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ABSTRACT

Local-SGD-based algorithms have gained much popularity in distributed learning
to reduce the communication overhead, where each client conducts multiple local-
ized iterations before communicating with the central server. However, since all
participating clients are required to initiate iterations from the latest global model
in each round of Local-SGD, the overall training process can be slowed down due
to the straggler effect. To address this issue, we propose a Delayed Local-SGD
(DLSGD) framework for distributed and federated learning with partial client par-
ticipation. In DLSGD, each client performs local training starting from outdated
models, regardless of whether it participates in the global aggregation. We in-
vestigate two types of DLSGD methods applied to scenarios where clients have
identical or different local objective functions. Theoretical analyses demonstrate
that DLSGD achieves asymptotic convergence rates that are on par with the clas-
sic Local-SGD methods for solving nonconvex problems, and guarantees linear
speedup with respect to the number of participating clients. Additionally, we carry
out numerical experiments using real datasets to validate the efficiency and scala-
bility of our approach when training neural networks.

1 INTRODUCTION

We consider the distributed learning scenario where multiple clients (such as CPUs, GPUs, wireless
sensors, and mobile devices) collaboratively train a global model under the orchestration of a central
server. This objective can be cast as solving the following optimization problem:

min
w∈Rd

F (w) :=
1

N

N∑
i=1

Fi(w), (1)

where Fi(w) := Eξi∼Di
[fi(w; ξi)] is the local objective function and N is the number of clients.

Here, Di represents the data distribution accessible by client i supported on sample space Ξi and
fi(·; ξi) : Rd → R is client i’s local loss function that is continuously differentiable for any given
data sample ξi ∈ Ξi. In this paper, we focus on the situations in which the N clients can com-
municate with the central fusion server while there is no peer-to-peer communication among them.
Problem 1 encompasses both distributed training (or parallel optimization) (Bertsekas & Tsitsiklis,
2015) and the emerging field of federated learning (FL) that has received immense attention in re-
cent years (Li et al., 2020; Kairouz et al., 2021). In the former case, referred to as the homogeneous
setting, all clients have identical loss functions fi = fj and data distributions Di = Dj for all i ̸= j.
In contrast, the latter case, known as the heterogeneous setting, involves clients with distinct local
loss functions fi and data distributions Di.

The parallel stochastic gradient descent (parallel SGD) method solves Problem (1) by allowing for
multiple training examples to be processed simultaneously across different clients. However, tra-
ditional parallel SGD may incur substantial communication overhead, as each computed stochastic
gradient needs to be sent to the server. To alleviate this challenge, Local-SGD performs multiple
iterations locally at the clients before communicating with the server, which has garnered great in-
terest in the field of distributed/federated learning lately. There exist a batch of Local-SGD variants
in the literature, e.g., Mangasarian (1995); Zinkevich et al. (2010); Stich (2019). Here, let us recap
a generic version called Generalized FedAvg introduced in Yang et al. (2021), where n out of the N
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clients start with wt,0
i = wt and parallelly execute K-step SGD during the global round t (t ≥ 0)

according to the following update rule:

wt,k+1
i = wt,k

i − η̄∇fi(wt,k
i ; ξt,ki ) for k = 0, 1, . . . ,K − 1. (2)

In the midst, ξt,ki are independently sampled according to distribution Di and η̄ > 0 is the lo-
cal learning rate. Once the n clients finish their local training and upload their last iterates
wt,K

1 , . . . ,wt,K
n , the server proceeds with the global iteration using the following update rule:

wt+1 = wt − η

n

n∑
i=1

(wt,K
i −wt), (3)

where η > 0 is the global learning rate. Note that the Local-SGD procedures (2)–(3) with η = 1
reduce to the vanilla FedAvg algorithm (McMahan et al., 2017) for FL.

The frequency of communication in Local-SGD can be reduced by allowing each device to process
more data locally. Furthermore, it is reported in the literature that performing multiple local itera-
tions can lead to better generalization performance than parallel SGD with large mini-batches (Lin
et al., 2020). It has been shown that Local-SGD converges at a rate of O(1/

√
nKT ) for strongly

convex objectives in the homogeneous setting (Stich, 2019) and at a rate of O(
√
K/
√
nT ) for non-

convex objectives in the heterogeneous setting (Yang et al., 2021). This indicates that Local-SGD
achieves linear speedup with respect to (wrt) the number of participating clients n, In other words,
the number of communication rounds required to achieve a certain level of optimization accuracy
decreases proportionally as the number of participating clients increases. Linear speedup is a highly
desirable property in distributed learning, since it signifies the scalability and efficiency of the opti-
mization process as more computational resources are added.

In spite of the favorable practical and theoretical properties of Local-SGD, a typical challenge con-
cerns the time needed to synchronize a communication round. Due to the potential diversity of the
hardware, there can be large variations in the computation and communication speeds of different
clients (Assran et al., 2020; Li et al., 2020). As a consequence, the time needed for a round is con-
ditioned to the slowest client, while the faster clients stay idle once they send their local updates to
the server. This phenomenon, known as the straggler effect, can significantly slow down the overall
training process. Therefore, we are motivated to address the following question: Can we develop
improved Local-SGD methods that effectively mitigate the straggler effect, while still maintaining
fast convergence rates and linear speedup guarantees for both the homogeneous and heterogeneous
settings?

1.1 OUR CONTRIBUTIONS

In this paper, we provide an affirmative answer to the aforementioned question. Specifically, we
propose a Delayed Local-SGD (DLSGD) framework, for solving Problem (1) under both the homo-
geneous (named DLSGD-homo) and heterogeneous (named DLSGD-hetero) settings. It possesses
the following main features:
• Partial Participation. Only a subset of clients participate in the global iteration in each round. For

DLSGD-homo, the server collects the first n clients’ local updates to arrive; while for DLSGD-
hetero, the server sample n clients uniformly with replacement.

• Delayed Local Training. The clients continuously receiving the latest global models from the
server and store them into their receive buffer with overwriting permitted. They then perform
local training, regardless of their participation in the global iteration. The server accepts delayed
updates without waiting for participating clients to train the latest global model in the current
round.

• Asynchronous Clients. Once a client completes its local training, the delayed update is either
uploaded to the server (for DLSGD-homo) or stored in the send buffer until it is selected by the
server (for DLSGS-hetero). The client then initiates new local training using the global model
stored in its receive buffer, independent of the computation/communication states of other clients.

In a nutshell, at the cost of additional storage for local buffers, DLSGD enhances the training ef-
ficiency compared to traditional Local-SGD by enabling partial information aggregation, reducing
the waiting time at the server, and utilizing the idle time at the clients.
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We provide the convergence analyses of DLSGD for solving Problem (1) with smooth and noncon-
vex objective functions, including neural networks that are of particular interest. Our analysis reveals
that DLSGD-homo (respectively, DLSGD-hetero) converges at a rate of O(1/

√
nKT + 1/(KT ))

(respectively, O(1/
√
nT + 1/(KT ))) for sufficiently large T , which implies a linear speedup wrt

to the number of participating clients n. Our results demonstrate that incorporating delayed updates
in local training effectively mitigates the straggler effect without sacrificing the asymptotic conver-
gence performance. To our knowledge, we are the first to provide convergence guarantees of the
asynchronous variants of Local-SGD that exhibit linear speedup. Furthermore, our theoretical find-
ings for DLSGD can be reduced to the latest results for classic Local-SGD and asynchronous SGD
under different specific setups, adding to the versatility and applicability of our framework.

We validate the effectiveness of DLSGD through extensive experiments involving the training of
neural networks on real-world datasets. We compare its performance with that of the latest dis-
tributed learning algorithms, serving as a benchmark for evaluation. These experiments provide
empirical evidence for the benefits and advantages of DLSGD in practical scenarios.

1.2 RELATED WORKS

Linear Speedup Analyses of Local-SGD. The concept of local training has been extensively
adopted in distributed and federated learning to reduce the communication cost (Wang et al., 2021).
Under the homogeneous setting, the convergence of Local-SGD methods has been studied in Stich
(2019); Stich & Karimireddy (2020); Khaled et al. (2020) for (strongly) convex objectives and in
Zhou & Cong (2018); Yu et al. (2019b); Stich & Karimireddy (2020) for nonconvex objectives.
Under the heterogeneous setting, the convergence rates of Local-SGD has been established in Had-
dadpour et al. (2019) for objectives satisfying the Polyak-Łojasiewicz condition and in Wang &
Joshi (2021); Yang et al. (2021) for general nonconvex objectives. Other variants of Local-SGD
include Yu et al. (2019a), which employs momentum techniques to accelerate convergence, and
Karimireddy et al. (2020), which incorporates control variates for variance reduction. The recent
work by Gu et al. (2021) adopts a strategy that aggregates (possibly stale) stochastic gradients from
all clients in each round. However, this approach requires the server to wait for active clients to
complete local training using the current global model. While these algorithms achieve comparable
convergence rates with linear speedup with respect to the number of participating clients, they are
fully synchronous and rely on (a subset of) clients uploading up-to-date training results. This makes
them vulnerable to stragglers and fundamentally different from DLSGD.

Asynchronous SGD. There are various asynchronous variants of parallel SGD where clients op-
erate at their own speeds without the need for synchronization, resulting in the server aggregating
stale stochastic gradients. Under the homogeneous setting, the linear-speedup convergence of asyn-
chronous SGD has been established in Agarwal & Duchi (2011) for convex objectives, in Lian
et al. (2015); Dutta et al. (2018) for nonconvex objectives, and in Arjevani et al. (2020) for con-
vex quadratic objectives. In the heterogeneous setting, Gao et al. (2021) achieves linear speedup
by assuming identical staleness of the aggregated gradients. On the other hand, Koloskova et al.
(2022) provides the convergence analysis of asynchronous SGD for nonconvex objectives, while the
linear speedup is not attained. It is worth noting that, unlike DLSGD, asynchronous SGD typically
involves clients solely responsible for gradient computation without performing local training. As
a result, asynchronous SGD often requires more frequent communication with the server compared
to DLSGD.

(Semi-)Asynchronous FL. FL generally concerns data heterogeneity and incorporates local training
strategies. According to the taxonomy presented in Xu et al. (2021), our DLSGD-hetero can be
categorized as a semi-asynchronous FL algorithm since the server’s iteration occurs only when a
specific subset of clients’ delayed updates arrive. A similar algorithm called FedBuff (Nguyen et al.,
2022) has demonstrated state-of-the-art empirical performance in semi-asynchronous FL. In recent
works such as Zakerinia et al. (2022); Leconte et al. (2023), a different asynchrony model is adopted,
where the server can interrupt the clients to request their intermediate local updates. Other works,
such as Xie et al. (2019); Chen et al. (2020); Fraboni et al. (2023), enable a higher level of system
asynchrony, where the server immediately updates the global model upon receiving a local model
from a client. While the existing papers on (semi-)asynchronous FL generally provide convergence
analyses on nonconvex objectives, the guarantees for linear speedup are still lacking.
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Algorithm 1 DLSGD-homo

Server executes:
1: Input: w0 ∈ Rd, n, T ∈ Z+, η > 0
2: Broadcast w to all the clients
3: for t = 0, 1, . . . , T − 1 do
4: Collect n local updates {∆i : i ∈ It}

from any n clients It
5: Set ∆t

i ← ∆i

6: Aggregation: ∆t ← 1
n

∑
i∈It

∆t
i

7: Global iteration: wt+1 ← wt − η∆t

8: Broadcast w to all the N clients
9: end for

Client i executes:
1: Input: K ∈ Z+, η̄ > 0
2: if the receive buffer is nonempty then
3: Retrieve w from the receive buffer
4: Set wi ← w
5: for k = 0, 1, . . . ,K − 1 do
6: Sample ξi ∼ D
7: Set wi ← wi − η̄∇f(wi; ξi).
8: end for
9: Send ∆i = w −wi to the server

10: end if

2 ALGORITHM DESCRIPTIONS

In this section, we present the algorithmic details of DLSGD under the homogeneous and heteroge-
neous settings, respectively.

2.1 DLSGD-HOMO

We first introduce DLSGD-homo for solving Problem (1), where for all i ∈ [N ], the local datasetsDi

are set to be identical, denoted as D, where D is supported on the sample space Ξ. Furthermore, the
local objective functions fi are all equal to a continuously differentiable function f : Rd × Ξ→ R.
Then, the formulation (1) can be simplified as follows:

min
w∈Rd

F (w) = Eξ∼D[f(w; ξ)]. (4)

Problem (4) is applicable to two different distributed scenarios: batch data in a shared memory
(Assran et al., 2020) and streaming data from an unknown distribution (Chang et al., 2020). In the
former case, the clients (such as CPUs and GPUs) can read simultaneously from a shared dataset,
where D represents the empirical distribution supported on the data points, and ξ ∼ D indicates
that ξ is uniformly sampled from the dataset. In the latter case, we assume that data are revealed to
different clients (such as wireless sensors (De Francisci Morales et al., 2016) and financial sectors
(Umadevi et al., 2018)) in an online fashion from a source with the unknown distribution D, and are
processed only once without the need to be stored locally.

