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Abstract

Topological Data Analysis (TDA) allows us to extract powerful topological, and1

higher-order information on the global shape of a data set or point cloud. Tools2

like Persistent Homology or the Euler Transform give a single complex description3

of the global structure of the point cloud. However, common machine learning4

applications like classification require point-level information and features to be5

available. In this paper, we bridge this gap and propose a novel method to extract6

node-level topological features from complex point clouds using discrete variants7

of concepts from algebraic topology and differential geometry. We verify the8

effectiveness of these topological point features (TOPF) on both synthetic and9

real-world data and study their robustness under noise.10
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Figure 1: Schematic of Computing Topological Point Features (TOPF). Input. A point cloud X
in n-dimensional space. Step 1. To extract global topological information, the persistent homology
is computed on an α/VR-filtration. The most significant topological features F across all specified
dimensions are selected. Step 2. k-homology generators associated to all features fi,k ∈ F are
computed. For every feature, a simplicial complex is built at a step of the filtration where fi,k is
alive. Step 3. The homology generators are projected to the harmonic space of the simplices. Step 4.
The vectors are normalised to obtain vectors eik indexed over the k-simplices. For every point x and
feature f ∈ F , we compute the mean of the entries of eik corresponding to simplices containing x.
The output is a |X| × |F| matrix which can be used for downstream ML tasks. Optional. We weigh
the simplicial complexes resulting in a topologically more faithful harmonic representative in Step 3.
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1 Introduction11

In modern machine learning [39], objects are described by feature vectors within a high-dimensional12

space. However, the coordinates of a single vector can often only be understood in relation to the13

entire data set: if the value x is small, average, large, or even an outlier depends on the remaining14

data. In a 1-dimensional (or low-dimensional) case this issue can be addressed simply by normalising15

the data points according to the global mean and standard deviation or similar procedures. We can16

interpret this as the most straight-forward way to construct local features informed by the global17

structure of the data set.18

In the case where not all data dimensions are equally relevant, or contain correlated and redundant19

information, we can apply (sparse) PCA to project the data points to a lower dimensional space20

using information about the global structure of the point cloud [51]. For even more complex data,21

we may first have to learn the encoded structure itself: indeed, a typical assumption underpinning22

many unsupervised learning methods is the so-called “manifold hypothesis” which posits that23

real world data can be described well via submanifolds of n-dimensional space [36, 21]. Using24

eigenvectors of some Laplacian, we can then obtain a coordinate system intrinsic to the point cloud25

(see e.g. [47, 4, 15]). Common to all these above examples is the goal is to construct locally26

interpretable point-level features that encode globally meaningful positional information robust to27

local perturbations of the data. However, none of these approaches is able to represent higher-order28

topological information, making point clouds with these kind of structure inaccessible to point-level29

machine learning algorithms.30

Instead of focussing on the interpretation of individual points, topological data analysis (TDA), [9],31

follows a different approach. TDA extracts a global description of the shape of data, which is typically32

considered in the form of a high-dimensional point cloud. This is done measuring topological features33

like persistence homology, which counts the number of generalised “holes” in the point cloud on34

multiple scales. Due to their flexibility and robustness these global topological features have been35

shown to contain relevant information in a broad range of application scenarios: In medicine, TDA36

has provided methods to analyse cancer progression [33]. In biology, persistent homology has been37

used to analyse knotted protein structures [5], and the spectrum of the Hodge Laplacian has been38

used for predicting protein behaviour [50].39

This success of topological data analysis is a testament to the fact that relevant information is encoded40

in the global topological structure of point cloud data. Such higher-order topological information is41

however invisible to standard tools of data analysis like PCA or k-means clustering, and can also not42

be captured by graph models of the point cloud. We are now faced by a situation where (i) important43

parts of the global structure of a complex point cloud can only be described by the language of44

applied topology, however (ii) most standard methods to obtain positional point-level information are45

not sensitive to the higher-order topology of the point cloud.46

Contributions We introduce TOPF (Figure 1), a novel method to compute node-level topological47

features relating individual points to global topological structures of point clouds. TOPF (i) outper-48

forms other methods and embeddings for clustering downstream tasks on topologically structured data,49

returns (ii) provably meaningful representations, and is (iii) robust to noise. Finally, we introduce the50

topological clustering benchmark suite, the first benchmark for topological clustering.51

Related Work The intersection of topological data analysis, topological signal processing and52

geometry processing has many interesting related developments in the past few years. On the side53

of homology and TDA, the authors in [16] and [41] use harmonic cohomology representatives to54

reparametrise point clouds based on circular coordinates. This implicitly assumes that the underlying55

structure of the point cloud is amenable to such a characterization. In [2, 26], the authors develop and56

use harmonic persistent homology for data analysis. However, among other differences their focus57

is not on providing robust topological point features. [24] uses the harmonic space of the Hodge58

Laplacians to cluster point clouds respecting topology, but is unstable against some form of noise,59

has no possibility for features selection across scales and is computationally far more expensive than60

TOPF. For a more in-depth review of related work, see Appendix A61

Organisation of the paper In Section 2, we give an overview over the main ideas and concepts62

behind of TOPF. In Section 3, we describe how to compute TOPF. In Section 4, we give a theoretical63
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result guaranteeing the correctness of TOPF. Finally, we will apply TOPF on synthetic and real-world64

data in Section 5. Furthermore, Appendix A contains a brief history of topology and a detailed65

discussion of related work. Appendix B contains additional theoretical considerations, Appendix C66

describes the novel topological clustering benchmark suite, Appendix D contains details on the67

implementation and the choice of hyperparameters, Appendix E gives a detailed treatment of feature68

selection, Appendix F discusses simplicial weights, and Appendix G discusses limitations in detail.69

2 Main Ideas of TOPF70

A main goal of algebraic topology is to capture the shape of spaces. Techniques from topology71

describe globally meaningful structures that are indifferent to local perturbations and deformations.72

This robustness of topological features to local perturbations is particularly useful for the analysis73

of large-scale noisy datasets. To apply the ideas of algebraic topology in our TOPF pipeline, we74

need to formalise and explain the notion of topological features. An important observation for75

this is that high-dimensional point clouds and data may be seen as being sampled from topological76

spaces — most of the time, even low-dimensional submanifolds of Rn [21].77

In this section we provide a broad overview over the most important concepts of topology and TDA78

for our context, prioritising intuition over technical formalities. The interested reader is referred79

to [7, 27, 49] for a complete technical account of topology and [38] for an overview over TDA.80

Simplicial Complexes Spaces in topology are continuous, consist of infinitely many points, and81

often live in abstract space. Our input data sets however consist of finitely many points embedded82

in real space Rn. In order to bridge this gap and open up topology to computational methods, we83

need a notion of discretised topological spaces consisting of finitely many base points with finite84

description length. A Simplicial Complex is the simplest discrete model that can still approximate85

any topological space occuring in practice [43]:86

Definition 2.1 (Simplicial complexes). A simplicial complex (SC) S consists of a set of vertices V87

and a set of finite non-empty subsets (simplices, S) of V closed under taking non-empty subsets, such88

that the union over all simplices
⋃

σ∈S σ is V . In the following, we will often identify S with its set89

of simplicies S and denote by Sk the set of simplices σ ∈ S with |σ| = k+1, called k-simplices. We90

say that S is n-dimensional, where n is the largest k such that the set of k-simplices Sk is non-empty.91

The k-skeleton of SC contains the simplices of dimension at most k. If the vertices V lie in real space92

Rn, we call the convex hull in Rn of a simplex σ its geometric realisation |σ|. When doing this for93

every simplex of S, we call this the geometric realisation of S, |S| ⊂ Rn.94

Concretely, we can construct an n-dimensional SC S in n + 1 steps: First, we start with a set of95

vertices V which we can identify with the 0-simplices S0. Second, we connect certain pairs of96

vertices with edges, which constitute the set of 1-simplices. We can then choose to fill in some triples97

of vertices which are fully connected by 1-simplices with triangles, i.e. 2-simplices. More generally,98

in the kth step, we can add a k-simplex for every set σk of k + 1 vertices such that every k-element99

subset σk−1 of σk is already a (k − 1)-simplex.100

Vietoris–Rips and α-complexes We now need a way to construct a simplicial complex that101

approximates the topological structure inherent in our data set X ⊂ Rn. Such a construction will102

always depend on the scale of the structures we are interested in. When looking from a very large103

distance, the point cloud will appear as a singular connected blob in the otherwise empty and infinite104

real space, on the other hand when we continue to zoom in, the point cloud will at some point appear105

as a collection of individual points separated by empty continuous space; all interesting information106

can be found in-between these two extreme scales where some vertices are joined by simplices and107

others are not. Instead of having to pick a single scale, the Vietoris–Rips (VR) filtration and the108

α-filtration take as input a point cloud and return a nested sequence of simplicial complexes indexed109

by a scale parameter ε approximating the topology of the data across all possible scales.110

Definition 2.2 (VR complex). Given a finite point cloud X in a metric space (M, d) and a non-111

negative real number ε ∈ R≥0, the associated VR complex V Rε(X) is given by the vertex set X and112

the set of simplices S = {σ ⊂ X | σ ̸= ∅,∀x, y ∈ σ : d(x, y) ≤ ε}113

Intuitively, a VR complex with parameter ε consists of all simplices σ where all vertices x ∈ σ have a114

pair-wise distance of at most ε. For r ≤ r′, we obtain the canonical inclusions ir,r′(X) : V Rr(X) ↪→115
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V Rr′(X). The set of VR complexes on X for all possible r ∈ R≥0 together with the inclusions then116

form the VR filtration on X . For large point clouds, using the VR complex for computations becomes117

expensive due to its large number of simplices. In contrast, the more sophisticated α-complex118

approximates the topology of a point cloud using far fewer simplices and thus we will make use of it.119

For a complete account and definition of α-complexes and our reason to use them, see Appendix B.120

Boundary matrices So far, we have discussed a discretised version of topological spaces in the121

form of SCs and a way to turn point clouds into a sequence of SCs indexed by a scale parameter.122

However, we still need an algebraic representation of simplicial complexes that is capable of encoding123

the structure of the SC and enables extraction of the topological features: The boundary matrices124

Bk associated to an SC S store all structural information of SC. The rows of Bk are indexed by the125

k-simplices of S and the columns are indexed by the (k + 1)-simplices.126

Definition 2.3 (Boundary matrices). Let S be a simplicial complex and ⪯ a total order on its vertices127

V . Then, the i-th face map in dimension n fn
i : Sn → Sn−1 is given by128

fn
i : {v0, v1, . . . , vn} 7→ {v0, v1, . . . , v̂i, . . . , vn}

with v0 ⪯ v1 ⪯ · · · ⪯ vn and v̂i denoting the omission of vi. Now, the n-th boundary operator129

Bn : R[Sn+1] → R[Sn] with R[Sn] being the real vector space over the basis Sn is given by130

Bn : σ 7→
n+1∑
i=0

(−1)ifn+1
i (σ).

