Under review as a conference paper at ICLR 2025

STRIDE: A TOOL-ASSISTED LLLM AGENT FRAME-
WORK FOR STRATEGIC AND INTERACTIVE DECISION-
MAKING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) like GPT-4 have revolutionized natural language
processing, showing remarkable linguistic proficiency and reasoning capabilities.
However, their application in strategic multi-agent decision-making environments
is hampered by significant limitations including poor mathematical reasoning, dif-
ficulty in following instructions, and a tendency to generate incorrect informa-
tion. These deficiencies hinder their performance in strategic and interactive tasks
that demand adherence to nuanced game rules, long-term planning, exploration
in unknown environments, and anticipation of opponents’ moves. To overcome
these obstacles, this paper presents a novel LLM agent framework equipped with
memory and specialized tools to enhance their strategic decision-making capabil-
ities. We deploy the tools in a number of economically important environments,
in particular bilateral bargaining and multi-agent and dynamic mechanism design.
We employ quantitative metrics to assess the framework’s performance in various
strategic decision-making problems. Our findings show that our enhanced frame-
work significantly improves strategic decision-making capability of LLMs. While
we highlight the inherent limitations of current LLMs, we demonstrate the im-
provements through targeted enhancements, suggesting a promising direction for
future developments in LLM applications for interactive environments.

1 INTRODUCTION

Large language models (LLMs) have demonstrated exceptional proficiency in generating coherent
natural language from textual inputs (Bubeck et al.,2023)). They display human-like strategic think-
ing and excel at flexible reasoning with nuanced, context-specific information (Aher et al., 2022}
Kwon et al.} 2023; Suzgun et al., | 2022). These successes have sparked interest in their potential for
decision-making in complex environments (Yao et al.,[2022} |Shen et al., [2024} [Wang et al., 2023).

To further integrate LLMs into our society, such as deploying them as fiduciary agents on behalf of
individuals or organizations in a competitive environment where human and Al agents coexist, the
ability to reason strategically is of vital importance. However, due to their inherent limitations in
basic mathematics (Bubeck et al., |2023)), instruction following (Jang et al.| [2022), and susceptibility
to hallucinations (Chen et al., [2023), the following challenges exist: LLMs may fail to accu-
rately interpret game rules and objectives expressed in natural language, e.g., form a well-defined
utility function that reflects their preference over possible outcomes (Guo et al., |[2023); LLMs
are generally inept at long-horizon planning to maximize their utility, which is essential in scenarios
where decisions have extended consequences (Huang et al.| 2024]); They exhibit poor capabili-
ties in strategic exploration of unknown environments (Krishnamurthy et al.,2024), which hampers
their ability to optimize decisions on unforeseen conditions; LLMs have limited capacity in an-
ticipating opponents’ moves and adapting their strategies accordingly (Park et al.| [2024)), which is
crucial for any competitive interaction. These limitations collectively underscore the challenges in
deploying LL.Ms for nuanced and dynamic strategic reasoning tasks.

This paper seeks to improve the LLM agent’s reasoning capabilities in these scenarios with the help
of tools and external memory. For evaluation, we choose a collection of decision-making problems
that highlight the aforementioned challenges in significant and economically relevant real-world

Under review as a conference paper at ICLR 2025

Problem Description The alternating offer bargaining game proceeds over several rounds with a finite deadline T, during which
the buyer and seller take turns proposing prices. The buyer's value, denoted as vy, is the highest price the buyer is willing to pay,
while the seller's value, vs, is the lowest price the seller is willing to accept. Both players' preferences for immediate transactions
are captured by their respective discount factors, &, for the buyer and & for the seller, where J;, 65 € (0,1). If an agreement is
reached at a price p in round ¢t < T, the buyer's utility is u, = (v, — p)8E %, and the seller's utility is ug = (p — v5)8E~2. If no
agreement is reached by the deadline, the negotiation ends with no transaction, and both players get 0 utility.

Public information v, = 10,v3, =0, 8, = 0.7, 6, = 0.7, T = 4

Action: $5

Message: I propose a price of $5. This offer ensures an equal utility of 5 for both me and the seller,

making it fair and optimal. Accepting this price now grants the seller a better utility than rejecting it
\and proposing a price in the next time step due to the discount factor.

Action: $7.9 %
Message: I reject the proposed price of $5. As a counteroffer, I propose a price of $7.9. If the buyer

accepts this price now, the buyer gets a utility of 1.47, which avoids the risk of getting zero utility if Seller
we do not reach an agreement by the deadline and the decrease of utility caused by more bargaining

rounds. Therefore, accepting my proposed price is optimal for the buyer.

Figure 1: This figure illustrates the alternating offer bargaining game with complete information,
where the buyer and seller engage in multiple rounds of negotiation over the price of an item using
natural language. To make optimal decisions, the agents must extract offer details from the dialogue,
predict the opponent’s behavior, and evaluate the utilities associated with different decisions.

strategic settings: , where the agents negotiate prices while assessing
utility, inferring private values, and predicting opponents’ behaviors, addressing Challenges (i), (ii),
and (iv) (Rubinstein |1982; Fudenberg & Tirolel |1991); , where the
agent must explore the unknown environment and plan over a long horizon to compute the optimal
policy, addressing Challenges (ii) and (iii) (Sutton & Barto} 2018]); s
a multi-agent extension of MDP where the mechanism designer must anticipate agents’ strategic
behavior and ensure truthful reporting, covering Challenges (i)-(iv) (Bergemann & Vilimiki, |2010;
2019). For each scenario, we provide quantitative metrics to assess the agent’s performance. As
illustrated by the example of bilateral bargaining problems in Figure [1| these problems necessitate
not only the interpretation and response to multiple rounds of dialogue, but also the computation of
optimal actions based on the information extracted during interactions. This goes beyond typical
LLM tasks, where output is often limited to text generation or language understanding without
involving complex strategic reasoning (Yang et al., 2018} |Shridhar et al.| 2020). Additionally, unlike
tasks in which LLMs generate code to solve static math problems (Cobbe et al.| 2021} [Imani et al.,
2023)), our agent operates in a dynamic and evolving environment, where it continually interacts with
the environment, gathering new knowledge and performing new computations with each interaction.