DLSGD-homo comprises the following main components:

Warmup Phase. In the initial round t = 0 of DLSGD-homo, the server initialize a global model
w0 and broadcast it to the receive buffers of all the clients. Each client fetches the global model w0

from their receive buffer and perform parallel local training starting from w0.

Server’s Procedures in Round t. We focus on the situation in which the clients have varying
computation/communication speeds. Thus, instead of waiting for all the clients to complete local
training and upload their results, the server only needs to cache the first n clients’ local updates
that arrive. In other words, the clients participate in a non-random manner at their own individual
pace, and the server does not interrupt the remaining clients’ ongoing work. We let It be the set
of participating clients with |It| = n, then the server creates a new global model wt+1 (the round
index increments by one) as follows:

wt+1 = wt − ηgt, (5)

where η > 0 is the global learning rate and gt := 1
|It|
∑

i∈It
∆t

i and ∆t
i is client i’s local update that

will be specified later. Then, wt+1 is broadcast to all the N clients’ receive buffers.

Clients’ Procedures in Round t. At the beginning of round t, it is possible that a client’s local
training was initiated from a stale version of the global model. Specifically, we use τi(t) to denote
the round index of the global model that client i has used in local training in round t, then it is obvious
that 0 ≤ τi(t) ≤ t. Let us assume that client i initiated local training using w

τi(t),0
i = wτi(t), where
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Algorithm 2 DLSGD-hetero

Server executes:
1: Input: w0 ∈ Rd, n, T ∈ Z+, η > 0
2: Broadcast w to all the clients
3: for t = 0, 1, . . . , T − 1 do
4: Select a subset It from [N ] n indepen-

dent times using uniform sampling with
replacement

5: Collect the model updates {∆i : i ∈ It}
from the clients in It

6: Set ∆t
i ← ∆i

7: Aggregation: ∆t ← 1
n

∑
i∈It

∆t
i

8: Global iteration: wt+1 ← wt − η∆t

9: Broadcast wt to all the N clients
10: end for

Client i executes:
1: Input: K ∈ Z+, η̄ > 0
2: if the receive buffer is nonempty then
3: Retrieve w from the receive buffer
4: Set wi ← w
5: for k = 0, 1, . . . ,K − 1 do
6: Sample ξi ∼ Di

7: Set wi ← wi − η̄∇fi(wi; ξi).
8: end for
9: Set ∆i = w −wi

10: Update the send buffer with ∆i

11: end if
12: if client i is selected by the server then
13: while the send buffer is nonempty do
14: Send ∆i to the server
15: end while
16: end if

wτi(t) represents the global model at round τi(t). Then, the local sequence wτi(t),1
i , . . . ,w

τi(t),K
i is

generated through K-step SGD iterations with K ≥ 1:

w
τi(t),k+1
i = w

τi(t),k
i − η̄∇f(wτi(t),k

i ; ξt,ki ) for k = 0, 1, . . . ,K − 1, (6)

where η̄ > 0 is the local learning rate and ξt,ki ’s are independently sampled from D. It is worth
emphasizing that we index the data sample ξt,ki by t for all i ∈ [N ] and k = 0, 1, . . . ,K − 1 to
highlight that all previous models w0,w1, . . . ,wt−1 do not depend on it. Once the local training of
client i is completed, the local update ∆t

i := w
τi(t),0
i −w

τi(t),K
i shall be sent to the server. Then,

if the receive buffer is nonempty, the client proceeds with new local training by fetching the latest
model from the receive buffer.

The pseudo-code of DLSGD-homo is described in Algorithm 1. We remark that the N clients can
work in concurrent with each other as well as with the server. This distinguishes DLSGD-homo from
vanilla Local-SGD, where the local iterations (2) and the global iteration (3) are executed alternately.
Furthermore, we notice that there is a similar asynchronous Local-SGD algorithm mentioned in
Stich (2019, Section 5) for solving Problem (4) with strongly convex objectives. In that algorithm,
the local steps K can vary across clients, the local learning rates diminish to 0, and there is no
global learning rate. These features also bring about distinct theoretical result compared to that of
DLSGD-homo, which will be discussed in Section 3.

2.2 DLSGD-HETERO

DLSGD-hetero is designed to address the heterogeneous setting of Problem (1), which falls under
the scope of FL. The warm-up phase of DLSGD-hetero remains the same as described in Section
2.1, thus we focus on the key distinctions in terms of the server’s and the clients’ procedures.

Server’s Procedures in Round t. When the clients have diverse communication/computation
speeds, the non-random/deterministic client participation scheme employed in DLSGD-homo and
some other FL algorithms (Li et al., 2019; Nguyen et al., 2022) tends to favor fast clients. This
can result in a biased exploitation of the local information in Fi, potentially impeding convergence.
Therefore, we adopt a random client participation scheme, where the server samples clients uni-
formly with replacement n independent times in each round. The selected clients upload their local
updates once the send buffer is nonempty, while the remaining clients continue their ongoing work.
We use It (in calligraphic font) to denote the random set of the selected clients in round t. Since
each client can be selected more than once, It is a multiset that may contain repeated elements and
|It| ≤ n. Once the clients in It have uploaded their local updates ∆t

i’s, the server proceeds to create
a new global model wt+1 similar to (5):

wt+1 = wt − ηht, (7)
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while ht = 1
|It|
∑

i∈It
∆t

i. Then, wt+1 is broadcast to all the N clients’ receive buffers.

Clients’ Procedures in Round t. Analogous to the procedures described in Section 2.1, suppose
that client i initiated training with w

τi(t),0
i = wτi(t) and the K-step SGD iterations with K ≥ 1:

w
τi(t),k+1
i = w

τi(t),k
i − η̄∇fi(wτi(t),k

i ; ξt,ki ) for k = 0, 1, . . . ,K − 1, (8)

where η̄ > 0 is the local learning rate and ξt,ki ’s are independently sampled from Di. The client
upload its local update ∆t

i = w
τi(t),0
i −wτi(t),K

i to the server if it is selected by the server; otherwise,
it places ∆t

i into to the send buffer until the client is selected at a later time. Moreover, the client has
the capability to regularly retrieve the most recent global models from its receive buffer. This allows
the client to initiate new cycles of local training promptly and overwrite the send buffer. By doing
so, the client ensures minimal delay in its local update when it is selected in a subsequent round.

We describe the pseudo-code of DLSGD-hetero in Algorithm 2, in which the clients and the server
also work in a parallel manner. When τi(t) = t for all i ∈ [N ], DLSGD-hetero reduces to the Gen-
eralized FedAvg with partial client participation (Yang et al., 2021). In this case, the participating
clients in round t commence local training using the global model wt, while the remaining clients
remain idle and do not contribute to the training process.

3 THEORETICAL ANALYSES

Our convergence analyses of DLSGD rely on the following standard assumptions.

Assumption 1 (L-smoothness). There exists L > 0 such that for all i ∈ [N ] and w,w′ ∈ Rd,

∥∇Fi(w)−∇Fi(w
′)∥2 ≤ L∥w −w′∥2.

Assumption 2 (unbiased stochastic gradient). Suppose that ξi ∈ Ξi is a data sample and w ∈ Rd

is a local/global iterate generated by DLSGD, and F is a sigma algebra. If w is F-measurable and
ξi is independent of w, then for all i ∈ [N ],

E[∇fi(w; ξi)|F ] = ∇Fi(w). (9)

Note that Eξ∼Di [∇fi(w; ξi)] ̸= ∇Fi(w) if w is considered to be random, as the iterate w can be a
function of (thus dependent on) ξi in general. To ensure the unbiasedness property (9), we need the
conditions that F contains all information in w and ξi is independent of w. Similarly, we impose
the following uniform upper bound condition on the conditional variance of stochastic gradients:

Assumption 3 (bounded variance). Suppose that ξi ∈ Ξi is a data sample and w ∈ Rd is a
local/global iterate generated by DLSGD, and F is a sigma algebra. If w is F-measurable and ξi
is independent of w, then there exists σ > 0 such that for all i ∈ [N ] and k = 0, 1, . . . ,K − 1,

E
[
∥∇fi(wi; ξi)−∇Fi(wi)∥22 | F

]
≤ σ2.

Assumption 4 (bounded delay). There exists an integer λ ≥ 1 such that for all i ∈ [N ] and t ≥ 0,

τi(t) ≥ (t− λ)+,

where (x)+ := max{x, 0} for x ∈ R.

Assumption 4 is common in distributed optimization using stale gradients, e.g., Lian et al. (2015);
Nguyen et al. (2022), which indicates that the clients can be arbitrarily delayed as long as they
participate in the global iterations at least once in the last λ rounds. For Algorithm 1, the value
of λ is a system attribute that is determined by the computation/communication time of the clients
and the server. For Algorithm 2, due to the randomness in client sampling, there is a chance (albeit
tiny) that a client is not selected throughout the training process and thus Assumption 4 is violated.
Indeed, according to Gu et al. (2021, Theorem 5.2), it holds with probability at least 1 − δ that
λ ≤ O

(
1
p

(
1 + log NT

δ

))
, where p = 1−

(
N−1
N

)n
is the probability of each client being sampled

in a single round. In other words, the maximum delay λ of DLSGD-hetero depends logarithmically
on T with high probability (rather than deterministically).
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3.1 CONVERGENCE RATE OF DLSGD-HOMO

Now, we present the following convergence rate of DLSGD-homo:
Theorem 1. Let F ∗ ∈ R be the optimal function value of Problem (4), w0 ∈ Rd be the initial
point, and {wt}t≥1 be the sequence generated by Algorithm 1 for solving Problem (4). Suppose
that Assumptions 1–4 hold and the learning rates satisfy

η̄ ≤ 1

4
√
3LK

and ηη̄ ≤ 1

4LKλ
. (10)

If η =
√

nK(F (w0)− F ∗)/2 and η̄ = 1/(
√
σ2LTK), then it holds for T ≥ 1 that

1

T

T−1∑
t=0

E∥∇F (wt)∥22 ≤
√

128(F (w0)− F ∗)

nKT
+

8L

σ2KT
. (11)

The proof of Theorem 1 is deferred to Appendix A.1. Note that condition (10) implies a lower bound
on the required number of global rounds:

T ≥ max

{
48L

σ2
,
(F ∗ − F (w0))8nLKλ2

σ2

}
= Ω(nKλ2). (12)

The convergence bound (11) suggests that the average gradient norm converges to zero at a rate of
O(1/

√
nKT+1/(KT )), which indicates a linear speedup wrt to the number of participating clients

n as T is sufficiently large.

When λ = 1, indicating no delay in the updates, Theorem 1 aligns with the convergence
result for synchronous Local-SGD presented in Stich & Karimireddy (2020), which achieves
O(1/

√
nKT +n/T ) rate provided that T = Ω(nK). Notably, our result for DLSGD-homo demon-

strates that the delay in local training does not hinder the asymptotic convergence rate when com-
pared to synchronous Local-SGD.

When K = 1, indicating no local training, the convergence bound (11) simplifies to the result pre-
sented in Lian et al. (2015) up to a high-order term. This result demonstrates that the asynchronous
SGD converges at a rate of O(1/

√
nT ) when T = Ω(nλ2). Besides, it is worth noting that con-

dition (11) implies that K = O(T/(nλ2)). Consequently, if the number of local steps K is not
excessively large, the communication complexity decreases linearly as K increases. This highlights
the advantage of local training in DLSGD-homo, as it reduces the number of communication rounds
by a factor of 1/K asymptotically while maintaining the same sample complexity as asynchronous
SGD.

The asynchronous Local-SGD (Stich, 2019) discussed in Section 2.1 attainsO(1/nT ) rate for solv-
ing Problem (4). Nevertheless, this result is limited to strongly convex objectives under the assump-
tion of bounded gradients. In contrast, Theorem 1 applies to general nonconvex problems without
requiring bounded gradients. This sheds light on the distributed training of nonconvex deep neural
networks, showcasing the applicability and effectiveness of DLSGD in the more challenging setting.

3.2 CONVERGENCE RATE OF DLSGD-HETERO

To analyze the convergence of DLSGD-hetero, we further assume the following upper bounds on
gradient norms and the heterogeneity of local objective functions:
Assumption 5 (bounded gradient). Suppose that w ∈ Rd is a local/global iterate generated by
Algorithm 2. Then, there exists G ≥ 0 such that for all i ∈ [N ],

E∥∇Fi(w)∥22 ≤ G2.

Assumption 6 (bounded heterogeneity). Suppose that w ∈ Rd is a local/global iterate generated
by Algorithm 2. Then, there exists ν ≥ 0 such that for all i ∈ [N ],

E∥∇Fi(w)−∇F (w)∥22 ≤ ν2.

