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ABSTRACT

Scientific problem-solving involves synthesizing information while applying ex-
pert knowledge. We introduce CURIE, a scientific long-Context Understanding,
Reasoning and Information Extraction benchmark to measure the potential of
Large Language Models (LLMs) in scientific problem-solving and assisting scien-
tists in realistic workflows. This benchmark introduces ten challenging tasks with
a total of 580 problems and solution pairs curated by experts in six disciplines -
materials science, condensed matter physics, quantum computing, geospatial anal-
ysis, biodiversity, and proteins - covering both experimental and theoretical work-
flows in science. We evaluate a range of closed and open LLMs on tasks in CURIE
which requires domain expertise, comprehension of long in-context information,
and multi-step reasoning. While Gemini Flash 2.0 and Claude-3 show consistent
high comprehension across domains, the popular GPT-4o and command-R+ fail
dramatically on protein sequencing tasks. With the best performance at 32% there
is much room for improvement for all models. We hope that insights gained from
CURIE can guide the future development of LLMs in sciences. Evaluation code
and data links in: https://github.com/google/curie

1 INTRODUCTION

The advancement of science relies on the ability to build upon the collective knowledge accumulated
in scientific literature, requiring not only deep domain expertise and reasoning skills, but also the
capacity to apply that knowledge within the context of a given problem. Large Language Models
(LLMs) have already shown remarkable knowledge across a wide spectrum of domains (Fig. 1b).
Recent benchmarks e.g., MMLU (Hendrycks et al., 2020), have demonstrated proficiency in varied
subjects (e.g., mathematics, history, social sciences, law) with standardized exams (BAR, SAT etc.),
commonsense reasoning (Zellers et al., 2019), coding (Chen et al., 2021; Jimenez et al., 2023),
reading comprehension (Dua et al., 2019), arithmetic (Zhang et al., 2024; Lu et al., 2023), and
grade school scientific knowledge (Clark et al., 2018). However, as LLMs transition from merely
surfacing knowledge to actively solving problems, the capacity to understand and reason about long-
form, context-rich information is paramount. Recent advances in model architecture have seen
dramatic increases in context windows from 8k to 32k, 128k, and 1M+ tokens, reflecting a growing
recognition of this need.

This has led to development of benchmarks testing capabilities of LLMs on long document un-
derstanding such as ZeroScrolls (Shaham et al., 2023), Bamboo (Dong et al., 2023) on a variety
of tasks including summarization (Kryściński et al., 2021), retrieval (Kamradt, 2023), multi-hop
QA (Zhu et al., 2024; Kočiskỳ et al., 2018), sorting sequences (Wang et al., 2024) and others (Bai
et al., 2023). However, current LLM benchmarks on science e.g., PubmedQA (Jin et al., 2019),
GPQA (Rein et al., 2023) focus primarily on short sequence questions, with answers often in mul-
tiple choice form. To address this gap, we introduce the scientific long-Context Understanding,
Reasoning, and Information Extraction benchmark (CURIE).
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Figure 1: (a) Average normalized performance of state-of-the-art LLMs across 10 tasks from six
scientific domains in CURIE. (b) Comparing performance of different model versions supporting
long-context windows on previous benchmarks testing Knowledge (MMLU), Linguistic (DROP),
and Science expertise (GPQA), along with our new scientific long-context understanding CURIE
benchmark, highlighting the difficulty of the tasks in the benchmark.

The CURIE benchmark introduces 10 tasks, with a total of 580 input and solution pairs based on 429
research documents across six diverse scientific disciplines: materials science, theoretical condensed
matter physics, quantum computing, geospatial analysis, biodiversity, and proteins – covering both
experimental and theoretical aspects of scientific research. These tasks not only require deep domain
understanding but also challenge models on their capacity to comprehend full-length scientific pa-
pers for information extraction, concept tracking, aggregation, algebraic manipulation, multimodal
understanding, and cross-domain expertise (e.g. generating code for theoretical calculations).

We use the CURIE testbed to perform extensive evaluation and analysis of 8 state-of-the-art open
and closed weight models (see Fig. 1a) supporting context windows of 32k tokens or more. Among
closed models, Gemini Flash 2.0 and Claude-3 perform consistently well across all disciplines,
while Command-R+ does better amongst the open models. Our materials tasks, which require
models to exhaustively retrieve and aggregate information spread through the document proved to
be exceptionally challenging for all models. Notably, while GPT-4o does well on most tasks, it
fares dramatically poorly on the protein sequencing task failing to stop generation and repeating
subsequences leading to a very low score. This repetition in subsequence is also seen in other open
models. On the same task, the more recent Flash 2.0 provided correct python code to solve the
problem half the time, and attempted to enumerate the sequence with lesser success other times.

While the CURIE benchmark is aimed at facilitating evaluation of scientific reasoning over long
contexts, we hope the rich human annotations can serve the community in advancing planning, in-
struction following, and evaluation of generated texts of mixed and heterogeneous formats including
dates, locations, numerical values, units, descriptors, domain specific terms, equations and code.

2 RELATED WORK

Science NLP tasks. There have been numerous datasets created to perform core NLP tasks on sci-
entific texts e.g. BLURB Gu et al. (2021). This includes (i) named entity recognition to annotate
entities such as disease names (Li et al., 2016) or material properties (Mavracic et al., 2021a), and
relations such as disease-chemical interaction (Luan et al., 2018); (ii) dependency parsing (Kim
et al., 2003), (iii) participant-intervention-outcome (PICO) annotation (Nye et al., 2018), (iv) text
classification such as citation intent classification (Jurgens et al., 2018; Cohan et al., 2019), paper
domain classification (Beltagy et al., 2019) from titles; (v) relation extraction for chemical-protein-
disease annotation (Kringelum et al., 2016) or material structure and properties (Zhang et al., 2023),
(vi) information extraction e.g. material property values (Dong & Cole, 2022a; Polak & Morgan),
and (vii) question answering (Jin et al., 2019; Krallinger et al., 2020). However all of these focus
on inputs of short length such as paper abstracts, sentences or text spans. They were curated for lan-
guage models operating on short contexts, though the task in the actual scientific workflow requires
application on full documents. Of the recent LLM benchmarks, GPQA (Rein et al., 2023) focuses on
evaluating scientific domain expertise in biology, physics, and chemistry, while MMLU (Hendrycks
et al., 2020) covers a range of high school science. These too are limited to short questions and
multiple choice answers.

Long context benchmarks. With the increase in context windows supported by the LLMs, there
have been new benchmarks focusing on evaluating long context capabilties. ZeroScrolls (Shaham
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Benchmark Source Diverse Long
Domain Tasks Context

ZeroSCROLLS various 3 3
Bamboo various 3 3
Ada-Leval lit., code QA,sort 3
Ruler synthetic 3 3
BLURB biomed 3 7
QASA ML lit. QA 3
Qasper NLP lit. QA 3
GPQA science MCQ 7

CURIE sci. lit. 3 3

(a) Comparison with other datasets. (b) Distribution of tasks.

Avg. word 
count

(c) Input word lengths per domain.

Figure 2: CURIE dataset. (a) CURIE introduces diverse long context tasks on scientific literature,
(b) Distribution of 10 tasks and 429 research documents in six disciplines from which 580 examples
were curated, and (c) Length of input context in each domain (log scale), avg. is about 15k.

et al., 2023) covers summarization, question answering, aggregation which are now present in many
newer benchmarks: NIAH (Kamradt, 2023) includes retrieval, LongBench (Bai et al., 2023) in-
cludes bilingual tasks, Bamboo (Dong et al., 2023) has textual entailment tasks amongst others and
M4LE (Kwan et al., 2023) has tasks testing translation and classification, L-eval (An et al., 2023)
includes a task on multi-document dialog, and Loogle (Li et al., 2023) includes a computation task.
However, while all of these benchmarks combine many existing datasets to cover a range of tasks
none of them operate on data from the scientific domain. Further, for very long (100k+) contexts
synthetically crafted data used, e.g. Ruler (Hsieh et al., 2024) proposes synthetically created length
adaptable tasks and Ada-Leval (Wang et al., 2024) includes length adaptable sorting and QA tasks,
where they add distractor texts to increase the context. These ignore data from scientific literature
that’s naturally complex and requires processing long context, see Fig. 2(a) for comparison.

Scientific literature. Of the tasks most relevant to scientific expertise, QASA (Lee et al., 2023) and
QASPER (Dasigi et al., 2021) operate on a full scientific paper, Machine Learning (ML) and Natural
Language Processing (NLP) papers respectively, however these focus solely on question answering,
since it is expensive and labor-intensive to collect tasks requiring expert knowledge. In our work we
introduce ten new tasks curated from six disciplines, all annotated by experts(with Ph.D. degrees)
and requiring reasoning over long context information, on average about 15k words (Fig. 2c). The
outputs also include structured and unstructured text averaging about 1k words (Fig. 4c).

3 CURIE DATASET AND TASKS

The CURIE benchmark consists of a series of tasks that measure how well LLMs can assist in
diverse scientific workflows, from synthesis of information towards final execution anchored on
single scientific research documents. Each task in the benchmark: (1) is a realistic task performed
by scientific experts on domains requiring years of study, (2) has information relevant to solve the
given problem within the context provided (e.g. a full-length scientific paper, image/caption pair),
and (3) ensures expert humans can evaluate task performance, providing metrics that highlight the
potential limitations of current models. Summary of data, tasks, and metrics are in Appendix A.

Collection guidelines. We selected six domains requiring deep scientific expertise: materials sci-
ence, theoretical condensed matter physics, quantum computing, geospatial analysis, biodiversity,
and proteins. Within these, we worked with 1-3 experts to define tasks representative of realistic
scientific workflows, covering the following seven assessment categories: concept extraction, con-
cept tracking (co-reference resolution), aggregation, algebraic manipulation, summarization, visual
comprehension, and integrating expertise across domains. We focused on tasks that, if successful,
could enable automation (Donoho, 2024) of a time intensive critical component of a workflow e.g.
extraction of experimentally reported values towards curating a database (Dong & Cole, 2022b), or
generate code or calculations to fully reproduce computational or theoretical analyses. We worked
with domain experts on 3 critical aspects of the task preparation: (1) sourcing papers representative
of the task and domain; (2) creating ground truth answers that were accurate, nuanced and compre-
hensive; and (3) identifying measures to evaluate model responses against ground truth answers that
properly captured salient features of the task which the experts also used for rating the difficulty of
each example. Figure 2(b) shows the distribution and details of tasks in the CURIE benchmark.
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Density Functional Theory 
(DFT)

Hartree-Fock Derivation
(HFD)

For the outlined steps, fill in 
placeholders and derive a HF 
Hamiltonian at each step  

DFT-S: Identify input structures.

DFT-P: Identify DFT calculations 
and params. 

DFT-C: Write python code for DFT 
calculations.

Quantum Error Correction 
Codes (QECC)

Fill in a YAML file with the error 
correction code’s properties.

Geospatial analysis
(GEO)

Extract information for all 
datasets used in the paper 
(source, variables, time/spatial 
ranges)

Figure 3: Examples of tasks in the CURIE benchmark. The DFT, HFD, QECC, and GEO tasks
require the LLM to perform tasks on scientific papers (top blocks), as described in the task snippets
(in orange), to extract, calculate, or aggregate information. Expected output (ground truth) snippets
are shown in the blue blocks. (Only snippets of the query /outputs are shown for illustrative purposes.)

We provide a brief motivation and describe tasks for each of the domains. We identified papers with
permissive licenses and worked with 1 to 3 experts in each domain to select specific papers, and to
perform ground truth annotations. Data collection details are included in Appendix F.

Density Functional Theory Task (DFT). Density Functional Theory (DFT) is a widely used frame-
work for quantum mechanical modeling of materials, enabling first-principles predictions and val-
idation of experimental findings. We define 3 tasks that measure the ability of LLMs to reproduce
DFT calculations from papers: (1) extracting input material structures (DFT-S); (2) identifying DFT
calculation parameters associated with computation steps (DFT-P); and (3) translating computational
steps essential for reproducing key results from the paper into functional code (DFT-C). Executing
all these tasks successfully requires the LLM to comprehend domain-specific concepts, extract in-
formation dispersed across different sections of the publication, and generate scientific code. Two
Ph.Ds with expertise in DFT computations identified 75 papers and prepared solutions for the tasks.

Material Property Value Extraction (MPV). While historically material properties have been tab-
ulated in books (Welsch et al., 1993; Kutz, 2002), the published literature is an untapped resource,
with experimentally reported materials, structure information, properties, and processing conditions.
Human curation of such data is time intensive and expensive, and rule-based automation is limited
in scope (Swain & Cole, 2016) as it can miss crucial processing details. However, prompt-based
LLM extraction has shown promising early results (Zheng et al., 2023) at sentence-level extractions.
Our benchmark contains 17 scientific papers for exhaustively extracting material properties at the
full document-level, annotated and verified by experts. The main task is to identify all instances of
material properties mentioned in the text, including material name, descriptor and particular prop-
erty, along with the passage or table where the property is described. For ablations, we consider
variations to extract just a pre-specified set of properties (e.g. just refractive index and band gap).

Hartree-Fock Tasks (HFD, HFE). In condensed matter physics, Hartree-Fock mean-field theory
is a framework for simplifying mathematical descriptions of interacting quantum systems. The
framework begins with an interacting Hamiltonian and uses symbolic computations to reduce to
a simpler non-interacting Hamiltonian. We construct two tasks: derivation (HFD) and extraction
(HFE). HFD measures the ability of an LLM to derive the Hartree-Fock mean-field Hamiltonian
for a quantum many-body system, motivated by prior work (Pan et al., 2024). Deriving the correct
answer requires 13-19 reasoning steps, making it extremely challenging without expert oversight
as the LLM needs to (i) identify the necessary steps to carry out the calculation and (ii) execute
the steps, which requires symbolic computations and deep knowledge of theoretical physics. The
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(a) An example from BIOGR. (b) Illustration of the PDB task. (c) Length of groundtruth outputs

Figure 4: (a) A map input from the BIOGR Task. (b) Example PDB task of reconstructing a protein’s
amino acid sequence from the 3D structure. (c) Length of ground truth per domain (avg. 954 words).

second simpler task, HFE, evaluates an LLM’s ability to identify and aggregate key equations from
a research paper to extract the most general mean-field Hamiltonian. We have 53 papers (38 HFE,
15 HFD) with expert annotations including prompts for detailed reasoning.