In light of these unique challenges, we propose a novel LLM agent framework, named STRIDE,
which is specifically designed for the multi-step reasoning in STRategic and Interactive DEcision-
making problems. The LLM, which serves as the controller of the whole framework, orchestrates
the reasoning process through a sequence of structured Thought units. Each Thought unit, in ad-
dition to typical textual reasoning (Yao et al., 2022), also outlines a series of operations, which
are predefined Python functions managing the low-level calculations in various decision-making
scenarios. Additionally, an external working memory is integrated to preserve crucial parameters.
Therefore, Challenge (i) can be addressed by executing an operation that evaluates the agent’s utility
in the Thought unit. Challenge (ii), which is mainly caused by the information loss in long-context
(Liu et al., |2024), can be addressed by extracting and storing important problem parameters and
intermediate results in the working memory. Challenges and can be addressed through a
combination of operations that perform strategic exploration or belief updates. We also explored
equipping STRIDE with the ability to synthesize operations on-the-fly when predefined ones are un-
available. Through an extensive evaluation of the selected decision-making problems, we show that,
with few in-context examples, STRIDE can make strategic decisions on new problem instances with
high success rate. This highlights the transformative potential of integrating LLMs with specialized
tools, memory, and control structures to enhance strategic decision-making capabilities.

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Evaluating LLMs’ Reasoning in Strategic Environments. Recent studies have investigated
LLMs’ capacity for strategic reasoning in settings such as matrix games (e.g., Dictator and Pris-
oner’s Dilemma) (Brookins & DeBacker, [2023; |Lore & Heydaril 2023 [Fan et al., 2023} |Akata
et al.,2023;/Guo et al.,[2023)), focusing on zero-shot prompting to evaluate their ability to act strate-
gically with minimal input. [Davidson et al.| (2024) and |Bianchi et al.| (2024) extended this line of
work to bargaining games, showing that while LLMs can produce plausible strategies, they often
lack consistency and a deep understanding of game dynamics. Few-shot chain-of-thought (CoT)
prompting has been proposed to enhance strategic reasoning in matrix and multi-turn bargaining
games (Gandhi et al.| [2023), but results indicate persistent challenges with complex rules or long
horizons. Similarly, [Huang et al.| (2024) highlighted LLMs’ difficulty in generalizing reasoning
across diverse game contexts. While these studies advance understanding of LLMs in strategic en-
vironments, they treat LLMs as isolated models, relying solely on intrinsic reasoning capabilities
without leveraging tools or memory—a gap our work aims to address.

Optimization in Static and Structured Contexts. In contrast to dynamic strategic settings, LLMs
have been applied to solve static, well-structured optimization problems (Ramamonjison et al., 2023
Tang et al., 2024), where textual problem descriptions are translated into Python code to compute
predefined objectives. Some works integrate tools and memory (Xiao et al., 2023 |AhmadiTeshnizi
et al.| [2024; [Li et al., [2023)), yet these approaches focus on producing single, one-off solutions with-
out iterative adaptation or interaction. Our framework differs fundamentally by addressing dynamic
decision-making, requiring LLMs to adapt computations and strategies to evolving environments.
Moreover, beyond generating solutions, our approach emphasizes articulating algorithmic reasoning
in natural language, as shown in Figure [2| This enhances both interpretability and adaptability—a
critical capability absent in static optimization contexts.

Broader Applications of LLLM-based Agents. LL.M-based agents have also found applications
in diverse domains, including social simulation to model human behavior (Park et al., |2023}; |Aher,
et al.,[2023)), scientific research for automating experiment design and execution (Boiko et al.,|[2023),
software development using collaborative agents (Qian et al., 2023), and robotics for advanced ma-
nipulation and navigation (Ahn et al.}|2022). These systems often employ modular architectures with
memory (Zhu et al.| 2023)) and planning modules (Yao et al.,[2022), enabling adaptability in dynamic
scenarios. However, they prioritize context-aware interactions and flexibility over achieving optimal
behavior. While this underscores the broad applicability of LLM agents, our work addresses the
distinct challenge of designing agents that not only adapt to dynamic and evolving environments but
also consistently achieve optimal performance—bridging the gap between flexibility and precision.

3 LLM AGENT FOR STRATEGIC AND INTERACTIVE DECISION MAKING

As shown on the left side of Figure 2] our primary strategy to address the four challenges in Sec-
tion [T]is to provide the LLM with an operation library, i.e., a set of Python functions taking care
of lower-level computation in various decision-making problems and a working memory retaining
important parameters. Most importantly, we introduce a reasoning module that acts as the central ex-
ecutive, orchestrating the information flow among components and synthesizing structured Thought
sequences as illustrated on the left side of Figure [2|to solve complex problems.

