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Abstract. As acquiring MRIs is expensive, neuroscience studies strug-
gle to attain a sufficient number of them for properly training deep learn-
ing models. This challenge could be reduced by MRI synthesis, for which
Generative Adversarial Networks (GANs) are popular. GANs, however,
are commonly unstable and struggle with creating diverse and high-
quality data. A more stable alternative is Diffusion Probabilistic Models
(DPMs) with a fine-grained training strategy. To overcome their need
for extensive computational resources, we propose a conditional DPM
(cDPM) with a memory-efficient process that generates realistic-looking
brain MRIs. To this end, we train a 2D cDPM to generate an MRI
subvolume conditioned on another subset of slices from the same MRI.
By generating slices using arbitrary combinations between condition and
target slices, the model only requires limited computational resources to
learn interdependencies between slices even if they are spatially far apart.
After having learned these dependencies via an attention network, a new
anatomy-consistent 3D brain MRI is generated by repeatedly applying
the cDPM. Our experiments demonstrate that our method can generate
high-quality 3D MRIs that share a similar distribution to real MRIs while
still diversifying the training set. The code is available at https://github.
com/xiaoiker/mask3DMRI_diffusion and also will be released as part of
MONAI, at https://github.com/Project-MONAI/GenerativeModels.

1 Introduction

The synthesis of medical images has great potential in aiding tasks like improv-
ing image quality, imputing missing modalities [30], performing counterfactual
analysis [17], and modeling disease progression [9,10,29]. However, synthesiz-
ing brain MRIs is non-trivial as they are of high dimension, yet the training
data are relatively small in size (compared to 2D natural images). High-quality
synthetic MRIs have been produced by conditional models based on real MRI
of the same subject acquired with different MRI sequences [2,16,21,27]. How-
ever, such models require large data sets (which are difficult to get) and fail to
significantly improve data diversity [11,26], i.e., producing MRIs substantially
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deviating from those in the training data; data diversity is essential to the gener-
alizability of large-scale models [26]. Unconditional models based on Generative
Adversarial Networks (GANs) bypass this drawback by generating new, inde-
pendent MRIs from random noise [1,7]. However, these models often produce
lower quality MRIs as they currently can only be trained on lower resolution
MRIs or 2D slices due to their computational needs [6,12]. Furthermore, GAN-
based models are known to be unstable during training and even can suffer from
mode collapse [4]. An alternative is diffusion probabilistic models (DPMs) [8,22],
which formulate the fine-grained mapping between data distribution and Gaus-
sian noise as a gradual process modeled within a Markov chain. Due to their
multi-step, fine-grained training strategy, DPMs tend to be more stable during
training than GANs and therefore are more accurate for certain medical imag-
ing applications, such as segmentation and anomaly detection [13,25]. However,
DPMs tend to be computationally too expensive to synthesize brain MRI at full
image resolution [3,18]. We address this issue by proposing a memory-efficient 2D
conditional DPM (cDPM) that relies on learning the interdependencies between
2D slices to produce high-quality 3D MRI volumes.

Fig. 1. A memory efficient DPM. Left: Based on ‘condition’ slices, cDPM learns to
generate ‘target’ slices. Right: A new 3D MRI is created by repeatedly running the
trained model to synthesize target slices conditioned on those it created in prior stages.

Unlike the sequence of 2D images defining a video, all 2D slices of an MRI
are interconnected with each other as they define a 3D volume capturing brain
anatomy. Our cDPM learns these interdependencies (even between distant slices)
by training an attention network [24] on arbitrary combinations of condition and
target slices. Once learned, the cDPM creates new samples while capturing brain
anatomy in 3D. It does so by producing the first few slices from random noise
and then using those slices to synthesize subsequent ones (see Fig. 1). We show
that this computationally efficient conditional DPM can produce MRIs that are
more realistic than those produced by GAN-based architectures. Furthermore,
our experiments reveal that cDPM is able to generate synthetic MRIs, whose
distribution matches that of the training data.
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2 Methodology

We first review the basic DPM framework for data generation (Sect. 2.1). Then,
we introduce our efficient strategy for generating 3D MRI slices (Sect. 2.2) and
finally describe the neural architecture of cDPMs (Sect. 2.3).