Error Correction Zoo Task (QECC). The Error Correction (EC) Zoo (Albert & Faist, 2024) is an
open source effort to build a Wikipedia-like repository collecting and categorizing error correcting
codes from the literature. EC codes are used to redundantly encode and store classical or quantum
information so as to protect it from noise, with wide applications (e.g. in 5G communication and
broadcast protocols). Creating an entry in the EC Zoo is a knowledge intensive process and requires
listing the properties of a given EC code along with any relations to other codes in literature. Each
example contains many different types of information: a succinct non-technical summary, bespoke
technical details, numerical parameters quantifying code performance, and non-trivial connections
to other literature. The diversity in encoding schemes makes the task of selecting critical components
for code-entries challenging to templatize. We construct a benchmark that tests the ability of LLMs
to curate the EC Zoo by taking a given paper and asking it to produce a YAML code-entry file. Our
benchmark consists of codes from 65 papers curated by experienced experts.

Geospatial Dataset Extraction (GEO). Geospatial analysts integrate various diverse datasets to
answer complex questions. For example, a study of time-series snowmelt detection over Antarctica
may combine satellite imagery, radar data, weather station temperature data, elevation/topography
information, etc (Liang et al., 2021). In this task, given a research paper, the LLM is required to
identify all utilized datasets, including source websites, variable names, descriptions, time ranges
and spatial ranges. This requires not only recognizing direct dataset references within the text,
but also contextualization, comprehension and aggregation of information scattered throughout the
paper, pushing the boundaries of long-context understanding. Our benchmark includes 19 papers
ranging across earth observation, economics, epidemiology and public health, along with detailed
ground truth annotations necessary to reproduce each study.

Biodiversity Georeferencing Task (BIOGR). Critical geospatial information is often conveyed
exclusively through maps, highlighting the need for powerful tools capable of interpreting such
visual data. In this task we study the ability of multimodal LLMs to work with geographical maps.
Specifically, we investigate the core capability of georeferencing, where, given an image of a map
and its associated caption, the task is to determine the latitude/longitude bounding box encompassing
the region displayed. A domain expert would often use a multi-step process and specialized mapping
tools (e.g., QGIS, ArcGIS), zooming in and switching between different imagery layers to find
recognizable landmarks (river bends etc.) For this multimodal task, we assembled a dataset of 138
map images (e.g., Fig. 4a) and captions from papers in ecology, of varying difficulty with ground
truth labels for bounding boxes verified by domain experts.

Protein Sequence Reconstruction (PDB). This final task tests the ability of an LLM to extract
meaning from a three dimensional structure, associating the 3D structure of a protein with its se-
quence. Given the 3D structural coordinates of a protein, provided in the Protein Data Bank (PDB),
capturing the precise arrangement of atoms within a complex molecule, we ask the LLM to re-
construct the protein’s amino acid sequence. To create the benchmark we curated the DB file to
contain only coordinate information, stripped of any explicit functional annotation. This minimalist
approach forces the LLM to rely solely on its understanding of structural patterns to deduce the
underlying amino acid sequence. We curated 64 structures with annotations for this task.
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Figure 5: Per task normalized scores of various LLMs on the CURIE benchmark that measures
performance of LLMs on 10 long-context tasks requiring expertise across six scientific disciplines.
DFT-S, DFT-P, and MPV are scored using LLMSim, while others use programmatic metrics.

Annotations. The annotations include ground truth solutions for each task, and difficulty rating for
each example based on complexity of information extraction and reasoning (details in Appendix F).
On the extraction tasks, such as MPV, HFE, GEO, and DFT-S, experts within each domain reviewed
each others’ work and reported a high rate of agreement.

4 EXPERIMENTS AND EVALUATION

4.1 EXPERIMENTAL SETUP

We evaluate the CURIE benchmark tasks on several state-of-the-art LLMs supporting long-context
windows, including five closed weight LLMs such as GPT-4o (OpenAI), Claude-3 Opus (An-
thropic), Gemini 1.5 Pro (Reid et al., 2024), and three open-weight LLMs, Mixtral (Jiang et al.,
2024), Command-R-+ (Cohere), and LongLLaMa-3B (Tworkowski et al., 2024). We follow a stan-
dard zeroshot prompt template across tasks, first describing the task the model needs to perform and
the desired output format, and then providing the text of the full paper (except for LongLLaMa-3B
full paper was provided first). In the case of DFT and MPV tasks, we provide the output format in
the context of an additional hand-crafted excerpt to clarify expectation of formats for each field. The
BIOGR task is multimodal, and for this we provide just the image and caption as input, rather than
the full paper. Performance is reported for each model on each task using a single run.

4.2 EVALUATION METRICS

For the tasks requiring generation of long English text responses (eight out of ten tasks), we use
the ROUGE-L (Lin, 2004) and BERTScore F1 (Zhang et al., 2019) metrics. For BIOGR and PDB
we use other more appropriate quantitative metrics. BIOGR uses Intersection-over-Union (IoU),
defined as the area of intersection between two bounding box regions (using latitude and longitude)
divided by the union. This metric captures the similarity between two polygons, accounting for both
location and size, while also being scale-invariant. We also present additional metrics such as the
normalized distance error between the predicted and ground truth boxes in Appendix Tab. 7. For the
PDB task, we compare reconstructed sequences to ground truth sequences (Cock et al., 2009), using
pairwise sequence alignment scored using the number of identities. The raw scores are normalized
by the alignment length to account for potential length discrepancies, yielding the identity ratio
(IDr) metric.

Computing average performance across all tasks in the CURIE benchmark. Appendix Table 4
reports the primary metric for each task used to compute the average performance. DFT-S, DFT-P,
MPV use model-based F1 scores (Sec. 4.3), BIOGR uses IoU, PDB uses IDr, the rest use ROUGE-
L. All metrics are normalized to [0,1]. Fig. 5 shows performance of models per-task and Fig. 1(a)
shows average performance of models across all 10 tasks.

Human evaluations. Additionally, experts identified a set of rubrics for evaluating model responses
and compared responses. E.g, for the tasks requiring extraction of information such as DFT-S, DFT-
P, and MPV, experts measured precision and recall of retrieved information relative to ground truth.
Experts also rated 10-12% responses in each task with an overall “good”, “ok”, “bad” rating.
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4.3 MODEL-BASED EVALUATION OF MIXED LONG FORM RESPONSES

Tasks in CURIE are varied and have ground truth annotations in mixed and heterogenous outputs.
Evaluating free-form generation is challenging because answers are often descriptive, and even when
a format is specified as in most of our cases the response to each field can have differing forms
e.g. in case of materials grid points may sometimes be specified as [p,q,r] and at other times as
p×q×r. Hence most existing knowledge related benchmarks (Hendrycks et al., 2020; Rein et al.,
2023) lean towards multiple choice format for answers. While these allow for clean evaluation, this
doesn’t allow us to evaluate the full expressiveness of the model. Inspired by the ability of LLMs
to evaluate natural language (Zheng et al., 2024; Liu et al., 2024; Kamalloo et al., 2023), three
recent approaches, LAVE (Mañas et al., 2024), LIMA (Zhou et al., 2024) and Prometheus-Vision
(Lee et al., 2024), utilize the in-context capability of instruction-tuned LLMs to rate the candidate
answers in 3-point, 6-point and 5-point Likert scales, respectively. While evaluation on Likert scales
is suited for generated text, many of the outputs on our task have structured information that could
benefit from more fine grained evaluation. So we propose two model-based evaluations (i) LLMSim
a nuanced score for measuring similarity of elements in lists of dictionaries, which can then be used
to compute precision and recall of elements, and (ii) LMScore an overall weighted score on a 3-point
scale obtained by asking the LLM if the predictions match ground truth. We focus on LLMSim here
since it provides a quantitative measure for structured outputs missing in previous work and discuss
LMScore in Appendix D.

LLMSim is used to compare similarity of dictionary elements to assist in comparison of sets of
dictionaries. Our goal is to identify the number of ground truth dictionary items that have been
retrieved correctly. So, we ask the LLM to examine all of the predicted dictionaries and match and
identify the predicted dictionary most similar to the each of the ground truth dictionaries. We use a
chain-of-thought (CoT) prompt that asks the LLM to identify the predicted dictionary indices that
correctly match each field (key) of the ground truth, and then select the predicted dictionary index
most similar to the ground truth or output ‘None’. Prompt and code are included in the supplement.

Concretely, suppose DP is the set of predicted dictionaries, DG the set of ground truth dictionaries,
LLMSim helps find the optimal matching M between the predicted dictionaries and each ground
truth Dg ∈ DG:

LLMSim = M(DP , Dg)

=

{
None, if no match in values
Dp ∈ DP : argmax s(fi, Dp, Dg)

where fi represents the ith field (key) in the dictionary and s(fi, Dp, Dg) is the similarity of the
value of each field of Dp with Dg . Given the matching, we can then compute precision, recall and
F1 as

Pr =
|(Dp, Dg) ∈M |

|DP |
, Re =

|(Dp, Dg) ∈M |
|DG|

, F1 = 2
Pr ·Re

Pr +Re

5 RESULTS

Main Results. Fig. 1 shows the performance of all models averaged across all tasks in the CURIE
benchmark. Claude-3 Opus is the best performing with consistent high performance across all tasks.
Fig. 5 and Table 1 show task level performance of all models. The popular GPT-4o outperforms
the others on GEO and BIOGR, however it’s performance on PDB and HFD is surprisingly low.
On closer inspection we found the GPT-4o model exhibited repetition in the outputs in the PDB
task (see. Fig. 6), clipped responses in the MPV task, and failed to follow formatting instructions
on the HFD task leading to lower performance. Overall though, most of the closed models had
similar performance, and given the variability (e.g., 25%-75% error bars around the mean in Fig. 5)
the difference between them is not significant. On several tasks there is considerable room for
improvement, making CURIE an interesting benchmark for furthering model development.
Room for improvement. Fig.1(b) compares performance of models from two different generations,
Gemini 1.0 pro (32k) and Gemini 1.5 pro (1M+ context window) on popular benchmarks evaluating
linguistic capability Dua et al. (2019), breadth of knowledge (Hendrycks et al., 2020), and expertise
in science (Rein et al., 2023), alongside the performance on our benchmark evaluating expertise
with long-context comprehension. We observe that there is considerable room for improvement on
the types of realistic complex scientific tasks the CURIE benchmark provides.
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Method DFT MPV HFD HFE QECC GEO BIOGR PDB
R-L B-F1 R-L B-F1 R-L B-F1 R-L B-F1 R-L B-F1 R-L B-F1 IoU IDr

Zero-shot Open Weight LLMs

Mixtral 12.20 0.75 12.48 0.82 3.78 0.27 9.15 0.47 5.11 0.17 20.23 0.67 0.00 0.03
Command-R+ 13.79 0.79 15.67 0.83 5.93 0.82 41.23 0.85 15.88 0.67 21.36 0.78 0.00 0.07
LongLLaMa 8.17 0.77 9.28 0.80 4.36 0.78 10.33 0.77 9.38 0.76 9.53 0.77 0.00 0.00

Zero-shot Closed Weight LLMs

Gemini 1.0 Pro 11.22 0.78 17.37 0.83 5.81 0.53 12.95 0.69 5.10 0.27 22.56 0.79 0.34 0.00
GPT-4o 13.30 0.78 12.74 0.83 9.81 0.81 48.93 0.85 20.02 0.70 27.30 0.80 0.37 0.13
Gemini 1.5 Pro 13.66 0.78 31.54 0.82 18.86 0.84 39.56 0.71 20.07 0.76 27.24 0.74 0.42 0.29
Gemini 1.5 Flash 11.31 0.76 12.11 0.79 22.86 0.84 41.92 0.78 23.50 0.81 27.76 0.78 0.36 0.15
Gemini 2.0 Flash 14.18 0.79 14.72 0.84 22.52 0.84 50.06 0.87 22.36 0.79 29.69 0.79 0.49 0.56
Claude 3 (Opus) 13.78 0.80 15.86 0.83 16.82 0.83 49.10 0.87 21.81 0.72 28.66 0.79 0.39 0.29

Table 1: Results comparing performance of all models on all tasks based on automated metrics
R-L: Rouge-L, and B-F1:BertScore-F1. The avg. performance of all 3 DFT tasks are reported under
DFT. All models support a context length of 32k or more. BIOGR has multimodal inputs which is
unsupported by the chosen open models. Blue highlights the highest values.

Figure 6: Comparing responses on the PDB task. Measuring alignment using identity ratio (IDr)
between the predicted amino acid sequence and groundtruth sequence for a given protein structure,
Gemini 1.5 pro and Claude were better at predicting the sequence of amino acids, whereas GPT-4o
collapsed into a mode of repetition, and Flash 2.0 generated code to solve the problem.
Human vs Model-based eval on retrieval. On the information retrieval tasks: DFT-S and DFT-P
tasks which requires LLMs to retrieve material structures and DFT parameters from a given paper;
as well as the MPV tasks requiring models to retrieve material property and values, we use LLMSim
to compare the dictionaries of extracted material properties. Table 2 reports precision, recall and F1
scores computed after matching elements using LLMSim. We found the precision and recall to
closely match those measured by human experts (on the Gemini 1.5 pro and GPT-4o models).

