 ≤ r110 ≤ δ1

r110 ≥ a′1 − r1010 − r1111
a′1

r110 ≤ τ1 − r1111

, (14)

To let 14 feasible, the following additional inequalities need to be added to 13,



a′1 − r1010 − r1111
a′1

≤ δ1

a′1 − r1010 − r1111
a′1

≤ τ1 − r1111

0 ≤ τ1 − r1111

, (15)

Similar requirements hold for group 0. Thus,

13 is feasible ⇔



r0111 − r0010 −∆τ − ε ≤ r1111 − r1010

r0111 − r0010 −∆τ + ε ≥ r1111 − r1010

r1010 ≤ 1− τ1

r0010 ≤ 1− τ0

r0010 + r0111 ≥ a′0(1− δ0)

e′0r
0
111 + r0010 ≥ a′0(1− τ0)

r0111 ≤ τ0

r1010 + r1111 ≥ a′1(1− δ1)

e′1r
1
111 + r1010 ≥ a′1(1− τ1)

r1111 ≤ τ1

r1111, r
1
010, r

0
111, r

0
010 ≥ 0

, (16)

Further extract conditions of r0010, we have
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13 is feasible ⇔



r1010 ≤ 1− τ1

r0111 ≤ τ0

r1010 + r1111 ≥ a′1(1− δ1)

e′1r
1
111 + r1010 ≥ a′1(1− τ1)

r1111 ≤ τ1

r0111 ≤ 1− τ1 + r1111 − r1010 + ε

2r0111 ≥ a′0(1− δ0) + ∆τ − ε+ r1111 − r1010

r0111 ≥ a′0(1− δ0) + τ0 − 1

(1 + e′0)r
0
111 ≥ a′0(1− τ0) + ∆τ − ε+ r1111 − r1010

r0111 ≥ ∆τ − ε+ r1111 − r1010

r1111, r
1
010, r

0
111 ≥ 0

, (17)

Extract conditions of r0111, we have

13 is feasible ⇔



r1010 ≤ 1− τ1

r1010 + r1111 ≥ a′1(1− δ1)

e′1r
1
111 + r1010 ≥ a′1(1− τ1)

r1111 ≤ τ1

r1111 − r1010 ≤ τ1 + ε

r1111 − r1010 ≤ τ0 + τ1 + ε− a′0

τ0 + τ1 − (
2

e′0
+ 1)ε− 2 ≤ r1111 − r1010

r1111 − r1010 ≥ a′0(1− δ0) + τ0 + τ1 − 2− ε

r1111, r
1
010 ≥ 0

, (18)

Define r1+ = r1111 + r1010, r
1
− = r1111 − r1010, then we have 0 ≤ r1+ ≤ 1, τ1 − 1 ≤ r1− ≤ τ1.

13 is feasible ⇔



r1+ ≥ a′1(1− δ1)

r1− ≥ r1+ + 2τ1 − 2

a′1r
1
− ≤ (1 + e′1)r

1
+ − 2a′1(1− τ1)

r1− ≤ 2τ1 − r1+

r1− ≤ τ0 + τ1 + ε− a′0

r1− ≥ τ0 + τ1 − (
2

e′0
+ 1)ε− 2

r1− ≥ a′0(1− δ0) + τ0 + τ1 − 2− ε

r1− ≤ r1+

r1− ≥ −r1+

, (19)

Extract conditions of r1−, we have
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13 is feasible ⇔



r1+ ≥ 0

r1+ ≥ a′0 (1− δ0) + τ0 + τ1 − 2− ε(
1 +

2e′1
a′1

)
r1+ ≥ a′0 (1− δ0) + ∆τ − ε

r1+ ≥ a′1(1− τ1)

r1+ ≥ a′0 − τ0 − τ1 − ε

r1+ ≤ 1

r1+ ≤ 2 + ε− a′0 (1− δ0)−∆τ

, (20)

13 is feasible ⇔ a′0 (1− δ0) + ∆τ ≤ 1 + ε+ e′1, (21)

Thus, if for any two groups z, z′ ∈ Z such that τz ≥ τz′ , a′z (1− δz) + τz − τz′ ≤ 1+ ε+ e′z′ holds,
then Problem IP-Main is feasible.