2.1 Diffusion Probabilistic Model

The Diffusion Probabilistic Model (DPM) [8,22] generates MRIs from random
noise by iterating between mapping 1) data gradually to noise (a.k.a., Forward
Diffusion Process) and 2) noise back to data (a.k.a., Reverse Diffusion Process).

Forward Diffusion Process (FDP). Let real data X0 ∼ q sampled from
the (real data) distribution q be the input to the FDP. FDP then simulates
the diffusion process that turns X0 after T perturbations into Gaussian noise
XT ∼ N (0, I ), where N is the Gaussian distribution with zero mean and the
variance being the identity matrix I. This process is formulated as a Markov
chain, whose transition kernel q(Xt|Xt−1) at time step t ∈ {0, . . . , T} is defined
as

q(Xt|Xt−1) := N (Xt;
√

1 − βt · Xt−1, βt · I). (1)

The weight βt ∈ (0, 1) is changed so that the chain gradually enforces drift, i.e.,
adds Gaussian noise to the data. Let αt := 1 − βt and ᾱt :=

∏t
s=1(1 − βt), then

Xt is a sample of the distribution conditioned on X0 as

q(Xt|X0) := N (Xt;
√

ᾱt · X0, (1 − ᾱt) · I). (2)

Given this closed-form solution, we can sample Xt at any arbitrary time step t
without needing to iterate through the entire Markov chain.

Reverse Diffusion Process (RDP). The RDP aims to generate realistic data
from random noise XT by approximating the posterior distribution p(Xt−1|Xt).
It does so by going through the entire Markov chain from time step T to 0, i.e.,

p(X0:T ) := p(XT )
T∏

t=1

pθ(Xt−1|Xt). (3)

Defining the conditional distribution pθ(Xt−1|Xt) := N (Xt−1;μθ(Xt, t),Σ) with
fixed variance Σ, then (according to [8]) the mean can be rewritten as

μθ(Xt, t) =
1√
αt

(

Xt − βt√
(1 − ᾱt)

εθ(Xt, t)

)

, (4)

with εθ(·) being the estimate of a neural network defined by parameters θ. θ
minimizes the reconstructing loss defined by the following expected value

EX0∼q,t∈[0,...,T],ε∼N (0,I)

[||ε − εθ(Xt, t)||22
]
,

where || · ||2 is the L2 norm, and Xt is inferred from Eq. (2) based on X0.
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2.2 Conditional Generation with DPM (cDPM)

To synthetically create high-resolution 3D MRI, we propose an efficient cDPM
model that learns the interdependencies between 2D slices of an MRI so that it
can generate slices based on another set of already synthesized ones (see Fig. 1).

Specifically, given an MRI X ∈ R
D×H×W , we randomly sample two sets of

slice indexes: the condition set C and the target set P. Let len(·) be the number
of slices in a set, then the ‘condition’ slices are defined as XC ∈ R

len(C)×H×W

and the ‘target’ slices as XP ∈ R
len(P)×H×W with len(P) ≥ 1. Confining the

FDP of Sect. 2.1 just to the target XP , the RDP now aims to reconstruct XP
t

for each time t = T, T − 1, . . . , 0 starting from random noise at t = T and
conditioned on XC . Let X̃t be the subvolume consisting of XP

t and XC , then
the joint distribution of the Markov chain defined by Eq. (3) now reads

p(XP
0:T ) := p(XP

T )
T∏

t=1

pθ(XP
t−1|X̃t). (5)

Observe that Eq. (5) is equal to Eq. (3) in case len(C) = 0.
To estimate μθ(X̃t, t) as described in Eq. (4), we sample arbitrary index sets

C and P so that len(C) + len(P) ≤ τmax, where τmax is the maximum number of
slices based on the available resources. We then capture the dependencies across
slices by feeding the index sets C and P and the corresponding slices (i.e., XC

and XP
t built from X0 ∼ q) into an attention network [20]. The neural network

aims to minimize the canonical loss function

Loss(θ) := EX0∼q,ε∼N (0,I),C+P≤τmax,t

[||ε − εθ(XP
t ,XC , C,P, t)||22

]
. (6)

Fig. 2. The architecture of cDPM is a U-shape neural network with skip connections
and the input at step ‘t’ are slice indexes {C, P}, condition sub-volume XC , and current
target sub-volume XP

t .