Human evaluation of model responses. We worked with experts in each domain to evaluate pre-
dictions generated by the models against ground truth responses on a 3-point scale identical to the
proposed LMScore (in Appendix D). For each example, the expert was asked to rate a response as
“good” if it had few or no errors compared to the ground truth, “okay” if it had many minor errors,
and “bad” if there were major errors. We use these human responses to compare and correlate the
newly proposed LMScore which is reported in the Appendix (App. Fig. 10 and Table 5). While
LMScore appears to be promising, it requires further analysis prior to wider usage.
Performance vs. Difficulty Experts in each domain independently determined and rated the diffi-
culty of answering each input example on a 3-point scale as “easy”, “medium”, or “hard”. In most
cases, such as with the MPV, HFE, QECC, and DFT-S extraction and aggregation tasks, difficulty
was determined based on how dispersed the information was within the paper. “Easy” examples
had answers often within a section or a page, while “medium” cases could be spread across mul-
tiple sections, and if the information required knowledge of specific literature outside of the given
context the example was rated “hard”. Additionally for the DFT-C code generation task, the ratio of
the number of implementable functions to the total number of functions mentioned in the paper was
used. For HFD, the number of reasoning steps and for GEO the number of datasets was also fac-
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tored in, and for PDB the length of the sequence determined complexity. Fig. 7 reports performance
of each model sliced by difficulty. Overall, models perform substantially better on easy examples
compared to the medium and hard examples. Models appear to perform about the same on examples
marked medium or hard. Though, one thing of note is that there are usually many more medium
examples than hard examples across all tasks.

Figure 7: Avg. performance of models sliced by difficulty of examples. Consistent with expec-
tations, all models perform substantially better on easy examples except in the case of Mixtral. For
most domains, experts independently converged on measuring difficulty for each example based on
how spread-out the requested information was within the context of the full paper.

6 DISCUSSION

Model responses lack robustness in instruction following. A common observation across tasks
was that, there is variability across model runs, even though average performance remained fairly
constant. The variability is usually higher on harder tasks. Instruction following remains a chal-
lenge: Models often had pieces of the right answer, but were unable to consistently format it despite
examples in the prompt. In rare cases, even though we explicitly asked models to provide answers
when they weren’t sure, they often refused to venture an educated guess. The model-based evalua-
tion metrics were quite helpful in mitigating issues arising from lack of adherence to instructions.
Performance on retrieval. Fig. 5 and Table 1 report performance of the models on each task
in each of the domains. Noticeably all models show high ROUGE-L scores on HFE which is a
variation of the needle-in-a-haystack problem where the model needs to extract related equations
that might be spread throughout the paper. On tasks requiring exhaustive retrieval of multiple values
and aggregation, e.g., DFT (see App. Fig. 14), MPV, and GEO, the models have considerably lower
performance than just single value retrieval tasks (e.g., HFE).

Concept tracking, aggregation, summarization. On tasks requiring concept aggregation and
tracking, e.g. DFT-P, GEO and QECC, experts found responses from some models quite promising.
With DFT-P, Claude-3 appeared to understand the purpose of DFT calculations better and grouped
relevant parameters to appropriate functions (see App. Fig.8). On QECC, the experts noted that
the summaries generated by the LLM tended to be succinct while also including multitude of key
informational “nuggets” and quantitative measurements. While not all of these were correct or im-
portant, experts noted that it would be easier to exclude the wrong bits (after examination) but harder
to extract and comb out such details from the paper. On the GEO task, the closed models did well

Model DFT-S DFT-P MPV MPV-non-trivial MPV-specific
Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1 Pr. Rec. F1

Zero-shot Open Weight LLMs

Mixtral 24.96 23.30 22.67 9.12 6.13 7.09 31.86 23.29 22.82 29.70 21.14 22.31 22.20 35.05 22.64
Command-R+ 41.67 27.95 32.19 6.92 4.63 5.41 22.64 27.25 20.80 3.87 6.31 4.52 18.18 17.84 15.97
LongLLaMa 1.26 1.47 1.36 2.99 3.95 3.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Zero-shot Closed Weight LLMs

Gemini 1.0 Pro 11.19 12.62 10.93 23.1 21.01 20.56 31.28 32.92 31.00 36.41 34.92 31.78 24.86 38.76 23.26
GPT-4o 36.96 29.50 30.63 27.93 19.66 22.13 39.22 24.14 25.90 45.10 24.08 30.05 32.35 21.77 22.97
Gemini 1.5 Pro 36.04 33.67 32.11 23.67 16.53 19.00 23.86 38.36 26.85 31.74 42.60 30.08 25.00 31.34 24.48
Gemini 1.5 Flash 33.07 48.74 35.28 22.35 16.42 17.91 16.41 50.90 23.16 15.82 50.97 21.69 14.77 32.90 17.76
Gemini 2.0 Flash 31.38 40.46 32.39 8.22 7.74 7.68 35.84 46.56 36.99 30.81 47.76 33.79 26.48 33.64 24.37
Claude 3 (Opus) 40.45 32.89 33.76 27.26 17.17 19.87 41.35 35.60 34.04 45.64 43.67 38.32 32.18 47.06 31.48

Table 2: Retrieval performance using LLMSim On tasks requiring exhaustive retrieval of infor-
mation we use LLMSim and compute Precision, Recall, and F1 scores on each document and report
the mean. We also include 2 ablations for the MPV task where we ask the LLM to retrieve non-trivial
or specific property values (refractive index and optical bandgap) for materials.
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Figure 8: Example of model outputs for the DFT-P parameter identification task. Claude-3 Opus
appears to understand the purpose of the calculations better than the other models and avoids unnec-
essary repetition. Claude-3 correctly (green) identifies that there is one set of DFT parameters used
in the actual study as well as two more set of parameters which are used for convergence testing.

to extract some of the important datasets with the correct spatial and temporal ranges (Fig.25) but
performance degrades when multiple datasets are used to cover a larger spatial extent (App. Fig.27).
Overall, carefully engineered prompts and agentic workflows could be effective on such tasks.

Closed vs Open models. One thing of note is that on QECC, DFT, and MPV extraction and ag-
gregation tasks, the Command-R+ open weights model which uses retrieval-augmented approaches
shows performance similar to the closed weight models. The evals on BIOGR highlight that open
models are yet to support both multimodal and long-context capabilities which can enable more
scientific applications. On PDB, Mixtral performed higher than GPT-4o which is quite surprising.
Both LongLLaMA and Command-R+, failed to produce any sort of FASTA format on the PDB task.
They either failed to fully understand the task, or missed steps during aggregation.

Reasoning in code. On the PDB task, remarkably, the more recent Gemini Flash 2.0 model, not
only understood the task but seemed to realize the task is better solved by using programming and
wrote a python function (which executed correctly) about half of the time. On other half of the PDB
inputs, Flash 2.0 decided to aggregate and generate the amino acid sequence similar to other models.

Overall, across tasks, model performances have room for improvement and we discuss specific
examples and failure cases in appendix F for each task.

7 CONCLUSION

In this work we introduce the CURIE benchmark. A series of tasks designed to measure the ability
of LLMs on scientific reasoning and understanding long-contexts. Our main contributions are (i) A
new benchmark of 580 examples from 429 research papers that can assess LLMs on comprehension
of long-context information from across six scientific disciplines requiring deep expertise. (ii) 10
realistic tasks combining concept retrieval and extraction, concept tracking, aggregation, algebraic
manipulation, and expertise across multiple domains to measure capability of models on different
aspects of scientific workflows. (iii) We propose model-based evaluation metrics to address the
challenge of automatically evaluating complex mixed-format heterogeneous outputs and compare
them with human evaluations. (iv) We share guidelines for curating such multi-step tasks and eval-
uating annotation quality of such complex answers. We hope the diverse tasks and rich annotations
in the CURIE benchmark can serve the community in not only evaluating LLMs on their scientific
problem solving abilities but also advance research on scientific planning, instruction following, and
evaluation of generated texts containing information of diverse types and formats.
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REPRODUCIBILITY STATEMENT

We make the data, prompts, and code available in https://github.com/google/curie under
the Apache 2.0 license. Our dataset is available under a CC-BY license. The dataset includes full text
of the papers, the ground truth annotations, prompts (which includes prompts used to elicit model
responses, as well as the prompts used for evaluation using the proposed LMScore and LLMSim
metrics), model responses and code for evaluations. The appendix includes additional information
on each of the tasks, annotation procedures, and examples of model outputs and failure modes.
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V.V.A. participated only as a subject-matter expert for the QECC task. Certain equipment, instru-
ments, software, or materials are identified in this paper in order to specify the experimental pro-
cedure adequately. Such identification is not intended to imply recommendation or endorsement of
any product or service by NIST, nor is it intended to imply that the materials or equipment identified
are necessarily the best available for the purpose.
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and Edward Grefenstette. The narrativeqa reading comprehension challenge. Transactions of the
Association for Computational Linguistics, 6:317–328, 2018.

Martin Krallinger, Anastasia Krithara, Anastasios Nentidis, Georgios Paliouras, and Marta Villegas.
Bioasq at clef2020: Large-scale biomedical semantic indexing and question answering. In Ad-
vances in Information Retrieval: 42nd European Conference on IR Research, ECIR 2020, Lisbon,
Portugal, April 14–17, 2020, Proceedings, Part II 42, pp. 550–556. Springer, 2020.

Jens Kringelum, Sonny Kim Kjaerulff, Søren Brunak, Ole Lund, Tudor I Oprea, and Olivier
Taboureau. Chemprot-3.0: a global chemical biology diseases mapping. Database, 2016:bav123,
2016.
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A DATASET STATISTICS AND TASKS OVERVIEW.

In Fig. 2 (b), Fig. 2 (c), and Fig. 4 (c) we present the distribution of the CURIE dataset in terms of
papers, and distribution of lengths of inputs and outputs per domain. Here, in Table. 3 we consolidate
and present the number of examples in each task and the average length of the inputs and ground
truth outputs. Table 4 presents a brief description of the tasks, the capabilities necessary for the task,
the format of the output, and both programmatic and LLM-based metrics that are used to evaluate
performance on the task.

Domain Task # papers # examples Avg. length (# words)
input output (ground truth)

Material Science DFT-S 74 74 5818 232
Material Science DFT-P 74 74 5818 132
Material Science DFT-C 74 74 5818 1742
Material Science MPV 17 17 1687 2188
Condensed Matter Physics HFD 15 15 5385 1422
Condensed Matter Physics HFE 38 38 8472 111
Quantum Computing QECC 65 65 19913 207
Geospatial GEO 19 19 7802 808
Biodiversity BIOGR 137 138 - 20
Protein Sequencing PDB 64 64 44028 -

Table 3: Statistics of the CURIE dataset. We report the the number of papers and examples for
each task in each of the domains and also include the average length the input and ground truth
outputs in words.

Task Brief description Capability Output Primary
Format Eval. Metric

DFT-S Extract input material structures
for DFT calculations.

entity recognition,
concept tracking

JSON LLMSim-F1

DFT-P Extract parameters for DFT
calculations.

concept extraction,
tracking, aggregation

JSON LLMSim-F1

DFT-C Write functional code for DFT
computations.

concept aggregation,
coding

TEXT ROUGE-L

MPV Identify all instances of
materials,their properties, and

descriptors.

entity recognition,
concept extraction,

tracking

JSON LLMSim-F1

HFD Derive the Hartree-Fock mean-field
Hamiltonian for a quantum

many-body system.

concept extraction,
alg. manipulation,

reasoning

TEXT ROUGE-L

HFE Extract the most general
mean-field Hamiltonian.

concept extraction TEXT (latex
equation)

ROUGE-L

QECC Create a YAML file with the Error
Correction Code’s properties.

concept aggregation,
summarization

YAML ROUGE-L

GEO Extract information for all
geospatial datasets used along with

the spatial and temporal extents.

concept extraction,
aggregation

JSON ROUGE-L

BIOGR Determine the latitude, longitude
bounding box encompassing the

region in the map image.

visual
comprehension,

reasoning

JSON (lat.,
lon.

co-ordinates)

Intersection-
over-union

(IoU)
PDB Reconstruct a protein’s amino acid

sequence form the 3D structure.
tracking, aggregation

reasoning
Code or

TEXT (seq.)
Identity ratio

(IDr)

Table 4: Task details and capabilities required. A brief description of the tasks, capabilities
assessed, output format, and the primary evaluation metric (used in Fig. 1 and Fig. 5).
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Figure 9: Comparing model performances on scientific QA and long-context benchmarks. We
compare the performance of the top 3 closed models on CURIE against, 2 science QA bench-
marks - GPQA, MathVista, an improved language understanding benchmark MMLU-pro, and 2
long-context benchmarks Zero-Scrolls and RULER.

B MODEL PERFORMANCES ON SCIENCE VS LONG-CONTEXT BENCHMARKS

In Fig. 9 we observe how performance of models on the CURIE benchmark correlate or compare
with performance on other scientific QA benchmarks and long-context benchmarks. We specifically
examine the top-3 models on CURIE (Claude-3, Gemini 1.5 Pro, and GPT-4o). We observe that
performance of models on CURIE is more in-line with the realistic ZeroScrolls long-context bench-
mark and also the GPQA scientific question answering benchmark. CURIE appears to be a harder
benchmark than both Zero-Scrolls and GPQA.

C ANNOTATOR AGREEMENTS.

For all tasks we worked with experts to establish a consistent output format over a couple of initial
iterations. We then had a pilot phase followed by some adjudication to clarify outputs. To evaluate
annotator agreements, for retrieval tasks, we had annotators examine each other’s work after the
adjudication. For the HFE and DFT-S tasks the agreement was near perfect (> 95%). There were
minor differences in the exact phrasing / chemical formula notation used. For MPV, we had two
rounds of feedback and were then able to get an agreement over 80% on the materials to be extracted
comprehensively. For GEO, the agreement was again high after an initial pilot phase and discussion,
agreement was over 90% on the datasets, spatial and time ranges. There were minor differences in
the exact phrasing of the responses but these were discounted e.g. “for each year between 2012-
2015” vs “2012,2013,2014,2015”.

D LMSCORE: A COARSE MODEL-BASED EVALUATION METRIC.