3.1 REASONING VIA A SEQUENCE OF Thought UNITS

To effectively leverage the operation library to make strategic decisions during the interaction, we
propose a unique design for the reasoning module, which is empowered by a pretrained LLM like
GPT-4 (Achiam et al. 2023) or Claude (Anthropic, [2024), in the STRIDE framework. Take the
bargaining game illustrated in Figure [1| as an example. Suppose it is the seller’s turn to decide
whether to accept the buyer’s offer or return a counteroffer. As shown on the top left of Figure [2
the message containing the buyer’s offer will be used to prompt the LLM to initiate the reasoning
process. Given this message, the LLM generates a Thought unit, which is a structured output whose
text field provides reasoning about what needs to be done to answer the question and the operations
field comprises a sequence of operations that takes care of the necessary computation. As shown
on the right side of Figure 2} the first Thought unit in the reasoning process decomposes the task of

Under review as a conference paper at ICLR 2025

Buyer: I propose a price of $5. This offer ensures an equal utility of 5 for both me and the seller,
making it fair and optimal. Accepting this price now grants the seller a better utility than rejecting it
and proposing a price in the next time step due to the discount factor.

Thought

Working
text: Operation Library ~ + orking

cxlsts‘.’T 1&’\11 op

Memory
1 should compare the utility I get
by accepting buyer’s offer and
the utility of counteroffer

operations:

Op3

Generated Reasoning for Seller

Thought: I should compare the utility for accepting the offer and for counteroffer.
Thought: First, compute the utility of accepting buyer’s offer now.

Operation: call CaleUtil with inputs {'agent’: seller’, 'price’: 5.0, 'time_step’: 1}.
Result: Seller’s utility is 5.0

Thought: Second, compute the utility for offering the SPE price at time step 2. We can
compute the SPE via backward induction from the last time step 4 to time step 2. Since 4
is even, it will be my turn to make the final offer. Buyer get 0 utility for rejection.
Therefore, we can compute SPE at time step 4 by calling BackwardOneStep, and then
compute the utility by calling CalcUtil.

Operation: call BackwardOneStep ...

Result: The SPE price at time step 4 is $10

Op2
Opl: CalcUtil

Operation: call CalcUtil with inputs {'agent’: seller’, 'price’: 10.0, 'time_step’: 4}.

Operations Execution At
Result: Seller’s utility is 3.43

name: CalcUtil
arguments:

tagent: sellen priver 5 time.step: 1} Result: The SPE price at time step 2 is $7.9

Operation: call CaleUtil with inputs {'agent’: seller’, 'price’: 7.9, 'time_step’: 4}.
Result: Seller’s utility is 5.53
Thought: Since the utility of offering $7.9 is higher than accepting $5, I should ...

exit?
Next

Though

False True

Seller: I propose a counteroffer of $7.9. Accepting this price now is optimal to the buyer ...

Figure 2: In STRIDE framework, the LLM controls the execution of operations and access to work-
ing memory via a sequence of Thought units. Each Thought unit is a structured data containing three
fields: (i) text, which suggests the next step of strategic reasoning and summarize important infor-
mation; (ii) operations: a list of operations to execute, in order to compute or retrieve information
necessary for reasoning; (iii) exit: a boolean value indicating whether the reasoning process is com-
pleted. With proper operations and in-context examples, STRIDE can emulate various algorithmic
behaviors, e.g. backward induction for bargaining games, to facilitate strategic decision making.

finding the optimal response to the buyer into two subtasks: computing the utility the seller will get
by accepting the offer now; and computing the utility the seller will get by making a counteroffer in
the next round, which will be completed with the help of the available operations. In particular, to
support decision-making in this problem, the following operations are provided in the library:

* CalcUtil: calculate buyer or seller’s utility, with the specified price and time step as inputs;
* BackwardOneStep: compute the subgame perfect equilibrium (SPE) price using one step of
backward induction reasoning based on the opponent’s utility if he/she chooses to counteroffer.

As illustrated in Figure 2] CalcUrtil can be used to compute the seller’s utility for accepting the
buyer’s offer now. Similarly, the seller’s utility for making a counteroffer in the next round (assum-
ing rational buyer behavior) can be computed by first calling BackwardOneStep repetitively to get
the SPE price for the next round and then calling CalcUftil to get the corresponding utility. After
specifying the required operations in the Thought unit, the LLM then extracts the relevant input
variables from the context, saves them in the working memory, and then executes the operations to
obtain the results. In the end, the decision of whether to accept the offer or make an counteroffer
can be decided by comparing the utilities of the two options as shown at the bottom of Figure 2]

Error Handling and Reflection. Some additional measures are used to improve the robustness of
the reasoning process. Before executing the selected operations, the Thought unit undergoes a vali-
dation process based on predefined rules to ensure its integrity. For example, a common rule applied
in our experiments is the mutual exclusivity of the exit condition and the presence of operations:
the Thought unit must not simultaneously specify an exit as true while containing non-empty opera-
tions, as this often indicates a premature termination of the reasoning process. If this conflict occurs,
the system will generate an appropriate error message and prompt the LLM to revise the Thought
unit. This mechanism ensures that operations proceed only with validated and logically consistent
instructions. Enhanced applications of this functionality involve utilizing an additional LLM to ver-
ify whether the newly generated Thought unit adheres to the reasoning logic and language style
presented in the in-context examples. This step can improve consistency and prevent hallucinations.
With the Thought unit validated, the selected operations will be executed in the specified order. The
outcomes of these operations are then utilized to generate the subsequent Thought unit. This process
continues until Exit is set to be true, signaling the completion of the reasoning process.

Working Memory. As mentioned in Section [I| for long-horizon planning, LLMs may forget or
neglect important information mentioned early in the context. Moreover, an accurate description
of the problem instance sometimes require parameters of high dimensions, e.g., transition matrices
of MDP. In this case, storing these parameters in the context history is costly and prone to error.