Then, we can establish the following convergence rate of DLSGD-hetero:
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Theorem 2. Let F ∗ ∈ R be the optimal function value of Problem (1), w0 ∈ Rd be the initial point
of Algorithm 2, and {wt}t≥1 be the sequence generated by Algorithm 2. Suppose that Assumptions
1–6 hold and the learning rates satisfy

η̄ ≤ 1

8LK
and ηη̄ ≤ min

{
1

4LKλ
,

2σ2 +G2K

8σ2LKλ+ 4LG2K2λ2

}
. (13)

If η =
√
4nK(F (w0)− F ∗) and η̄ = 1/(

√
(4σ2L+ 2LKG2)TK), then it holds for T ≥ 1 that

1

T

T−1∑
t=0

E∥∇F (wt)∥22 ≤
√

256(F (w0)−F ∗)(16σ2L+8LG2K)

nKT
+

(σ2+8Kν2)8L2

(4σ2L+2LKG2)KT
. (14)

The proof of Theorem 2 is given in Appendix A.2. As a consequence of condition (13), we need T ≥
Ω(nλ4), which exhibits a stronger dependence on λ compared to the lower bound (12). According
to our proof, this results from the heterogeneity of local objectives that necessitates more stringent
choices of learning rates for convergence. Therefore, the bound (14) indicates that the average
squared gradient norm converges to zero at a rate of O(1/

√
nT + 1/KT ) for sufficiently large T ,

which also achieves asymptotic linear speedup wrt to n.

Similar to the discussion for Theorem 1, Theorem 2 aligns with the existing result for synchronous
Local-SGD for federated learning when we set λ = 1. Specifically, it has been shown in Yang et al.
(2021) that the Generalized FedAvg converges at a rate ofO(

√
K/
√
nT +1/T ) when T = Ω(nK)

for solving Problem (1). This observation further highlights that the delayed and non-delayed Local-
SGD methods exhibit comparable convergence behaviors as T becomes sufficiently large.

Consider the special case when K = 1, then Theorem 2 implies a O(1/
√
nT + 1/T ) convergence

rate for T = Ω(nλ4). This result, as far as we know, provides the first linear speedup guarantee
of asynchronous SGD under the heterogeneous setting, which might be of independent interest. In
this context, we notice that Koloskova et al. (2022) has established the best-known convergence rate
of O(1/

√
T + 1/T ) for asynchronous SGD under the same setting without the bounded gradient

assumption, while the linear speedup property remains unclear.

Similar to DLSGD-hetero, the FedBuff algorithm (Nguyen et al., 2022) also adopts semi-
asynchronous local training for solving Problem (1). Differently, FedBuff caches local updates from
any n active clients in each round. Such deterministic client participation scheme favors fast clients
and thus may impede convergence under the heterogeneous setting. This issue is also evidenced by
the theoretical analysis in Nguyen et al. (2022, Section D), which has to make a rather demanding
assumption that all clients participate with equal probability so as to guarantee the convergence rate
of O(1/

√
KT +K/(n2T ) + λ2/T ), without achieving asymptotic linear speedup wrt n.

4 EXPERIMENTS

We apply DLSGD to train convolutional neural networks with two convolutional layers and two
fully connected layers. Specifically, we simulate the collaborative training process of N = 100
clients with diverse processing capabilities, and evaluate the algorithm performance on image clas-
sification tasks using the FashionMNIST (Xiao et al., 2017) and CIFAR-10 (Krizhevsky et al., 2009)
datasets. Under the homogeneous setting (indicated by iid), we implement the Local-SGD (2)–(3)
and the AsySG (Lian et al., 2015) for comparisons with DLSGD-homo. Under the heterogeneous
setting (indicated by non-iid), we implement the Generalized FedAvg (Yang et al., 2021) and Fed-
Buff (Nguyen et al., 2022) for comparisons with DLSGD-hetero. The main experiment results and
associated discussions are provided in the following. Detailed descriptions of the experimental setup
and additional numerical results are deferred to Appendix B.1.

Figure 3 depicts the convergence of DLSGD and its counterparts over wall-clock time. It is observed
that DLSGD consistently demonstrates the most rapid decrease in training losses and increase in
test accuracies. In the IID case, Local-SGD is dragged down by the straggler clients due to the
synchronization in each round, while AsySG necessitates frequent communication between clients
and the server in the absence of local training. In comparison, the performance of DLSGD-homo
is enhanced by leveraging both asynchronous updates and local iterations. In the non-iid case,
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Figure 1: Convergence over wall-clock time of DLSGD and other algorithms with n = 10.
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Figure 2: Convergence over communication rounds of DLSGD with different values of n.

Generalized FedAvg faces similar challenges due to the presence of straggler clients. On the other
hand, while FedBuff allows for semi-asynchronous training, it appears to be more prone to weak
generalization. This could be because its training process heavily relies on fast clients, while the
datasets at slower clients make a relatively smaller contribution. By contrast, DLSGD-hetero enables
uniform client sampling, which helps mitigate the problem by ensuring a balanced contribution from
all clients. Additionally, when combined with delayed local training, DLSGD-hetero achieves faster
convergence compared to other competitors.

We also explore the impact of the number of participating clients n on the convergence behavior of
our proposed DLSGD algorithms. The results, as depicted in Figure 2, demonstrate that increasing
the number of participating clients expedites the convergence rates of DLSGD, which supports the
convergence results presented in Theorems 1 and 2. The reason behind this phenomenon is that a
larger value of n allows for a more accurate estimation of the full gradient during global updates,
thereby facilitating faster convergence over the communication rounds. Conversely, when n is small,
there is greater variance in the aggregated stochastic gradients, resulting in slower convergence rates
and more oscillations in the performance curves.

5 CONCLUSION AND DISCUSSION

This paper introduces the DLSGD framework to address the straggler effect in Local-SGD for both
homogeneous and heterogeneous distributed learning, by enabling asynchronous local training while
utilizing receive/send buffers across clients. Theoretical analyses demonstrate that DLSGD achieves
convergence rates comparable to synchronous Local-SGD in the asymptotic regime. Furthermore,
it offers linear speedup wrt the number of participating clients, indicating its scalability potential.
Numerical experiments on real datasets validate the effectiveness of DLSGD for training neural
networks. However, it is worth noting that the lower bound T = Ω(nKλ4) on the number of
training rounds of DLGSD-hetero might have a suboptimal dependence on the maximum delay
λ. Besides, the bounded gradient assumption for Theorem 2 could be an artifact of our analysis.
Exploring whether this dependence can be improved or relaxing the assumptions on bounded delay
and gradient presents an interesting avenue for further exploration.
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A PROOFS OF THE MAIN RESULTS

We first introduce the two facts that will be frequently used in the proofs.

Fact 1. Let U and V be two random variables, and F be a sigma algebra. If U is F-measurable,
then we have

E[UV ] = E[UE[V |F ]].

Proof. Since U is F-measurable, we have

E[UV |F ] = UE[V |F ].

Then, it follows from the tower rule that

E[UV ] = E[E[UV |F ]] = E[UE[V |F ]],

as desired.

Fact 2. Suppose that m ≥ 2 is an integer and x1, . . . ,xm are vectors in the same inner product
space. Then, the following inequality holds:∥∥∥∥∥

m∑
i=1

xi

∥∥∥∥∥
2

2

≤ m

m∑
i=1

∥xi∥22.

A.1 PROOF OF THEOREM 1

A.1.1 TECHNICAL LEMMAS

Lemma 1. Suppose that Assumptions 1 and 2 hold. Then, it hold for all t ≥ 0 that

E⟨∇F (wt), η̄K∇F (wt)− gt⟩

≤ K

2
η̄E∥∇F (wt)∥22 +

L2

n
η̄
∑
i∈It

K−1∑
k=0

E∥wτi(t),k
i −wτi(t)∥22 +

L2K

n
η̄
∑
i∈It

E∥wτi(t) −wt∥22

− 1

2K
η̄E

∥∥∥∥∥ 1n∑
i∈It

K−1∑
k=0

∇F (w
τi(t),k
i )

∥∥∥∥∥
2

2

.

Proof. Using the local iteration formula (6) of DLSGD-homo, we have

∆t
i = w

τi(t),0
i −w

τi(t),K
i =

K−1∑
k=0

η̄∇f(wτi(t),k
i ; ξt,ki ),

which implies that

gt :=
1

|It|
∑
i∈It

∆t
i =

η̄

n

∑
i∈It

K−1∑
k=0

∇f(wτi(t),k
i ; ξt,ki ). (15)
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Therefore, we have
E⟨∇F (wt), η̄K∇F (wt)− gt⟩

= η̄E

〈
∇F (wt),K∇F (wt)− 1

n

∑
i∈It

K−1∑
k=0

∇f(wτi(t),k
i ; ξt,ki )

〉

= η̄E

〈
√
K∇F (wt),

1√
Kn

∑
i∈It

(
K∇F (wt)−

K−1∑
k=0

∇f(wτi(t),k
i ; ξt,ki )

)〉

(a)
= η̄E

〈
√
K∇F (wt),

1√
Kn

∑
i∈It

(
K∇F (wt)−

K−1∑
k=0

E
[
∇f(wτi(t),k

i ; ξt,ki )
∣∣∣ wt,w

τi(t),k
i

])〉
,

(b)
= η̄E

〈
√
K∇F (wt),

1√
Kn

∑
i∈It

(
K∇F (wt)−

K−1∑
k=0

∇F (w
τi(t),k
i )

)〉
,

(c)
=

K

2
η̄E∥∇F (wt)∥22 +

1

2K
η̄ E

∥∥∥∥∥ 1n∑
i∈It

K−1∑
k=0

(
∇F (w

τi(t),k
i )−∇F (wt)

)∥∥∥∥∥
2

2︸ ︷︷ ︸
Xt

− 1

2K
η̄E

∥∥∥∥∥ 1n∑
i∈It

K−1∑
k=0

∇F (w
τi(t),k
i )

∥∥∥∥∥
2

2

, (16)

where (a) is implied by Fact 1, (b) follows from Assumption 2, and (c) uses the identity ⟨x,y⟩ =
(∥x∥22 + ∥y∥22 − ∥x− y∥22)/2 for vectors x and y. To upper bound Xt, we have

Xt = E

∥∥∥∥∥ 1n∑
i∈It

K−1∑
k=0

(
∇F (w

τi(t),k
i )−∇F (wτi(t)) +∇F (wτi(t))−∇F (wt)

)∥∥∥∥∥
2

2

(a)

≤ 2E

∥∥∥∥∥ 1n∑
i∈It

K−1∑
k=0

(
∇F (w

τi(t),k
i )−∇F (wτi(t))

)∥∥∥∥∥
2

2

+ 2E

∥∥∥∥∥ 1n∑
i∈It

K−1∑
k=0

(
∇F (wτi(t))−∇F (wt)

)∥∥∥∥∥
2

2

(b)

≤ 2

n2

∑
i∈It

K−1∑
k=0

nKE∥∇F (w
τi(t),k
i )−∇F (wτi(t))∥22 +

2

n2

∑
i∈It

K−1∑
k=0

nKE∥∇F (wτi(t))−∇F (wt)∥22

(c)

≤ 2L2K

n

∑
i∈It

K−1∑
k=0

E∥wτi(t),k
i −wτi(t)∥22 +

2L2K2

n

∑
i∈It

E∥wτi(t) −wt∥22, (17)

where (a) and (b) follow from Fact 2 with m = 2 and m = nK, respectively, and (c) is implied by
Assumption 1. Plugging (17) back into (16) gives the desired result.

Lemma 2. Suppose that Assumptions 2, 3, and 4 hold. Then, it holds for all t ≥ 0 that

E

∥∥∥∥∥∥
∑
j∈It

K−1∑
k=0

(
∇f(wτj(t),k

j ; ξt,kj )−∇F (w
τj(t),k
j )

)∥∥∥∥∥∥
2

2

≤ nKσ2, (18)

Besides, it holds for all t ≥ 1 and i ∈ It that

E

∥∥∥∥∥∥
t−1∑

s=τi(t)

∑
j∈Is

K−1∑
k=0

(
∇f(wτj(s),k

j ; ξs,kj )−∇F (w
τj(s),k
j )

)∥∥∥∥∥∥
2

2

≤ nKλσ2. (19)

Proof. For any integers i, j ∈ It such that i ̸= j and k, ℓ ∈ [0,K − 1], we have

E
〈
∇f(wτi(t),k

i ; ξt,ki )−∇F (w
τi(t),ℓ
i ),∇f(wτj(t),ℓ

j ; ξt,ℓj )−∇F (w
τj(t),ℓ
j )

〉
= E

〈
∇f(wτi(t),k

i ; ξt,ki )−∇F (w
τi(t),ℓ
i ),E

[
∇f(wτj(t),ℓ

j ; ξt,ℓj )−∇F (w
τj(t),ℓ
j )

∣∣∣ wτj(t),ℓ
j ,w

τi(t),k
i , ξt,ki

]〉
= 0,
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where the first equality uses Fact 1 and the second equality follows from Assumption 2. Therefore,

E

〈
K−1∑
k=0

(
∇f(wτi(t),k

i ; ξt,ki )−∇F (w
τi(t),k
i )

)
,

K−1∑
k=0

(
∇f(wτj(t),k

j ; ξt,kj )−∇F (w
τj(t),k
j )

)〉
=

∑
0≤k,ℓ≤K−1

E
〈
∇f(wτi(t),k

i ; ξt,ki )−∇F (w
τi(t),k
i ),∇f(wτj(t),ℓ

j ; ξt,ℓj )−∇F (w
τj(t),ℓ
j )

〉
=0. (20)