Evaluation on Likert scales provide a quick coarse signal of the quality of the responses on gener-
ation tasks. With LMScore we propose an overall weighted score on a 3-point scale obtained by
asking the LLM if the predictions match ground truth and using the model’s confidence (log-probs
scores) to get a weighted score. Specifically, given the ground truth and predicted responses, we ask
the model to check if the predicted responses match the ground truth, and ask the model to output
“good” (if the prediction has few minor errors), “okay” (if there are many minor errors), and “bad” if
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there are major errors. Instead of using the model generated response directly, we compute a score
based on the model log-likelihood values. If xt represents the tokens for the 3 categories we are
interested in, xt ∈ {bad, ok, good}, and wt are the corresponding weights we want to assign to each
category, wt ∈ {0, 0.5, 1}, then

LMScore =

2∑
t=0

p(xt)× wt (1)

p(xt) is computed by renormalize the probabilities of the tokens by considering a softmax() opera-
tion on the log-probabilities of the tokens: ([lbad, lok, lgood]). We consider an uncased version of the
tokens and treat ‘ok’ and ‘okay’ equivalently. We use GPT-4o as the LLM. When the tokens are not
present in the top-5 log probabilities we compute an approximation based on the probability mass of
the tokens not present in the top-5. We make the code for computation available in the supplement.

Figure 10: Correlation of GPT-4o based LMScore metric with human evaluations, Across tasks
in domains where ROUGE-L is the primary evaluation metric, LMScore appears to be a promising
alternative to ROUGE.

Method DFT MPV HFD HFE QECC GEO
R-L LMS R-L LMS R-L LMS R-L LMS R-L LMS R-L LMS

Zero-shot Open Weight LLMs

Mixtral 7.43 0.08 13.43 0.18 3.78 0.05 9.15 0.11 3.10 0.06 20.23 0.19
Command-R+ 5.12 0.06 11.22 0.37 15.81 0.17 41.23 0.31 17.23 0.16 21.36 0.15
LongLLaMa 4.61 0.02 6.03 0.06 4.36 0.01 10.33 0.00 8.67 0.01 9.53 0.00

Zero-shot Closed-Weight LLMs

Gemini 1.0 Pro 10.52 0.06 13.69 0.30 18.10 0.02 36.60 0.10 17.48 0.05 28.44 0.18
GPT-4o 9.05 0.12 13.52 0.25 9.81 0.06 48.93 0.47 19.51 0.16 31.47 0.30
Claude 3 (Opus) 8.38 0.11 15.54 0.34 16.82 0.13 49.10 0.50 20.54 0.18 28.63 0.24
Gemini 1.5 Flash 10.62 0.13 14.14 0.43 17.53 0.21 43.94 0.39 17.40 0.22 28.94 0.29
Gemini 1.5 Pro 10.83 0.12 14.12 0.41 18.86 0.14 39.56 0.33 18.03 0.23 30.25 0.30

Table 5: Results comparing performance of all models on all tasks based on the ROUGE-L metric
and the proposed GPT-4o based LMScore (LMS) metric. DFT reports avg. across all 3 DFT tasks.

Human vs. Model-based 3-point evaluations We worked with experts in each domain to evaluate
predictions generated by the models against ground truth responses on a 3-point scale identical to
the proposed LMScore. For each example, the expert was asked to rate a response as “good” if it
had few or no errors compared to the ground truth, “okay” if it had many minor errors, and “bad” if
there were major errors. We use these human responses to compare and correlate the newly proposed
LMScore which is reported in Fig. 10.

Table 5 shows performance of the proposed LMScore (LMS) for all models across all tasks. We
observe that LMScore values show trends similar to what is observed in ROUGE-L (R-L). Table 6

E LIMITATIONS

This work focused on a select set of domains and a narrow set of tasks with high quality annotations,
thus limiting the scale. Increasing the scale of examples across tasks would provide a more robust
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Method DFT-C DFT-S DFT-P DFT-AVG
R-L LMS LLMSim F1 R-L LMS LLMSim F1 R-L LMS R-L LMS

Zero-shot Open Weight LLMs

Mixtral 7.43 0.09 25.61 14.03 0.05 7.87 15.16 0.10 7.43 0.08
Command-R+ 5.12 0.06 34.47 18.68 0.03 6.97 17.59 0.09 5.12 0.06
LongLLaMa 4.61 0.03 1.96 8.68 0.01 5.02 11.23 0.02 4.61 0.02

Zero-shot Closed-Weight LLMs

Gemini 1.0 Pro 6.57 0.10 42.95 12.42 0.02 9.66 14.67 0.05 10.52 0.06
GPT-4o 9.05 0.16 33.30 15.70 0.04 24.76 15.17 0.15 9.05 0.12
Claude 3 (Opus) 8.38 0.16 36.28 16.87 0.05 21.81 16.10 0.13 8.38 0.11
Gemini 1.5 Flash 10.07 0.22 39.34 10.96 0.05 21.36 12.90 0.13 10.62 0.13
Gemini 1.5 Pro 10.83 0.21 36.99 14.55 0.03 20.89 15.59 0.12 10.83 0.12

Table 6: Results comparing performance of all models on the DFT tasks based on the ROUGE-L
metric (R-L), LLMSim (F1) and the proposed GPT-4o based LMScore (LMS) metric. Blue is
highest score and Yellow is second highest.

evaluation benchmark. With the fast pace of language model advancements, evaluating the generated
text responses on such complex tasks is challenging even with high quality human annotations. In
particular, just based on instructions and output format provided in the prompt, existing automated
evaluation metrics Rouge-L and BERTScore can be unforgiving resulting in low scores for responses
that look different but might still be reasonable. While we propose model based evaluation metrics,
these are still far from perfect and provides room for more creative strategies. Further, we primarily
evaluate models in the zero-shot and two-shot settings (discussed in the supplement) and we invite
researchers to explore retrieval augmented generation and chained prompting strategies that evaluate
the models on planning and task decomposition.

Another limitation is that, it is difficult to obtain human performance on the benchmark. These
tasks require extensive expertise and it’s unlikely that any one person has sufficient expertise across
these domains. On the other hand, hiring an expert for each of the domains and evaluating their
performance of the task would double the cost of annotation, so in this work we rely on annotator
adjudication to come up with the final answers.

F DETAILED DESCRIPTIONS OF TASKS AND DATA

F.1 DENSITY FUNCTIONAL THEORY (DFT) TASK

Density functional theory (DFT) provides a robust framework for quantum mechanical modeling
of materials, enabling first-principles predictions and validation of experimental findings. Despite
its widespread use and success in materials science, DFT calculations remain largely inaccessible to
most experimental researchers, typically requiring a specialized PhD-level training in computational
materials science. This knowledge gap arises from a confluence of factors: the underlying quantum
mechanical formalism; intricacies of numerical implementation and software-specific parameters;
and the nuanced interpretation of results. While the theoretical foundations are often covered in elec-
tive graduate coursework, the practical application of DFT necessitates years of specialized training
to develop the intuition required to navigate software complexities, select appropriate parameters
and ensure the physical validity of results.

This benchmark represents a critical first step towards harnessing LLMs for automating complex
scientific workflows. While considerable interest exists in leveraging AI to accelerate scientific dis-
covery, concerns persist regarding the accuracy and reliability of LLMs in this context. Evaluating
the performance of LLMs on intricate scientific tasks, such as DFT calculations, presents a signif-
icant challenge due to the domain expertise required for assessment. To address this, we introduce
a comprehensive framework for evaluating each stage of the DFT workflow - from initial planning
to final execution, ultimately aiming towards the complete automation of DFT calculations. Such
automation would empower a broader range of scientists including materials scientists, chemists
and physicists to perform complex calculations without the need for extensive specialized training,
enriching the theoretical foundations of experimental work and accelerating discovery.
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To assess the ability of large language models (LLMs) to generate DFT workflows, we propose a
benchmark task requiring the translation of materials science papers into executable Python code,
leveraging established domain-specific libraries. This benchmark encapsulates three core subtasks:
(1) identifying the computational steps essential for reproducibility; (2) extracting metadata, includ-
ing input structures and DFT parameters; and (3) translating these steps and metadata into functional
code. Subtask (1) evaluates the LLM’s comprehension of domain-specific concepts and ability to
plan complex procedures. Subtask (2) assesses its capacity to extract pertinent information within
a potentially expansive context, where relevant details may be dispersed across different sections of
the publication. Finally, subtask (3) gauges the LLM’s aptitude for scientific coding which requires
not only proficiency in a specific coding language and libraries but also a deep understanding of the
underlying scientific principles.

F.1.1 DFT DATASET COLLECTION DETAILS

We identified a set of ∼ 200 papers from the S2ORC corpus1 that mentioned DFT computations in
the abstract. We hired two expert annotators, who hold PhD degrees specifically in Materials Science
and work directly on DFT computations to annotate the papers. The annotators identified 74 papers
which had DFT calculations to validate experimental results and also included a mix of theoretical
understanding. Some of the papers that were discarded included papers that were proposing new
DFT computation methods, or papers that were large focused on theory with just a passing mention
of DFT computations. The annotators were asked to annotate all information necessary to reproduce
the DFT computations in the paper.

The annotators started by identifying the structures studied in the paper. They identified the graph
of the computational steps carried out along with the inputs and outputs that went into each compu-
tation. They used the inputs and outputs to perform a topological sorting of the functions to create a
computational graph of the different DFT computations done in the paper. They then implemented
the functions of the DFT computation in python code. In cases where the paper did not have suffi-
cient information, they marked such functions with placeholders noting that additional information
was necessary and missing from the paper to fully reproduce that specific step. The annotators also
identified analysis steps, and include code to perform the analysis functions. The annotators provide
final code that includes the structure metadata, DFT params, and general helper functions as well
as specific functions for each of the computation steps, and a final block of code that executes the
computations and the analysis in the sequence performed in the paper.

F.1.2 DFT TASK DETAILS

Our dataset is composed of three parts: calculation metadata for input structures, DFT computation
functions and parameters, and code.

Metadata for input structures and DFT functions We capture the details of the inputs to each
DFT calculation run in the workflow in two different types of metadata: structure metadata for the
input structure, and DFT parameters for the DFT calculation settings. These subtasks are named
DFT-S and DFT-P respectively and prompts are shown in Fig. 11 and Fig. 12.

Code for reproducing the calculation workflow We write python code that reproduces the calcula-
tion workflow specified by the computation graph and the calculation metadata. The code is written
in python, and we primarily use the Atomic Simulation Environment (ASE) library for setting up,
manipulating, running and analyzing DFT calculations. We assume that the DFT software used in
the original paper are available to run, and call the DFT software from ase. The prompt for this is
shown in Fig. 13.

1S2ORC: https://github.com/allenai/s2orc
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DFT-S Prompt

A materials scientist would like to reproduce the DFT calculations
from a paper.
They want to identify the input structures, and gather as much
information about the structures as possible.

Make sure to identify all input structures, and output a list of
the distinct input structures information with fields
"id", "common name", "scientific name", "type", "composition",
"description", "vacuum x", "vacuum y", "vacuum z", "supercell",
"cas number", "lattice a", "lattice b", "lattice c", "space group",
"orientation", "mp id", "isomer name".
The "id" field is just a string of format "structure metadata {number}",
where {number} starts from 1 and indicates the order the structure
appears in the excerpt.
The "description" field should capture all relevant information
that is not captured by the other fields. Make sure to write your
output as a list of dictionaries, NOT A BULLETED LIST.
The "common name" field should have the common name of the material
and "scientific name" should have the formal scientific name of the
material.
The "type" field should point out whether the material is a
molecule, a protein, a bulk crystal structure, a thin film or
something else.
If the structure has vacuum around it, please include the thickness
of vacuum layer in three directions with units in these fields:
"vacuum x", "vacuum y", "vacuum z".
The fields "lattice a", "lattice b", "lattice c" correspond to the
lattice parameters of the unit cell. Include units in these fields
as well. Leave them blank if lattice parameters are missing.
The "supercell" field should tell how many times the unit cell is
repeated in the [x, y, z] directions, like "2x2x2".
If the text indicates the material structure is from material
project and provides a "mp id", please include that in the field
"mp id".
If the structure has multiple isomers and the text mentions which
is used, please indicate that in the field "isomer name".
If any information is relevant but missing, input "UNKNOWN" in the
field. If any information is irrelevant and missing, input None in
the field.
The "description" field should capture all relevant information
that is not captured by the other fields. Make sure to write your
output as a list of dictionaries, NOT A BULLETED LIST.

Example excerpt:
[Excerpt and additional electronic configuration details
abbreviated]

Example output format:
{
"id": "structure metadata 1",
"common name": "STO",
"scientific name": "Strontium titanate",
[Additional fields abbreviated: type, composition, all parameters]
"description": "pure SrTiO3" [Additional structures abbreviated]]
}
Here is the paper:
{{text}}

---
Identify the input structures, and gather as much information about
the structures as possible.
Use the format from the example output.

Figure 11: Prompt for extracting input structures used in DFT calculations (DFT-S Task).
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DFT-P prompt

A materials scientist would like to reproduce the DFT calculations
from a paper.
They want detailed information about each of the DFT calculations
in the paper.
Output a list of the distinct DFT parameters with fields including,
but not limited to, "software", "functional", "k-points-grid",
"pseudopotentials",
"basis set", "energy cutoff", "energy convergence",
"force convergence", "relaxed nuclei",
"relaxed unit cell", "spin", "hubbard U".
If a structure is relaxed, please set "relaxed nuclei" or
"relaxed unit cell"
to 1.0 (corresponding to true).
If spin is involved in the calculation, set "spin" to 1.0
Include the units in these fields if applicable.
If any information is relevant but missing, input "NaN" in the
field.
If any information is irrelevant and missing, input "NaN" in the
field.
Make sure to write your output in JSON format.
Include any related information to the that has not been covered
into the "other information" field.