As the neural network can now be trained on many different (arbitrary)
slice combinations (defined by C and P), the cDPM only requires a relatively
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small number of MRIs for training. Furthermore, it will learn short- and long-
range dependencies across slices as the spatial distance between slices from C
and P varies. Learning these dependencies (after being trained for a sufficiently
large number of iterations) enables cDPMs to produce 2D slices that, when put
together, result in realistic looking, high-resolution 3D MRIs.

2.3 Network Architecture

As done by [8], cDPMs are implemented as a U-Net [19] with a time embedding
module (see Fig. 2). We add a multi-head self-attention mechanism [24] to model
the relationship between slices. After training the cDPM as in Fig. 1, a 3D MRI
is generated in N stages. Specifically, the cDPM produces the initial set of slices
of that MRI volume from random noise (i.e., unconditioned). Conditioned on
those synthetic slices, the cDPM then runs again to produce a new set of slices.
The process of synthetically creating slices based on ones generated during prior
stages is repeated until an entire 3D MRI is produced.

3 Experiments

3.1 Data

We use 1262 t1-weighted brain MRIs of subjects from three different datasets: the
Alzheimer’s Disease Neuroimaging Initiative (ADNI-1), UCSF (PI: V. Valcour),
and SRI International (PI: E.V. Sullivan and A. Pfefferbaum) [28]. Processing
includes denoising, bias field correction, skull stripping, and affine registration
to a template, and normalizing intensity values between 0 and 1. In addition, we
padded and resized the MRIs to have dimensions 128 × 128 × 128 resulting in a
voxel resolution of 1.375mm × 1.375mm × 1.0mm. Splitting the MRI along the
axial direction results in 2D slices. Note, this could have also been done along
the sagittal or coronal direction.

3.2 Implementation Details

Our experiments are conducted on an NVIDIA A100 GPU using the PyTorch
framework. The model is trained using 200,000 iterations with the AdamW opti-
mizer adopting a learning rate of 10−4 and a batch size of 3. τmax is set to 20.
After the training, cDPM generates a synthetic MRI consisting of 128 slices by
following the process outlined in Fig. 1 in N=13 stages. Each stage generates 10
slices starting with pure noise (XC = ∅) and (after the first stage) being con-
ditioned on the 10 slices produced by the prior stage. After training on all real
MRIs, we use the resulting conditional DPM to generate 500 synthetic MRIs.
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Fig. 3. 5 MRIs generated by our conditional DPM visualized in the axial, coronal, and
sagittal plane. The example in the first row is enlarged to highlight the high quality of
synthetic MRIs generated by our approach.

Fig. 4. 3 views of MRIs generated by 7 models. Compared to the MRIs produced by
the other approaches, our cDPM model generates the most realistic MRI scans that
provide more distinct gray matter boundaries and greater anatomical details. (Color
figure online)
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3.3 Quantitative Comparison

We evaluate the quality of synthetic MRIs based on 3 metrics: (i) comput-
ing the distance between synthetic and 500 randomly selected real MRIs via
the Maximum-Mean Discrepancy (MMD) score [5], (ii) measuring the diversity
of the synthetic MRIs via the pair-wise multi-scale Structure Similarity (MS-
SSIM) [12], and (iii) comparing the distributions of synthetic to real MRIs with
respect to the 3 views via the Frèchet Inception Distance (FID) [26] (a.k.a, FID-
Axial, FID-Coronal, FID-Sagittal).