Under review as a conference paper at ICLR 2025

Therefore, STRIDE is equipped with a working memory, i.e., a Python dictionary, that stores the
parameters extracted from the context, as well as intermediate results computed by the operations.

Operation Library. What sets our work apart from methods like ReAct (Yao et al. 2022)) and
Reflexion (Shinn et al.| |2024) is the sophisticated integration of the operations by the Thought se-
quence to execute complex calculations during text-based reasoning and interactions. For instance,
these operations can calculate the utility of the agent based on the outcomes of a game or update the
belief about uncertainty on the environment or the other agents. A combination of such operations
allows STRIDE to implement various algorithmic behaviors such as dynamic programming to solve
MDPs and Bargaining Games, facilitating a deeper and more precise decision-making process. They
also let STRIDE scale to complex problems by abstracting detailed computations. This scalability is
crucial in handling larger and more challenging scenarios. In addition to strategic decision-making,
STRIDE offers a flexible framework that can be extended to a diverse array of problem domains,
where algorithmic behavior of LLMs is critical. To tailor STRIDE to other domains, it suffices
to construct domain-specific operations and in-context examples to emulate other algorithms using
these operations. As we will see in the sequel, STRIDE can be applied to MDP, dynamic mechanism
design, two-player bargaining games, Tic-Tac-Toe, Connect-N, etc.

Generation of In-Context Examples In-context examples teach the LLM to combine operations in
a structured way to emulate reference algorithms—standard methods for solving decision-making
problems, such as backward induction for computing SPE in bargaining games and value iteration
for computing optimal Q-values in MDPs. These algorithms serve as benchmarks for the target
behaviors we aim to replicate. To generate effective in-context examples:

* Implement Reference Algorithms: Each reference algorithm is implemented using operations
provided in the library, such as CalcUt il and BackwardOneStep in Figure[2] These modular
implementations ensure that the algorithms are expressed in terms of the same reusable operations
the LLM will employ, making the connection between the algorithm and the operations explicit.

* Add Explanatory Comments: Each algorithm step is annotated with natural language comments
explaining its purpose and logic. For well-known algorithms, such as value iteration for MDPs,
these explanations can often be generated automatically by LLMs. However, for less popular or
novel solutions, manual descriptions are necessary to ensure the logic is accurately conveyed.

* Generate Worked Examples: The augmented algorithms are run on sampled problem instances,
producing sequences of operation calls, intermediate results, and explanatory comments to demon-
strate how to solve the problem using the operations.

The definition of reference algorithms and the added comments are given in Appendix [B|for clarity
and reproducibility. This process equips the LLM with clear, structured demonstrations, making it
reason and compute effectively while aligning its behavior with the logic of the reference algorithms.

3.2 OPERATION SYNTHESIS

As outlined in Section|[I] our goal is to integrate LLMs into real-world applications where they can
act as fiduciary agents in competitive environments. To ensure the robustness and reliability needed
for these tasks, STRIDE is primarily built to use pre-defined, validated operations. This approach
allows us to optimize complex computations and minimizes the risk of errors from on-the-fly code
generation. By providing reusable and modular components, we ensure reliable performance while
allowing the LLM to focus on its strength—synthesizing high-level workflows, as shown in Figure
[2] and adapting to various contexts without handling low-level computations. Nevertheless, we have
included functionality that allows STRIDE to dynamically generate operations when pre-defined
ones are unavailable or when robustness is less critical. These cases could benefit from the LLM’s
flexibility to create on-demand solutions. While this feature showcases the LLM’s adaptability,
it remains secondary to our framework’s primary focus on the stability provided by pre-defined
operations in structured, high-stakes decision-making tasks.

Specifically, we enable this functionality by augmenting the Thought structure depicted in Figure 2]
with an optional field called new_operation. Therefore, as illustrated in Figure[3] apart from choos-
ing to call the operations available in the library, STRIDE can opt to create a new operation via
new_operation, which specifies the name of the new operation and a description of its functionality.
Then an iterative procedure is triggered which alternates between generating Python code to imple-
ment this functionality by the LLM and executing the code on a copy of the working memory to get

Under review as a conference paper at ICLR 2025

Thought o Eb
text: Operation Library RAEle = O-,

. Memory
I should create a new operation Interpreter
to compute the utility I get by error execute
accepting buyers offer successful
pLng ouy . save copy o
. execution ’ message
new_operation:
def CalcUtil(agent, price, time_step, v_b, v_s, delta_b, delta_s):
arguments: if agent == "seller":
. . . return (price-v_s)*delta_s**(time_step-1)
- operation_name: CalcUtil elif agent == "buyer’:
- operation description: return (v_b-price)*delta_b**(time_step-1)
- . else:
calculate the utility of the raise ValueError(f“Unknown agent value: {agent}")

seller based on ...
Python Code

Figure 3: In cases where predefined operations are unavailable or insufficient, e.g. the operation to
calculate the seller’s utility is missing as shown on the left, STRIDE can dynamically synthesize a
new operation in the midst of the reasoning process by defining its name and expected functionality.
This information is then used by the LLM to generate Python code, which is executed on a copy of
the current working memory for validation. If any syntax or runtime errors occur, they will be used
to prompt the LLM to iteratively improve the code. The process repeats until successful execution,
after which the generated code is saved as a new operation.

feedback from the code interpreter. Upon successful execution, the generated Python code, together
with its description, will be saved as a new operation in the library for future use.