Therefore, we have

E

∥∥∥∥∥∥
∑
j∈It

K−1∑
k=0

(
∇f(wτj(t),k

j ; ξt,kj )−∇F (w
τj(t),k
j )

)∥∥∥∥∥∥
2

2

=
∑
i,j∈It

E

〈
K−1∑
k=0

(
∇f(wτi(t),k

i ; ξt,ki )−∇F (w
τi(t),k
i )

)
,

K−1∑
k=0

(
∇f(wτj(t),k

j ; ξt,kj )−∇F (w
τj(t),k
j )

)〉

=
∑
j∈It

E

∥∥∥∥∥
K−1∑
k=0

(
∇f(wτj(t),k

j ; ξt,kj )−∇F (w
τj(t),k
j )

)∥∥∥∥∥
2

2

. (21)

To proceed, we note that for any integers k, ℓ ∈ [0,K − 1] such that k < ℓ, it follows from Fact 1
and Assumption 2 that

E
〈
∇f(wτj(t),k

j ; ξt,kj )−∇F (w
τj(t),k
j ),∇f(wτj(t),ℓ

j ; ξt,ℓj )−∇F (w
τj(t),ℓ
j )

〉
= E

〈
∇f(wτj(t),k

j ; ξt,kj )−∇F (w
τj(t),k
j ),E

[
∇f(wτj(t),ℓ

j ; ξt,ℓj )−∇F (w
τj(t),ℓ
j )

∣∣∣ wτj(t),k
j , ξt,kj

]〉
= 0. (22)
This, together with (21), implies that

E

∥∥∥∥∥
K−1∑
k=0

(
∇f(wτj(t),k

j ; ξt,kj )−∇F (w
τj(t),k
j )

)∥∥∥∥∥
2

2

=
∑

0≤k,ℓ≤K−1

E
〈
∇f(wτj(t),k

j ; ξt,kj )−∇F (w
τj(t),k
j ),∇f(wτj(t),ℓ

j ; ξt,ℓj )−∇F (w
τj(t),ℓ
j )

〉

=

K−1∑
k=0

E
∥∥∥∇f(wτj(t),k

j ; ξt,kj )−∇F (w
τj(t),k
j )

∥∥∥2
2
. (23)

Plugging (23) back into (21) and using Assumption 3 yield

E

∥∥∥∥∥∥
∑
j∈It

K−1∑
k=0

(
∇f(wτj(t),k

j ; ξt,kj )−∇F (w
τj(t),k
j )

)∥∥∥∥∥∥
2

2

=
∑
j∈It

K−1∑
k=0

E
∥∥∥∇f(wτj(t),k

j ; ξt,kj )−∇F (w
τj(t),k
j )

∥∥∥2
2

≤ nKσ2, (24)
which completes the proof of (18).

We further note that for any integers s, r ∈ [τi(t), t− 1] such that s < r, it follows from Fact 1 and
Assumption 2 that

E

〈∑
j∈Is

K−1∑
k=0

(
∇f(wτj(s),k

j ; ξs,kj )−∇F (w
τj(s),k
j )

)
,
∑
j∈Is

K−1∑
k=0

(
∇f(wτj(r),k

j ; ξr,kj )−∇F (w
τj(r),k
j )

)〉

=
∑
i,j∈It

∑
0≤k,ℓ≤K−1

E
〈
∇f(wτi(s),k

i ; ξs,ki )−∇F (w
τi(s),k
i ),E

[
∇f(wτj(r),ℓ

j ; ξr,ℓj )−∇F (w
τj(r),ℓ
j )

∣∣∣ wτi(s),k
i , ξs,ki

]〉
= 0.
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This implies that

E

∥∥∥∥∥∥
t−1∑

s=τi(t)

∑
j∈Is

K−1∑
k=0

(
∇f(wτj(s),k

j ; ξs,kj )−∇F (w
τj(s),k
j )

)∥∥∥∥∥∥
2

2

=
∑

τi(t)≤s,r≤t−1

E

〈∑
j∈Is

K−1∑
k=0

(
∇f(wτj(s),k

j ; ξs,kj )−∇F (w
τj(s),k
j )

)
,
∑
j∈Is

K−1∑
k=0

(
∇f(wτj(r),k

j ; ξr,kj )−∇F (w
τj(r),k
j )

)〉

=

t−1∑
s=τi(t)

E

∥∥∥∥∥∥
∑
j∈Is

K−1∑
k=0

(
∇f(wτj(s),k

j ; ξs,kj )−∇F (w
τj(s),k
j )

)∥∥∥∥∥∥
2

2

.

≤
t−1∑

s=(t−λ)+

nKσ2

≤ nKλσ2,

where the first inequality uses (24) and the second inequality follows from Assumption 4. This
completes the proof of (19).

Lemma 3. Suppose that Assumptions 2, 3, and 4 hold. Then, it hold for all t ≥ 0 that

E∥gt∥22 ≤ 2Kη̄2
σ2

n
+ 2η̄2E

∥∥∥∥∥ 1n∑
i∈It

K−1∑
k=0

∇F (w
τi(t),k
i )

∥∥∥∥∥
2

2

. (25)

Proof. In view of (15), we have

E∥gt∥22

= E

∥∥∥∥∥ 1n∑
i∈It

K−1∑
k=0

η̄∇f(wτi(t),k
i ; ξt,ki )

∥∥∥∥∥
2

2

= E

∥∥∥∥∥ 1n∑
i∈It

K−1∑
k=0

η̄
(
∇f(wτi(t),k

i ; ξt,ki )−∇F (w
τi(t),k
i ) +∇F (w

τi(t),k
i )

)∥∥∥∥∥
2

2

(a)

≤ 2E

∥∥∥∥∥ 1n∑
i∈It

K−1∑
k=0

η̄
(
∇f(wτi(t),k

i ; ξt,ki )−∇F (w
τi(t),k
i )

)∥∥∥∥∥
2

2

+ 2E

∥∥∥∥∥ 1n∑
i∈It

K−1∑
k=0

η̄∇F (w
τi(t),k
i )

∥∥∥∥∥
2

2

(b)

≤ 2Kη̄2
σ2

n
+ 2η̄2E

∥∥∥∥∥ 1n∑
i∈It

K−1∑
k=0

∇F (w
τi(t),k
i )

∥∥∥∥∥
2

2

. (26)

where the (a) uses Fact 2 with m = 2, (b) follows from (18) in Lemma 2.

Lemma 4. Suppose that Assumption 1, 2, and 3 hold. Then, it holds for all t ≥ 0 that

1

n

∑
i∈It

K−1∑
k=0

E∥wτi(t),k
i −wτi(t)∥22

≤ 2K2η̄2σ2 + 12K3η̄2E∥∇F (wt)∥22 +
12L2K3

n
η̄2
∑
i∈It

E∥wτi(t) −wt∥22.
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Proof. Using the local iteration formula, we have

E∥wτi(t),k
i −wτi(t)∥22

= E∥wτi(t),k−1
i − η̄∇f(wτi(t),k−1

i ; ξt,k−1
i )−wτi(t)∥22

= E
∥∥∥wτi(t),k−1

i −wτi(t) − η̄
(
∇F (w

τi(t),k−1
i )−∇F (wτi(t)) +∇F (wτi(t))−∇F (wt) +∇F (wt)

)
− η̄
(
∇f(wτi(t),k−1

i ; ξt,k−1
i )−∇F (w

τi(t),k−1
i )

)∥∥∥2
2

= E
∥∥∥wτi(t),k−1

i −wτi(t) − η̄
(
∇F (w

τi(t),k−1
i )−∇F (wτi(t)) +∇F (wτi(t))−∇F (wt) +∇F (wt)

)∥∥∥2
2

+ η̄2E∥∇f(wτi(t),k−1
i ; ξt,k−1

i )−∇F (w
τi(t),k−1
i )∥22,

where the last equality holds because Fact 1 and Assumption 2 imply that the cross term is 0, i.e.,

2E
〈
w

τi(t),k−1
i −wτi(t) − η̄

(
∇F (w

τi(t),k−1
i )−∇F (wτi(t)) +∇F (wτi(t))−∇F (wt) +∇F (wt)

)
,

∇f(wτi(t),k−1
i ; ξt,k−1

i )−∇F (w
τi(t),k−1
i )

〉
= 2E

〈
w

τi(t),k−1
i −wτi(t) − η̄

(
∇F (w

τi(t),k−1
i )−∇F (wτi(t)) +∇F (wτi(t))−∇F (wt) +∇F (wt)

)
,

E
[
∇f(wτi(t),k−1

i ; ξt,k−1
i )−∇F (w

τi(t),k−1
i )

∣∣∣ wτi(t),k−1
i ,wt

] 〉
= 0. (27)

It follows that

E∥wτi(t),k
i −wτi(t)∥22

(a)

≤ η̄2σ2 +

(
1 +

1

2K − 1

)
E∥wτi(t),k−1

i −wτi(t)∥22

+ 2Kη̄2E∥∇F (w
τi(t),k−1
i )−∇F (wτi(t)) +∇F (wτi(t))−∇F (wt) +∇F (wt)∥22

(b)

≤
(
1 +

1

2K − 1

)
E∥wτi(t),k−1

i −wτi(t)∥22 + 6Kη̄2E∥∇F (w
τi(t),k−1
i )−∇F (wτi(t))∥22

+ 6Kη̄2E∥∇F (wτi(t))−∇F (wt)∥22 + 6Kη̄2E∥∇F (wt)∥22 + η̄2σ2

(c)

≤
(
1 +

1

2K − 1

)
E∥wτi(t),k−1

i −wτi(t)∥22 + 6L2Kη̄2E∥wτi(t),k−1
i −wτi(t)∥22

+ 6L2Kη̄2E∥wτi(t) −wt∥22 + 6Kη̄2E∥∇F (wt)∥22 + η̄2σ2

(d)

≤
(
1 +

1

K − 1

)
E∥wτi(t),k−1

i −wτi(t)∥22

+ 6L2Kη̄2E∥wτi(t) −wt∥22 + 6Kη̄2E∥∇F (wt)∥22 + η̄2σ2, (28)

where (a) uses Assumption 3 and the fact that ∥x + y∥22 ≤ (1 + 1/β)∥x∥22 + (1 + β)∥y∥22 for
vectors x,y and β = 2K − 1, (b) uses Fact 2 with n = 3, (c) is implied by Assumption 1, and (d)
holds because

η̄ ≤ 1

2
√
2LK

⇒ 1 +
1

2K − 1
+ 6L2Kη̄2 ≤ 1 +

1

K − 1

Let Zt,k
i := E∥wτi(t),k

i − wτi(t)∥22, a := 1 + 1
K−1 , and b := 6L2Kη̄2E∥wτi(t) − wt∥22 +

6Kη̄2E∥∇F (wt)∥22 + η̄2σ2, then (28) can be written as

Zt,k
i ≤ aZt,k−1

i + b.

17
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Solving this recursion gives

Zt,k
i ≤ akZt,0

i + b

k−1∑
ℓ=0

aℓ

=
ak − 1

a− 1
b

= (K − 1)

((
1 +

1

K − 1

)K−1

− 1

)(
6L2Kη̄2E∥wτi(t) −wt∥22 + 6Kη̄2E∥∇F (wt)∥22 + η̄2σ2

)
≤ 2(K − 1)

(
σ2η̄2 + 6Kη̄2E∥∇F (wt)∥22 + 6L2Kη̄2E∥wτi(t) −wt∥22

)
,

where the second inequality holds due to the fact that
(
1 + 1

K−1

)K−1

≤ e ≤ 3 with e is being
Euler’s number. Thus, we obtain

1

n

∑
i∈It

K−1∑
k=0

Zt,k
i

≤ 1

n

∑
i∈It

K−1∑
k=0

2(K − 1)
(
σ2η̄2 + 6Kη̄2E∥∇F (wt)∥22 + 6L2Kη̄2E∥wτi(t) −wt∥22

)
≤ 2K2σ2η̄2 + 12K3η̄2E∥∇F (wt)∥22 +

12L2K3

n
η̄2
∑
i∈It

E∥wτi(t) −wt∥22,

as desired.

Lemma 5. Suppose that Assumptions 2, 3, and 4 hold. Then, it holds for all t ≥ 0 and i ∈ It that

E∥wt −wτi(t)∥22 ≤ 2Kλη2η̄2
σ2

n
+ 2λη2η̄2

t−1∑
s=(t−λ)+

E

∥∥∥∥∥∥ 1n
∑
j∈Is

K−1∑
k=0

∇F (w
τj(s),k
j )

∥∥∥∥∥∥
2

2

.

Proof. For each i ∈ It, we consider the following two cases: i) τi(t) = t. Then, we have E∥wt −
wτi(t)∥22 = 0. ii) τi(t) < t. In view of (5) and (6), the server’s global iteration in round s ∈
[τi(t), t− 1] can be written as

ws+1 = ws − η

|Is|
∑
j∈Is

η̄

K−1∑
k=0

∇f(wτj(s),k
j ; ξs,kj ).