D.4 PROOF OF THEOREM 4.3

Proof. Similarly, for any two groups 0, 1, the constraints of Problem IP-Main under Equal Opportu-
nity are 

r0111
τ0

− ε ≤ r1111
τ1

≤ r0111
τ0

+ ε

r110 ≤ δ1

r010 ≤ δ0

τ1 − e′1 ≤ r1111 + a′1r
1
10

τ0 − e′0 ≤ r0111 + a′0r
0
10

r1111 + r110 ≤ τ1

r0111 + r010 ≤ τ0

r1111, r
1
10, r

0
111, r

0
10 ≥ 0

(22)

Extract the conditions of r110 and r010, we have the following equivalent constraints:



τ1
τ0

r0111 ≤ τ1(1 + ε)

τ0
τ1

r1111 ≤ τ0(1 + ε)

τ1
τ0

r0111 ≥ τ1 − e′1 − a′1δ − ετ1

τ0
τ1

r1111 ≥ τ0 − e′0 − a′0δ − ετ0

0 ≤ r0111 ≤ τ0

0 ≤ r1111 ≤ τ1

(23)

To let the above feasible, we need
(τ1 − e′1 − a′1δ − ετ1)τ0

τ1
≤ τ0

(τ0 − e′0 − a′0δ − ετ0)τ1
τ0

≤ τ1

(24)

24 always holds. Thus, Problem IP-Main always feasible under Equal Opportunity.
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D.5 PROOF OF THEOREM 4.4

Proof. Under Equalized Odds, for any group z, let rz111 = τz, r
z
110 = 0, rz10 = 0, rz011 = 0, rz010 =

0, rz00 = 0, then we can verify that all the constraints of Problem IP-Main hold.

D.6 PROOF OF THEOREM C.1

For any group 1, the constraints of Problem 7 are



r0111
τ0

− ε ≤ r1111
τ1

≤ r0111
τ0

+ ε

r1101 + r1100 + r1000 + r1001 ≤ δ1

r1110 + r1011
r1110 + r1111 + r1011 + r1010

≤ e′1

r1110 + r1011 + r1100 + r1001 ≥ e1

r1110 + r1111 + r1101 + r1100 = τ1

r1011 + r1010 + r1000 + r1001 = 1− τ1

r1 ≥ 0

(25)

where group 0 represents any group other than group 1.

If 25 are feasible, there must exists a solution such that r1101 = r1000 = 0. Here we provide proof for
r1101 = 0. Note that the proof of r1000 = 0 is similar.

If r1101 = x > 0, we can easily adjust r1100 increase by x, r1101 = 0 so that the new solution also
satisfy 25.

Thus, let r1101 = r1000 = 0 and r1100 = τ1 − r1110 − r1111, r
1
001 = 1 − τ1 − r1011 − r1010, Problem 7

holds iff



r0111
τ0

− ε ≤ r1111
τ1

≤ r0111
τ0

+ ε

r1110 + r1011 + r1111 + r1010 ≥ 1− δ1

a′1
(
r1110 + r1011

)
≤ e′1

(
r1111 + r1010

)
r1111 + r1010 ≤ a1

r1110 + r1111 ≤ τ1

r1011 + r1010 ≤ 1− τ1

(26)

Using similar method in the proof of Theorem 4.1 to solve 26.

D.7 PROOF OF THEOREM 4.5

Note that when the equal abstention rate constraints are added, Lemma D.1 still holds. The reason
is r100 = r000 = 0 already yields equal abstention rate, since the abstention rates of individuals with
negative label are both 0.
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Similar to 12, the constraints of Problem 3 can be written as

r0111 − r0010 −∆τ − ε ≤ r1111 − r1010

r0111 − r0010 −∆τ + ε ≥ r1111 − r1010

r110 ≤ δ1

r010 ≤ δ0

r110 ≤ r010
τ1
τ0

+ τ1σ1

r110 ≥ r010
τ1
τ0

− τ1σ1

a′0(r
0
110 + r0011) ≤ e′0(r

0
111 + r0010)

a′1(r
1
110 + r1011) ≤ e′1(r

1
111 + r1010)

r1111 + r110 + r1110 = τ1

r0111 + r010 + r0110 = τ0

r1010 + r1011 = 1− τ1

r0010 + r0011 = 1− τ0

r1, r0 ≥ 0

, (27)