Use the following format:
{
"function name":"short function description",
"software": "Specify which software was used, e.g. vasp,
gaussian, castep, qe, dmol, orca, wein2k",
"functional": "functional name",
"k-points": "k-point grid as [x,y,z
",
"energy cutoff": "energy cutoff in eV if mentioned, else NaN",
"energy convergence": "energy convergence if mentioned, else NaN",
"force convergence": "force convergence if mentioned, else NaN",
"relaxed nuclei": "1.0 if nuclei is mentioned to be relaxed, 0.0 if
mentioned to be fixed, else NaN",
"relaxed unit cell": "1.0 if it is mentioned to be relaxed, 0.0 if
if mentioned not relaxed or else NaN ",
"spin": "1.0 if spin considered, 0.0 if not considered, else NaN",
"hubbard U": "NaN if not mentioned",
"other information": "Any other relevant information for the
calculation."
},
...
]
[Example excerpt abbreviated]

[Example output: Single DFT calculation with VASP, HSE06, key
parameters shown]

Here is the paper:
{{text}}

Using the specified format, extract and
list out the details of all the DFT calculations in the paper.

Answer:

Figure 12: Prompt for extracting DFT calculation parameters (DFT-P Task).
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DFT-C prompt

I am a computational materials scientist, and I would like to
reproduce the DFT calculations from a paper.
Write python code to reproduce all DFT calculations from a paper.
You have access to the library ase, and any DFT software used in
the paper.
Whenever possible, make the code modular by write functions for
each step of the calculation
(i.e. set up the unit cell, run DFT, find the total energy from
the DFT calculation, plot the band structure, ...)
and calling the functions, instead of writing one long body of
code.
Make sure all input structures, DFT calculations, and calculation
outputs such as energies, density of states or band gap are
accounted for.
---
This is the paper I’d like to write the python code for:
{{text}}
---
Output:

Figure 13: Prompt for generating Python code to reproduce DFT calculations (DFT-C Task).

Figure 14: Model responses on the DFT-S structure metadata extraction task. Claude-3 Opus
extracts accurate structures (green) relevant to the DFT computation whereas the other models do not
precisely identify the exact structures that go into the DFT computation and tend to repeat entries.

F.1.3 DFT TASKS: RESULTS AND ANALYSIS

Structure Metadata. (DFT-S) Many of the models did a good job of picking out relevant in-
formation about the chemical structures from the text. Qualitatively, the claude-3-opus-20240229
model outperforms the others in its ability to understand how many structures are described in the
paper. For example, on record 2023-09-22-13bcf90c3ef43f1413deg, claude-3-opus-20240229 cor-
rectly identifies two structures that are present in the text. The other models output many more struc-
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tures with repeated information. The same is true for records 2023-09-22-01b9cdba467fd7882e42g
and 2023-09-22-07b4d66e23971ccb85c0g

DFT Paramaters Metadata. (DFT-P) Again, all models do a reasonable job of identifying rele-
vant information from the text and structuring it properly as prompted. However, claude-3-opus-
20240229 appears to understand the purpose of the calculations better than the other models, and it
avoids unnecessary repetition For example, in record 2023-09-22-07b4d66e23971ccb85c0g, claude-
3-opus-20240229 correctly identifies that there is one set of DFT parameters used in the actual study
as well as two more sets of parameters used for convergence testing. Based on how it names each
parameter set, it is clear that it understands the purpose of each parameter set. For example, it named
a parameter set “DFT-parameters-convergence-tests” as opposed to the other models’ more generic
names, like GPT-4o’s “create-dft-parameters-rpbe” However, its predisposition to brevity has its
drawbacks as well. For example in record 2023-09-22-0ce1b5ea9a8637db5435g, claude-3-opus-
20240229 incorrectly finds only one set of DFT parameters. Meanwhile, gemini-1.5-flash-latest
correctly identifies the two sets of parameters actually present in the paper. All other models repro-
duce the same sets of parameters multiple times with different names.

Code (DFT-C). Gemini-1.5-flash-latest and mixtral-8x7b-32768 do much worse than the others.
E.g. record 2023-09-22-0ce1b5ea9a8637db5435g. Gemini-1.5-flash-latest returns simple constant
values like “return 0” and “return [0]” where other models implement more useful functions. Mixtral
appeared not to finish writing a script at all. The others arguably performed similarly. Claude3 was
the best overall.

F.2 MATERIAL, PROPERTY, VALUE EXTRACTION TASK (MPV)

Modern scientific research articles contain unstructured natural language descriptions of materials,
their structure, processing, and properties. This wealth of information is often difficult to access due
to the unstructured nature of the text. Collection and standardization of such unstructured informa-
tion at scale would benefit materials researchers and accelerate new materials discovery. Existing
resources, such as human-curated tables or handbooks, are typically limited in scope and often lack
crucial details regarding material structure and processing. This lack of context can lead to poor pre-
dictability of material properties. While rule-based approaches have been widely employed Swain
& Cole (2016); Mavracic et al. (2021b); Dong & Cole (2022b), they often fail to capture critical
information hidden within the broader context of the text. Dataset curated by computational meth-
ods is a good alternative with structured information, however computational results could not be
generalized to the prediction of experimental measurements mp (2017) due to the inherent limitation
in the theory itself (e.g. density functional theory (DFT)).

With LLM, prompt-based extraction from the scientific literature is emerging as a new extraction
method that could result in better accuracy at a lower amount of human effort. Early LLM-based
property extraction studies utilized fine-tuning Dunn et al. (2022), but there have been a series of
papers using prompt engineering with success, such as extraction of critical cooling rates of metal-
lic glasses, yield strengths of high-entropy alloys, emission wavelengths of phosphors or synthesis
parameters metal organic frameworks Zhang et al. (2023); Zheng et al. (2023); Polak & Morgan.

F.2.1 MPV: DATASET COLLECTION DETAILS

We identified a set of 17 papers from the S2ORC corpus2. We hired expert annotators to annotate
the papers and extract all material names, material descriptors, property studied along with property
descriptors, and values corresponding to the properties as mentioned in the paper. The annotators
were also asked to provide the source sentence to help validate the extractions.

F.2.2 MPV: TASK DETAILS

We perform 3 sets of tasks.

Extraction of all properties. We ask the model to extract all materials, properties and values
mentioned in the paper. Prompt for this is shown in Fig. 15. This is identical to the task description
given to the annotators. This task also requires that the final output includes the material descriptor,
property descriptor and source sentence corresponding to the descriptors and values being extracted.
This is the main MPV task reported in the results in Table 1 and Figure 5.

2S2ORC: https://github.com/allenai/s2orc
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MPV prompt

You are a materials scientist. Your goal is to find and extract
all numeric values or numeric value ranges of material properties
mentioned or tabulated in a given paper text.

The output should be in JSON format:
[
{
"material": "<material name>",
"material descriptor": "<material descriptor>",
"material source passage": "<source passage from which the material
name and descriptor were identified>",
"material source table": "<source table from which the material
name and descriptor were identified>",
"property name": "<property name>",
"property descriptor": "<property descriptor>",
"property source passage": "<source passage from which material
name, property and property descriptor were identified>",
"property source table": "<source table from which material name,
property and property descriptor were identified>",
"low value" : "<low value>",
"high value": "<high value>",
"value units": "<value units>",
"value source passage": "<source passage from which material
property values were identified>",
"value source table": "<source table from which material property
values were identified>",
}, ...
]
An example of the output is as follows:
[Example: Single entry for HfO2 with refractive index 1.84]

There are some certain rules you need to follow:
1. Be thorough! Don’t miss even a single numeric value.
2. Avoid null low value and high value. Simply skip the entry if
you cannot extract the numeric value.
3. If a value is only extractable from a figure, not text or
table, simply skip that entry.
4. Make sure whatever low value and high value actually exists in
the source passage or referred table.
5. If one passage contains multiple materials or properties,
record all of them as separate entries.
6. If different values are mentioned for the same material
property, record all of them as separate entries.
7. Material, property, and value may or may not be mentioned in
the same passage.

This below is the excerpt from a paper in LaTeX format published
in a materials science journal.
Excerpt:
text:
{{text}}
------------------------------
With the above excerpt, the goal is to extract numeric values or
numeric value ranges of material properties from the above paper.

Please only output your answer in the exact format as shown above
without any prefix.
Output:

Figure 15: Prompt for extracting material property values from text (MPV Task).
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Extraction of specific properties. The second task we do is to test performance when we narrow
down specific properties of interest. We specifically ask the model to extract materials, property
values where refractive index and bandgap properties are being studied. This is a more tightly
scoped task, and we do this specifically to evaluate the models on a narrower well defined task.
As with the task of extracting all material property values, we ask the model to also include the
material descriptor, property descriptor and source sentence corresponding to the descriptors and
values being extracted.

Extraction of non-trivial properties. We also evaluate a minor variation of the first task where we
ask the model to extract all non-trivial properties of materials and their values. These properties in
some sense would be considered to be important contributions of the experimental work reported in
the particular research paper. This is to avoid any confusion between generic properties of materials
that are known prior to a given research paper vs. those specifically studied or identified newly in a
research paper. This task is useful in extracting just the additional information necessary to populate
a database of materials, properties and values.

F.2.3 MPV: DIFFICULTY RATING LOGIC

When rating the difficulty of each example for the MPV task, the experts marked an example as
“Easy” if the answer could be found in the original sentence without modification. Examples were
marked “Medium” if the answer was not very obvious, and the descriptors are very important and
cannot be missed. Examples were marked “Hard” if the answer was derived from multiple sen-
tences, and sometimes from tables and figures and reasoning was necessary to determine the right
descriptors or values.

Figure 16: Example from the MPV task where Claude-3 Opus, Gemini 1.5 pro, and GPT-4o re-
called some important material properties and values but failed to capture all relevant properties and
focused instead on some trivial properties. (paper id: 53519111)

F.2.4 MPV: RESULTS AND ANALYSIS

Both precision and recall rate were used in the evaluation process. A tuple of material, material
descriptor, property, value were used for matching and then measuring if property value is accu-
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Figure 17: Example from the MPV task where all models correctly identify and extract a material,
property and other information but have slight differences. (paper id: 15804005)

rate. The model output and ground truth are only considered as a match if these four fields are
semantically equivalent. Exact match is often impossible because of the existence of alternative
names for material and properties. The material descriptors could also be part of the material name,
which makes the exact match very difficult. For example, “TiO2 nanocrystal” as a material name is
equivalent to “TiO2” as material name and “nanocrystal” as material descriptor.

In the context of model evaluation, we once again incorporate LLM models into the workflow in
order to analyze the level of correspondence between the material properties extracted by the previ-
ous LLM and the material properties annotated by humans. This process is referred to as the model
evaluation. During the model evaluation, both the material properties annotated by humans and
those extracted by the LLM are fed into the LLM. Prompt engineering is utilized to enable the LLM
models to identify matches based on specific attributes: material names, property names, low and
high values, and unit of measurement. To ensure comprehensive matching, we specifically instruct
the model to exhibit leniency; this allows it to encompass properties that, despite lacking identical
names, convey the same meaning (e.g., Indium Nitride vs. InN) or differ in the order of units (e.g.,
100cm2 vs. 1× 102cm2). Furthermore, we emphasize the importance for the LLM to pay attention
to descriptors of materials and properties, as these may indicate a significant difference in the form
or state of the material. During the model evaluation process, the source passages are not taken into
consideration while instructing the LLM. This decision is made because the same properties can be
extracted from different passages. Additionally, it is not uncommon for different annotators to select
different sections of the same passages or to use different lengths as their source passages. Conse-
quently, the source passages are only utilized as a reference for human attention when identifying
and analyzing issues of evaluations.
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By correlating each human-annotated material property with a matching or empty LLM-output prop-
erty, we can compute the precision and recall of the model evaluation, as illustrated in Table 2.

The results of the model evaluation provide valuable insights into the potential transformation of
the entire task into fully automated pipelines all by LLM, with the LLM doing both the material
property extraction and extraction result evaluation tasks.

It is also worth mentioning that the LLM outputs also include trivial material-property entities such
as sample thickness. Human annotators omit this information due to the lack of general interest to
materials science community. Thus we explicitly asked LLM to only include non-trivial material
property entities in the outputs and the precision is significantly improved while the recall rate is
similar, as shown in the ”mpv-non-trivial” column of Table 3. We further limit the properties to
”bandgap” and ”refractive index” as these two properties are the most common material properties
reported in scientific literature. The results can be seen in the ”mpv-specific” column of Table 3:
the precision is significantly higher than the regular mpv task due to less ambiguity on whether a
property should be included. But the recall rate is reduced, which is also related to the filtering we
applied in the prompt.

F.3 HARTREE-FOCK MEAN-FIELD THEORY TASKS (HFD, HFE)

In this section we provide additional details about the datasets, detailed task description and analysis
of the results for the condensed matter physics tasks. Condensed matter physics often utilizes the
Hartree-Fock method, which involves deriving a Hartree-Fock (mean-field) Hamiltonian.

F.3.1 HFD AND HFE TASK DETAILS

We select two tasks pertaining to Hartree-Fock mean-field theory.

Hartree-Fock Derivation (HFD). The first task, HFD, involves analytically deriving the Hartree-
Fock Hamiltonian through a series of 13 to 19 intricate steps. Each step demands a deep under-
standing of the physical system and requires specific mathematical operations. Due to the com-
plexity of this task, we employ a template approach. The template provides a general structure for
each step and includes placeholders for key components. The specific task for the Large Language
Model (LLM) is towards filling these placeholders which would allow for analytic derivation of a
Hamiltonian at each step. We evaluate the LLM’s performance by comparing the responses for the
placeholders with the ground truth written by an expert. Aside from filling in the placeholders at
each step, we also ask the model to derive a Hamiltonian at each step and compare it to the ground
truth Hamiltonian. The entire prompt used for this task contains about 6k words.