Then, we have

E∥wt −wτi(t)∥22

= E

∥∥∥∥∥∥
t−1∑

s=τi(t)

(ws+1 −ws)

∥∥∥∥∥∥
2

2

= E

∥∥∥∥∥∥
t−1∑

s=τi(t)

η

n

∑
j∈Is

K−1∑
k=0

η̄∇f(wτj(s),k
j ; ξs,kj )

∥∥∥∥∥∥
2

2

= E

∥∥∥∥∥∥
t−1∑

s=τi(t)

η

n

∑
j∈Is

K−1∑
k=0

η̄
(
∇f(wτj(s),k

j ; ξs,kj )−∇F (w
τj(s),k
j )

)
+

t−1∑
s=τi(t)

η

n

∑
j∈Is

K−1∑
k=0

η̄∇F (w
τj(s),k
j )

∥∥∥∥∥∥
2

2

.

18
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Using Fact 2 with m = 2 to upper bound the above gives

E∥wt −wτi(t)∥22

≤ 2E

∥∥∥∥∥∥
t−1∑

s=τi(t)

η

n

∑
j∈Is

K−1∑
k=0

η̄
(
∇f(wτj(s),k

j ; ξs,kj )−∇F (w
τj(s),k
j )

)∥∥∥∥∥∥
2

2

+ 2E

∥∥∥∥∥∥
t−1∑

s=τi(t)

η

n

∑
j∈Is

K−1∑
k=0

η̄∇F (w
τj(s),k
j )

∥∥∥∥∥∥
2

2

(29)

(a)

≤ 2η2η̄2

n2
nKλσ2 + 2η2η̄2|t− τi(t)|

t−1∑
s=τi(t)

E

∥∥∥∥∥∥ 1n
∑
j∈Is

K−1∑
k=0

∇F (w
τj(s),k
j )

∥∥∥∥∥∥
2

2

(b)

≤ 2Kλη2η̄2
σ2

n
+ 2λη2η̄2

t−1∑
s=(t−λ)+

E

∥∥∥∥∥∥ 1n
∑
j∈Is

K−1∑
k=0

∇F (w
τj(s),k
j )

∥∥∥∥∥∥
2

2

,

where (a) is follows from (19) in Lemma 2 and Fact 2 with m = |t − τi(t)| and (b) is implied by
Assumption 4. Combining cases i) and ii) completes the proof.

A.1.2 PUTTING INGREDIENTS TOGETHER

Proof. Using the descent lemma implied by Assumption 1, we have

E[F (wt+1)]

≤ E[F (wt)] + E⟨∇F (wt),wt+1 −wt⟩+ L

2
E∥wt+1 −wt∥22

= E[F (wt)] + E⟨∇F (wt),−gt⟩+ L

2
E∥gt∥22

= E[F (wt)]− ηE⟨∇F (wt), gt −Kη̄∇F (wt) +Kη̄∇F (wt)⟩+ L

2
E∥gt∥22

= E[F (wt)]−Kηη̄E∥∇F (wt)∥22 + ηE⟨∇F (wt), η̄K∇F (wt)− gt⟩+ L

2
E∥gt∥22. (30)

Then, substituting the last two terms using Lemmas 1 and 3, and rearranging give

E[F (wt+1)]− E[F (wt)]

≤−Kηη̄E∥∇F (wt)∥22 +
K

2
ηη̄E∥∇F (wt)∥22

+
L2

n
ηη̄
∑
i∈It

K−1∑
k=0

E∥wτi(t),k
i −wτi(t)∥22 +

L2K

n
ηη̄
∑
i∈It

E∥wτi(t) −wt∥22

− 1

2K
ηη̄E

∥∥∥∥∥ 1n∑
i∈It

K−1∑
k=0

∇F (w
τi(t),k
i )

∥∥∥∥∥
2

2

+ LKη2η̄2
σ2

n
+ Lη2η̄2E

∥∥∥∥∥ 1n∑
i∈It

K−1∑
k=0

∇F (w
τi(t),k
i )

∥∥∥∥∥
2

2

=− K

2
ηη̄E∥∇F (wt)∥22 + LKη2η̄2

σ2

n

+
L2

n
ηη̄
∑
i∈It

K−1∑
k=0

E∥wτi(t),k
i −wτi(t)∥22 +

L2K

n
ηη̄
∑
i∈It

E∥wτi(t) −wt∥22

−
(

1

2K
ηη̄ − Lη2η̄2

)
E

∥∥∥∥∥ 1n∑
i∈It

K−1∑
k=0

∇F (w
τi(t),k
i )

∥∥∥∥∥
2

2

. (31)
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It follows that

E[F (wt+1)]− E[F (wt)]

(a)

≤ −
(
K

2
ηη̄ − 12L2K3ηη̄3

)
E∥∇F (wt)∥22 + LKη2η̄2

σ2

n
+ 2L2K2ηη̄3σ2

+

(
L2K

n
ηη̄ +

12L4K3

n
ηη̄3
)∑

i∈It

E∥wτi(t) −wt∥22

−
(

1

2K
ηη̄ − Lη2η̄2

)
E

∥∥∥∥∥ 1n∑
i∈It

K−1∑
k=0

∇F (w
τi(t),k
i )

∥∥∥∥∥
2

2

.

(b)

≤ −
(
K

2
ηη̄ − 12L2K3ηη̄3

)
E∥∇F (wt)∥22 +

(
LKη2η̄2 + 2L2K2λη3η̄3 + 24L4K4λη3η̄5

) σ2

n

+ 2L2K2ηη̄3σ2 −
(

1

2K
ηη̄ − Lη2η̄2

)
E

∥∥∥∥∥ 1n∑
i∈It

K−1∑
k=0

∇F (w
τi(t),k
i )

∥∥∥∥∥
2

2

+ (2L2Kλη3η̄3 + 24L4K3λη3η̄5)

t−1∑
s=(t−λ)+

E

∥∥∥∥∥ 1n ∑
i∈Is

K−1∑
k=0

∇F (wτi(s),k)

∥∥∥∥∥
2

2

(c)

≤ − K

4
ηη̄E∥∇F (wt)∥22 + 2LKη2η̄2

σ2

n
+ 2L2K2ηη̄3σ2 − 1

4K
ηη̄E

∥∥∥∥∥ 1n∑
i∈It

K−1∑
k=0

∇F (w
τi(t),k
i )

∥∥∥∥∥
2

2

+ 4L2Kλη3η̄3
t−1∑

s=(t−λ)+

E

∥∥∥∥∥ 1n ∑
i∈Is

K−1∑
k=0

∇F (wτi(s),k)

∥∥∥∥∥
2

2

, (32)

where (a) uses Lemma 4, (b) uses Lemma 5, (c) holds because condition (10) implies the following:

η̄ ≤ 1

4
√
3LK

⇐⇒ K

2
ηη̄ − 12L2K3ηη̄3 ≥ K

4
ηη̄,

η̄ ≤ 1

2
√
2LK

⇐⇒ 2L2K2λη3η̄3 + 24L4K4λη3η̄5 ≤ 4L2K2λη3η̄3,

ηη̄ ≤ 1

4LKλ
⇐⇒ LKη2η̄2 + 4L2K2λη3η̄3 ≤ 2LKη2η̄2,

ηη̄ ≤ 1

2LK
⇐⇒ 1

2K
ηη̄ − Lη2η̄2 ≥ 1

4K
ηη̄.

Summing inequality (32) for t = 0, 1, . . . , T − 1 yields

E[F (wT )]− F [w0]

≤− K

4
ηη̄

T−1∑
t=0

E∥∇F (wt)∥22 + 2LKTη2η̄2
σ2

n
+ 2L2K2Tηη̄3σ2

− 1

4K
ηη̄

T−1∑
t=0

E

∥∥∥∥∥ 1n∑
i∈It

K−1∑
k=0

∇F (w
τi(t),k
i )

∥∥∥∥∥
2

2

+ 4L2Kλη3η̄3
T−1∑
t=0

t−1∑
s=(t−λ)+

E

∥∥∥∥∥ 1n ∑
i∈Is

K−1∑
k=0

∇F (wτi(s),k)

∥∥∥∥∥
2

2︸ ︷︷ ︸
Y s

. (33)

Note that
T−1∑
t=0

t−1∑
s=(t−λ)+

Y s ≤
T−2∑
t=0

λY t ≤ λ

T−1∑
t=0

Y t. (34)
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Substituting this into (33) and rearranging yield

K

4
ηη̄

T−1∑
t=0

E∥∇F (wt)∥22 ≤ F [w0]− E[F (wT )] + 2LKTη2η̄2
σ2

n
+ 2L2K2Tηη̄3σ2

−
(

1

4K
ηη̄ − 4L2Kλ2η3η̄3

) T−1∑
t=0

E

∥∥∥∥∥ 1n∑
i∈It

K−1∑
k=0

∇F (w
τi(t),k
i )

∥∥∥∥∥
2

2

≤ F [w0]− F ∗ + 2LKTη2η̄2
σ2

n
+ 2L2K2Tηη̄3σ2,

where the last inequality holds because F ∗ ≤ E[F (wT )] and condition (10) implies that

ηη̄ ≤ 1

4LKλ
⇐⇒ 1

4K
ηη̄ − 4L2Kλ2η3η̄3 ≥ 0.

Therefore, we obtain

1

T

T−1∑
t=0

E∥∇F (wt)∥22 ≤
F (w0)− F ∗ + 2LKTη2η̄2 σ2

n + 2L2K2Tηη̄3σ2

(KT/4)ηη̄

=
4(F (w0)− F ∗)

KTηη̄
+ 8Lηη̄

σ2

n
+ 8L2Kη̄2σ2

=

√
128L(F (w0)− F ∗)

nKT
+

8L

σ2KT
,

where the second equality holds since η =
√

(F (w0)− F ∗)nK/2 and η̄ = 1/(
√
σ2LTK). This

completes the proof of Theorem 1.

A.2 PROOF OF THEOREM 2

A.2.1 TECHNICAL LEMMAS

Lemma 6. Suppose that Assumptions 1 and 2 hold. Then, it hold for all t ≥ 0 that

E⟨∇F (wt), η̄K∇F (wt)− ht⟩

≤ K

2
η̄E∥∇F (wt)∥22 +

L2

N
η̄

N∑
i=1

K−1∑
k=0

E∥wτi(t),k
i −wτi(t)∥22 +

L2K

N
η̄

N∑
i=1

E∥wτi(t) −wt∥22

− 1

2K
η̄E

∥∥∥∥∥ 1

N

N∑
i=1

K−1∑
k=0

∇Fi(w
τi(t),k
i )

∥∥∥∥∥
2

2

.

Proof. Using the local iteration formula (8) of DLSGD-hetero, we have

∆t
i = w

τi(t),0
i −w

τi(t),K
i =

K−1∑
k=0

η̄∇fi(wτi(t),k
i ; ξt,ki ),

which implies that

ht =
1

|It|
∑
i∈It

∆t
i =

η̄

n

∑
i∈It

K−1∑
k=0

∇fi(wτi(t),k
i ; ξt,ki ). (35)
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In the following, we use EX [·] to denote the conditional expectation by taking expectation with
respect to X while holding other variables constant. Then, we have

EIt
[ht] = EIt

[
1

n

∑
i∈It

∆t
i

]

= Eit1,...,i
t
n

[
1

n

n∑
m=1

∆t
itm

]
(a)
=

1

n

(
Eit1

[∆t
it1
] + · · ·+ Eitn

[∆t
itn
]
)

(b)
= Eit1

[∆t
it1
]

(c)
=

N∑
i=1

1

N
∆t

i

=
1

N

N∑
i=1

K−1∑
k=0

η̄∇fi(wτi(t),k
i ; ξt,ki ), (36)

where (a) and (b) are because it1, . . . , i
t
n are independent and identically distributed, respectively, (c)

is implies by the uniform distribution of it1. We remark that the terms
∑K−1

k=0 η̄∇fi(wτi(t),k
i ; ξt,ki )

in (36) with i /∈ It are virtual. They are introduced for mathematical convenience, although the
calculations associated with these terms may not occur in practical systems. To proceed, we have

E⟨∇F (wt), η̄K∇F (wt)− ht⟩
= E⟨∇F (wt), η̄K∇F (wt)− EIt

[ht]⟩

= η̄E

〈
∇F (wt),K∇F (wt)− 1

N

N∑
i=1

K−1∑
k=0

∇fi(wτi(t),k
i ; ξt,ki )

〉
,

where the first equality is due to Fact 1. The remaining proof can be established using nearly
identical arguments as the proof of Lemma 1, which is omitted for brevity.