4 EXPERIMENTS

For each decision-making problem mentioned in Section [T} we first construct the relevant opera-
tions, so that STRIDE is able to emulate the reference algorithm when solving each problem. De-
scriptions of the selected reference algorithms, the constructed operations, as well as the procedure
to generate the in-context examples, can be found in Appendix [B] To evaluate whether STRIDE can
reliably solve new problem instances given provided in-context examples, we repeat experiments
on randomly sampled instances and report the averaged results. We include the following baselines
for comparison: (i) zero-shot Chain-of-Thought (CoT), (ii) zero-shot CoT with code interpreter,
and (ii1) few-shot CoT with code interpreter, where the latter two can utilize the coding capability of
LLMs (through OpenAl Assistants API) to write and execute programs to solve the decision-making
problems. Compared with (ii), (iii) is additionally provided with example implementation of the ref-
erence algorithm for each problem. Prompts used in all the experiments are given in Appendix [C|
We also conducted additional experiments on other problem setups like Tic-Tac-Toe and Connect-N
games to further demonstrate the generality of STRIDE. Details about these experiments are given

in Appendix [D]
4.1 MARKOV DECISION PROCESSES

We first evaluate STRIDE and the baselines (GPT-3.5-Turbo-0125 with temperature set to 0 is used
for all agents) on MDPs with both known model, where the transition function P and reward function
R are given to the agent at the beginning, and unknown model, where the agent needs to estimate P
and R during online interactions. In the following paragraphs, we first provide a formal definition
of the objective of the agent under each setting and then discuss the experiment setup and results.

Agent’s Objective in MDP with Known Model. We consider a finite-horizon MDP, where the
agent interacts with the environment for some fixed H steps. Ateachsteph = 1,2,..., H, the agent
observes the current state s;, € S, and then chooses action a;, € A. The environment then produces
a reward feedback R(sp,ay,) to the agent, and then the state transits to s,4+1 ~ P(-|sp, ap). When
the transition function P and reward function R are known to the agent, the objective is to find a
policy, denoted as 7 = {m, }2L | with 7, : S — A(A) for h € [H], that maximizes the expected
cumulative rewards over H time steps:

maXxsz ET(,P [Zthl R(Sh, ah)] = ‘/lﬂa (1

Under review as a conference paper at ICLR 2025

Table 1: Success rate in taking the optimal action (20 runs).

H S A zero-shot CoT zero-shot CoT w/code few-shot CoT w/code STRIDE(VI) STRIDEMCTS)
5 3 3 0.58 0.74 0.70 0.98 0.87
10 3 3 0.62 0.75 0.69 0.87 0.80
5 10 10 0.24 0.48 0.60 0.96 0.82
10 10 10 0.21 0.50 0.68 0.82 0.74

zero-shot CoT
v --- zero-shot CoT w/ code
few-shot CoT w/ code
—-— UCB-VI
—24 —— STRIDE

Cumulative Rewards

T T T T T T T T T
0 5 10 15 20 25 30 35 40
Episode

Figure 4: Comparison of cumulative rewards over episode. We observe that both STRIDE and
UCB-VI exhibit rapid increases in their cumulative rewards, converging by approximately the 10-th
episode. This indicates that STRIDE can effectively explore the environment by emulating UCB-
VI in its reasoning. In contrast, the cumulative rewards of other baseline methods display ongoing
fluctuations throughout the episodes, showing poor exploration ability in uncertain environments.

where the expectation is with respect to the randomness in state transitions and the stochasticity
of m. There are numerous ways to compute the optimal policy. Here we consider two reference
algorithms, i.e., value iteration (VI) and MCTS for STRIDE. Let’s denote the optimal Q value
function as Q7 (s, a) for h € [H]. Then for any state s;, encountered by the agent at step h € [H],
we check whether the action ay, taken by the agent satisfies aj, = arg max, 4 Q7 (s, a), and report
the average success rate in the following experiment.

Experiment Setup and Results. We evaluate on MDPs with horizon length H € {5, 10}, number
of states |S| € {3,10}, and number of actions |A| € {3,10}. For each configuration, we repeat
the experiment for 20 times on randomly generated instances, by sampling dense tensors of size
RS*AXS and RS*4 as the transition function and reward function, respectively. The average suc-
cess rates are reported in Table[T] For STRIDE, we only provide it with a single in-context example
that solves a MDP instance with H = 5,5 = 5, A = 5. We can see that STRIDE, either emulating
VI or MCTS, outperforms the baselines in taking the optimal actions on the random MDP instances.

Agent’s Objective in MDP with Unknown Model. In this setting, P and R are unknown to the
agent, but the agent is allowed to repetitively interact with the same MDP instance for K episodes
to explore and update its belief about P and R using the observed feedback. The agent’s objective
is to choose a sequence of policies 7!, 72, ..., 7% to minimize the cumulative regret:

minﬂ.l’ﬂ.z,m’ﬂ.K Zf:l (Vlﬂ—* — Vlﬂ—k). (2)

In addition to the challenge of long-horizon planning exemplified by equation [I] equation [2]also re-
quires addressing the exploration-exploitation dilemma. Specifically, the agent needs to strategically
balance between exploring unfamiliar state-action pairs to learn P and R, and exploiting the current
knowledge about P and R to obtain more rewards. A classic solution to this problem is UCB-VI
(Azar et al.,2017), which is used as the reference algorithm for STRIDE. To help the baselines work
with long context history (KX x H interactions in total), an external summary of the past episodes is
added in their prompts at the beginning of each episode, similar to [Krishnamurthy et al.| (2024).