When lexicographically ordering the simplex basis, we can view Bn as a matrix. We call R[Sn] the131

space of n-chains. Now, B0 is the vertex-edge incidence matrix of the associated graph consisting of132

the 0- and 1-simplices of S and B1 is the edge-triangle incidence matrix of S133

Figure 2: Sketch of Per-
sistent Homology, [23]

Betti Numbers and Persistent Homology We now turn to the notion of134

topological features and how to extract them. Homology is one of the main135

algebraic invariants to capture the shape of topological spaces and SC. From136

a technical point of view, the k-th homology module Hk(S) of an SC S137

with boundary operators Bk is defined as Hk(S) := kerBk−1/ ImBk. The138

generator or representative of a homology class is an element of the kernel139

kerBk−1. In dimension 1, these are given by formal sums of 1-simplices140

forming closed loops in the SC. Importantly, the rank rkHk(S) is called141

the k-th Betti number Bk of S. In dimension 0, B0 counts the number of142

connected components, B1 counts the number of loops around ‘holes’ of143

the space, B2 counts the number of 3-dimensional voids with 2-dimensional144

boundary, and so on.145

If we are now given a filtration of simplicial complexes instead of a single146

SC, we can track how the homology modules evolve as the simplicial147

complex grows. The mathematical formalisation, persistent homology, thus148

turns a point cloud via a simplicial filtration into an algebraic object summarising the topological149

feature of the point cloud. For better computational performance, the computations are usually done150

in one of the small finite fields Z/pZ. Because we will later be interested in the sign of numbers151

to distinguish different simplex orientations, we will use Z/3Z-coefficients, with Z/3Z being the152

smallest field being able to distinguish 1 and −1.153

The Hodge Laplacian and the Harmonic Space In the previous part, we have introduced a154

language to characterise the global shape of spaces and point clouds. However, we still need to find155

a way to relate these global characterisations back to local properties of the point cloud. We will156

do so by using ideas and concepts from differential geometry and topology: The simplicial Hodge157

Laplacian is a discretisation of the Hodge–Laplace operator acting on differential forms of manifolds:158

Definition 2.4 (Hodge Laplacian). Given a simplicial complex S with boundary operators Bk, we159

define the n-th Hodge Laplacian Ln : R[Sn] → R[Sn] by setting160

Ln := B⊤
n−1Bn−1 + BnB⊤

n .

The Hodge Laplacian gives rise to the Hodge decomposition theorem:161
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Algorithm 1 Topological Point Features (TOPF)

Input: Point cloud X ∈ Rn, maximum homology dimension d ∈ N, interpolation coeff. λ.
1. Compute persistent homology with generators in dimension k ≤ d.
2. Select set of significant features (bi, di, gi) with birth, death, and generator in F3 coordinates.
3. Embed gi into real space and project into harmonic subspace of SC at step t = λbi + (1− λ)di.
4. Normalise projections to eki and compute F i

k(x) := avgx∈σ(e
k
i l(σ)) for all points x ∈ X .

Output: Features of x ∈ X
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Figure 3: TOPF pipeline applied to NALCN channelosome, a membran protein [32]. Left: Steps
1&2a, when computing persistent 1-homology, three classes are more prominent than the rest. Centre:
Step 2b: The selected homology generators. Right: Step 3: The projections of the generators into
(weighted) harmonic are now each supported on one of the three rings.

Theorem 2.5 (Hodge Decomposition [34, 46, 44]). For an SC S with boundary matrices (Bi) and162

Hodge Laplacians (Li), we have in every dimension k163

R[Sk] = ImB⊤
k−1︸ ︷︷ ︸

gradient space

⊕ kerLk︸ ︷︷ ︸
harmonic space

⊕ ImBk︸ ︷︷ ︸
curl space

.

This, together with the fact that the k-th harmonic space is isomorphic to the k-th real-valued164

homology group kerLk
∼= Hk(R) means that we can associate a unique harmonic representative165

to every homology class. The harmonic space encodes higher-order generalisations of smooth flow166

around the holes of the simplicial complex. Intuitively, this means that for every abstract global167

homology class of persistent homology from above we can now compute one unique harmonic168

representative in kerLk that assigns every simplex a value based on how much it contributes to the169

homology class. Thus, the Hodge Laplacian is a gateway between the global topological features170

and the local properties of our SC. It is easy to show that the kernel of the Hodge Laplacian is the171

intersection of the kernel of the boundary and the coboundary map kerLk = kerBn−1 ∩ kerB⊤
n .172

Because we have finite SCs we can identify the spaces of chains and cochains. This leads to another173

characterisation of the harmonic space: The space of chains that are simultaneously homology and174

cohomology representatives.175

3 How to Compute Topological Point Features176

In this section, we will combine the ideas and insights of the previous section to give a complete177

account of how to compute Topological point features (TOPF). A pseudo-code version can be found178

in Algorithm 1 and an overview in Figure 1. We start with a finite point cloud X ⊂ Rn.179

Step 1: Computing the persistent homology First, we need to determine the most significant180

persistent homology classes which determine the shape of the point cloud. By doing this, we can181

also extract the “interesting” scales of the data set. We will later use this to construct SCs to derive182

local variants of the global homology features. Thus we first compute the persistent k-homology183

modules Pk including a set of homology representatives Rk of X using an α-filtration for n ≤ 3 and184

a VR filtration for n > 3. We use Z/3Z coefficients to be sensitive to simplex orientations. In case we185

have prior knowledge on the data set, we can choose a real number R ∈ R>0 and only compute the186

filtration and persistent homology connecting points up to a distance of at most R. In data sets like187

protein atom coordinates, this might be useful as we have prior knowledge on what constitutes the188
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“interesting” scale, reducing computational complexity. See Figure 3 left for a persistent homology189

diagram.190

Step 2: Selecting the relevant topological features We now need to select the relevant homology191

classes which carry the most important global information. The persistent homology Pk module in192

dimension k is given to us as a list of pairs of birth and death times (bki , d
k
i ). We can assume these193

pairs are ordered in non-increasing order of the durations lki = dki − bki . This list is typically very194

long and consists to a large part of noisy homological features which vanish right after they appear.195

In contrast, we are interested in connected components, loops, cavities, etc. that persist over a long196

time, indicating that they are important for the shape of the point cloud. Distinguishing between the197

relevant and the irrelevant features is in general difficult and may depend on additional insights on198

the domain of application. In order to provide a heuristic which does not depend on any a-priori199

assumptions on the number of relevant features we pick the smallest quotient qki := lki+1/l
k
i > 0200

as the point of cut-off Nk := argmini q
k
i . The only underlying assumption of this approach is that201

the band of “relevant” features is separated from the “noisy” homological features by a drop in202

persistence. If this assumption is violated, the only possible way to do meaningful feature selection203

depends on application-specific domain knowledge. We found that our proposed heuristics work well204

across a large scale of applications. See Figure 3 left and centre for an illustration and Appendix E205

for more technical details and ways to improve and adapt the feature selection module of TOPF. We206

call the chosen k-homology classes including k-homology generators in dimension f i
k.207

Step 3: Projecting the features into harmonic space and normalising In this step, we need to208

relate the global topology extracted in the previous step to the simplices which we will use to compute209

the local topological point feature. Every selected feature f i
k of the previous step comes with a birth210

time bi,k and a death time di,k. This means that the homology class f i
k is present in every SC of211

the filtration between step ε = bi,k and ε = di,k and we could choose any of the SCs for the next212

step. Picking a small ε will lead to fewer simplices in the SC and thus to a very localised harmonic213

representative. Picking a large ε will lead to many simplices in the SC and thus to a very smooth214

and “blurry” harmonic representative with large support. Finding a middle ground between these215

regimes returns optimal results. For the interpolation parameter γ ∈ (0, 1), we will thus consider the216

simplicial complex Sti,k(X) at step ti,k := b1−γ
i,k dγi,k for k > 0 and at step ti,k := γdi,k for k = 0217

of the simplicial filtration. At this point, the homology class f i
k is still alive. We then consider the218

real vector space R[Sti,k
k (X)] with formal basis consisting of the k-simplices of the SC Sti,k . From219

the persistent homology computation of the first step, we also obtain a generator of the feature f i
k,220

consisting of a list Σi
k of simplices σ̂j ∈ Sbi,k

k and coefficients cj ∈ Z/3Z. We need to turn this221

formal sum of simplices with Z/3Z-coefficients into a vector in the real vector space R[Sti,k
k (X)]:222

Let ι : Z/3Z be the map induced by the canonical inclusion of {−1, 0, 1} ↪→ R. We can now define223

an indicator vector eik ∈ R[Sti,k
k (X)] associated to the feature f i

k.224

eik(σ) :=

{
ι(cj) ∃σ̂j ∈ Σi

k : σ = σ̂j

0 else
.