Lemma 7. Suppose that Assumptions 2, 3, and 4 hold, and It = {jt1, . . . , jtn} is a multiset whose
elements are independently and uniformly sampled from [N ] with replacement in round t (t ≥ 0) of
Algorithm 2. Then, it holds for all t ≥ 0 that

E

∥∥∥∥∥∥
∑
j∈It

K−1∑
k=0

(
∇fj(w

τj(t),k
j ; ξt,kj )−∇Fj(w

τj(t),k
j )

)∥∥∥∥∥∥
2

2

≤ 2nKσ2, (37)

Besides, it holds for all i ∈ [n] and t ≥ 1 that

E

∥∥∥∥∥∥
t−1∑

s=τi(t)

∑
j∈Is

K−1∑
k=0

(
∇fj(w

τj(s),k
j ; ξs,kj )−∇Fj(w

τj(s),k
j )

)∥∥∥∥∥∥
2

2

≤ 2nKλσ2. (38)
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Proof. For notational simplicity, we let ϕt
j :=

∑K−1
k=0

(
∇fj(w

τj(t),k
j ; ξt,kj )−∇Fj(w

τj(t),k
j )

)
for

t ≥ 1 and j ∈ It. Then, we have

EIt

∥∥∥∥∥∥
∑
j∈It

ϕt
j

∥∥∥∥∥∥
2

2

= EIt

 ∑
i,j∈It

〈
ϕt

i,ϕ
t
j

〉
= Ejt1,...,j

t
n

 ∑
u,v∈[n]

〈
ϕt

jtu
,ϕt

jtv

〉
(a)
=

n∑
u=1

Ejtu
∥ϕt

jtu
∥22 +

∑
u,v∈[n],u̸=v

Ejtu,j
t
v
[⟨ϕt

jtu
,ϕt

jtv
⟩]

(b)
=

n∑
u=1

N∑
j=1

1

N
∥ϕt

j∥22 +
∑

u,v∈[n],u ̸=v

∑
i,j∈[N ]

1

N2
⟨ϕt

i,ϕ
t
j⟩

=
n

N

N∑
j=1

∥ϕt
j∥22 +

n(n− 1)

N2

∑
i,j∈[N ]

⟨ϕt
i,ϕ

t
j⟩ (39)

=
n

N

N∑
j=1

∥ϕt
j∥22 +

n(n− 1)

N2

N∑
j=1

∥ϕt
j∥22 +

n(n− 1)

N2

∑
i,j∈[N ],i̸=j

⟨ϕt
i,ϕ

t
j⟩

=
n(N + n− 1)

N2

N∑
j=1

∥ϕt
j∥22 +

n(n− 1)

N2

∑
i,j∈[N ],i̸=j

⟨ϕt
i,ϕ

t
j⟩, (40)

where (a) and (b) hold because j1, . . . , jn are independent and uniformly distributed over [N ],
respectively. Following similar arguments for showing (20) in the proof of Lemma 2, we see that

E

 ∑
i,j∈[N ]
i ̸=j

⟨ϕt
i,ϕ

t
j⟩


=
∑

i,j∈[N ]
i ̸=j

E

〈
K−1∑
k=0

∇fj(wτi(t),k
i ; ξt,ki )−∇Fj(w

τi(t),k
i ),

K−1∑
k=0

∇fj(w
τj(t),k
j ; ξt,kj )−∇Fj(w

τj(t),k
j )

〉

= 0.

This, together with (40), implies that

E

∥∥∥∥∥∥
∑
j∈It

ϕt
j

∥∥∥∥∥∥
2

2

(a)
= E

EIt

∥∥∥∥∥∥
∑
j∈It

K−1∑
k=0

(
∇fj(w

τj(t),k
j ; ξt,kj )−∇Fj(w

τj(t),k
j )

)∥∥∥∥∥∥
2

2


= E

n(N + n− 1)

N2

N∑
j=1

∥∥∥∥∥
K−1∑
k=0

(
∇fj(w

τj(t),k
j ; ξt,kj )−∇Fj(w

τj(t),k
j )

)∥∥∥∥∥
2

2


(b)
=

n(N + n− 1)

N2

N∑
j=1

K−1∑
k=0

E
∥∥∥∇fj(wτj(t),k

j ; ξt,kj )−∇Fj(w
τj(t),k
j )

∥∥∥2
2

(c)

≤ n(N + n− 1)

N2
NKσ2

(d)

≤ 2nKσ2, (41)
where (a) is due to the tower rule, (b) can be verified following similar arguments for showing (23)
in the proof of Lemma 2, (c) uses Assumption 3, and (d) holds because n ≤ N . This completes the
proof of (37).

23



Under review as a conference paper at ICLR 2024

We further note that for any integers s, r ∈ [τi(t), t− 1] such that s < r, it follows from Fact 1 that

EIr

〈∑
j∈Is

ϕs
j ,
∑
j∈Ir

ϕr
j

〉
= Ejr1 ,...,j

r
n

〈∑
j∈Is

ϕs
j ,

n∑
u=1

ϕr
jru

〉

=

〈∑
j∈Is

ϕs
j ,

n∑
u=1

Ejru
[ϕr

jru
]

〉

=

〈∑
j∈Is

ϕs
j ,

n∑
u=1

N∑
j=1

1

N
ϕr

j

〉

=
n

N

〈∑
j∈Is

ϕs
j ,

N∑
j=1

ϕr
j

〉
. (42)

Taking expectation wrt ξr := {ξr,kj : j ∈ [N ], k = 0, 1, . . . ,K − 1} for (42) gives

Eξr

〈∑
j∈Is

ϕs
j ,

N∑
j=1

ϕr
j

〉

= Eξr

〈∑
j∈Is

K−1∑
k=0

(
∇fj(w

τj(s),k
j ; ξs,kj )−∇Fj(w

τj(s),k
j )

)
,

N∑
j=1

K−1∑
k=0

(
∇fj(w

τj(r),k
j ; ξr,kj )−∇Fj(w

τj(r),k
j )

)〉

=

〈∑
j∈Is

K−1∑
k=0

(
∇fj(w

τj(s),k
j ; ξs,kj )−∇Fj(w

τj(s),k
j )

)
,

N∑
j=1

K−1∑
k=0

Eξr,k
j

[
∇fj(w

τj(r),k
j ; ξr,kj )−∇Fj(w

τj(r),k
j )

]〉
= 0, (43)

where the second equality follows from Fact 1 and the last equality uses Assumption 2. Combining
(42) and (43) implies that for any integers s, r ∈ [τi(t), t− 1] such that s < r, we have

E

〈∑
j∈Is

ϕs
j ,
∑
j∈Ir

ϕr
j

〉
= E

EIr

〈∑
j∈Is

ϕs
j ,
∑
j∈Ir

ϕr
j

〉
=

n

N
E

〈∑
j∈Is

ϕs
j ,

N∑
j=1

ϕr
j

〉
=

n

N
E

Eξr

〈∑
j∈Is

ϕs
j ,

N∑
j=1

ϕr
j

〉
= 0.

It follows that

E

∥∥∥∥∥∥
t−1∑

s=τi(t)

∑
j∈Is

ϕs
j

∥∥∥∥∥∥
2

2

=
∑

τi(t)≤s,r≤t−1

E

〈∑
j∈Is

ϕs
j ,
∑
j∈Ir

ϕr
j

〉

=

t−1∑
s=τi(t)

E

∥∥∥∥∥∥
∑
j∈Is

ϕs
j

∥∥∥∥∥∥
2

2

≤ 2nKλσ2, (44)

where the inequality follows from (41) and Assumption 4. This completes the proof of (38).

Lemma 8. Suppose that Assumptions 2–5 hold. Then, it hold for all t ≥ 0 that

E∥ht∥22 ≤
4Kσ2 + 2G2K2

n
η̄2 + 2η̄2E

∥∥∥∥∥ 1

N

N∑
i=1

K−1∑
k=0

∇Fi(w
τi(t),k
i )

∥∥∥∥∥
2

2

.

24



Under review as a conference paper at ICLR 2024

Proof. In view of (35), we have

E∥ht∥22

= E

∥∥∥∥∥ 1n ∑
i∈It

K−1∑
k=0

η̄∇fi(wτi(t),k
i ; ξt,ki )

∥∥∥∥∥
2

2

= E

∥∥∥∥∥ 1n ∑
i∈It

K−1∑
k=0

η̄
(
∇fi(wτi(t),k

i ; ξt,ki )−∇Fi(w
τi(t),k
i ) +∇Fi(w

τi(t),k
i )

)∥∥∥∥∥
2

2

(a)

≤ 2E

∥∥∥∥∥ 1n ∑
i∈It

K−1∑
k=0

η̄
(
∇fi(wτi(t),k

i ; ξt,ki )−∇Fi(w
τi(t),k
i )

)∥∥∥∥∥
2

2

+ 2E

∥∥∥∥∥ 1n ∑
i∈It

K−1∑
k=0

η̄∇Fi(w
τi(t),k
i )

∥∥∥∥∥
2

2

(b)

≤ 2η̄2

n2
2nKσ2 +

2η̄2

n2
E

∥∥∥∥∥∑
i∈It

K−1∑
k=0

∇Fi(w
τi(t),k
i )

∥∥∥∥∥
2

2

. (45)

where the (a) uses Fact 2 with m = 2, (b) follows from Lemma 7. Following similar arguments for
showing (39), we can obtain

EIt

∥∥∥∥∥∑
i∈It

K−1∑
k=0

∇Fi(w
τi(t),k
i )

∥∥∥∥∥
2

2

=
n

N

N∑
i=1

∥∥∥∥∥
K−1∑
k=0

∇Fi(w
τi(t),k
i )

∥∥∥∥∥
2

2

+
n(n− 1)

N2

∑
i,j∈[N ]

〈
K−1∑
k=0

∇Fi(w
τi(t),k
i ),

K−1∑
k=0

∇Fi(w
τj(t),k
j )

〉

=
n

N

N∑
i=1

∥∥∥∥∥
K−1∑
k=0

∇Fi(w
τi(t),k
i )

∥∥∥∥∥
2

2

+
n(n− 1)

N2

∥∥∥∥∥
N∑
i=1

K−1∑
k=0

∇Fi(w
τi(t),k
i )

∥∥∥∥∥
2

2

. (46)

Taking total expectation for both sides of (46) yields

E

∥∥∥∥∥∑
i∈It

K−1∑
k=0

∇Fi(w
τi(t),k
i )

∥∥∥∥∥
2

2

= E

EIt

∥∥∥∥∥∑
i∈It

K−1∑
k=0

∇Fi(w
τi(t),k
i )

∥∥∥∥∥
2

2


=

n

N

N∑
i=1

E

∥∥∥∥∥
K−1∑
k=0

∇Fi(w
τi(t),k
i )

∥∥∥∥∥
2

2

+
n(n− 1)

N2
E

∥∥∥∥∥
N∑
i=1

K−1∑
k=0

∇Fi(w
τi(t),k
i )

∥∥∥∥∥
2

2

. (47)

Plugging (47) back into (45) gives

E∥ht∥22

≤ 4Kη̄2
σ2

n
+

2η̄2

nN

N∑
i=1

E

∥∥∥∥∥
K−1∑
k=0

∇Fi(w
τi(t),k
i )

∥∥∥∥∥
2

2

+
2(n− 1)η̄2

nN2
E

∥∥∥∥∥
N∑
i=1

K−1∑
k=0

∇Fi(w
τi(t),k
i )

∥∥∥∥∥
2

2

≤ 4Kη̄2
σ2

n
+

2η̄2

nN

N∑
i=1

K−1∑
k=0

KE∥∇Fi(w
τi(t),k
i )∥22 +

2η̄2

N2
E

∥∥∥∥∥
N∑
i=1

K−1∑
k=0

∇Fi(w
τi(t),k
i )

∥∥∥∥∥
2

2

≤ 4Kη̄2
σ2

n
+

2G2K2η̄2

n
+ 2η̄2E

∥∥∥∥∥ 1

N

N∑
i=1

K−1∑
k=0

∇Fi(w
τi(t),k
i )

∥∥∥∥∥
2

2

, (48)

where the second inequality follows from Fact 2 with m = K and the third inequality holds due to
Assumption 5. This completes the proof.
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Lemma 9. Suppose that Assumption 1, 2, and 3 hold. Then, it holds for all t ≥ 0 that

1

N

N∑
i=1

K−1∑
k=0

E∥wτi(t),k
i −wτi(t)∥22

≤ (σ2 + 8Kν2)2K2η̄2 + 16K3η̄2E∥∇F (wt)∥22 +
16L2K3

N
η̄2

N∑
i=1

E∥wτi(t) −wt∥22.

Proof. Using the local iteration formula, we have

E∥wτi(t),k
i −wτi(t)∥22

= E∥wτi(t),k−1
i − η̄∇fi(wτi(t),k−1

i ; ξt,k−1
i )−wτi(t)∥22

= E
∥∥∥wτi(t),k−1

i −wτi(t) − η̄
(
∇Fi(w

τi(t),k−1
i )−∇Fi(w

τi(t)) +∇Fi(w
τi(t))−∇Fi(w

t) +∇Fi(w
t)

−∇F (wt) +∇F (wt)
)
− η̄
(
∇f(wτi(t),k−1

i ; ξt,k−1
i )−∇F (w

τi(t),k−1
i )

)∥∥∥2
2

= E
∥∥∥wτi(t),k−1

i −wτi(t) − η̄
(
∇Fi(w

τi(t),k−1
i )−∇Fi(w

τi(t)) +∇Fi(w
τi(t))−∇Fi(w

t) +∇Fi(w
t)

−∇F (wt) +∇F (wt)
)∥∥2

2
+ η̄2E∥∇fi(wτi(t),k−1

i ; ξt,k−1
i )−∇Fi(w

τi(t),k−1
i )∥22,

where the last equality holds because Fact 1 and Assumption 2 imply that the cross term is 0, i.e.,

2E
〈
w

τi(t),k−1
i −wτi(t) − η̄

(
∇Fi(w

τi(t),k−1
i )−∇Fi(w

τi(t)) +∇Fi(w
τi(t))−∇Fi(w

t) +∇Fi(w
t)

−∇F (wt) +∇F (wt)
)
,∇fi(wτi(t),k−1

i ; ξt,k−1
i )−∇Fi(w

τi(t),k−1
i )

〉
= 2E

〈
w

τi(t),k−1
i −wτi(t) − η̄

(
∇F (w

τi(t),k−1
i )−∇Fi(w

τi(t)) +∇F (wτi(t))−∇Fi(w
t) +∇Fi(w

t)

−∇F (wt) +∇F (wt)
)
,E
[
∇fi(wτi(t),k−1

i ; ξt,k−1
i )−∇Fi(w

τi(t),k−1
i )

∣∣∣ wτi(t),k−1
i ,wt

] 〉
= 0.