Hartree-Fock Extraction (HFE). Recognizing the challenges inherent in HFD, we introduce the
Hartree-Fock extraction task (HFE) as a simpler comprehension task as opposed to the deep rea-
soning required in HFD. This task involves extracting a Hartree-Fock Hamiltonian from scientific
papers that contain this Hamiltonian. If the Hamiltonian contains some terms that are defined in the
paper, we ask the model to extract those terms as well. While HFE is less demanding than HFD,
it presents its own challenges, as a single paper may contain multiple Hartree-Fock Hamiltonians
specific to different cases being studied. So we ask the LLM to fill in a template with an exact
Hamiltonian expression and all the terms that are necessary to describe it. We note that a Hamil-
tonian, in most cases, contains several terms that are written in different parts of the paper. For
example, it usually contains non-interacting term (H0) as well as interacting HHF

int terms. While
the non-interacting term is usually unique, the interacting term can take on various forms in a given
paper and, therefore, the LLM must choose which interacting Hamiltonian is the most general.

By dividing the process into these two tasks, we can systematically evaluate the capabilities of LLMs
in tackling complex physics problems. HFD allows us to assess the model’s ability to perform step-
by-step complex, scientific analytical derivation, while HFE focuses on reasoning and information
extraction. The prompt for HFE task is shown in Fig. 18 and a condensed version for HFD in Fig. 19.

F.3.2 HARTREE-FOCK DATASET COLLECTION

We have two datasets for the two tasks (Hartree-Fock derivation and Hartree-Fock extraction).
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HFE prompt

You are a physicist.
You are reading a paper that has explicit equation (or equations)
for the general Hartree-Fock or mean-field Hamiltonian.
There are might be several Hartree-Fock Hamiltonians in the paper.
You should return the one that is the most general.
Return this Hamiltonian.
Print out each equation explicitely instead of citing it.
Print out terms in the Hamiltonian if they are present in the
paper,
including intergrals.
Do not explain the Hamiltonian or the terms
Return the Hamiltonian in the following format:
’The general Hartree-Fock Hamiltonian is
{{The Hartree-Fock or mean-field Hamiltonian}}
where {{include all terms in the Hamiltonian}}’
Be concise. Do not explain constants.

PAPER:
{{text}}

YOUR RESPONSE:

Figure 18: Prompt for extracting the general Hartree-Fock Hamiltonian from a paper (HFE Task)

HFD. The dataset for the HFD task consisted of the papers used in Pan et al. (2024). These were
hand selected by expert post-doctoral scientists intimately familiar with the derivations in the work.
15 papers were selected and reasoning steps from solving the quantum many body system was
identified for each paper. Pan et al. (2024) also provides prompts and includes derivations to compare
responses from a language model. The contribution of our work is a generalized version of the
template created by Pan et al. (2024). We create a format that is consistent across all papers so that
evaluation can be automated. The ground truth for task includes all of the derivations associated
with each of the reasoning steps annotated in Pan et al. (2024).

HFE. The papers for the HFE dataset were selected from those that contained Hartree-Fock Hamil-
tonian, discovered using the arXiv advanced search. Specifically, we performed advanced search
on arXiv with the following parameters: (i) We set Classification: Physics: Condensed Matter; (ii)
we set include cross list as ‘True’; (iii) we look for ‘Hartree-Fock’ as key words in abstract. We
then selected papers in reverse chronological order (from most recent onwards) and filtered to get a
total of about 50-80 papers. An expert doctoral candidate in the field then filtered papers where the
Hartree-Fock Hamiltonians were present in the paper directly and also extracted and aggregated the
equations form across the papers to create a ground truth evaluation set. The final dataset for the
HFE task consisted of 38 papers.

F.3.3 DIFFICULTY RATING LOGIC

Two experts marked each example with the difficulty ratings using the following rubric.

HartreeFock Extraction task. Easy: If the non-interacting term H0 and interacting terms HHF

are on the same page or in the same section and the paper does not have many formulas, so the
Hamiltonian is easy to find then it was marked “easy”. Medium: If H0 and HHF are in different
parts of the paper the example was marked “medium”. Hard: If the paper contains many formulas,
or several HF Hamiltonians and it requires time or involves logic to find the right Hamiltonian in the
paper then it was marked “hard”.

HartreeFock Derivation task. For the derivation task, the experts evaluated the non-interacting
term and the interaction term separately as either “easy” or “hard”. If both are “hard” then the ex-
ample was marked as “hard”. If both are “easy”, then the example was marked as “easy”. Otherwise,
the example was marked as “medium”.
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HFD prompt

You are a materials scientist. You are provided with a paper and
the STEPS to derive a Hartree-Fock Hamiltonian.
Be concise. Some STEPS are optional. You should decide whether or
not to perform the step based on your understanding of the paper.

In the STEPS below, you will need to answer the questions or
deduct necessary information from the paper in order to fill in
the placeholders {}.
You should print a Hamiltonian at each step whenever it is
requested to derive.

Placeholders Explanation:
1. The {} placeholders are intended for string substitutions.
2. The {A|B} placeholders are intended for string substitutions
with either A or B.
3. The {text|None} brackets denote optional strings (text).

System Choice Before Derivation:
Before starting the derivation, you should make a choice among
these three possibilities for the system based on the paper:
This is very important. The choice is strongly correlated with the
description of the problem in the paper.

Which Hamiltonian does the paper study? Choose one:
1. Continuum version, single-particle
2. Continuum version, second-quantized
3. Lattice version

Note: Do not print out the choice. Rather, follow the steps based
on the choice.
Output Format:
Respond in a valid JSON-formatted string. Ensure your response
follows this format:

[
{
"Step": "1",
"task": "Construct Kinetic Hamiltonian",
"answer": "Hamiltonian ..."

},
[Additional steps follow the same format]

]

STEPS:
Step 1: Construct Kinetic Hamiltonian
Express Hamiltonian using proper operators and summations.

Step 2: Define Terms in Kinetic Hamiltonian
Choose dispersion: parabolic, Dirac, or cos-like.
[Example dispersions abbreviated]

Step 3: Construct Potential/Interaction Hamiltonian
Add diagonal and off-diagonal terms.
[Detailed potential terms abbreviated]

Step 4: Convert to Second Quantized Form

Step 5: Apply Wick’s Theorem
[Additional steps and examples abbreviated]

Here is the paper:
{{text}}

Figure 19: Prompt for deriving the Hartree-Fock Hamiltonian (HFD Task).
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Figure 20: Model responses for an example in the HFD task.

F.3.4 HF TASKS: RESULTS AND ANALYSIS

HFD. As described in the main text, the derivation task is challenging, and we expect poor LLM
performance. Fig. 5 shows that Gemini 1.5 Pro performs better than other models. Gemini 1.5
Flash, Gemini 1.0 Pro, Claude 3, and Command R Plus also achieved good scores. GPT-4o and
LongLLaMa performed the worst. We note that GPT-4o’s score was affected by a formatting issue.
Although we instructed the model to provide the output in JSON format, GPT-4o’s output included
the words “key” and “value,” which were not present in the ground truth. Despite this, the average
score for the HFD task across all models is much lower than for the HFE task, which a human expert
considers simpler.

HFE. The extraction task does not involve extensive instructions and is considered simpler than
HFD. As shown in Fig. 5, all models (GPT-4o, Claude 3, Gemini 1.5 Flash, Gemini 1.5 Pro, Gemini
1.0 Pro, and Command R Plus, listed in descending order of performance) performed consistently
well on this task. However, LongLLaMa performed significantly worse than any other model. Over-
all, the average score for this task is much better than the score for the HFD task, as expected.
This difference in performance is even more evident when using the proposed LMScore as seen in
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Figure 21: Model responses for an example in the HFE task.

Fig. 10, which presents the human evaluation of LLM performance, showing better results for the
HFE task than the HFD task.

F.4 (QUANTUM) ERROR CORRECTION ZOO TASK (QECC)

The Error Correction Zoo (EC Zoo)(Albert & Faist, 2024) is an open source effort to build
a Wikipedia-like repository collecting and categorizing error correcting codes from the literature.
Such codes are used to redundantly encode and store classical or quantum information so as to pro-
tect it from noise, with wide applications (e.g., 5G communication and broadcast protocols, quantum
communication and computing). Currently, the construction and maintenance of the zoo is carried
out manually by a “Zookeeper”, who updates the EC Zoo’s contents whenever a paper introducing
a new code appears on the arXiv repository.

An entry in the EC Zoo consists of a YAML file, listing the properties of a given EC code along with
any relations to other codes. Each entry contains many different types of information: a succinct
non-technical summary, bespoke technical details, numerical parameters quantifying code perfor-
mance, and non-trivial connections to other literature. Due to the diversity of encoding schemes,
code entries can be very different, and there is no one-size-fits-all template. We construct a bench-
mark that tests the ability of LLMs to curate the EC Zoo.
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F.4.1 QECC: TASK DETAILS

The goal of the QECC task is to produce the YAML file similar to the EC Zoo code entry given
a paper and an appropriately designed prompt description of the task. The models output is then
compared against the human-curated ground truth. Prompting an LLM to provide such an entry tests
its ability to correctly extract both the relevant information Mayfield et al. (2024) and the context.

Figure 22 shows the prompt for this task which lists various available YAML key-value pairs taken
from a template code YAML file3.

F.4.2 QECC: DATASET COLLECTION

We curated the benchmark from two experts in the domain who have prior experience curating en-
tries for the ECZoo. Our benchmark consists codes from 65 arXiv papers ranging from 1997 to
2024. Each paper introduces a particular code or code family, running the gamut of classical and
quantum coding theory and including codes relevant to high-energy/particle physics, phases of quan-
tum matter, theoretical computer science, electrical engineering, and quantum engineering. More
specifically, the 65 codes include 15 codes realizing phases of quantum matter, 14 codes designed
for continuous-variable quantum systems, 12 high-performing codes designed for qubit-based quan-
tum devices, 7 general qubit and 4 general qudit code families, 4 classical codes, 2 fermionic codes,
2 randomized code constructions, 2 codes for transmission of classical information over quantum
channels, 2 codes designed for magic-state distillation, and 1 code describing holography.

F.4.3 QECC RESULTS ANALYSIS

All LLM-generated error-correcting code YAML files were evaluated by the Rouge metric, and a
sample of about 20 was carefully read by a human expert. The Rouge metric indicates that LLMs
performed relatively well overall.

The human-expert reading of the LLM-generated files affirms that LLMs can effectively summarize
technical scientific papers. The summaries tend to be succinct, while at the same time flagging a
multitude of key informational “nuggets” and quantitative metrics relevant to a code. The required
YAML formatting rules tended to be respected. The performance was consistent across the sample
and independent of the underlying discipline of the paper.

In some cases, an LLM flagged informational “nuggets” that were not (but should have been) in a
given ground-truth EC Zoo entry. For example, an LLM mentioned a numerical parameter relevant
to the performance of a code that was buried in the paper and that was missing from the ground
truth. As another example, an LLM pointed out that a particular code was independently discovered
by another cited work. Such statements could only be obtained upon a very careful human reading,
which takes much longer than running the text through an LLM.

On the other hand, since useful nuggets are not always (and need not be) technically correct, cor-
rection from an expert is necessary at this stage. The observed advantage of LLMs is that manual
correction is faster than a manual identification of all relevant nuggets.

The level of technical detail in the output files tended to be low, with many LLMs tending to avoid
recasting technical details of the paper in pedagogical fashion (see Sec. F.4.4 for an exception).
It remains unclear whether this can be mitigated by prompt engineering or if further training is
required.

Much of the text in a typical LLM-generated entry consisted of extraneous information that ranged
from superficial “fluff” to complete hallucination. In this case, this information was relatively easy
to spot by the expert and so did not impede evaluation efforts. It remains to be seen whether this
ability to fish out relevant nuggets from the sea of boilerplate holds true for other scenarios.

In summary, current LLMs are beneficial for synthesizing literature for the EC Zoo. More often
than not, the LLM thoroughly flagged key aspects of a paper and left only the (faster) process of
verification to the human. Running a paper through an LLM produces a draft EC Zoo entry whose

3https://github.com/errorcorrectionzoo/eczoo_data/blob/main/template.
yml
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QECC prompt

Fill in a YAML file for the code described in the attached paper
according to the prescription defined in the YAML template below.
Fields are to be filled only if they are directly relevant to the
code introduced in the paper. Be sure to extract any quantitative
data like thresholds and code rates. Above all, be concise! If
you cannot explain something technical in detail, do not try to
explain it. If something is not detailed in the paper, do not
mention it.

########################################################
This is a code entry in the error correction zoo.
https://github.com/errorcorrectionzoo
########################################################

# UTF-8 encoding, AMS-TeX in
( ...
), cite with
cite{arXiv:#.#}
# [Additional documentation comments abbreviated]

code id: no spaces lower case # lowercase only
physical: qubits # one of: bits, qubits, qudits, etc.
logical: qubits

Code parameter: ’((2ˆr-1,r,d)) {6}’ # e.g., ((n,K,d))

name: ’Code-name’
introduced: ’
cite{doi:...}’

description: |
Brief description, no references.
[Additional description paragraphs abbreviated]

protection: ’Protects against ...’

features: # Include only if specifically mentioned
[Multiple encoder examples abbreviated to:]
encoders: [’Process description’]
[Multiple decoder examples abbreviated to:]
decoders: [’Syndrome measurements’]
threshold: [’Error rates’]

relations: # Optional
parents: [code id: parent code]

meta:
changelog:
- date: ’YYYY-MM-DD’

Here is the paper
{{text}}

Figure 22: Prompt for generating YAML code entries in the Error Correction Zoo Task (QECC).

comprehensive part can be verified and whose superficial part can be deleted, with both jobs done
relatively quickly for this task scenario.

F.4.4 QECC TYPICAL MODEL RESPONSE EXAMPLES

As we analyze the typical model responses, we also present components of the code entry to give
a sense for the aspects considered by the human expert when evaluating the model responses. We
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go through the output for the code described in Ref. Menicucci (2014). The output below is Gemini
1.5 Pro, with GPT-4o, Claude 3, and Gemini 1.5 Pro producing similar outputs for the same input.
Inputting other papers yields outputs with similar features as those covered below.

The header of the output file is generally formatted in the correct YAML format, containing a guess
of the code id key, the underlying physical alphabet used to construct the code, the alphabet used for
the logical information, and the code name (with some superfluous information removed). Almost
all LLMs respect the desired key-value YAML format throughout the file, and we will not mention
this from now on.