While this homology representative lives in a real vector space, it is not unique, has a small support,225

and can differ largely between close simplices. All of these problems can be solved by projecting226

the homology representative to the harmonic subspace kerLk of R[Sti,k
k (X)]. Rather than directly227

projecting eik to the harmonic subspace, we make use of the Hodge decomposition theorem (The-228

orem 2.5) which allows us to compute the gradient and curl projections solving computationally229

efficient least square problems:230

eik,grad := B⊤
k−1 argmin

x∈R[Sk−1]

∥∥eik − B⊤
k−1x

∥∥2
2

and eik,curl := Bk argmin
x∈R[Sk+1]

∥∥eik − eik,grad − Bkx
∥∥2
2

and then setting êik := eik−eik,grad−eik,curl. (Cf. Figure 3 right for a visualisation.) Because homology231

representatives are gradient-free, we only need to consider the projection of eik into the curl space.232

Step 4: Processing and aggregation at a point level In the previous step, we have computed233

a set of simplex-valued harmonic representatives of homology classes. However, these simplices234

likely have no real-world meaning and the underlying simplicical complexes differ depending235

on the birth and death times of the homology classes. Hence in this step, we will collect the236
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features on the point-level after performing some necessary preprocessing. Given a simplex-valued237

vector êik and a hyperparameter δ, we now construct eik : S
ti,k
k (X) → [0, 1] by setting eik : σ 7→∈238

{|êik(σ)|/(δmax
σ′∈S

ti,k
k (X)

|êik(σ′)|), 1} such that êik is normalised to [0, 1], the values of [0, δ] are239

mapped linearly to [0, 1] and everything above is sent to 1. We found empirically that a thresholding240

parameter of δ = 0.07 works best across at the range of applications considered below. However,241

TOPF is not sensitive to small changes to δ because entries of êik are concentrated around 0.242

For every feature f i
k in dimension k with processed simplicial feature vector eik and simplicial243

complex Sti,k , we define the point-level feature map F k
i : X → R mapping from the initial point244

cloud X to R by setting245

F k
i : v 7→

∑
σk∈S

ti,k
k : v∈σk

eik(σk)

max(1, |{σk ∈ St
k : v ∈ σk}|)

.

For every point v, we can thus view the vector (F k
i (v) : f

k
i ∈ F) as a feature vector for v. We call246

this collection of features Topological Point Features (TOPF). (Cf. Figure 4 for an example).247

Choosing Simplicial Weights By default, the simplicial complexes of α- and VR filtrations are248

unweighted. However, the weights determine the entries of the harmonic representatives, increasing249

and decreasing the influence of certain simplices and parts of the simplicial complex. We can use this250

observation to increase the robustness of TOPF against the influence of heterogeneous point cloud251

structure, which is present in virtually all real-world data sets. For a complete technical account of252

how and why we do this, see Appendix F.253

4 Theoretical guarantees254

In this section, we prove the relationship between TOPF and actual topological structure in datasets:255

Theorem 4.1 (Topological Point Features of Spheres). Let X consist of at least (n + 2) points256

(denoted by S) sampled uniformly at random from a unit n-sphere in Rn+1 and an arbitrary number257

of points with distance of at least 2 to S. When we now consider the α-filtration on this point258

cloud, with probability 1 we have that (i) there exists an n-th persistent homology class generated259

by the 2-simplices on the convex hull hull of S, (ii) the associated unweighted harmonic homology260

representative takes values in {0,±1} where the 2-simplices on the boundary of the convex hull are261

assigned a value of ±1, and (iii) the support of the associated topological point feature (TOPF) F∗
n262

is precisely S: supp(F∗
n) = S. (iv) The same holds true for point clouds sampled from multiple263

ni-spheres if the above conditions are met on each individual sphere.264

We will give a proof of this theorem in Appendix B.265

Remark 4.2. In practice, datasets with topological structure consist in a majority of cases of points266

sampled with noise from deformed n-spheres. The theorem thus guarantees that TOPF will recover267

these structural information in an idealised setting. Experimental evidence suggests that this holds268

under the addition of noise as well which is plausible as harmonic persistent homology is robust269

against some noise [2].270

5 Experiments271

In this section, we conduct experiments on real world and synthetic data, compare the clustering272

results with clustering by TPCC, other classical clustering algorithms, and other point features, and273

demonstrate the robustness of TOPF against noise.274

Topological Point Cloud Clustering Benchmark We introduce the topological clustering bench-275

mark suite (Appendix C) and report running times and the accuracies of clustering based on TOPF276

and other methods and point embeddings, see Table 1. We see that TOPF outperforms all classical277

clustering algorithms on all but one dataset by a wide margin. We also see that TOPF closely matches278

the performance of the only other higher-order topological clustering algorithm, TPCC on two datasets279

with clear topological features, whereas TOPF outperforms TPCC on datasets with more complex280

structure. In addition, TOPF has a consistently lower running time with better scaling for the more281
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Table 1: Quantitative performance comparison of clustering with TOPF and other fea-
tures/clustering algorithms. Four 2D and three 3D data sets of the topological clustering benchmark
suite (Appendix C, cf. Figure 6 for ground truth labels and Figure 7 for clustering results of TOPF).
We ran each algorithm 20 times and list the mean adjusted rand index (ARI) with standard deviation
σ and mean running time. We omit σ for algorithms with σ = 0 on every dataset. TOPF consistently
outperforms or almost matches the other algorithms while having significantly better run time than
the second best performing algorithm TPCC. Spectral Clustering (SC), DBSCAN, and Agglomerative
Clustering (AgC) are standard clustering algorithms, ToMATo is a topological clustering algorithm
[11], Geo clusters using 12-dimensional point geometric features extracted by pgeof and the normal
point coordinates, whereas node2vec [25] produces node embeddings on a k-nearest neighbour graph
built upon an affinity matrix. We highlight all ARI scores within ±0.05 of the best ARI score.

TOPF (ours) TPCC SC DBSCAN AgC ToMATo Geo node2vec

4spheres ARI 0.81 0.52±0.17 0.37 0.00 0.45 0.32 0.20 0.00±0.00
time (s) 14.5 23.3 0.2 0.0 0.0 0.0 0.2 48.4

Ellipses ARI 0.95 0.47±0.04 0.25 0.19 0.52 0.29 0.81 0.02±0.00
time (s) 12.7 14.4 0.1 0.0 0.0 0.0 0.1 11.2

Spheres+Grid ARI 0.70 0.39±0.04 0.90 0.92 0.89 0.82 0.41 0.01±0.00
time (s) 13.0 28.5 0.5 0.0 0.0 0.0 0.3 63.8

Halved Circle ARI 0.71 0.18±0.12 0.24 0.00 0.20 0.16 0.08 0.00±0.01
time (s) 12.2 14.3 0.1 0.0 0.0 0.0 0.1 18.2

2Spheres2Circles ARI 0.94 0.97±0.01 0.70 0.00 0.51 0.87 0.12 0.00±0.00
time (s) 38.9 1662.2 1.6 0.0 0.3 0.0 0.9 348.6

SphereinCircle ARI 0.97 0.98±0.0 0.34 0.00 0.29 0.06 0.69 0.13±0.03
time (s) 14.5 8.0 0.0 0.0 0.0 0.0 0.08 20.1

Spaceship ARI 0.92 0.56±0.03 0.28 0.26 0.47 0.30 0.87 0.07±0.00
time (s) 16.3 341.8 16.7 0.0 0.0 0.0 0.2 49.8

mean ARI 0.86 0.58 0.44 0.16 0.48 0.40 0.45 0.03
time (s) 17.5 298.9 0.4 0.0 0.0 0.0 0.3 80.0

Figure 4: TOPF on 3D real-world and synthetic point clouds. For every point, we highlight the
largest corresponding topological feature, where colour stands for the different features and saturation
for the value of the feature. (a): Atoms of mutated Cys123 of E. coli [29]. We added auxiliary
points on the convex hull and considered 2-homology, to detect the protein pockets which are crucial
for protein-environment interactions (Cf. [40]). (b): Atoms of NALCN Channelosome [32] display
three distinct loops. (c): Points sampled in the state space of a Lorentz attractor. The two features
correspond to the two lobes of the attractor. (d): Point cloud spaceship of our newly introduced
topological clustering benchmark suite (See Appendix C).
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Figure 5: Performance of Clustering based on TOPF features in increasing noise/outlier levels
with 95% CI. Left: We add i.i.d. Gaussian noise to every point with standard deviation indicated by
the noise parameter. We see that even when compared with TPCC on a data set specifically crafted
for TPCC, TOPF requires significantly less information and delivers almost equal performance. When
tuned for datasets with a high noise level, the TOPF even outperform TPCC and drastically outperform
all classical clustering algorithms. Right: We add outliers with the same standard deviation as the
point cloud to the data set. We then measure the adjusted rand index obtained restricted on the
original points. We see that even when compared with TPCC on a data set specifically crafted for
TPCC, TOPF requires significantly less information and delivers matching to superior performance,
significantly outperforming all other classical clustering algorithms.

complex datasets, while also not requiring prior knowledge on the best topological scale. As for the282

other point embeddings, Node2Vec is not able to capture any meaningful topological information,283

whereas the performance of clustering using geometric features depends on the data set.284

Feature Generation In Figure 4, we show qualitatively that TOPF constructs meaningful topological285

features on data sets from Biology and Physics, and synthetic data, corresponding to for example286

rings and pockets in proteins or trajectories around different attractors in dynamical systems. (For287

individual heatmaps see Figure 8)288

Robustness against noise We have evaluated the robustness of TOPF against Gaussian noise on289

the dataset introduced in [24] and compared the results against TPCC, Spectral Clustering, Graph290