It follows that

E∥wτi(t),k
i −wτi(t)∥22

(a)

≤ η̄2σ2 +

(
1 +

1

2K − 1

)
E∥wτi(t),k−1

i −wτi(t)∥22

+ 2Kη̄2E∥∇Fi(w
τi(t),k−1
i )−∇Fi(w

τi(t)) +∇Fi(w
τi(t))−∇Fi(w

t) +∇Fi(w
t)−∇F (wt) +∇F (wt)∥22

(b)

≤
(
1 +

1

2K − 1

)
E∥wτi(t),k−1

i −wτi(t)∥22 + 8Kη̄2E∥∇Fi(w
τi(t),k−1
i )−∇Fi(w

τi(t))∥22

+ 8Kη̄2E∥∇Fi(w
τi(t))−∇Fi(w

t)∥22 + 8Kη̄2E∥∇Fi(w
t)−∇F (wt)∥22 + 8Kη̄2E∥∇F (wt)∥22 + η̄2σ2

(c)

≤
(
1 +

1

2K − 1
+ 8L2Kη̄2

)
E∥wτi(t),k−1

i −wτi(t)∥22

+ 8L2Kη̄2E∥wτi(t) −wt∥22 + 8Kη̄2ν2 + 8Kη̄2E∥∇F (wt)∥22 + η̄2σ2

(d)

≤
(
1 +

1

K − 1

)
E∥wτi(t),k−1

i −wτi(t)∥22 + (σ2 + 8Kν2)η̄2

+ 8Kη̄2E∥∇F (wt)∥22 + 8L2Kη̄2E∥wτi(t) −wt∥22, (49)

where (a) uses Assumption 3 and the fact that ∥x + y∥22 ≤ (1 + 1/β)∥x∥22 + (1 + β)∥y∥22 for
vectors x,y and β = 2K − 1, (b) uses Fact 2 with n = 3, (c) is implied by Assumptions 1 and 6,
and (d) holds because

η̄ ≤ 1

4LK
⇒ 1 +

1

2K − 1
+ 8L2Kη̄2 ≤ 1 +

1

K − 1
.
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By solving the recursion (49) using a similar approach as (28), we can derive

E∥wτi(t),k
i −wτi(t)∥22

≤ 2(K − 1)
(
(σ2 + 8Kν2)η̄2 + 8Kη̄2E∥∇F (wt)∥22 + 8L2Kη̄2E∥wτi(t) −wt∥22

)
. (50)

This implies that

1

N

N∑
i=1

K−1∑
k=0

E∥wτi(t),k
i −wτi(t)∥22

≤ 1

N

N∑
i=1

K−1∑
k=0

2(K − 1)
(
σ2η̄2 + 8Kη̄2E∥∇F (wt)∥22 + 8L2Kη̄2E∥wτi(t) −wt∥22

)
≤ (σ2 + 8Kν2)2K2η̄2 + 16K3η̄2E∥∇F (wt)∥22 +

16L2K3η̄2

N

N∑
i=1

E∥wτi(t) −wt∥22,

as desired.

Lemma 10. Suppose that Assumptions 2, 3, and 4 hold. Then, it holds for all t ≥ 0 and i ∈ It that

E∥wt −wτi(t)∥22

≤ 4σ2Kλ+ 2G2K2λ2

n
η2η̄2 + 2λη2η̄2

t−1∑
s=(t−λ)+

E

∥∥∥∥∥∥ 1

N

N∑
j=1

K−1∑
k=0

∇Fj(w
τj(s),k
j )

∥∥∥∥∥∥
2

2

.

Proof. For each i ∈ It, we consider the following two cases: i) τi(t) = t. Then, we have E∥wt −
wτi(t)∥22 = 0. ii) τi(t) < t. Then, employing analogous arguments for establishing (29), we can
obtain

E∥wt −wτi(t)∥22

≤ 2E

∥∥∥∥∥∥
t−1∑

s=τi(t)

η

n

∑
j∈Is

K−1∑
k=0

η̄
(
∇fj(w

τj(s),k
j ; ξs,kj )−∇Fj(w

τj(s),k
j )

)∥∥∥∥∥∥
2

2

+ 2E

∥∥∥∥∥∥
t−1∑

s=τi(t)

η

n

∑
j∈Is

K−1∑
k=0

η̄∇Fj(w
τj(s),k
j )

∥∥∥∥∥∥
2

2

(a)

≤ 2η2η̄2

n2
2nKλσ2 +

2η2η̄2

n2
|t− τi(t)|

t−1∑
s=τi(t)

E

∥∥∥∥∥∥
∑
j∈Is

K−1∑
k=0

∇Fj(w
τj(s),k
j )

∥∥∥∥∥∥
2

2

(b)

≤ 4Kλη2η̄2
σ2

n
+

2λη2η̄2

n2

t−1∑
s=(t−λ)+

E

∥∥∥∥∥∥ 1n
∑
j∈Is

K−1∑
k=0

∇Fj(w
τj(s),k
j )

∥∥∥∥∥∥
2

2

, (51)

where (a) employs Lemma 7 and Fact 2 with m = |t − τi(t)| and (b) is implied by Assumption 4.
Besides, it has been shown in (47) that

E

∥∥∥∥∥∥
∑
j∈Is

K−1∑
k=0

∇Fj(w
τj(s),k
j )

∥∥∥∥∥∥
2

2

=
n

N

N∑
j=1

E

∥∥∥∥∥
K−1∑
k=0

∇Fi(w
τj(s),k
j )

∥∥∥∥∥
2

2

+
n(n− 1)

N2
E

∥∥∥∥∥∥
N∑
j=1

K−1∑
k=0

∇Fj(w
τj(s),k
j )

∥∥∥∥∥∥
2

2

.
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Substituting this back into (51) gives

E∥wt −wτi(t)∥22

≤ 4Kλη2η̄2
σ2

n
+

2λ

nN
η2η̄2

t−1∑
s=(t−λ)+

N∑
j=1

E

∥∥∥∥∥
K−1∑
k=0

∇Fj(w
τj(s),k
j )

∥∥∥∥∥
2

2

+
2n(n− 1)λ

n2N2
η2η̄2

t−1∑
s=(t−λ)+

E

∥∥∥∥∥∥
N∑
j=1

K−1∑
k=0

∇Fj(w
τj(s),k
j )

∥∥∥∥∥∥
2

2

≤ 4Kλη2η̄2
σ2

n
+

2λ

nN
η2η̄2

t−1∑
s=(t−λ)+

N∑
j=1

K−1∑
k=0

KE∥∇Fj(w
τj(s),k
j )∥22

+
2n(n− 1)λ

n2
η2η̄2

t−1∑
s=(t−λ)+

E

∥∥∥∥∥∥ 1

N

N∑
j=1

K−1∑
k=0

∇Fj(w
τj(s),k
j )

∥∥∥∥∥∥
2

2

≤ 4Kλη2η̄2
σ2

n
+

2G2K2λ2

n
η2η̄2 + 2λη2η̄2

t−1∑
s=(t−λ)+

E

∥∥∥∥∥∥ 1

N

N∑
j=1

K−1∑
k=0

∇Fj(w
τj(s),k
j )

∥∥∥∥∥∥
2

2

,

where the second inequality follows from Fact 2 with m = K and the third inequality is due to
Assumption 5. Combining cases i) and ii) completes the proof.

A.2.2 PUTTING INGREDIENTS TOGETHER

Proof. Employing similar approaches as used to establish (30), we have

E[F (wt+1)] ≤ E[F (wt)]−Kηη̄E∥∇F (wt)∥22 + ηE⟨∇F (wt), η̄K∇F (wt)− gt⟩+ L

2
E∥gt∥22.

Substituting the last two term in the above inequality by employing Lemmas 6 and 8, we have

E[F (wt+1)]− E[F (wt)]

≤−Kηη̄E∥∇F (wt)∥22 + ηE⟨∇F (wt), η̄K∇F (wt)− ht⟩+ L

2
E∥ht∥22

≤−Kηη̄E∥∇F (wt)∥22 +
K

2
ηη̄E∥∇F (wt)∥22 +

L2

N
ηη̄

N∑
i=1

K−1∑
k=0

E∥wτi(t),k
i −wτi(t)∥22

+
L2K

N
ηη̄

N∑
i=1

E∥wτi(t) −wt∥22 −
1

2K
ηη̄E

∥∥∥∥∥ 1

N

N∑
i=1

K−1∑
k=0

∇Fi(w
τi(t),k
i )

∥∥∥∥∥
2

2

+
L

2
η2

4Kσ2 + 2G2K2

n
η̄2 + 2η̄2E

∥∥∥∥∥ 1

N

N∑
i=1

K−1∑
k=0

∇Fi(w
τi(t),k
i )

∥∥∥∥∥
2

2


=− K

2
ηη̄E∥∇F (wt)∥22 +

2σ2LK +G2LK2

n
η2η̄2 + L2ηη̄

1

N

N∑
i=1

K−1∑
k=0

E∥wτi(t),k
i −wτi(t)∥22

+
L2K

N
ηη̄

N∑
i=1

E∥wτi(t) −wt∥22 −
(

1

2K
ηη̄ − Lη2η̄2

)
E

∥∥∥∥∥ 1

N

N∑
i=1

K−1∑
k=0

∇Fi(w
τi(t),k
i )

∥∥∥∥∥
2

2

.
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Substituting 1
N

∑N
i=1

∑K−1
k=0 E∥wτi(t),k

i −wτi(t)∥22 using Lemma 9, we have

E[F (wt+1)]− E[F (wt)]

≤− K

2
ηη̄E∥∇F (wt)∥22 +

2σ2LK +G2LK2

n
η2η̄2

+ L2ηη̄

(
(σ2 + 8Kν2)2K2η̄2 + 16K3η̄2E∥∇F (wt)∥22 +

16L2K3

N
η̄2

N∑
i=1

E∥wτi(t) −wt∥22

)

+
L2K

N
ηη̄

N∑
i=1

E∥wτi(t) −wt∥22 −
(

1

2K
ηη̄ − Lη2η̄2

)
E

∥∥∥∥∥ 1

N

N∑
i=1

K−1∑
k=0

∇Fi(w
τi(t),k
i )

∥∥∥∥∥
2

2

=−
(
K

2
ηη̄ − 16L2K3ηη̄3

)
E∥∇F (wt)∥22 +

2σ2LK +G2LK2

n
η2η̄2 + (σ2 + 8Kν2)2L2K2ηη̄3

+

(
L2K + 16L4K3

N
ηη̄ +

16L4K3

N
ηη̄3
) N∑

i=1

E∥wτi(t) −wt∥22

−
(

1

2K
ηη̄ − Lη2η̄2

)
E

∥∥∥∥∥ 1

N

N∑
i=1

K−1∑
k=0

∇Fi(w
τi(t),k
i )

∥∥∥∥∥
2

2

≤− K

4
ηη̄E∥∇F (wt)∥22 +

2σ2LK +G2LK2

n
η2η̄2 + (σ2 + 8Kν2)2L2K2ηη̄3

+
2L2K

N
ηη̄

N∑
i=1

E∥wτi(t) −wt∥22 −
1

4K
ηη̄E

∥∥∥∥∥ 1

N

N∑
i=1

K−1∑
k=0

∇Fi(w
τi(t),k
i )

∥∥∥∥∥
2

2

, (52)

where the last inequality holds because condition (13) implies the following:

η̄ ≤ 1

8LK
⇐⇒ K

2
ηη̄ − 16L2K3ηη̄3 ≥ K

4
ηη̄,

η̄ ≤ 1

4LK
⇐⇒ L2Kηη̄ + 16L4K3ηη̄3 ≤ 2L2Kηη̄,

ηη̄ ≤ 1

2LK
⇐⇒ 1

2K
ηη̄ − Lη2η̄2 ≥ 1

4K
ηη̄.