Compare to 12, the additional constraints of r110 are r010
τ1
τ0

− τ1σ1 ≤ r110 ≤ r010
τ1
τ0

+ τ1σ1. Plug in
them and extract the condition of r110 yields



0 ≤ r110 ≤ δ1

0 ≤ r010 ≤ δ0

r110 ≥ a′1 − r1010 − r1111
a′1

r010 ≥ a′0 − r0010 − r0111
a′0

r110 ≤ τ1 − r1111

r010 ≤ τ0 − r0111

τ1r
0
10 ≤ τ0r

1
10 + τ0τ1σ1

τ1r
0
10 ≥ τ0r

1
10 − τ0τ1σ1

, (28)

The last two inequalities are the additional constraints introduced by equal abstention rate constraints.

Thus, if τ0σ1 ≥ δ0 and δ1 ≤ τ1σ1 hold, then the feasibility of Problem 3 will reduce to the non equal
abstention rate case IP-Main (Equation 16). Therefore, a sufficient condition of Problem 3 is

δ1 ≤ τ1σ1, δ0 ≤ τ0σ1, δ0 ≥ 1− 1 + ε+ (1 + η1)e1 − τ0 + τ1
1− (1 + η0)e0

. (29)

D.8 EQUAL ABSTENTION RATE UNDER EQUAL OPPORTUNITY AND EQUALIZED ODDS

Theorem D.2. Problem 3 is always feasible under Equal Opportunity (Equalized Odds).

This theorem holds because Problem IP-Main is always feasible even when all the groups have
abstention rate 0 for the individuals with either positive or negative labels. In this case, the abstention
rates are already equal.
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D.9 WORSE PERFORMANCE UNDER EQUAL ABSTENTION RATE

Theorem D.3. (Worse Performance) Let ω(1), f (1) be the result of Problem IP-Main, let ω(2), f (2)

be the result of Problem 3, then
N∑

n=1

ω(1)
n · 1[ŷ(1)n ̸= yn] ≤

N∑
n=1

ω(2)
n · 1[ŷ(2)n ̸= yn]∑N

n=1 ω
(1)
n · 1[ŷ(1)n ̸= yn, zn = z]∑N
n=1 ω

(1)
n 1[zn = z]

≤
∑N

n=1 ω
(2)
n · 1[ŷ(2)n ̸= yn, zn = z]∑N
n=1 ω

(2)
n 1[zn = z]

,∀z ∈ Z

D̄(f (1), ω(1)) ≤ D̄(f (2), ω(2)) (30)

E EXPERIMENTS

Dataset Adult Compas Law

Train data 37969 8467 12928
Val data 7911 1765 2694
Test data 9888 2206 3368

Table 5: Size of train, val, test data of each dataset.

Dataset. We utilized three real-world datasets, namely Adult Dua & Graff (2017), Compas
Bellamy et al. (2018), and Law Bellamy et al. (2018). The sizes of the training, validation, and test
data can be found in Table 5. The task of the Adult dataset is to predict whether a person’s income
exceeds $50k per year based on various demographic and employment-related features. The sensitive
attribute is sex, with group 1 representing male and group 2 representing female. In the Compas
dataset, the task is to predict the likelihood of a defendant committing a future crime, aiming to assist
judges in making more informed decisions about pretrial detention and release. The task has been
categorized, and the sensitive attribute is race, with group 1 representing Caucasian and group 2
representing African-American. The Law dataset aims to predict the likelihood of a law school
student dropping out within the first two years based on various academic and demographic attributes.
The task has been categorized, and the sensitive attribute is race, with group 1 representing White
and group 0 representing Black.

Neural Network. To train the models, namely Baseline Optimal, AB, and FB, we utilized a
Multi-Layer Perceptron (MLP) neural network architecture implemented in PyTorch. The architecture
configuration for the Adult dataset consists of two layers, each with a dimension of 300. For the
Compas and Law datasets, we employed two layers, each with a dimension of 100. A dropout layer
with a dropout probability of 0.5 was applied between the two hidden layers. The Rectified Linear
Unit (ReLU) function was used as the activation function. We run the experiments on a single T100
GPU.

E.1 BASELINE OPTIMAL

Table 6 shows the performance of the baseline optimal model on both the training and test datasets.