Spectral Clustering on the graph constructed by TPCC, and against k-means in Figure 5 Left. We have291

also analysed the robustness of TOPF against the addition of outliers in Figure 5 Right. We see that292

TOPF performs well in both cases, underlining our claim of robustness.293

6 Discussion294

Limitations TOPF can — by design — only produce meaningful output on point clouds with a295

topological structure quantifiable by persistent homology. In practice it is thus desirable to combine296

TOPF with some geometric or other point-level feature extractor. As TOPF relies on the computation of297

persistent homology, its runtime increases on very large point clouds, especially in higher dimensions298

where α-filtrations are computationally infeasible. However, subsampling, either randomly or using299

landmarks, usually preserves relevant topological features while improving run time [41]. Finally,300

selection of the relevant features is a very hard problem. While our proposed heuristics work well301

across a variety of domains and application scenarios, only domain- and problem-specific knowledge302

makes correct feature selection feasible.303

Future Work The integration of higher-order TOPF features into ML pipelines that require point-304

level features potentially leads to many new interesting insights across the domains of biology, drug305

design, graph learning and computer vision. Furthermore, efficient computation of simplicial weights306

leading to the provably most faithful topological point features is an exciting open problem.307

Conclusion We introduced point-level features TOPF founded on algebraic topology relating global308

structural features to local information. We gave theoretical guarantees for the correctness of their309

construction and evaluated them quantitatively and qualitatively on synthetic and real-world data sets.310

Finally, we introduced the novel topological clustering benchmark suite and showed that clustering311

using TOPF outperforms other available clustering methods and features extractors.312
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[14] Yu-Chia Chen, Marina Meilă, and Ioannis G Kevrekidis. Helmholtzian eigenmap: Topological343

feature discovery & edge flow learning from point cloud data. arXiv preprint arXiv:2103.07626,344

2021.345

[15] Ronald R Coifman and Stéphane Lafon. Diffusion maps. Applied and computational harmonic346

analysis, 21(1):5–30, 2006.347

[16] Vin De Silva and Mikael Vejdemo-Johansson. Persistent cohomology and circular coordinates.348

In Proceedings of the twenty-fifth annual symposium on Computational geometry, pages 227–349

236, 2009.350

[17] Richard Dedekind. Was sind und was sollen die Zahlen? Verlag Friedrich Vieweg und Sohn,351

Braunschweig, 1888.352

[18] Boris Delaunay et al. Sur la sphere vide. Izv. Akad. Nauk SSSR, Otdelenie Matematicheskii i353

Estestvennyka Nauk, 7(793-800):1–2, 1934.354

[19] Stefania Ebli and Gard Spreemann. A notion of harmonic clustering in simplicial complexes.355

In 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA),356

pages 1083–1090, 2019.357

10



[20] Samuel Eilenberg and Saunders MacLane. General theory of natural equivalences. Transactions358

of the American Mathematical Society, 58:231–294, 1945.359

[21] Charles Fefferman, Sanjoy Mitter, and Hariharan Narayanan. Testing the manifold hypothesis.360

Journal of the American Mathematical Society, 29(4):983–1049, Oct 2016.361

[22] David Chin-Lung Fong and Michael Saunders. Lsmr: An iterative algorithm for sparse least-362

squares problems. SIAM Journal on Scientific Computing, 33(5):2950–2971, 2011.363

[23] Vincent P. Grande and Michael T Schaub. Non-isotropic persistent homology: Leveraging the364

metric dependency of ph. In Learning on Graphs Conference, pages 17–1. PMLR, 2023.365

[24] Vincent P. Grande and Michael T. Schaub. Topological point cloud clustering. In Proceedings366

of the 40th International Coference on Machine Learning, ICML’23, 2023.367

[25] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In368

Proceedings of the 22nd ACM SIGKDD international conference on Knowledge discovery and369

data mining, pages 855–864, 2016.370

[26] Davide Gurnari, Aldo Guzmán-Sáenz, Filippo Utro, Aritra Bose, Saugata Basu, and Laxmi371

Parida. Probing omics data via harmonic persistent homology. arXiv preprint arXiv:2311.06357,372

2023.373

[27] Allen Hatcher. Algebraic Topology. Cambridge University Press, Cambridge, 2002.374

[28] Felix Hausdorff. Grundzüge einer theorie der geordneten mengen. Mathematische Annalen,375

65:435–505, 1908.376

[29] Esther Hidber, Edward R Brownie, Koto Hayakawa, and Marie E Fraser. Participation of377

cys123α of escherichia coli succinyl-coa synthetase in catalysis. Acta Crystallographica378

Section D: Biological Crystallography, 63(8):876–884, 2007.379

[30] David Hilbert. Grundlagen der Geometrie. Wissenschaft und Hypothese. B. G. Teubner,380

Leipzig, 1899.381

[31] Sze-tsen Hu. Homotopy theory. Academic press, 1959.382

[32] Marc Kschonsak, Han Chow Chua, Claudia Weidling, Nourdine Chakouri, Cameron L. Noland,383

Katharina Schott, Timothy Chang, Christine Tam, Nidhi Patel, Christopher P. Arthur, Alexan-384

der Leitner, Manu Ben-Johny, Claudio Ciferri, Stephan Alexander Pless, and Jian Payandeh.385

Structural architecture of the human nalcn channelosome. Nature, 603(7899):180–186, Mar386

2022.387

[33] Peter Lawson, Andrew B Sholl, J Quincy Brown, Brittany Terese Fasy, and Carola Wenk.388

Persistent homology for the quantitative evaluation of architectural features in prostate cancer389

histology. Scientific reports, 9(1):1139, 2019.390

[34] Lek-Heng Lim. Hodge laplacians on graphs. SIAM Review, 62(3):685–715, 2020.391

[35] Jacob Lurie. Stable infinity categories. arXiv preprint math/0608228, 2006.392

[36] Yunqian Ma and Yun Fu. Manifold learning theory and applications, volume 434. CRC press393

Boca Raton, 2012.394

[37] Facundo Mémoli, Zhengchao Wan, and Yusu Wang. Persistent laplacians: Properties, algorithms395

and implications. SIAM Journal on Mathematics of Data Science, 4(2):858–884, 2022.396

[38] Elizabeth Munch. A user’s guide to topological data analysis. Journal of Learning Analytics,397

4(2):47–61, 2017.398

[39] Kevin P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press, 2022.399

[40] Haruhisa Oda, Mayuko Kida, Yoichi Nakata, and Hiroki Kurihara. Novel definition and quantita-400

tive analysis of branch structure with topological data analysis. arXiv preprint arXiv:2402.07436,401

2024.402

11



[41] Jose A. Perea. Sparse circular coordinates via principal Z-bundles. In Nils A. Baas, Gunnar E.403

Carlsson, Gereon Quick, Markus Szymik, and Marius Thaule, editors, Topological Data404

Analysis, pages 435–458, Cham, 2020. Springer International Publishing.405

[42] Henri Poincaré. Analysis situs. J. de l’Ecole Poly., 1, 1895.406

[43] Daniel G. Quillen. Homotopical Algebra, volume 43 of Lecture Notes in Mathematics. Springer,407

Berlin, 1967.408

[44] T Mitchell Roddenberry, Nicholas Glaze, and Santiago Segarra. Principled simplicial neural409

networks for trajectory prediction. In International Conference on Machine Learning, pages410

9020–9029. PMLR, 2021.411

[45] Michael T Schaub, Austin R Benson, Paul Horn, Gabor Lippner, and Ali Jadbabaie. Random412

walks on simplicial complexes and the normalized hodge 1-laplacian. SIAM Review, 62(2):353–413

391, 2020.414

[46] Michael T. Schaub, Yu Zhu, Jean-Baptiste Seby, T. Mitchell Roddenberry, and Santiago Segarra.415

Signal processing on higher-order networks: Livin’ on the edge... and beyond. Signal Processing,416

187:108149, 2021.417

[47] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE Transactions418

on pattern analysis and machine intelligence, 22(8):888–905, 2000.419

[48] The GUDHI Project. GUDHI User and Reference Manual. GUDHI Editorial Board, 2015.420

[49] Tammo tom Dieck. Algebraic topology, volume 8. European Mathematical Society, Zürich,421

2008.422

[50] JunJie Wee, Jiahui Chen, Kelin Xia, and Guo-Wei Wei. Integration of persistent laplacian and423

pre-trained transformer for protein solubility changes upon mutation. Computers in Biology424

and Medicine, page 107918, 2024.425

[51] Hui Zou, Trevor Hastie, and Robert Tibshirani. Sparse principal component analysis. Journal426

of computational and graphical statistics, 15(2):265–286, 2006.427

[52] Matija Čufar. Ripserer.jl: flexible and efficient persistent homology computation in julia.428

Journal of Open Source Software, 5(54):2614, 2020.429

A Extended Background430

A brief history of topology and machine learning Algebraic topology is a discipline of Mathe-431

matics dating back roughly to the late 19th century [42]. Starting with Henri Poincaré and continuing432

in the early 20th century, the mathematical community became interested in developing a framework433

to capture the global shapes of manifolds and topological spaces in concise algebraic terms. This de-434

velopment was partly made possible by the push towards a formalisation of mathematics and analysis,435

in particular, which took place inside the mathematical community in the 1800’s and early 1900’s (e.g.436