...
code_id: cv_cluster_gkp
physical: qubits (encoded in continuous-variable oscillators)
logical: qubits
...
name: ’GKP-encoded qubits on CV cluster states’
introduced: ’\cite{arXiv:1311.3538}’

Next comes a concise description of the code, a typical strength of LLMs. The summary is succinct
and well done, while being sufficiently vague so as to not be incorrect. Two quantitative informa-
tional nuggets are flagged: the code’s 20.5dB threshold and 12.6% error probability.

description: |
This code describes a fault-tolerant measurement-based quantum
computation scheme using continuous-variable (CV) cluster states
and GKP-encoded qubits.

The scheme relies on concatenating GKP error correction with a
qubit-level error-correcting code. If the initial squeezing in the
cluster state and the GKP states is above a threshold (20.5 dB for
a typical threshold of 10ˆ-6), the error rate on the encoded qubits
falls below the fault-tolerance threshold of the concatenated
code, enabling fault-tolerant computation.

Magic state distillation of encoded Hadamard eigenstates with an error
probability of 12.6% and success probability of 2/3 allows for
universal computation.

protection: ’Protects against Pauli noise introduced by finite squeezing
in the CV cluster state and GKP encoding.’

Next, the LLM produces a list of various features of the code, as instructed. The features to be
listed depend on what the paper covers, but LLMs tend to provide text for all available features,
irrespective of whether they are discussed in the paper or not. If the paper discusses a particular
feature, the LLM flags the relevant information, e.g., the code’s 20.5 dB threshold. If the paper does
not mention a feature, LLMs tend to put boilerplate for the value in the corresponding key, which
ranges from a summary similar to those above to a hallucination. This effect is likely to be mitigated
by prompt adjustments.

features:
encoders:
- ’GKP encoding using sharp Gaussians.’
transversal_gates: ’All Clifford gates are transversal.’
general_gates:
- ’Universal gate set achieved through magic state distillation of
encoded Hadamard eigenstates.’
decoders:
- ’GKP error correction using ancilla-based measurements.’

fault_tolerance:
- ’Transversal Clifford gates are fault-tolerant when the initial
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squeezing is above the threshold.’
- ’Concatenation with a qubit-level error-correcting code
provides fault tolerance for the entire computation.’

threshold:
- ’20.5 dB squeezing threshold for fault-tolerant computation with
a typical concatenated code threshold of 10ˆ-6.’

notes:
- ’The squeezing threshold can be generalized to include
additional noise sources like photon loss and detector
inefficiency.’
- ’The scheme presented is not necessarily optimal, and further
research may lead to better encoding methods and improved
thresholds.’

Finally, the LLM presents relations between the primary code extracted from the paper and other
codes. Relations form a large portion of the EC Zoo and are difficult to spot because they may be
mentioned only briefly somewhere deep in the body of the paper. Using LLMs to flag them saves
reading time. In this case, both notable relations are extracted.

relations:
parents:
- code_id: cv_cluster_state
detail: ’CV cluster state is the underlying physical resource.’
cousins:
- code_id: gkp_code
detail: ’GKP code is used for encoding qubits in CV oscillators.’

Attempt at technical details

All LLMs tend to not delve into technical detail, so pedagogy was rare. A notable exception is this
attempt by Claude 3 to technically explain codes from Ref. Camara et al. (2007). We present the
value of the description key, which includes subsections and LaTeX-formatted equations.

description: |
The authors present two methods for constructing quantum LDPC codes.
Both approaches are based on representing the generators of the
stabilizer group as a graph with simple local rules that ensure
commutativity.

\subsection{Generic $(a,b)$-regular construction}
The generic construction produces $(a,b)$-regular quantum LDPC codes,
meaning each qubit is involved in $a$ parity checks and each
parity check involves $b$ qubits. It starts by choosing a group $\mathsf{G}$
and two subgroups $\mathsf{H}$ and $\mathsf{K}$. The cosets of $\mathsf{H}$
correspond to qubits and the cosets of $\mathsf{K}$ to parity checks.
Generators of $\mathsf{G}$ are divided into sets $G_\omega$
and $G_{\bar{\omega}}$, with certain commutation and overlap
properties, to define the Tanner graph.

\subsection{Construction of a $(4,8)$-regular code}
The $(4,8)$-regular construction uses a 3-step procedure. First it
constructs a 4-cycle graph as a Cayley graph. Then a $(4,8)$-regular
Tanner graph is obtained based on the 4-cycle graph. Finally, the
edges are labeled to satisfy the commutation relations. Each qubit
is involved in two $\omega$ and two $\bar{\omega}$ parity checks.

F.5 GEOSPATIAL DATASET EXTRACTION TASK (GEO)

A key aspect of geospatial analysis is integrating various diverse datasets together to answer complex
questions. For example, a study of time-series snowmelt detection over Antarctica may combine
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Figure 23: Examples of outputs on the QECC task. All models do a reasonable job in extracting
and describing the code. Claude-3 does a good attempt to recover the technical details. (paper id:
1501.07779)

satellite imagery, radar data, weather station temperature data, elevation/topography information,
etc Liang et al. (2021). An epidemiological study on infectious disease spread may combine data
from the CDC with people dynamics and behaviours (e.g., census, zoning, mobility patterns, Google
Trends searches, etc.) Seifter et al. (2010); Zhang et al. (2017). Geospatial analysts leverage their
extensive domain expertise to choose representative datasets and then build models to achieve new
insights or conclusions that can be used to inform policy, analyze economic or environmental im-
pacts, etc. The goal of our GEO task is to help evaluate how well LLMs can assist with Geo-Analyst
workflows.

F.5.1 GEO TASK DETAILS

In this task we study the ability of LLMs to extract all the relevant information regarding datasets
used in a given research paper, including source websites, variable names, descriptions, time ranges
and spatial ranges. This task presents a significant challenge to LLMs because it requires not only
recognizing direct dataset references within the text, but also contextualization, comprehension and
aggregation of information scattered throughout the paper, pushing the boundaries of long-context
understanding. Prompt for this is shown in Fig. 24.

F.5.2 GEO DATASET COLLECTION

Our benchmark consists of 19 papersranging across earth observation, economics, epidemiology
and public health, along with ground truth annotations describing the datasets used in each study.
To source this dataset we pulled from various sources and repositories (e.g., DigitalCommons, Sci-
enceDirect, MDPI, NIH, Arxiv, etc.), and included only articles with open licenses (e.g., CC BY 4.0,
CC BY-NC 4.0, MDPI OpenAccess, etc.) While we started out with more papers, not all of them
had permissive licenses thus resulting in a smaller set of 19 final papers. We wanted to represent a
variety of domains, as well as varying degrees of dataset extraction difficulty and literature quality.
For example, some studies had only a few datasets or variables and others many, some had complex
time ranges like “Jan-Apr for every year from 2012-2015”, some had a mix of spatial ranges like
“every state in the United States, and also 9 countries in Western Europe”, some articles were well
written and others quite poor, some had information about the datasets cleanly written in one section
and others had the information scattered throughout the introduction, problem statement, analyses,
and even figure captions, some articles were missing key pieces of information altogether (e.g., re-
garding time range, spatial range, or source), but a knowledgeable domain expert can correctly guess
what these should be if they were familiar with the datasets and study topics.
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GEO prompt

Given the paper, please gather the following information and put it
in a JSON format.
Here is the JSON format:

{
"paper title": <paper title>,
"paper link": <paper link>,
"datasets": [{
"dataset name": <dataset name>,
"dataset website or source": [<dataset website or source>],
"variables": [{
"variable name": <variable name>,
"description": <description>,
"time range": {
"start date": <start date>,
"end date": <end date>
},
"spatial range": <spatial range>
},],
}],
"notes": <notes>
}

<paper title> is the paper title.
<paper link> is the paper link.
For ALL datasets used in the paper:
<dataset name> is the name of dataset.
<dataset website or source> is a link to the dataset.
<variables> is the list of variables used in dataset. Be thorough
and descriptive.
<variable name> is a list of all the names of variables.
<description> is the description of variable.
* Example: if data includes all tweets that include a set of
keywords between two dates, explain this with enough detail that
the dataset could be reproduced if we had access to the raw tweets.
For example if the dataset is based on google trends, you need to
include search terms or categories used
* FORMAT: VARIABLE 1, VARIABLE 2, VARIABLE 3,
<time range> is a list of all time ranges of the variables.
<start date> is the start date of the time range (format:
yy-mm-dd).
<end date> is the end date of the time range (format: yy-mmd-dd).
* Note: Make sure to give all the time ranges in a list format.

<spatial range> is a list of all spatial ranges of variables.
* Note: Make sure to specify all locations with enough detail that
the dataset can be exactly reproduced. So if a dataset includes
data from 196 counties in the US, please give explicitly the names
of all of the counties.
* Note: Make sure to give the names of all the locations in a list
format.
* Example: County vs State vs Country vs Census Block.
<notes> add a note if you have issues filling out any of the
fields.
Please copy directly the text of the paper.
Please be concise but have enough detail to reproduce.
Make sure you generate the JSON.

Here is the paper:
{{text}}

Figure 24: Prompt for extracting datasets from geospatial research papers (GEO Task).
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To annotate the papers in the dataset, we worked with two annotators who carefully captured the
dataset details for each paper in a standardized JSON format. If key information was missing, we
asked the annotators to use domain expertise and common sense to make an educated guess, while
also adding detailed information in the notes section highlighting the shortcomings of the paper. The
work of the annotators was verified by experts with Ph.Ds. Agreeing on a reasonable format that
correctly captured all details required to reproduce the work, while not being overly cumbersome
to annotate or read, was challenging (e.g., sometimes it made sense to group variable names and
time ranges, versus writing out the entire combinatorial set). After a few iterations, we arrived
at a reasonable representation that we believe a human reader could understand clearly without
ambiguity or error, while still being concise.

F.5.3 GEO: DIFFICULTY RATING LOGIC

Human evaluation consideration. Extracting structured dataset information from unstructured
scientific text poses unique challenges for evaluation, so we first present the components considered
for evaluation prior to describing the logic for measuring difficulty. At the dataset level, we evaluated
each model’s ability to accurately predict the number of datasets mentioned and identify dataset
names using text similarity metrics. At the variable level, evaluation focused on the model’s accuracy
in predicting the total number of variables, identifying individual variables based on a composite
representation incorporating multiple attributes, and correctly extracting the time and spatial ranges
of each variable.

Using the above rubrics, the difficulty of each example was rated as “easy” if the number datasets and
the time and spatial ranges were more easily extracted from a single section of the paper. Examples
were rated “hard” if the information was much more spread out and the annotators felt it was tricky
to have captured all aspects accurately. Other examples were rated “medium”.

F.5.4 GEO TASK RESULTS ANALYSIS

Doing a full evaluation of all of the components described above allowed us to pay attention to the
parts of the answers we cared about most, but to do this well one had to have similar formatting
between the ground truth answer and the model response, and the models often got a lot of the right
pieces of the answer but in a different format, or returned something that looked mostly correct
but was not a parsable JSON, making programmatic metric calculations difficult. Other specific
points about why this task was challenging to evaluate are: there were often multiple ways to format
a correct answer, some parameters required exact matches (e.g., time range) and others semantic
matches (like variable description), variable name and description were often muddled and salient
information could be placed in either one, dataset name and variable name could sometimes be
confused as well (sometimes it was reasonable to concatenate variable name, description, and dataset
name and then do a semantic match on the whole set). The most success we had was with prompting
an LLM to do the scoring using the LMScore, as described in Appendix D. We found that LMScore
scores captured the salient features that mattered most automatically, hiding a lot of this complexity,
and for this task the human evaluation results correlated quite strongly with the model-based scores.

A few overall observations: there was variability across model runs for almost all models, even
though average performance remained fairly constant. The variability was usually higher on the
harder tasks. Instruction following remains a challenge: models often had pieces of the right an-
swer, but were unable to consistently format their responses, often leading to unparsable JSONs.
The model-based scoring approach circumvented this challenge and also showed good correlation
with human evaluations. ROUGE-L scores on the closed-weight LLMs were all quite similar (in
range [28, 32]), with GPT-4o performing slightly higher than the others. Open-weight model scores
were lower (in the 20’s for Mixtral and Command-R+ and ¡ 10 for LongLLaMa). We explored a few
different breakdowns of the task results to try to identify systematic correlations in model perfor-
mance. The first breakdown, shown in Figure 26, plots score values versus the number of datasets in
the paper, showing a slight inverse correlation between score and number of datasets, although the
trend is very small and not very consistent.

We also analyzed performance as a function of geographical or spatial information. For studies
encompassing one continent the performance was higher than for compound spatial ranges involving
multiple continents (see Figure 27). Overall, results for this task illustrate that there is much room
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Figure 25: Example from the GEO task where all closed models Gemini 1.5 pro, GPT-4o, and
Claude-3 Opus extracted the correct spatial and time range for the datasets. They provided a less
specific link than what human annotators provided and used a slightly different format where the
models treated each variable as a separate dataset whereas human considered the dataset to be a
single source but with different variables. Despite this slight difference the model’s response is still
accurate and useful. (paper id: 00000)

for improvement for LLMs to be able to automatically extract dataset information from the literature,
especially in some of these more complex compound cases.
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Figure 26: Score value versus number of datasets in the paper. There papers with fewer datasets
have substantially higher performance, but there isn’t a linear degradation in performance as the
number of datasets studied in the paper increases perhaps because when many datasets are used in
the paper they are still tied to some common sources.

Figure 27: Score value versus geographical/spatial range studied in the paper. The scores for papers
containing datasets covering multiple continents in their spatial extents (the 4 bars on the right)
have noticeably lower performance compared to those covering the spatial extent within a single
continent. Further, spatial ranges in Europe and Antartica seem better scoped than other continents,
this might be worth verifying with a large sampling of papers.
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F.6 BIODIVERSITY GEOREFERENCING TASK (BIOGR)

In this task we study the ability of multi-modal LLMs to work with geographical maps. Specifically,
we investigate the core capability of georeferencing, where, given an image of a map and its associ-
ated caption, the task is to determine the latitude/longitude bounding box encompassing the region
displayed. Figure 28 shows examples of images from the dataset georeferenced against geographi-
cal maps. This section provides additional details regarding the dataset creation, task definition, and
evaluations for the biodiversity georeferencing task.