Adult Compas Law
Accuracy (%) (Overall) 92.08 (89.11) 72.33 (70.31) 82.86 (81.23)
Accuracy (%) (Group 1) 98.81 (96.67) 68.99 (66.11) 82.04 (81.04)
Accuracy (%) (Group 2) 90.28 (87.07) 75.70 (74.33) 84.21 (81.57)

Disparity (DP) 0.59 (0.61) 0.19 (0.19) 0.16 (0.13)
Disparity (EOp) 0.05 (0.20) 0.26 (0.22) 0.11 (0.09)
Disparity (EOd) 0.13 (0.23) 0.18 (0.18) 0.08 (0.08)

Table 6: Performance of the Baseline Optimal Classifier. (Values in parentheses represent results on
test data.)
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E.2 OVERALL PERFORMANCE

The performance comparison of FAN with LTD, FSCS on each dataset are shown in this section. We
preform 5 runs for FAN, under each setting. In most case, FAN achieves best performance on both
accuracy and disparity.
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Figure 9: Comparison of FAN with baseline algorithms on Adult. The first row shows the disparity
reduction ( compared to baseline optimal), while the second row shows the minimum increase in
group accuracy compared to baseline optimal. For FAN, ηz is set to 0, i.e., no tolerance for reducing
accuracy.
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Figure 10: Comparison of FAN with baseline algorithms on Compas. The first row shows the
disparity reduction ( compared to baseline optimal), while the second row shows the minimum group
accuracy increase compared to baseline optimal. For FAN, ηz is set to 0, i.e., no tolerance for reducing
accuracy.

23



Published as a conference paper at ICLR 2024

0.0 0.1 0.2 0.3

0.05

0.10

0.15

Di
sp

ar
ity

 R
ed

uc
tio

n

LTD
FSCS
FAN

0.0 0.1 0.2 0.3
0.02

0.00

0.02

0.04

Di
sp

ar
ity

 R
ed

uc
tio

n LTD
FSCS
FAN

0.0 0.1 0.2 0.3

0.04

0.06

0.08

0.10

0.12

Di
sp

ar
ity

 R
ed

uc
tio

n

LTD
FSCS
FAN

0.0 0.1 0.2 0.3

0.04

0.02

0.00

0.02

0.04

0.06

Di
sp

ar
ity

 R
ed

uc
tio

n LTD
FSCS
FAN

0.0 0.1 0.2 0.3

0.2

0.1

0.0

In
cr

ea
se

 in
 A

cc
ur

ac
y

LTD
FSCS
FAN

(a) train, DP

0.0 0.1 0.2 0.3

0.2

0.1

0.0

In
cr

ea
se

 in
 A

cc
ur

ac
y

LTD
FSCS
FAN

(b) train, EOd

0.0 0.1 0.2 0.3
0.25

0.20

0.15

0.10

0.05

0.00

In
cr

ea
se

 in
 A

cc
ur

ac
y

LTD
FSCS
FAN

(c) test, DP

0.0 0.1 0.2 0.3
0.25

0.20

0.15

0.10

0.05

0.00

In
cr

ea
se

 in
 A

cc
ur

ac
y

LTD
FSCS
FAN

(d) test, EOd

Figure 11: Comparison of FAN with baseline algorithms on Law. The first row shows the disparity
reduction ( compared to baseline optimal), while the second row shows the minimum group accuracy
increase compared to baseline optimal. For FAN, ηz is set to 0, i.e., no tolerance for reducing accuracy.

E.3 COMPARE TO BASELINE OPTIMAL CLASSIFIER

In this section, FAN is compared with baseline optimal classifier under various abstention rate and
disparity tolerance.
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Figure 12: Disparity reduction and increased accuracy for each group performed on Adult, compared
to baseline optimal classifier. This plot illustrates the performance on the testing data. (a) demonstrates
the disparity reduction in terms of Equalized odds, while (b) and (c) showcase the increases in accuracy
for group 1 and group 0, separately. The x-axis represents the maximum permissible abstention rate,
while the y-axis represents the maximum allowable disparity.
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Figure 13: Disparity reduction and increased accuracy for each group performed on Compas,
compared to baseline optimal classifier. This plot illustrates the performance on the testing data. (a)
demonstrates the disparity reduction in terms of Demographic Parity, while (b) and (c) showcase
the increases in accuracy for group 1 and group 0, separately. The x-axis represents the maximum
permissible abstention rate, while the y-axis represents the maximum allowable disparity.
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Figure 14: Disparity reduction and increased accuracy for each group performed on Law, compared to
baseline optimal classifier. This plot illustrates the performance on the testing data. (a) demonstrates
the disparity reduction in terms of Equal Opportunity, while (b) and (c) showcase the increases
in accuracy for group 1 and group 0, separately. The x-axis represents the maximum permissible
abstention rate, while the y-axis represents the maximum allowable disparity.