[17, 30, 28]). The axiomatisation of analysis in the early 20th century is an important result of this437

process. These abstract ideas made it possible for Topologists to talk about the now common notions438

of Euler characteristics, Betti number, simplicial homology of manifolds, topological spaces, and439

simplicial and CW complexes. Over the course of the last 100 years, branching into many sub-areas440

like low-dimensional topology, differential topology, K-theory or homotopy theory [1, 31], algebraic441

topology has resolved many of the important questions and provides a comprehensive tool-box for442

the study of topological spaces. These achievements were tied to an abstraction and generalisation of443

concepts: topological spaces turned into spectra, diffeomorphism to homotopy equvialences and later444

weak equivalences, and Topologists turned to category theory [20], model categories [6] and recently445

∞-categories [35] as the language of choice.446

The 21st century saw the advent and rise of topological data analysis (TDA, [8, 12]). In short,447

mathematicians realised that the same notions of shape and topology that their predecessors carefully448

defined a century earlier were now characterising the difference between healthy and unhealthy449

tissue, between normal and abnormal behaviour protein behaviour, or more general between different450

categories in their complex data sets.451
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Related Work The intersection of topological data analysis, topological signal processing and452

geometry processing has many interesting related developments in the past few years. On the side453

of homology and TDA, the authors in [16] and [41] use harmonic cohomology representatives to454

reparametrise point clouds based on circular coordinates. This implicitly assumes that the underlying455

structure of the point cloud is amenable to such a characterization. Although circular coordinates are456

orthogonal to the core goal of TOPF, the approaches share many key ideas and insights. In [2, 26],457

the authors develop and use harmonic persistent homology and provide a way to pool features to458

the point-level. However, their focus is not on providing robust topological point features and their459

approach includes no tunable homology feature selection across dimensions, no support for weighted460

simplicial complexes, and they only construct the simplicial complex at birth. In their paper on461

topological mode analysis, [11] use persistent homology to cluster point clouds. However, they only462

consider 0-dimensional homology to base the clustering on densities and there is no clear way to463

generalise this to higher dimensions.464

On the more geometric-centred side, [19] already provide a notion of harmonic clustering on simplices,465

[13, 14] analyse the notion of geometry and topology encoded in the Hodge Laplacian and its relation466

to homology decompositions, [45] study the normalised and weighted Hodge Laplacian in the context467

of random walks, and [24] use the harmonic space of the Hodge Laplacians to cluster point clouds468

respecting topology. Finally, a persistent variant of the Hodge Laplacian is used to study filtrations of469

simplicial complexes [37].470

In [24], the authors have introduced TPCC, the first method to cluster a point cloud based on the471

higher-order topological features encoded in the data set. However, TPCC is (i) computationally472

expensive due to extensive eigenvector computations, (ii) depending on high-dimensional subspace473

clustering algorithms, which are prone to instabilities and errors, (iii) sensitive to the correct choice474

of hyperparameters, (iv) requiring the topological true features and noise to occur in different steps475

of the simplicial filtration, and it (v) solely focussed on clustering the points rather than extracting476

relevant node-level features. This paper solves all the above by completely revamping the TPCC477

pipeline, introducing several new ideas from applied algebraic topology and differential geometry.478

The core insight is: When you have the time to compute persistent homology with generators on a479

data set, you get the topological node features with similar computational effort.480

B Theoretical Considerations481

More details on VR and α-filtrations Vietoris–Rips complexes are easy to define, approximate482

the topological properties of a point cloud across all scales and computationally easy to implement.483

However for moderately large r, the associated VR complex contains a large number of simplices —484

up to
(|X|

n

)
n-simplices for large enough r — leading to poor computational performance for any485

downstream task on some large point clouds. One way to see this is the following: After adding the486

first edge that connects two components or the final simplex that fills a hole in the simplicial complex487

the VR complex keeps adding more and more simplices in the same area that keep the topology488

unchanged. One way to mitigate this problem is to pre-compute a set of simplices that are able to489

express the entire topology of the point cloud. For a point cloud X ⊂ Rn, the α-filtration consists of490

the intersection of the simplicial complexes of the VR filtration on X with the (higher-dimensional)491

Delaunay triangulation of X in R. Due to algorithmic reasons, the filtration value of a simplex is492

then the radius of the circumscribed sphere instead of the maximum pair-wise distance of vertices.493

This reduces the number of required simplices across all dimensions to O(|X|⌈n/2⌉). However, the494

Delaunay triangulation becomes computationally infeasible for larger n.495

Definition B.1 (n-dimensional Delaunay triangulation). Given a set of vertices V ∈ Rn, a Delaunay496

triangulation DT (V ) is a triangulation of V such that for any n-simplex σn ∈ DT (V ) the interior497

of the circum-hypersphere of σn contains no point of DT (V ). A triangulation of V is a SC S with498

vertex set V such that its geometric realisation covers the convex hull of V hull(V ) = |S| and we499

have for any two simplices σ, σ′ that the intersection of geometric realisations |σ| ∩ |σ′| is either500

empty or the geometric realisation |σ̂| of a common sub-simplex σ̂ ⊂ σ, σ′.501

If V is in general position, the Delaunay triangulation is unique and guaranteed to exist [18].502

Definition B.2 (α-complex of a point cloud). Given a finite point cloud X in real space Rn, the503

α-complex αε(X) is the subset of the n-dimensional Delaunay triangulation DT (X) consisting of504

all σ ∈ DT (X) with a radius r of its circumscribed sphere with r ≤ ε.505
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Proof of the main theorem We will now give the proof of the theorem that guarantees that TOPF506

works. First, let us recall Theorem 4.1:507

Theorem 4.1 (Topological Point Features of Spheres). Let X consist of at least (n + 2) points508

(denoted by S) sampled uniformly at random from a unit n-sphere in Rn+1 and an arbitrary number509

of points with distance of at least 2 to S. When we now consider the α-filtration on this point510

cloud, with probability 1 we have that (i) there exists an n-th persistent homology class generated511

by the 2-simplices on the convex hull hull of S, (ii) the associated unweighted harmonic homology512

representative takes values in {0,±1} where the 2-simplices on the boundary of the convex hull are513

assigned a value of ±1, and (iii) the support of the associated topological point feature (TOPF) F∗
n514

is precisely S: supp(F∗
n) = S. (iv) The same holds true for point clouds sampled from multiple515

ni-spheres if the above conditions are met on each individual sphere.516

Proof. Assume that we are in the scenario of the theorem. Now because the n-volume of (n− 1)-517

submanifolds is zero, we have that with probability 1 the points of S don’t lie on a single (n − 1)518

sphere inside the n-sphere. Let us now look at the α-filtration of the simplices in S: Recall that the519

filtration values of a k-simplex is given by the radius of the (k − 1)-sphere determined by its vertices.520

Because all of the (n+1)-simplices σn+1 with vertices V ⊂ S in S lie on the same unit n-sphere Sn,521

they all share the filtration value of α(σn+1) = 1. By the same argument as above, with probability 1522

there are no (n+ 1) points in S that lie on an unit (n− 1)-sphere. Thus all of the n-simplices σn lie523

on (n − 1)-spheres Sn with a radius r < 1 smaller than 1 and hence have a filtration value α(σn)524

smaller than 1. Let525

b := max ({α(σn) : σn ⊂ ∂ hull(S)})
be the maximum filtration value of an n-simplex on the boundary of the convex hull of S. Then, then526

a linear combination g of the n-simplices of the boundary of the convex hull of S with coefficients in527

±1 is a generator of a persistent homology class with life time (b, 1) (this follows from the fact that528

n-spheres and their triangulations are orientable). This proves claim (i).529

Because of the assumption that all points not contained in S have a distance of at least 2 to the points530

in S, all (n+1)-simplices σn+1 with vertices both in S and its complement in X will have a filtration531

value α(σn+1) ≥ 1 of at least 1. Recall that all (n+ 1)-simplices σn+1 ⊂ S with vertices inside S532

have a filtration value of α(σn+1) = 1. Thus the adjoint of the n-th boundary operator B⊤
n is trivial533

on the homology generator g. Thus, we have that for the n-th Hodge Laplacian534

Lng = B⊤
n−1Bn−1g + BnB⊤

n g = 0 + 0 = 0

and hence g is a harmonic generator for the entire filtration range of (b, 1), which proves claim (ii).535

Claim (iii) and (iv) then follow from the construction of the TOPF values. □536

C Topological Clustering Benchmark Suite537

We introduce seven point clouds for topological point cloud clustering in the topological clustering538

benchmark suite (TCBS). The ground truth and the point clouds are depicted in Figure 6. The point539

clouds represent a mix between 0-, 1- and 2-dimensional topological structures in noiseless and noisy540

settings in ambient 2-dimensional and 3-dimensional space. The results of clustering according to541

TOPF can be found in Figure 7.542

D Implementation543

We will release an implementation of TOPF and the code and data required to reproduce544

the experimental results of this paper under https://anonymous.4open.science/r/topf_545

submission-5C40/. In particular, we will release the topological clustering benchmark suite.546

All experiments were run on a Apple M1 Pro chipset with 10 cores and 32 GB memory. TOPF547

and the experiments are implemented in Python and Julia. For persistent homology computations,548

we used GUDHI [48] (© The GUDHI developers, MIT license) and Ripserer [52] (© mtsch, MIT549

license), which is a modified Julia implementation of [3]. For the least square problems, we used550

the LSMR implementation of SciPy [22]. We used the Node2Vec python implementation https:551

//github.com/eliorc/node2vec (© Elior Cohen, MIT License) based on the Node2Vec Paper552

[25]. We used the pgeof Python package for computation of geometric features https://github.553
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Figure 6: Data sets of the Topological Clustering Benchmark Suite (TCBS) with true la-
bels. Top: 2D data sets. From left to right: 4Spheres (656 points), Ellipses (158 points),
Spheres+Grid (866 points), Halved Circle (249 points). Bottom: 3D data sets. From left to
right: 2Spheres2Circles (4600 points), SphereinCircle (267 points), spaceship (650 points).