Figure 28: Illustrations of map georeferencing, showing images from the dataset superimposed over
geographical maps in their correct georeferenced locations.

F.6.1 BIOGR DATASET COLLECTION

To source this dataset we worked with domain experts in ecology to find articles that were represen-
tative of the domain, paying specific attention to the map figures. We pulled from various sources
and repositories (e.g., bioRxiv, ScienceDirect, Nature, etc.), and included only articles with open
licenses (e.g., CC BY 4.0 or CC BY-NC 4.0). We wanted to represent a variety of map features
often displayed in these figures, as well as varying degrees of georeferencing difficulty (e.g., some
regions are larger and some smaller, some mention locations explicitly in the image and/or caption,
some have recognizable shapes at the continent or country level, some contain multiple repeated
instances of the displayed region, some have insets or coordinates displayed to help the reader un-
derstand the spatial information, etc. Fig. 29 shows a few illustrative examples). We assembled a
dataset of 24 map images and captions, extracted from 24 papers, and worked with a domain ex-
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pert to acquire the ground truth latitude/longitude bounding box for each image. We also asked
the domain expert to rate the individual tasks using a difficulty scale from 1-10 (1 being the eas-
iest and 10 the hardest) which we simplify to the easy, medium, hard ratings as with other tasks.
A portion of the BIOGR dataset consisting of 114 examples with additional metadata including
original pdf documents from which the figures are sourced is available at https://github.com/google-
research/ecology-georeferencing.

Figure 29: A sample of map images from the Biodiversity Georeferencing Task dataset.

F.6.2 BIOGR TASK DETAILS

The goal for the BIOGR task is to accurate extract the spatial coordinates (latitude and longitude)
for a location that is specified in the map images. To do this, we configured a standard prompt,
and passed the prompt, along with each image and caption pair, to each of the multi-modal models
evaluated. The prompt we used is shown in Fig. 30

BIOGR prompt

For the following figure and caption, please return the WGS84
latitude and longitude bounding box coordinates of the map in the
image.
If there are multiple maps of the same region, please just return
only one answer.
If two areas are represented, and one is an inset of the other,
return the smaller of the two areas.
If you are not sure, please guess at an answer anyway. I’d rather
have an answer than no answer at all.
Make sure to return decimal coordinates in range [-90, 90] for
latitude and (-180, 180] for longitude.
Please put your answer in the following JSON format:
{
"W": <west>,
"S": <south>,
"E": <east>,
"N": <north>
}
Here is the image and caption.
{{text}}

Figure 30: Prompt for the Biodiversity Georeferencing Task (BIOGR).

Given this prompt, the image, and the caption, the selected model would provide a text response.
Even though explicitly instructed not to, some models would provide a text preamble prior to the
JSON bounding box answer. In these cases we filtered the response to extract the JSON bounding
box answer. In all instances, all models were able to format their answer in the requested JSON
format suggested in the prompt, so we did not have to handle cases where the answer was provided
but not in the requested format. For illustration purposes, a sample ground truth answer looks like:
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{
"W":-114.4726175647,
"S":48.2299910717,
"E":-113.2291776519,
"N":49.0025266467

}

Figure 31: Responses from the different models for an example from the BIOGR task. Here, Claude-
3 (blue) predicts the coordinates closest to the ground truth (green) bounding box locations indicated
by the red dot in the original map image (top-left). GPT-4o (purple) and Claude-3 Opus generally
performed well across examples on this task while Gemini 1.5 pro (orange) was a bit less precise.
(record id: 556058 2)

F.6.3 BIOGR RESULTS ANALYSIS

For this task we consider 3 evaluation metrics. Intersection-over-Union (IoU), which is defined
as the area of intersection between two bounding box regions divided by the area of union. IoU
is a popular metric for bounding box tasks, and captures the similarity between two polygons, ac-
counting for both location and size, while also being scale-invariant. For simplicity, we computed
IoU using longitude and latitude as our X and Y axes directly versus converting into meters4. Ex-
plicitly, we used “W” and “E” as our minimum and maximum X-coordinates, and “S” and “N” as
our minimum and maximum Y-coordinates respectively. Normalized Distance Error measures the
distance between the centers of the two bounding box regions (in kilometers) when placed on the
surface of the Earth, and this is normalized relative to the distance of the half-diagonal of the ground
truth bounding box. This metric helps measure how far off the predicted box is when the prediction
doesn’t overlap with the ground truth box. Relative box size. This is the relative size of the pre-
dicted box (distance of the half-diagonal) with respect to the ground truth box half-diagonal, which
is indicative of the error in the predicted box size.

When performing this task, over the full image/caption set and 3 model runs, the average IoU with
each model ranged between 0.42 and 0.54 (Table 1), with GPT-4o performing slightly higher than
the other models. The median results, with 25% and 75% error bars, are shown in Figure 5, with
medians ranging between 0.3 and 0.6 and error bars showing wide variability accounting for both
task and model variability. To put these numbers in context, the IoU metric ranges between 0 and 1,
and any value greater than 0 denotes at least some region overlap, which implies that the model has
at least some geospatial knowledge. Values between 0.2 and 0.5 have reasonable region overlap, and

4A more precise IoU calculation would convert to physical distance, which would equally penalize hor-
izontal and vertical errors, and would account for the fact that the physical distance between two longitude
lines varies with latitude; however, for small regions this difference is minor and the scale-invariant IoU metric
captures the bounding box overlap reasonably well.
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values greater than 0.8 have very good georeferencing performance (see Figure 32 for an illustration
of IoU).

(a) IoU = 0.07 (b) IoU = 0.8

Figure 32: An illustration of Intersection-over-Union (IoU) metric for biodiversity georeferencing.

Model IoU ↑ Normalized Distance Error ↓ Relative Box Size ↓
Claude 3 (Opus) 0.39 6.15 1.39
Gemini 1.5 Pro 0.42 14.28 1.20
Gemini 2.0 Flash 0.49 3.03 3.05
Gemini 1.5 Flash 0.36 6.09 1.69
GPT-4o 0.37 1.43 1.22
Gemini 1.0 Pro 0.34 12.37 1.30

Table 7: Performance of models on BIOGR based on IoU, Normalized Distance Error, and Rela-
tive Box Size. ↑ indicates higher is better, ↓ indicates lower is better. Blue highlights the highest
values across closed models.

One observation is that, even though we explicitly asked the models to provide answers even if they
weren’t sure, there were instances where models refused to estimate any coordinates. We also noted
that there was some variability in model responses over the 3 runs for each image, and the variability
was higher on the harder examples in the dataset. In additional experiments with Gemini 1.5 Pro,
reducing the temperature of the model reduced variability but also increased the percentage of cases
where the model refused to provide an answer. These stochastic and robustness performance issues
must be taken into account when building systems that use LLMs.

To analyze how different features in the image/caption pair contributed to the LLM’s ability to per-
form the task, we ran further experiments with Gemini 1.5 Pro, where we passed in only the image
without the caption, and only the caption with no image. On the image only runs the average IoUs
and model non-responses remained roughly the same, but on the caption only runs the IoUs de-
creased and the model non-responses increased significantly, highlighting that the image is much
more important than the caption for this multimodal task. We also computed average IoUs over
various subsets of the dataset, shown in Figure 33 on the left. The subset of images with coordinates
shown on the map performed better than average, which is reasonable since multi-modal LLMs are
trained on similar bounding box object detection tasks at the pixel level, and having a numerical
scale present in the image that the model can reference increases performance. The larger regions
were significantly easier for the model than smaller regions, partly because the chances of overlap
are higher and partly because larger regions often had recognizable shapes or well-known loca-
tions mentioned. One result that was surprising was that, in this set of results, the images of small
regions without insets performed better than the ones with insets, which is counter-intuitive. On
closer inspection, the images in this set with small regions and without insets either had coordinates
displayed, or were really well-known regions (e.g., maps of known cities), explaining the higher per-
formance. Increasing the size of the dataset and adding more representation of images with insets
and without coordinates or well-known shapes/locations would help generate more comprehensive
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statistical results for the inset subset. Our suspicion is that these models are not currently paying
a lot of attention to the image insets, like a human georeferencer would, and that there is room for
improvement in teaching these models to process that information well. We plan on studying this
further in future work. Finally, the right side of Figure 33 shows IoUs for all the tasks and models
plotted against the domain expert’s difficulty rating, suggesting that the tasks that were harder for
the domain expert were also more challenging for the model (GPT-4o had the cleanest correlation
trend, whereas the other models had more variability in their performance).

Figure 33: On a subset of 24 BIOGR examples, the left chart shows a breakdown of IoU for various
data subsets. On the right we show IoU versus task difficulty ratings provided by a domain expert.

Finally, we note that we discarded some examples as out of scope when creating the dataset not
because of difficulty, but because they did not facilitate clear query and a single accuracy metric
(e.g. multiple unrelated images in the same figure, multiple study areas within a bigger region,
cropped and concatenated regions that were not actually geographically contiguous, etc.). However,
a system that automatically parses the literature to extract information will have to deal with these
real-world examples as well. For future directions we would like to go deeper and build benchmarks
that help study the ability of LLMs to extract more detailed information from maps (e.g. polygons
of surveyed areas, points of interest highlighted in the legend, geographical features and insights
that correlate to the data presented, Q&A pairs that capture what a domain expert would ask, etc.).
Being able to work well with maps has wide applicability to many scientific domains (e.g. geospatial
analysis, public health, epidemiology, etc.) so it’s encouraging to see how much spatial information
is already captured by these models today. One final note is that a domain expert usually uses a
variety of tools at their disposal to perform these tasks (e.g., using ArcGIS, QGIS, Google Maps,
etc.), rather than memorizing a large library of maps. It would be interesting to teach LLMs to
integrate these geospatial tools as part of their workflows and analyze how much performance can
increase via this agentic approach.

F.7 PROTEIN SEQUENCE RECONSTRUCTION TASK (PDB)

This task assesses the ability of large language models (LLMs) to extract biologically relevant infor-
mation from structured textual data. Specifically, we challenge the models to reconstruct the amino
acid sequence of a protein given its three-dimensional structure in PDB format. The dataset consists
of 64 PDB files representing diverse proteins with varying sizes, functions, and originating species.
Each example comprises a single chain to maintain task focus and complexity.

Solving this problem necessitates an intricate understanding of the PDB format and the ability to
parse it accurately. The model must first recognize the hierarchical organization of PDB files, iden-
tifying sections containing atomic coordinates and residue information. Subsequently, it needs to
extract the three-letter amino acid codes for each residue, traversing the entire structure to ensure
completeness. Finally, the model should leverage its knowledge of amino acid IUPAC Data to map
the three-letter codes to their corresponding single-letter representations, ultimately producing a
FASTA formatted sequence.
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F.7.1 PDB DATASET COLLECTION

An expert in the domain identified 64 proteins from the Protein Data Bank5 The proteins span
a variety of species (15), sequence lengths, and protein functions. The ground truth amino acid
sequences are also available in the data bank and can also be computed programmatically.

F.7.2 PDB TASK DETAILS

For this task, we passed into the models PDB text describing the three-dimensional structure of a
protein, along with a standard prompt asking the model to return the amino acid sequence in FASTA
format. The prompt is shown in Fig. 34.

PDB prompt

You are a computational biologist and I want you to reconstruct a
protein’s amino acid sequence from its tertiary structure.
* The input is a PDB that is a textual format describing the
three-dimensional structures of a protein.
* Return the amino acid sequence in the standard FASTA format,
which starts with a definition line with the greater than (>) line,
followed by the single-letter codes for all amino acids in the
second line.
* Make sure the amino acid sequence is in the second line.
* If there is an unknown amino acid in the structure, put "X" in
the sequence.
* Make sure you go through the whole structure and get all the
amino acids.
* No extra explanation is needed.

below are the tertiary structure:

{{text}}

Figure 34: Prompt for reconstructing protein amino acid sequences from tertiary structures (PDB
Task).

F.7.3 PDB RESULTS ANALYSIS

Evaluating the reconstructed sequences involves comparing them to ground truth sequences obtained
using the Biopython library. We employ pairwise sequence alignment to determine the optimal
correspondence between predicted and ground truth sequences. The alignment is then scored using
standard metrics including the number of gaps, identities, and mismatches. These raw scores are
normalized by the alignment length to account for potential length discrepancies. We primarily
report the identity ratio, defined as the number of identities divided by the alignment length, as the
primary performance metric. Unlike other tasks, model-based evaluation is not employed here due to
the straightforward nature of exact evaluation and the limited ability of current LLMs to accurately
assess sequence similarity. ROUGE score, typically used for text summarization, is also unsuitable
for capturing the nuances of protein sequence similarity.

Our experiments revealed several failure modes, highlighting the challenges LLMs face in process-
ing long and structured biological data. Frequently, the models struggled to accommodate the entire
PDB file within their limited context windows. Even when the context window sufficed, the mod-
els often failed to traverse the complete structure, leading to incomplete sequences, particularly for
larger proteins. Another recurring issue was the incorrect handling of consecutive identical amino
acids, often resulting in undercounting. Additionally, we observed instances where the model mis-
takenly uses the first letter of the three-letter amino acid name instead of employing the established
three-to-one letter mapping, despite this mapping being a fundamental concept in bioinformatics

5https://www.rcsb.org/
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and likely encountered during the model’s training. One noticeable trend was that the identity ra-
tio dropped as the protein sequence became longer, which is reasonable, although we note that for
the shorter sequence length proteins there was a large variability in performance (see Figure 35 for
details).

Figure 35: Plot of identity ratio versus protein sequence length, showing that performance drops as
the protein sequence length increases.
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