Experiment Setup and Results. In addition to STRIDE and the aforementioned baselines, we
also include UCB-VI algorithm in the experiments, which serves as a reference. We evaluate on 10
randomly generated MDP instances with H = 5, |S| = 3, and |.A| = 3, with the agents repetitively
playing each instance for a total number of K = 40 episodes, and average the results over the 10

Under review as a conference paper at ICLR 2025

Table 2: Success rate in computing the VCG mechanism (10 runs).
N zero-shot CoT zero-shot CoT w/code few-shot CoT w/code STRIDE

2 0.69 0.63 0.70 0.89
4 0.57 0.63 0.54 0.90
6 0.49 0.45 0.44 0.86

instances. In Figure[d] we report how the cumulative rewards collected in each episode change as the
number of episodes experienced by the agent increases. STRIDE reliably implements the behavior
of UCB-VI algorithm using the provided operations, and thus converges to the optimal policy at
a similar rate as UCB-VI. In comparison, the baselines, though given additional summarization of
history, fail to find the optimal policy as they cannot efficiently explore the environment.

4.2 DYNAMIC MECHANISM DESIGN

Section [.1] presents the challenges of long-horizon planning and strategic exploration in MDP,
which only involves a single agent. Here we further evaluate STRIDE (GPT-40-2024-05-13 with
temperature set to 0) on dynamic Vickrey-Clarke-Groves (VCG) mechanism design problem (Berge-
mann & Vilimaki, 2019), a multi-agent generalization of MDP, which further necessitates the
agent’s ability to anticipate other agents’ behaviors and plan accordingly.

Agent’s Objective in Dynamic Mechanism Design. Consider a mechanism designer and a set of
N agents. The mechanism designer needs to elicit the reward functions { R;}¥_, from the N agents,

with each R; : § x A — R, and the agents can be untruthful. Based on reported reward functions,
the designer chooses a policy m : & — A(A). At each step h € [H], the designer takes action
ap ~ m(sp), e,g., the allocation of some scarce resource among I agents, and each agent i € [N]
receives reward R;(sp, an), i.e., agent ¢’s valuation for ay, at state s;. After H steps of interactions,
the designer needs to charge each agent ¢ some price p; € R. The objective of each agent i is to

maximize its utility u; (R;) = V™ (P, R;) — p; by strategically reporting the reward function R;. The
objective of the designer is to maximize the expected cumulative sum of rewards, by strategically
choosing the policy and pricing rule. This can be formulated as the following optimization problem

™ AD; YN = MaXr {p;}icin V(P i Bi)
st ui(R;) > ui(R;),VR;, i

where the constraint guarantees the incentive compatibility of all agents. The success rate for the
experiments on this problem is computed by considering: (i) whether the chosen action ay, satisfies
ap, = 7} (sy) for h € [H]; and (ii) whether the charged price p; satisfies [p; — p}| < 0.01.

3)

Experiment Setup and Results. We evaluate on problem instances with horizon H = 5, number
of states |S| = 3, number of actions |.A| = 3, and number of agents N € {2,4,6}. For each
configuration, we repeat the experiment 10 times on randomly generated instances, by sampling
dense tensors of size R¥*4*5 and RV*S*4 a5 the transition function and reward functions for N
agents, respectively. The average success rate are reported in Table[2] We observe that the baselines,
despite being capable of computing the optimal action most of the times, cannot generalize the same
value iteration procedure to compute the VCG price correctly. In comparison, STRIDE can reliably
compute the VCG price on most problem instances, which leads to its higher success rate.

4.3 BARGAINING GAMES

We further evaluate STRIDE and the baselines (GPT-40-2024-05-13 with the temperature set to 0)
on bargaining games, in which a buyer and a seller engage in repeated negotiation for a finite number
of steps. In order to maximize their utility, both the buyer and the seller need to predict the response
of their opponent over long-horizon, based on the potentially incomplete information they have.

Alternating Offer Bargaining under Complete Information. We first consider the elementary yet
seminal setting in which a buyer and a seller engage in a T-step bargaining process (with 7" < 00)
over price p of the good. Specifically, at time step ¢t = 1, the buyer offers a price to the seller and the
game ends if the seller accepts the offer. Otherwise, the game continues to the next time step ¢ = 2,

Under review as a conference paper at ICLR 2025

Table 3: Success rate in reaching SPE of single-issue bargaining (10 runs).
T zero-shot CoT zero-shot CoT w/code few-shot CoT w/code STRIDE

3 0.50 0.35 0.50 0.79
6 0.50 0.27 0.46 0.91
9 0.34 0.18 0.27 0.74

Table 4: Outcomes of STRIDE and zero-shot CoT bargaining with each other.
STRIDE buyer vs zero-shot CoT seller zero-shot CoT buyer vs STRIDE seller

T avg SPE price avg sale price avg SPE price avg sale price
3 0.13 0.13 0.22 0.43
6 0.57 0.56 0.65 0.70
9 0.28 0.27 0.49 0.70

Table 5: Success rate in reaching SE of single-issue bargaining with one-sided uncertainty (10 runs).
T zero-shot CoT zero-shot CoT w/code few-shot CoT w/code STRIDE

3 0.47 0.29 0.38 0.79
6 0.44 0.32 0.30 0.75
9 0.49 0.38 0.23 0.69

where the seller makes a counteroffer. They repeat this process until the deadline 7" is reached.
Assuming the buyer’s value for the item is 1 and the seller’s cost is 0, then the utility function of the
buyer, denoted as uy, and that of the seller, denoted as w, for some price p at time step ¢ are

up(p,t) = (1 —p) - 611 if t < T, and O otherwise;

4)
us(p,t) = (p—0) - 0¢7 1 if t < T, and 0 otherwise. (

respectively, with dy, d5 € [0, 1] being the discount factor of their utilities over time. Note that in this
setting, the buyer’s value 1, the seller’s cost 0, and the values of d;, 65 and T" are public information.
The optimal decision for either agent, assuming his/her opponent is also acting optimally, i.e., being
rational, is to play the Subgame Perfect Equilibrium (SPE) strategy, which, in this setting, is unique
and can be computed using backward induction (Fudenberg & Tirole, |1991). Description of this
reference algorithm and the operations constructed for STRIDE is given in Appendix [B] To evaluate
whether STRIDE and the baselines can make optimal decisions, we let buyer and seller empowered
by the same method to bargain with each other, and report the success rates in reaching SPE.