Figure 7: Data sets of the Topological Clustering Benchmark Suite (TCBS) with labels generated
by TOPF. Top: 2D data sets. From left to right: 4Spheres (0.81 ARI), Ellipses (0.95 ARI),
Spheres+Grid (0.70 ARI), Halved Circle (0.71 ARI). Bottom: 3D data sets. From left to right:
2Spheres2Circles (0.94 ARI), SphereinCircle (0.97 ARI), spaceship (0.92 ARI).

com/drprojects/point_geometric_features (© Damien Robert, Loic Landrieu, Romain Jan-554

vier, MIT license). We use parts of the implementation of TPCC https://git.rwth-aachen.555

de/netsci/publication-2023-topological-point-cloud-clustering (© Computational556

Network Science Group, RWTH Aachen University, MIT license).557

D.1 Hyperparameters558

All the relevant hyperparameters are already mentioned in their respective sections. However, for559

convenience we gather and briefly discuss them in this section. We note that TOPF is robust and560

applicable in most scenarios when using the default parameters without tuning hyperparameters. The561

hyperparameters should more be thought of as an additional way where detailed domain-knowledge562

can enter the TOPF pipeline.563
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Maximum Homology Dimension d The maximum homology dimension determines the dimen-564

sions of persistent homology the algorithm computes.565

For the choice of the maximum homology degree d to be considered there are mainly three heuristics566

which we will list in decreasing importance (Cf. [24]):567

I. In applications, we usually know which kind of topological features we are interested in, which568

will then determine d. This means that 1-dimensional homology and d = 1 suffices when we569

are looking at loops of protein chains. On the other hand, if we are working with voids and570

cavities in 3d histological data, we need d = 2 and thus compute 2-dimensional homology.571

II. Algebraic topology tells us that there are no closed n-dimensional submanifolds of Rn. Hence572

their top-homology will always vanish and all interesting homological activity will appear for573

d < n.574

III. In the vast majority of cases, the choice will be between d = 1 or d = 2 because empirically575

there are virtually no higher-dimensional topological features in practice.576

In our quantitative experiments, we have always chosen d = n− 1.577

Thresholding parameter δ In step 4 of the algorithm, we normalise and threshold the harmonic578

representatives. After normalising, the entries of the vectors lie in the interval of [0, 1]. The579

thresholding parameter δ now essentially determines an interval of [0, δ] which we will linearly map580

to [0, 1], while mapping all entries above δ to 1 as well. This is necessary as most of the entries in581

the vector eik are very close to 0 with a very small number of entries being close to 1. Without this582

thresholding, TOPF would now be almost entirely determined by these few large values. Thus this583

step limits the maximum possible influence of a single entry. However, because most of the entries of584

eik are concentrated around 0, small changes in δ will not have a large effect and we chose δ = 0.07585

in all our experiments.586

Interpolation coefficient λ The interpolation coefficient λ ∈ [0, 1) determines whether we build587

our simplicial complexes close to the birth or the death of the relevant homological features at time588

t = b1−λd. This then in turns controls how localised or smooth the harmonic representative will589

be. In general, the noisier the ground data is the higher we should choose λ. However, TOPFis not590

sensitive to small changes in λ. We have picked λ = 0.3 for all the quantitative experiments, which591

empirically represents a good choice for a broad range of applications.592

Feature selection factor β Increasing β leads to TOPF preferring to pick a larger number of relevant593

topological features. Without specific domain-knowledge, β = 0 represents a good choice.594

Feature selection quotients max_total_quot, min_rel_quot, and min_0_ratio These are595

technical hyperparameters controlling the feature selection module of TOPF. For a technical account596

of them, see Appendix E. In most of the cases without domain knowledge, they do not have an effect597

on the performance of TOPF and should be kept at their default values.598

Simplicial Complex Weights Although the simplicial weights are not technically a hyperparameter,599

there are many potential ways to weigh the considers SCs that can highlight or suppress different600

topological and geometric properties. In all our experiments, we use w∆ weights discussed in601

Appendix F.602

E How to pick the most relevant topological features603

Simplified heuristic The persistent homology Pk module in dimension k is given to us as a list of604

pairs of birth and death times (bki , d
k
i ). We can assume these pairs are ordered in non-increasing order605

of the durations lki = dki − bki . This list is typically very long and consists to a large part of noisy606

homological features which vanish right after they appear. In contrast, we are interested in connected607

components, loops, cavities, etc. that persist over a long time, indicating that they are important for608

the shape of the point cloud. Distinguishing between the relevant and the irrelevant features is in609

general difficult and may depend on additional insights on the domain of application. In order to610

provide a heuristic which does not depend on any a-priori assumptions on the number of relevant611
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Figure 8: TOPF heatmaps for three proteins. Top left NALCN channelosome [32] Top right:
Mutated Cys123 of E. coli [29], with convex hull added during computation, only 2-dimensional
homology features Bottom: GroEL of E. coli [10] (Selected features).

features we pick the smallest quotient qki := lki+1/l
k
i > 0 as the point of cut-off Nk := argmini q

k
i .612

The only underlying assumption of this approach is that the band of “relevant” features is separated613

from the “noisy” homological features by a drop in persistence.614

Advanced Heuristic However, certain applications have a single very prominent feature, followed615

by a range of still relevant features with significantly smaller life times, that are then followed by616

the noisy features after another drop-off. This then could potentially lead the heuristic to find the617

wrong drop-off. We propose to mitigate this issue by introducing a hyperparameter β ∈ R>0. We618

then define the i-th importance-drop-off quotient qki by619

qki := lki+1/lki (1 + β/i) .

The basic idea is now to consider the most significant Nk homology classes in dimension k when620

setting Nk to be621

Nk := argmin
i

qki .

Increasing β leads the heuristic to prefer selections with more features than with fewer features.622

Empirically, we still found β = 0 to work well in a broad range of application scenarios and used623

it throughout all experiments. There are only a few cases where domain-specific knowledge could624

suggest picking a larger β.625

To catch edge cases with multiple steep drops or a continuous transition between real features and626

noise, we introduce two more checks: We allow a minimal qki of min_rel_quot = 0.1 and a627

maximal quotient qh1/qki of max_total_quot = 10 between any homology dimensions. Because628

features in 0-dimensional homology are often more noisy than features in higher dimensions, we add629

a minimum zero-dimensional homology ratio of min_0_ratio = 5, i.e. every chosen 0-dimensional630

feature needs to be at least min_0_ratio more persistent then the minimum persistence of the631

higher-dimensional features. Because these hyperparameters only deal with the edge cases of632

feature selection, TOPF is not very sensitive to them. For all our experiments, we used the above633

hyperparameters. We advise to change them only in cases where one has in-depth domain knowledge634

about the nature of relevant topological features.635
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Figure 9: Effect of weighing a simplicial complex on harmonic representatives. Top: VR complex.
Bottom: α-complex Left: The base point cloud with different densities. 2nd Left: Unweighted
harmonic homology representative of the large loop. 3rd Right: Effective resistance of the 1-simplices.
3rd Right: Harmonic homology representative of the complex weighted by effective resistance.
2nd Right: Inverse of number of incident triangles (Definition F.1). Right: Harmonic homology
representative of the complex weighted by number of incident triangles. Up to a small threshold,
the standard harmonic representative in the VR complex is almost exclusively supported in the
low-density regions of the simplicial complex. This leads to poor and unpredictable classification
performance in downstream tasks. In contrast, the harmonic homology representative of the weighted
VR complex has a more homogenous support along the loop, while still being able to discriminate the
edges not contributing to the loop. The α-complex suffers less from this phenomenon (at least in
dimension 2), and hence reweighing is not necessarily required.

F Simplicial Weights636

In an ideal world, the harmonic eigenvectors in dimension k would be vectors assigning ±1 to all637

k-simplices contributing to k-dimensional homological feature, a 0 to all k-simplices not contributing638

or orthogonal to the feature, and a value in (−1, 1) for all simplices based on the alignment of the639

simplex with the boundary of the void. However, this is not the case: In dimension 1, we can for640

example imagine a total flow of 1 circling around the hole. This flow is then split up between all641

parallel edges which means two things: I Edges where the loop has a larger diameter have smaller642

harmonic values than edges in thin areas and II in VR complexes, which are the most frequently643

used simplicial complexes in TDA, edges in areas with a high point density have smaller harmonic644

values than edges in low-density areas. Point II is another advantage of α-complexes: The expected645

number of simplices per point does not scale with the point density in the same way as it does in the646

VR complex, because only the simplices of the Delaunay triangulation can appear in the complex.647

We address this problem by weighing the k-simplices of the simplicial complex. The idea behind this648

is to weigh the simplicial complex in such a way that it increases and decreases the harmonic values649

of some simplices in an effort to make the harmonic eigenvectors more homogeneous. For weights650

w ∈ RSk , W = diag(w), the symmetric weighted Hodge Laplacian [45] takes the form of651

Lw
k = W 1/2Bk−1B⊤

k−1W
1/2 +W−1/2BkB⊤

k W
−1/2.
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Because we want the homology representative to lie in the weighted gradient space, we have to scale652

its entries with the weight and set eik,w := W−1/2eik. With this, we have that653

B⊤
k−1W

1/2eik,w = B⊤
k−1W

1/2W−1/2eik = B⊤
k−1e

i
k = 0

We propose two options to weigh the simplicial complex. The first option is to weigh a k-simplex by654

the square of the number of k + 1-simplices the simplex is contained in:655

w∆(σk) = 1/(|{σk+1 ∈ St
k+1 : σk ⊂ σk+1}|+ 1)2

where the +1 is to enforce good behaviour at simplices that are not contained in any higher-order656

simplices. One of the advantages of the α-complex is that we don’t have large concentrations of657

simplices in well-connected areas. The proposed weighting w∆ is computationally straightforward,658

as it can be obtained as the column sums of the absolute value of the boundary matrix |Bk|. The659

weights also deal with the previously mentioned problem II: As the homology representative is scaled660

inversely to the weight vector w, the simplices in high-density regions will be assigned a low weight661

and thus their weighted homology representative will have a larger entry. By the projection to the662

orthogonal complement of the curl space, this large entry is then diffused among the high-density663

region of the SC with many simplices, whereas the lower entries of the simplices in low-density664

regions are only diffused among fewer adjacent simplices.665

However, the first weight is not able to incorporate the number of parallel simplices into the weighting.666