E.4 IMPACT OF η
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Figure 15: Impact of η. This experiment is performed on Adult under Equal Opportunity, on
training data. η takes 0, 0.1. The left shows the disparity of under each setting; the middle shows
the accuracy of group 1; the right shows the accuracy of group 0. Relax the error rate control yields
similar result, since the objective of IP will still encourage the system to be more accurate.

E.5 PREDICTION CONSISTENCY

To demonstrate the consistency of IP predictions, which involves abstaining and flipping decisions
for individuals with identical features within the same group, we duplicated 1

5 of the data across all
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datasets. This duplication serves to illustrate that IP make the same prediction to these duplicated
instances. Details referred to Table 7.

Dataset Adult (EO) Adult (EOs) Compas (DP) Compas (EO) Law (DP) Law (EO)
Consistent rate (ω) 0.99 0.99 1.0 1.0 0.99 0.99
Consistent rate (f ) 1.0 0.99 1.0 1.0 0.99 1.0

Table 7: Prediction Consistency Evaluation on IP.

E.6 STAGE II: SURROGATE MODEL TRAINING LOSS
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Figure 16: Loss of AB (a) and FB (b), performed on Adult, under Demographic parity. δ = 0.1, ε =
0.02. We perform 5 runs and plot the average and standard deviation. The corresponding average
accuracy is 92.20% and 97.79%.

E.7 FEASIBILITY REGION

We perform experiments to verify the correctness of Theorem 4.1.

Figure 17: Minimum ε allowed for each δ, performed on Adult, under Demographic parity. The
left figure shows the result under η = 0.1, while the right figure shows the result under η = 0. Both
figures show the linearity proved in Theorem 4.1.

E.8 TIME COST

Adult Compas Law
DP EO EOd DP EO EOd DP EO EOd

IP 36.76 22.05 33.85 5.02 4.92 10.74 12.58 15.95 16.81
(1.08) (1.25) (1.58) (1.53) (0.92) (0.61) (0.84) (0.79) (0.93)

AB 14.33 20.06 18.39 7.24 7.12 14.16 27.68 28.99 64.04
(1.02) (0.98) (1.14) (1.67) (0.89) (0.73) (0.97) (0.84) (1.20)

FB 14.72 9.59 22.05 6.90 9.88 10.52 28.00 26.82 41.87
(1.65) (0.72) (0.96) (1.31) (0.75) (0.65) (0.81) (0.87) (0.88)

Table 8: Average time cost (in seconds) of solving IP, training AB and FB, respectively. The
experiments run on a single T100 GPU. The numbers in parentheses are the corresponding std.
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F HUMAN ANNOTATION

In the case that human annotation exists for training data, our method can be applied with some
modifications of the IP. For example, under Demographic Parity,

min
ω,f

N∑
n=1

1[ωn = 1, ŷn ̸= yn] + 1[ωn = 0, ydn ̸= yn] (IP-Main)

s.t. |D(z)−D(z′)| ≤ ε,∀z, z′ ∈ Z (Disparity)∑N
n=1 ωn · 1[zn = z]∑N

n=1 1[zn = z]
≥ (1− δz),∀z ∈ Z (Abstention Rate)

N∑
n=1

1[ωn = 1, ŷn ̸= yn, zn = z] + 1[ωn = 0, ydn ̸= yn, zn = z] ≤ e′z

N∑
n=1

1[zn = z],∀z ∈ Z

(No Harm)
ωn ∈ {0, 1}, fn ∈ {0, 1},∀n.

Where yd is the human annotation, D(z) =
∑N

n=1 1[ŷn=1,zn=z,ωn=1]+1[ydn=1,zn=z,ωn=0]∑N
i=1 1[zn=z]

. The
modification does not add any new constraint, the computational complexity remains the same. And
Stage II can still be applied directly.
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