We compare those scores to ones produced by six recently published meth-
ods: (i) 3D-DPM [3], (ii) 3D-VAE-GAN [14], (iii) 3D-GAN-GP [6], (iv) 3D-
α-WGAN [12], (v) CCE-GAN [26], and (vi) HA-GAN [23]. We needed to re-
implement the first 5 methods and used the open-source code available for HA-
GAN. 3D-DPM was only able to generate 32 slices at a time (due to GPU
limitations) so that we computed its quality metrics by also cropping the corre-
sponding real MRI to those 32 slices.

Fig. 5. Left: One MRI generated by our model and its closest real MRI based on MS-
SSIM. Right: tSNE embedding of 200 generated samples (blue) of each model and
their closest real MRIs (orange). Only our model generated independent and diverse
samples as the data points overlay but are not identical to the training data. (Color
figure online)

3.4 Results

Qualitative Results. The center of the axial, coronal, and sagittal views of
five MRIs generated by cDPM shown in Fig. 3 look realistic. Compared to the
MRIs produced by the other approaches other than 3D-DPM (see Fig. 4), the
MRIs of cDPM are sharper; specifically, the gray matter boundaries are more
distinct and the scan provides greater anatomical details. As expected, 3D-DPM
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produced synthetic slices of similar quality as cDPM but failed to do so for the
entire MRI.

The synthetic MRIs of cDPM shown in Fig. 3 are also substantially different
from each other, suggesting that our method could be used to create an aug-
mented data set that is anatomically diverse. Figure 5 further substantiates the
claim, which plots the t-SNE embedding [15] of 200 synthetic MRIs (blue) and
their closest real counterpart (orange) according to MS-SSIM for each method.
Note, matching of all 500 synthetic MRIs was computationally too expensive to
perform (takes days to complete per method). Based on those plots, cDPM is
the only approach able to generate MRIs, whose distribution resembled that of
the real MRIs. This finding is somewhat surprising given that the MRI subvol-
umes generated by 3D-DPM looked real. Unlike the real data, however, their
distributions are clustered around the average. Thus, 3D-DPM fails to diversify
the data set even if (in the future) more computational resources would allow
the method to generate a complete 3D MRI.

Table 1. Measuring the quality of 500 synthetic MRIs. ‘( )’ contains the absolute
difference to the MS-SSIM score of the real MRIs, which was 0.792. In bold are the
optimal scores among methods that generate the entire volume. Scores denoted with
an asterisk ‘*’ are only computed on 32 slices.

MS-SSIM
(%)

MMD↓
(103)

FID-A ↓ FID-C ↓ FID-S ↓

3D-VAE-GAN [14] 88.3 (9.1) 5.15 320 247 398
3D-GAN-GP [6] 81.0 (1.8) 15.7 141 127 281
3D-α-WGAN [12] 82.6 (3.4) 13.2 121 116 193
CCE-GAN [26] 81.5 (2.3) 3.54 69.4 869 191
HA-GAN [23] 36.8 (42.4) 226 477 1090 554
3D-DPM [3] 79.7 (0.5)* 15.2* 188 – –
Ours (cDPM) 78.6 (0.6) 3.14 32.4 45.8 91.1

Quantitative Results. Table 1 lists the average scores of MS-SSIM, MMD, and
FID for each method. Among all models that generated complete MRI volumes,
cDPM performed best. Only the absolute difference between the MS-SSIM score
of 3D-DPM and the real MRIs was slightly lower (i.e., 0.005) than the absolute
difference for cDPM (i.e., 0.006). This comparison, however, is not fair as the
MS-SSIM score for 3D-DPM was only computed on 32 slices. Further supporting
this argument is that FID-A (the only score computed for the same slice across
all methods) was almost 5 times worse for 3D-DPM than cDPM.
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4 Conclusion

We propose a novel conditional DPM (cDPM) for efficiently generating 3D brain
MRIs. Starting with random noise, our model can progressively generate MRI
slices based on previously generated slices. This conditional scheme enables train-
ing the cDPM with limited computational resources and training data. Quali-
tative and quantitative results demonstrate that the model is able to produce
high-fidelity 3D MRIs and outperform popular and recent generative models
such as the CCE-GAN and 3D-DPM. Our framework can easily be extended
to other imaging modalities and can potentially assist in training deep learning
models on a small number of samples.
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