This is why we propose a second simplicial weight function based on generalised effective resistance.667

Definition F.1 (Effective Hodge resistance weights). For a simplicial complex S with boundary668

matrices (Bk), we define the effective Hodge resistance weights wR on k-simplices to be:669

wR := diag
(
B+
k−1Bk−1

)2
where diag(−) denotes the vector of diagonal entries and (−)+ denotes taking the Moore–Penrose670

inverse.671

Intuitively for k = 1, we can assume that every edge has a resistance of 1 and then the effective672

resistance coincides with the notion from Physics. Thus simplices with many parallel simplices are673

assigned a small effective resistance, whereas simplices with few parallel simplices are assigned an674

effective resistance close to 1. However, computing the Moore–Penrose inverse is computationally675

expensive and only feasible for small simplicial complexes.676

In Figure 9, we show that the weights w∆ are a good approximation of the effective resistance in677

terms of the resulting harmonic representative. The standard form of TOPF used in all experiments678

uses w∆-weights.679

G Limitations680

Topological features are not everywhere The proposed topological point features take relevant681

persistent homology generators and turn these into point-level features. As such, applying TOPF682

only produces meaningful results on point clouds that have a topological structure. On these point683

clouds, TOPF can extract structural information unobtainable by non-topological methods. Although684

TDA has been successful in a wide range of applications, a large number of data sets does not685

possess a meaningful topological structure. Applying TOPF in these cases will produce no additional686

information. Other data sets require pre-processing before containing topological features. In Figure 4687

left, the 2d topological features characterising protein pockets of Cys123 only appear after artificially688

adding points sampled on the convex hull of the point cloud (Cf [40]).689

Computing persistent homology can be computationally expensive As TOPF relies on the690

computation of persistent homology including homology generators, its runtime increases on very691

large point clouds. This is especially true when using VR instead of α-filtrations, which become692

computationally infeasible for higher-dimensional point clouds. Persistent homology computations693

for dimensions above 2 are only feasible for very small point clouds. Because virtually all discovered694

relevant homological features in applications appear in dimension 0, 1, or 2, this does not present695

a large problem. Despite these computational challenges, subsampling, either randomly or using696

landmarks, usually preserves relevant topological features and thus extends the applicability of TDA697

in general and TOPF even to very large point clouds.698
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Automatic feature selection is difficult without domain knowledge While the proposed heuristics699

works well across a variety of domains and application scenarios, only domain- and problem-specific700

knowledge makes truthful feature selection feasible.701

Experimental Evaluation There are no benchmark sets for topological point features in the702

literature, which makes benchmarking TOPF not straightforward. On the level of clustering, we703

introduced the topological clustering benchmark suite to make quantitative comparisons of TOPF704

possible, and benchmarked TOPF on some of the point clouds of [24]. On both the level of point705

features and real-world data sets, it is however hard to establish what a ground truth of topological706

features would mean. Instead we chose to qualitatively report the results of TOPF on proteins and707

real-world data, see Figure 4.708
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NeurIPS Paper Checklist709

1. Claims710

Question: Do the main claims made in the abstract and introduction accurately reflect the711

paper’s contributions and scope?712

Answer: [Yes]713

Justification: The claims about TOPF are supported by the theoretical background in Section 2714

and Section 3, quantitatively and qualitatively validated and benchmarked in Section 5.715

Furthermore, a theoretical guarantee can be found in Section 4.716

Guidelines:717

• The answer NA means that the abstract and introduction do not include the claims718

made in the paper.719

• The abstract and/or introduction should clearly state the claims made, including the720

contributions made in the paper and important assumptions and limitations. A No or721

NA answer to this question will not be perceived well by the reviewers.722

• The claims made should match theoretical and experimental results, and reflect how723

much the results can be expected to generalize to other settings.724

• It is fine to include aspirational goals as motivation as long as it is clear that these goals725

are not attained by the paper.726

2. Limitations727

Question: Does the paper discuss the limitations of the work performed by the authors?728

Answer: [Yes]729

Justification: We believe that being open about limitations is crucial for the practice of730

doing good Science. We briefly discuss the main limitations in ??, and talk in detail about731

limitations in Appendix G. Finally, we are open about limitations when talking about the732

theoretical background and the algorithm in Section 2 and Section 3 and the remark in733

Section 4.734

Guidelines:735

• The answer NA means that the paper has no limitation while the answer No means that736

the paper has limitations, but those are not discussed in the paper.737

• The authors are encouraged to create a separate "Limitations" section in their paper.738

• The paper should point out any strong assumptions and how robust the results are to739

violations of these assumptions (e.g., independence assumptions, noiseless settings,740

model well-specification, asymptotic approximations only holding locally). The authors741

should reflect on how these assumptions might be violated in practice and what the742

implications would be.743

• The authors should reflect on the scope of the claims made, e.g., if the approach was744

only tested on a few datasets or with a few runs. In general, empirical results often745

depend on implicit assumptions, which should be articulated.746

• The authors should reflect on the factors that influence the performance of the approach.747

For example, a facial recognition algorithm may perform poorly when image resolution748

is low or images are taken in low lighting. Or a speech-to-text system might not be749

used reliably to provide closed captions for online lectures because it fails to handle750

technical jargon.751

• The authors should discuss the computational efficiency of the proposed algorithms752

and how they scale with dataset size.753

• If applicable, the authors should discuss possible limitations of their approach to754

address problems of privacy and fairness.755

• While the authors might fear that complete honesty about limitations might be used by756

reviewers as grounds for rejection, a worse outcome might be that reviewers discover757

limitations that aren’t acknowledged in the paper. The authors should use their best758

judgment and recognize that individual actions in favor of transparency play an impor-759

tant role in developing norms that preserve the integrity of the community. Reviewers760

will be specifically instructed to not penalize honesty concerning limitations.761
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3. Theory Assumptions and Proofs762

Question: For each theoretical result, does the paper provide the full set of assumptions and763

a complete (and correct) proof?764

Answer: [Yes]765

Justification: We provide a full set of assumptions for the theorem in Section 4 and a766

complete proof in Appendix B. We give references for all cited propositions and theorems767

exceeding basic common mathematical knowledge.768

Guidelines:769

• The answer NA means that the paper does not include theoretical results.770

• All the theorems, formulas, and proofs in the paper should be numbered and cross-771

referenced.772

• All assumptions should be clearly stated or referenced in the statement of any theorems.773

• The proofs can either appear in the main paper or the supplemental material, but if774

they appear in the supplemental material, the authors are encouraged to provide a short775

proof sketch to provide intuition.776

• Inversely, any informal proof provided in the core of the paper should be complemented777

by formal proofs provided in appendix or supplemental material.778

• Theorems and Lemmas that the proof relies upon should be properly referenced.779

4. Experimental Result Reproducibility780

Question: Does the paper fully disclose all the information needed to reproduce the main ex-781

perimental results of the paper to the extent that it affects the main claims and/or conclusions782

of the paper (regardless of whether the code and data are provided or not)?783

Answer: [Yes]784

Justification: We list all the steps necessary to reproduce TOPF in Section 3, Appendix E, Ap-785

pendix F and talk in detail about the hyperparameter choices in Appendix D.1. Furthermore,786

we will both release the Topological Clustering Benchmark Suite and the code necessary to787

reproduce all experiments in this paper.788

Guidelines:789

• The answer NA means that the paper does not include experiments.790

• If the paper includes experiments, a No answer to this question will not be perceived791

well by the reviewers: Making the paper reproducible is important, regardless of792

whether the code and data are provided or not.793

• If the contribution is a dataset and/or model, the authors should describe the steps taken794

to make their results reproducible or verifiable.795

• Depending on the contribution, reproducibility can be accomplished in various ways.796

For example, if the contribution is a novel architecture, describing the architecture fully797

might suffice, or if the contribution is a specific model and empirical evaluation, it may798

be necessary to either make it possible for others to replicate the model with the same799

dataset, or provide access to the model. In general. releasing code and data is often800

one good way to accomplish this, but reproducibility can also be provided via detailed801

instructions for how to replicate the results, access to a hosted model (e.g., in the case802

of a large language model), releasing of a model checkpoint, or other means that are803

appropriate to the research performed.804

• While NeurIPS does not require releasing code, the conference does require all submis-805

sions to provide some reasonable avenue for reproducibility, which may depend on the806

nature of the contribution. For example807

(a) If the contribution is primarily a new algorithm, the paper should make it clear how808

to reproduce that algorithm.809

(b) If the contribution is primarily a new model architecture, the paper should describe810

the architecture clearly and fully.811

(c) If the contribution is a new model (e.g., a large language model), then there should812

either be a way to access this model for reproducing the results or a way to reproduce813

the model (e.g., with an open-source dataset or instructions for how to construct814

the dataset).815

22



(d) We recognize that reproducibility may be tricky in some cases, in which case816

authors are welcome to describe the particular way they provide for reproducibility.817