Experiment Setup and Results. We evaluate on bargaining games with deadline T € {3,6,9}.
In each case, we repeat the experiments on 10 randomly generated instances, by sampling discount
factors &y, 05 € U(0.5,1.0). The average success rates are reported in Table [3] We can see that,
none of the baseline methods attains success rate higher than 0.5, which is because when it is their
turn to offer, they cannot offer a price close to SPE, though being explicitly instructed in the prompt
to assume rational opponent behavior when making decisions. It is worth noting that the existence
of the code interpreter did not provide any advantage this time compared with the results for MDP.
Though the LLM did attempt to implement the backward induction algorithms to solve SPE, they
failed to get everything right and produce the correct results. We hypothesize that this distinction
is due to the insufficiency of training data related to the implementation of backward induction
algorithms for bargaining, especially compared with the algorithms for MDP.

Moreover, to further illustrate the advantage of being able to strategically reason about the decisions
in bargaining, we pit STRIDE against zero-shot CoT, the best-performing baseline in Table[3] The
results (averaged over 10 randomly generated instances) are summarized in Table @] We can see
that, by emulating the reference algorithm, STRIDE guarantees an outcome that is no worse than
SPE regardless of the role it plays. As mentioned in the previous paragraph, the baseline cannot
accurately compute SPE price, and thus, when it serves as the buyer who needs to make the initial
offer, often ends up with a sale price that is higher than SPE price, which shows its sub-optimality.

Seller Making Offers under Uncertainty of Buyer’s Value. Now we consider a more challenging
scenario where the buyer’s value, denoted as b € [0, 1], is privately known to himself, and thus the
seller needs to update the belief about b based on the observed responses, i.e., buyer’s rejection of

Under review as a conference paper at ICLR 2025

Table 6: Success rate in taking the optimal action (10 runs).
H S A few-shotCoT w/code STRIDE STRIDE-SynOp

5 3 3 0.88 0.94 0.94
10 3 3 0.86 0.87 0.84
5 10 10 0.80 0.90 0.86
10 10 10 0.79 0.82 0.81

seller’s offers. The seller’s cost (still assumed to be 0) and the prior distribution of b, represented as
a cumulative distribution function F'(v), are public information. F'(-) is supported on [0, 1] and we
assume F'(v) = v, i.e., a uniform distribution. In each step ¢t = 1,2,...,T, the seller offers a price
and the buyer responds by acceptance or rejection. Similar to equation[d] the utility functions are

up(p,t) = (b—p) - 8", if t < T, and 0 otherwise,

(5)
us(p,t) = p- 8Lt if t < T, and 0 otherwise.

Different from the complete information setting where we evaluate the agents using the unique
SPE, here we consider sequential equilibrium (SE) due to the uncertainty on the buyer’s value.
Fortunately, in the particular setting described above, the SE is still unique (Cramton, [1984), and
thus we can similarly evaluate the agents using the success rates of reaching SE. To compute the
SE, we propose a reference algorithm for STRIDE that combines bisection search and backward
induction and construct the specialized tools. More details are given in Appendix

Experiment Setup and Results. We evaluate the agents on problems with deadline T' € {3, 6, 9}.
In each case, we repeat the experiments on 10 randomly generated instances, by sampling discount
factors &y, 05 € U(0.5,1.0) and buyer’s value b € 1/(0.1,0.9). The average success rates are re-
ported in Table[5] Again, we observe that STRIDE outperforms the baseline methods, as it is able
to compute the SE by emulating the reference algorithm we designed.

4.4 EVALUATION OF OPERATION SYNTHESIS

To assess STRIDE’s ability to dynamically synthesize operations, we designed an experiment in
which STRIDE is evaluated on the same MDP environments as in Section [4.1] but with the pre-
defined operations deliberately withheld. Therefore, STRIDE needs to create the necessary oper-
ations using the procedure discussed in Section We denote the resulting method as STRIDE-
SynOp. We use GPT-40-2024-05-13 with a temperature setting of O for generating both the Thought
sequence and the Python code, as depicted in Figure[3] For the iterative code generation process, we
set the maximum number of retries to 6, meaning the run is considered a failure if the LLM cannot
produce executable code within six attempts for any operation. In Table[6] we compare the average
success rate of taking optimal actions achieved by STRIDE-SynOp, STRIDE, and few-shot CoT
with code (all powered by GPT-40-2024-05-13). Despite having to synthesize the operations on the
fly, STRIDE-SynOp demonstrates a success rate that remains relatively close to STRIDE across all
tested scenarios.