Substituting 1
N

∑N
i=1 E∥wτi(t) −wt∥22 in (52) using Lemma 10, we have

E[F (wt+1)]− E[F (wt)]

≤− K

4
ηη̄E∥∇F (wt)∥22 +

2σ2LK + LG2K2

n
η2η̄2 + (σ2 + 8Kν2)2L2K2ηη̄3

+
8σ2L2K2λ+ 4L2G2K3λ2

n
η3η̄3 + 4L2Kλη3η̄3

t−1∑
s=(t−λ)+

E

∥∥∥∥∥ 1

N

N∑
i=1

K−1∑
k=0

∇Fi(w
τi(s),k
i )

∥∥∥∥∥
2

2

− 1

4K
ηη̄E

∥∥∥∥∥ 1

N

N∑
i=1

K−1∑
k=0

∇Fi(w
τi(t),k
i )

∥∥∥∥∥
2

2

≤− K

4
ηη̄E∥∇F (wt)∥22 +

4σ2LK + 2LG2K2

n
η2η̄2

+ (σ2 + 8Kν2)2L2K2ηη̄3 − 1

4K
ηη̄E

∥∥∥∥∥ 1

N

N∑
i=1

K−1∑
k=0

∇Fi(w
τi(t),k
i )

∥∥∥∥∥
2

2

+ 4L2Kλη3η̄3
t−1∑

s=(t−λ)+

E

∥∥∥∥∥ 1

N

N∑
i=1

K−1∑
k=0

∇Fi(w
τi(s),k
i )

∥∥∥∥∥
2

2

, (53)
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where the second inequality holds because condition (13) implies that

ηη̄ ≤ 2σ2 +G2K

8σ2LKλ+ 4G2LK2λ2

⇐⇒ 2σ2LK + LG2K2

n
η2η̄2 +

8σ2L2K2λ+ 4L2G2K3λ2

n
η3η̄3 ≤ 4σ2LK + 2LG2K2

n
η2η̄2.

By summing inequality (53) over t = 0, 1, . . . , T − 1, we obtain

E[F (wT )]− F [w0]

≤− K

4
ηη̄

T−1∑
t=0

E∥∇F (wt)∥22 +
4σ2LKT + 2LG2K2T

n
η2η̄2 + (σ2 + 8Kν2)2L2K2Tηη̄3

− 1

4K
ηη̄

T−1∑
t=0

E

∥∥∥∥∥ 1

N

N∑
i=1

K−1∑
k=0

∇F (w
τi(t),k
i )

∥∥∥∥∥
2

2

+ 4L2Kλη3η̄3
T−1∑
t=0

t−1∑
s=(t−λ)+

E

∥∥∥∥∥ 1

N

N∑
i=1

K−1∑
k=0

∇F (wτi(s),k)

∥∥∥∥∥
2

2

≤− K

4
ηη̄

T−1∑
t=0

E∥∇F (wt)∥22 +
4σ2LKT + 2LG2K2T

n
η2η̄2 + (σ2 + 8Kν2)2L2K2Tηη̄3

−
(

1

4K
ηη̄ − 4L2Kλ2η3η̄3

) T−1∑
t=0

E

∥∥∥∥∥ 1

N

N∑
i=1

K−1∑
k=0

∇F (w
τi(t),k
i )

∥∥∥∥∥
2

2

,

≤− K

4
ηη̄

T−1∑
t=0

E∥∇F (wt)∥22 +
4σ2LKT + 2LG2K2T

n
η2η̄2 + (σ2 + 8Kν2)2L2K2Tηη̄3,

where the second inequality uses (34) and the last inequality holds because condition (10) implies
that

ηη̄ ≤ 1

4LKλ
⇐⇒ 1

4K
ηη̄ − 4L2Kλ2η3η̄3 ≥ 0.

Rearranging and using the fact that F ∗ ≤ E[F (wT )], we have

1

T

T−1∑
t=0

E∥∇F (wt)∥22 ≤
F (w0)− F ∗ + 4σ2LKT+2LG2K2T

n η2η̄2 + (σ2 + 8Kν2)2L2K2Tηη̄3

(KT/4)ηη̄

=
4(F (w0)− F ∗)

KTηη̄
+

16σ2L+ 8LG2K

n
ηη̄ + (σ2 + 8Kν2)8L2Kη̄2

=

√
256(F (w0)− F ∗)(16σ2L+ 8LG2K)

nKT
+

(σ2 + 8Kν2)8L2

(4σ2L+ 2LKG2)KT
,

where the second equality follows by substituting η =
√
4nK(F (w0)− F ∗) and η̄ =

1/(
√
(4σ2L+ 2LKG2)TK). This completes the proof of Theorem 2.

B SUPPLEMENTARY EXPERIMENT DETAILS AND RESULTS

B.1 EXPERIMENTAL SETUP

In this subsection, we present comprehensive details of our experiments. Our objective is to assess
the effectiveness of our proposed DLSGD-homo and DLSGD-hetero algorithms by comparing them
with their respective baselines. We conduct these comparisons in both iid and non-iid scenarios using
the FashionMNIST and CIFAR-10 datasets. In the iid setting, each client is equipped with training
data containing all classes. This ensures that the data distribution across clients is statistically ho-
mogeneous. To introduce statistical heterogeneity in the non-iid setting, we randomly assign two
classes of data to each client. This distribution of data among clients helps create a scenario where
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the training data across clients differ, thereby increasing the challenge of achieving convergence in
the federated learning process.

Neural Network Architecture. We adopt a convolutional neural network, which contains two 5×5
convolutional layers followed by 2 × 2 max pooling layers and two fully connected layers with the
latent dimensions being 1600 and 512, respectively.

Evaluation Metrics. The direct evaluation metric for assessing convergence performance is the
number of communication rounds required to reach a target accuracy, as demonstrated by our the-
orems. However, it’s important to note that in scenarios where the computation or communication
speeds of different clients vary significantly, the actual runtime of a global round can also differ con-
siderably across different algorithms. In light of this, it is more reasonable to evaluate the practical
performance using wall-clock time, which encompasses both CPU computation time and communi-
cation time. This approach provides a more comprehensive assessment of the overall efficiency of
the algorithms in real-world scenarios.

System Model. To measure the wall-clock time, we take into account both the computational time
for local training at clients and the communication time for downloading the global model and
uploading the local updates.

Computation Process: Following the approach described in Sun et al. (2023), we assume that the
average time for local training can be represented as Tcomp = NMAC/CMAC, where NMAC denotes
the number of floating-point operations required for one-iteration training and CMAC denotes the
computation speed of the fastest client, set to 10GFLOPS. For our experiments, the cost of updating
the local models for one iteration using a mini-batch of ten samples is estimated to be 17.0MFLOPs
for FashionMNIST and 31.4MFLOPs for CIFAR-10, respectively. Based on these values, we can
calculate the computation time required for local training. To simulate the hardware heterogeneity,
we assume that the computation speeds of clients follow the uniform distribution over interval [1, 5],
where the slowest client is five times slower than the fastest one. This variation in computation
speeds allows us to capture the realistic heterogeneity present in real-world distributed and federated
learning systems.

Communication Process: Furthermore, we make the assumption that clients transmit the global
model and local updates using a 5G network with a transmission bandwidth of 400Mbps for both
the downlink and uplink. The model sizes for communication between clients and the server are
estimated to be 2.2MB for FashionMNIST and 3.53MB for CIFAR-10, respectively. Based on these
values, we can compute the communication time between the server and clients. It is worth not-
ing that although we set the same communication time for all clients, the varying computational
capabilities of the clients are sufficient to reflect the impact of system heterogeneity. The computa-
tional heterogeneity among clients has a significant influence on the overall performance, even when
assuming the same communication time for all clients.

Hyperparameter Selection. For all the experiments, the value of the global learning rate
η (respectively, the local learning rate η̄) is selected from the set {0.1, 1.0} (respectively,
{0.001, 0.005, 0.01, 0.05, 0.1}). We report the results using the learning rates that yield the best
convergence performance. The best-tuned global and local learning rates in our experiments are
provided in Table 1. Note that the AsySG algorithm does not have a local learning rate. In all of the
experiments, we utilize a total of N = 100 clients to simulate the distributed and federated learning
scenarios. Each client performs local iterations with K = 50 using the mini-batch SGD with a fixed
batch size of 10 in each step. We repeat all the experiments with three different seeds and report the
average results.

B.2 ADDITIONAL NUMERICAL RESULTS

In addition to Figure 1, we provide numerical results in Figures 3, 4, and 5. The results demon-
strate that our proposed DLSGD algorithms are scalable as the number of participating clients n
increases. In all the experiments, DLSGD exhibits superiority to the corresponding baselines in
terms of training losses and test accuracies.

We also compare the wall-clock time of the considered algorithms to reach the target test accuracies
for different numbers of participating clients n. As reported in Table 2, DLSGD uses substantially
less time than other algorithms in all cases. For instance, in the iid setting with n = 10 on CIFAR-
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Alogorithms
FashionMNIST CIFAR-10

n = 5 n = 10 n = 20 n = 40 n = 80 n = 5 n = 10 n = 20 n = 40 n = 80

iid

Local-SGD N/A
η = 1.00 η = 1.00 η = 1.00 η = 1.00

N/A
η = 1.00 η = 1.00 η = 1.00 η = 1.00

η̄ = 0.10 η̄ = 0.01 η̄ = 0.01 η̄ = 0.01 η̄ = 0.01 η̄ = 0.01 η̄ = 0.01 η̄ = 0.01

AsySG N/A η = 0.10 η = 0.10 η = 0.10 η = 0.10 N/A η = 0.10 η = 0.10 η = 0.10 η = 0.10

DLSGD-homo
η = 0.10 η = 0.10 η = 0.10 η = 0.10 η = 1.00 η = 0.10 η = 1.00 η = 0.10 η = 0.10 η = 1.00

η̄ = 0.05 η̄ = 0.05 η̄ = 0.05 η̄ = 0.05 η̄ = 0.10 η̄ = 0.05 η̄ = 0.05 η̄ = 0.01 η̄ = 0.05 η̄ = 0.01

non-iid

Generalized FedAvg N/A
η = 0.10 η = 0.10 η = 1.00 η = 0.10

N/A
η = 1.00 η = 1.00 η = 0.10 η = 0.10

η̄ = 0.05 η̄ = 0.05 η̄ = 0.01 η̄ = 0.10 η̄ = 0.01 η̄ = 0.01 η̄ = 0.05 η̄ = 0.05

FedBuff N/A
η = 0.10 η = 0.10 η = 0.10 η = 0.10

N/A
η = 0.10 η = 0.10 η = 0.10 η = 0.10

η̄ = 0.005 η̄ = 0.01 η̄ = 0.01 η̄ = 0.05 η̄ = 0.01 η̄ = 0.01 η̄ = 0.01 η̄ = 0.05

DLSGD-hetero
η = 0.10 η = 0.10 η = 0.10 η = 0.10 η = 0.10 η = 0.10 η = 0.10 η = 0.10 η = 0.10 η = 0.10

η̄ = 0.05 η̄ = 0.05 η̄ = 0.05 η̄ = 0.05 η̄ = 0.05 η̄ = 0.05 η̄ = 0.05 η̄ = 0.10 η̄ = 0.05 η̄ = 0.05

Table 1: The best-tuned global learning rate η and local learning rate η̄ for generating the results in
Table 2.

Algorithms Accuracy
FashionMNIST

Accuracy
CIFAR-10

n = 10 n = 20 n = 40 n = 80 n = 10 n = 20 n = 40 n = 80

iid

Local-SGD

90%

51.89 179.1 184.9 179.83

70%

302.12 411.64 282.51 287.81

AsySG 335.16 297.57 231.22 215.38 501.60 369.08 400.92 345.79

DLSGD-homo 26.39 49.26 94.49 99.72 54.41 108.52 207.45 154.26

non-iid

Generalized FedAvg

80%

437.57 447.81 211.67 443.56

60%

934.11 983.46 1541.2 1495.0

FedBuff 198.54 218.26 604.93 422.88 394.16 789.63 2008.8 1463.5

DLSGD-hetero 103.25 144.49 196.98 236.30 331.60 497.51 684.31 786.85

Table 2: The wall-clock time (in seconds) of different algorithms to achieve the target accuracies
with N = 100 and different values of n.

10, the time used for DLSGD-homo to reach 70% accuracy is almost 1/5 of that for Local-SGD,
demonstrating the effectiveness of asynchronous updates in DLSGD-homo. In the non-iid settings,
FedBuff spends less time than the Generalized FedAvg when n is small, while the advantage dimin-
ishes as n increases.

We also conduct performance testing of DLSGD with varying values of local steps K. Specifically,
we select K = 20, 50, 100, and the convergence results over communication rounds are presented in
Figure 6. As the value of K increases, we observe that DLSGD-homo demonstrates faster conver-
gence rates, thereby supporting the discussion in Sections 3.1 regarding the impact of local steps on
convergence. Likewise, DLSGD-hetero displays a similar pattern when K increases. This behavior
can potentially be attributed to the non-dominant term in the convergence bound (14), which has an
order of O(1/KT ) and is inversely proportional to K. Moreover, we notice a decrease in the test
accuracies on the CIFAR-10 dataset when K = 100. This observation suggests that increasing the
number of local steps may not always result in improved generalization performance.
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Figure 3: Convergence over wall-clock time of DLSGD and other algorithms with n = 20.
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Figure 4: Convergence performance of different algorithms (N = 100 and n = 40).
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Figure 5: Convergence performance of different algorithms (N = 100 and n = 80).
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Figure 6: Convergence performance of DLSGD with different values of local steps K (N = 100
and n = 10).
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