In the case of closed-source models, it may be that access to the model is limited in818

some way (e.g., to registered users), but it should be possible for other researchers819

to have some path to reproducing or verifying the results.820

5. Open access to data and code821

Question: Does the paper provide open access to the data and code, with sufficient instruc-822

tions to faithfully reproduce the main experimental results, as described in supplemental823

material?824

Answer: [Yes]825

Justification: We will release the full code necessary to reproduce all experimental results of826

this paper. Furthermore, we will release the topological clustering benchmark suite to the827

public.828

Guidelines:829

• The answer NA means that paper does not include experiments requiring code.830

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/831

public/guides/CodeSubmissionPolicy) for more details.832

• While we encourage the release of code and data, we understand that this might not be833

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not834

including code, unless this is central to the contribution (e.g., for a new open-source835

benchmark).836

• The instructions should contain the exact command and environment needed to run to837

reproduce the results. See the NeurIPS code and data submission guidelines (https:838

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.839

• The authors should provide instructions on data access and preparation, including how840

to access the raw data, preprocessed data, intermediate data, and generated data, etc.841

• The authors should provide scripts to reproduce all experimental results for the new842

proposed method and baselines. If only a subset of experiments are reproducible, they843

should state which ones are omitted from the script and why.844

• At submission time, to preserve anonymity, the authors should release anonymized845

versions (if applicable).846

• Providing as much information as possible in supplemental material (appended to the847

paper) is recommended, but including URLs to data and code is permitted.848

6. Experimental Setting/Details849

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-850

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the851

results?852

Answer: [Yes]853

Justification: We do not train neural networks in this paper. However, we will release854

the topological clustering benchmark suite. We talk in detail about how to reproduce the855

algorithm and the relevant choices of hyperparameters, and how we evaluate the experiments.856

Guidelines:857

• The answer NA means that the paper does not include experiments.858

• The experimental setting should be presented in the core of the paper to a level of detail859

that is necessary to appreciate the results and make sense of them.860

• The full details can be provided either with the code, in appendix, or as supplemental861

material.862

7. Experiment Statistical Significance863

Question: Does the paper report error bars suitably and correctly defined or other appropriate864

information about the statistical significance of the experiments?865

Answer: [Yes]866
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Justification: We provide standard deviations where applicable in Table 1, unless the867

standard deviation is 0, which we talk about in the caption of the table. In Figure 5 we give868

a confidence interval for all the experiments.869

Guidelines:870

• The answer NA means that the paper does not include experiments.871

• The authors should answer "Yes" if the results are accompanied by error bars, confi-872

dence intervals, or statistical significance tests, at least for the experiments that support873

the main claims of the paper.874

• The factors of variability that the error bars are capturing should be clearly stated (for875

example, train/test split, initialization, random drawing of some parameter, or overall876

run with given experimental conditions).877

• The method for calculating the error bars should be explained (closed form formula,878

call to a library function, bootstrap, etc.)879

• The assumptions made should be given (e.g., Normally distributed errors).880

• It should be clear whether the error bar is the standard deviation or the standard error881

of the mean.882

• It is OK to report 1-sigma error bars, but one should state it. The authors should883

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis884

of Normality of errors is not verified.885

• For asymmetric distributions, the authors should be careful not to show in tables or886

figures symmetric error bars that would yield results that are out of range (e.g. negative887

error rates).888

• If error bars are reported in tables or plots, The authors should explain in the text how889

they were calculated and reference the corresponding figures or tables in the text.890

8. Experiments Compute Resources891

Question: For each experiment, does the paper provide sufficient information on the com-892

puter resources (type of compute workers, memory, time of execution) needed to reproduce893

the experiments?894

Answer: [Yes]895

Justification: We list the hardware used in Appendix D and list the required running times in896

our quantitative experiments, see Table 1. Because we did not train neural networks, the897

results are easily reproducible on any PC in reasonable time.898

Guidelines:899

• The answer NA means that the paper does not include experiments.900

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,901

or cloud provider, including relevant memory and storage.902

• The paper should provide the amount of compute required for each of the individual903

experimental runs as well as estimate the total compute.904

• The paper should disclose whether the full research project required more compute905

than the experiments reported in the paper (e.g., preliminary or failed experiments that906

didn’t make it into the paper).907

9. Code Of Ethics908

Question: Does the research conducted in the paper conform, in every respect, with the909

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?910

Answer: [Yes]911

Justification: We have reviewed the NeurIPS Ethics guidelines to make sure our research912

complies with them. (It does comply.)913

Guidelines:914

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.915

• If the authors answer No, they should explain the special circumstances that require a916

deviation from the Code of Ethics.917

24

https://neurips.cc/public/EthicsGuidelines


• The authors should make sure to preserve anonymity (e.g., if there is a special consid-918

eration due to laws or regulations in their jurisdiction).919

10. Broader Impacts920

Question: Does the paper discuss both potential positive societal impacts and negative921

societal impacts of the work performed?922

Answer: [NA]923

Justification: As the paper is of foundational nature, we do not foresee any direct societal924

impacts.925

Guidelines:926

• The answer NA means that there is no societal impact of the work performed.927

• If the authors answer NA or No, they should explain why their work has no societal928

impact or why the paper does not address societal impact.929

• Examples of negative societal impacts include potential malicious or unintended uses930

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations931

(e.g., deployment of technologies that could make decisions that unfairly impact specific932

groups), privacy considerations, and security considerations.933

• The conference expects that many papers will be foundational research and not tied934

to particular applications, let alone deployments. However, if there is a direct path to935

any negative applications, the authors should point it out. For example, it is legitimate936

to point out that an improvement in the quality of generative models could be used to937

generate deepfakes for disinformation. On the other hand, it is not needed to point out938

that a generic algorithm for optimizing neural networks could enable people to train939

models that generate Deepfakes faster.940

• The authors should consider possible harms that could arise when the technology is941

being used as intended and functioning correctly, harms that could arise when the942

technology is being used as intended but gives incorrect results, and harms following943

from (intentional or unintentional) misuse of the technology.944

• If there are negative societal impacts, the authors could also discuss possible mitigation945

strategies (e.g., gated release of models, providing defenses in addition to attacks,946

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from947

feedback over time, improving the efficiency and accessibility of ML).948

11. Safeguards949

Question: Does the paper describe safeguards that have been put in place for responsible950

release of data or models that have a high risk for misuse (e.g., pretrained language models,951

image generators, or scraped datasets)?952

Answer: [NA]953

Justification: We do not foresee any such risks.954

Guidelines:955

• The answer NA means that the paper poses no such risks.956

• Released models that have a high risk for misuse or dual-use should be released with957

necessary safeguards to allow for controlled use of the model, for example by requiring958

that users adhere to usage guidelines or restrictions to access the model or implementing959

safety filters.960

• Datasets that have been scraped from the Internet could pose safety risks. The authors961

should describe how they avoided releasing unsafe images.962

• We recognize that providing effective safeguards is challenging, and many papers do963

not require this, but we encourage authors to take this into account and make a best964

faith effort.965

12. Licenses for existing assets966

Question: Are the creators or original owners of assets (e.g., code, data, models), used in967

the paper, properly credited and are the license and terms of use explicitly mentioned and968

properly respected?969

Answer: [Yes]970
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Justification: We credit the creators and owners of code used in the model, and state the971

licenses.972

Guidelines:973

• The answer NA means that the paper does not use existing assets.974

• The authors should cite the original paper that produced the code package or dataset.975

• The authors should state which version of the asset is used and, if possible, include a976

URL.977

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.978

• For scraped data from a particular source (e.g., website), the copyright and terms of979

service of that source should be provided.980

• If assets are released, the license, copyright information, and terms of use in the981

package should be provided. For popular datasets, paperswithcode.com/datasets982

has curated licenses for some datasets. Their licensing guide can help determine the983

license of a dataset.984

• For existing datasets that are re-packaged, both the original license and the license of985

the derived asset (if it has changed) should be provided.986

• If this information is not available online, the authors are encouraged to reach out to987

the asset’s creators.988

13. New Assets989

Question: Are new assets introduced in the paper well documented and is the documentation990

provided alongside the assets?991

Answer: [Yes]992

Justification: The code and benchmark suite which we will release with the paper are993

described and documented in the paper.994

Guidelines:995

• The answer NA means that the paper does not release new assets.996

• Researchers should communicate the details of the dataset/code/model as part of their997

submissions via structured templates. This includes details about training, license,998

limitations, etc.999

• The paper should discuss whether and how consent was obtained from people whose1000

asset is used.1001

• At submission time, remember to anonymize your assets (if applicable). You can either1002

create an anonymized URL or include an anonymized zip file.1003

14. Crowdsourcing and Research with Human Subjects1004

Question: For crowdsourcing experiments and research with human subjects, does the paper1005

include the full text of instructions given to participants and screenshots, if applicable, as1006

well as details about compensation (if any)?1007

Answer: [NA]1008

Justification: This paper does not involve crowdsourcing nor research with human subjects.1009

Guidelines:1010

• The answer NA means that the paper does not involve crowdsourcing nor research with1011

human subjects.1012

• Including this information in the supplemental material is fine, but if the main contribu-1013

tion of the paper involves human subjects, then as much detail as possible should be1014

included in the main paper.1015

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1016

or other labor should be paid at least the minimum wage in the country of the data1017

collector.1018

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human1019

Subjects1020
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Question: Does the paper describe potential risks incurred by study participants, whether1021

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1022

approvals (or an equivalent approval/review based on the requirements of your country or1023

institution) were obtained?1024

Answer: [NA]1025

Justification: This paper does not involve crowdsourcing nor research with human subjects.1026

Guidelines:1027

• The answer NA means that the paper does not involve crowdsourcing nor research with1028

human subjects.1029

• Depending on the country in which research is conducted, IRB approval (or equivalent)1030

may be required for any human subjects research. If you obtained IRB approval, you1031

should clearly state this in the paper.1032

• We recognize that the procedures for this may vary significantly between institutions1033

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1034

guidelines for their institution.1035

• For initial submissions, do not include any information that would break anonymity (if1036

applicable), such as the institution conducting the review.1037
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