5 CONCLUSION

This paper presented the STRIDE framework, enhancing LLMs’ strategic decision-making capabil-
ities. Through integrating a structured Thought process with external working memory and opera-
tions, STRIDE enables LLMs to overcome significant limitations such as strategic exploration and
dynamic opponent interaction. Our evaluations across diverse decision-making scenarios validate
STRIDE’s effectiveness, suggesting its potential as a robust tool for strategic thinking in complex en-
vironments. For further development of the STRIDE framework, we propose the following research
avenues. (i) Currently, STRIDE utilize specially designed Python functions as tools to facilitate the
formation of strategies and the choice of actions by the agents in bilateral bargaining, an interesting
direction is to replace it with models trained using data collected during interactions. (ii) Fine-tuning
on the Thought Sequence: To further enhance LLM’s understanding and execution of the Thought
sequence as well as the associated operations, we can fine-tune the model on the Thought sequences
resulting in successful decisions.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Gati Aher, Rosa I Arriaga, and Adam Tauman Kalai. Using large language models to simulate
multiple humans. arXiv preprint arXiv:2208.10264, 2022.

Gati V Aher, Rosa I Arriaga, and Adam Tauman Kalai. Using large language models to simulate
multiple humans and replicate human subject studies. In International Conference on Machine
Learning, pp. 337-371. PMLR, 2023.

Ali AhmadiTeshnizi, Wenzhi Gao, and Madeleine Udell. Optimus: Scalable optimization modeling
with (mi) Ip solvers and large language models. arXiv preprint arXiv:2402.10172, 2024.

Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes, Byron David, Chelsea
Finn, Chuyuan Fu, Keerthana Gopalakrishnan, Karol Hausman, et al. Do as i can, not as i say:
Grounding language in robotic affordances. arXiv preprint arXiv:2204.01691, 2022.

Elif Akata, Lion Schulz, Julian Coda-Forno, Seong Joon Oh, Matthias Bethge, and Eric Schulz.
Playing repeated games with large language models. arXiv preprint arXiv:2305.16867, 2023.

Anthropic. Introducing the next generation of claude. https://www.anthropic.com/
news/claude—3—-family, 2024. Accessed: 2024-05-21.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for reinforce-
ment learning. In International conference on machine learning, pp. 263-272. PMLR, 2017.

Dirk Bergemann and Juuso Viliméki. The dynamic pivot mechanism. Econometrica, 78(2):771-
789, 2010.

Dirk Bergemann and Juuso Viliméki. Dynamic mechanism design: An introduction. Journal of
Economic Literature, 57(2):235-274, 2019.

Federico Bianchi, Patrick John Chia, Mert Yuksekgonul, Jacopo Tagliabue, Dan Jurafsky, and James
Zou. How well can llms negotiate? negotiationarena platform and analysis. arXiv preprint
arXiv:2402.05863, 2024.

Daniil A Boiko, Robert MacKnight, and Gabe Gomes. Emergent autonomous scientific research
capabilities of large language models. arXiv preprint arXiv:2304.05332, 2023.

Philip Brookins and Jason Matthew DeBacker. Playing games with gpt: What can we learn about a
large language model from canonical strategic games? Available at SSRN 4493398, 2023.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Yuyan Chen, Qiang Fu, Yichen Yuan, Zhihao Wen, Ge Fan, Dayiheng Liu, Dongmei Zhang, Zhixu
Li, and Yanghua Xiao. Hallucination detection: Robustly discerning reliable answers in large
language models. In Proceedings of the 32nd ACM International Conference on Information and
Knowledge Management, pp. 245-255, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Peter C Cramton. Bargaining with incomplete information: An infinite-horizon model with two-
sided uncertainty. The Review of Economic Studies, 51(4):579-593, 1984.

Tim R Davidson, Veniamin Veselovsky, Martin Josifoski, Maxime Peyrard, Antoine Bosselut,
Michal Kosinski, and Robert West. Evaluating language model agency through negotiations.
arXiv preprint arXiv:2401.04536, 2024.

11

https://www.anthropic.com/news/claude-3-family
https://www.anthropic.com/news/claude-3-family

Under review as a conference paper at ICLR 2025

Caoyun Fan, Jindou Chen, Yaohui Jin, and Hao He. Can large language models serve as rational
players in game theory? a systematic analysis. arXiv preprint arXiv:2312.05488, 2023.

Drew Fudenberg and Jean Tirole. Game theory. MIT press, 1991.

Kanishk Gandhi, Dorsa Sadigh, and Noah D Goodman. Strategic reasoning with language models.
arXiv preprint arXiv:2305.19165, 2023.

Shangmin Guo, Haochuan Wang, Haoran Bu, Yi Ren, Dianbo Sui, Yu-Ming Shang, and Siting Lu.
Large language models as rational players in competitive economics games. 2023.

Shibo Hao, Yi Gu, Haodi Ma, Joshua Jiahua Hong, Zhen Wang, Daisy Zhe Wang, and Zhiting Hu.
Reasoning with language model is planning with world model. arXiv preprint arXiv:2305.14992,
2023.

Jen-tse Huang, Eric John Li, Man Ho Lam, Tian Liang, Wenxuan Wang, Youliang Yuan, Wenx-
iang Jiao, Xing Wang, Zhaopeng Tu, and Michael R Lyu. How far are we on the decision-
making of llms? evaluating llms’ gaming ability in multi-agent environments. arXiv preprint
arXiv:2403.11807, 2024.

Shima Imani, Liang Du, and Harsh Shrivastava. Mathprompter: Mathematical reasoning using large
language models. arXiv preprint arXiv:2303.05398, 2023.

Joel Jang, Seonghyeon Ye, and Minjoon Seo. Can large language models truly follow your instruc-
tions? In NeurlPS ML Safety Workshop, 2022.

Akshay Krishnamurthy, Keegan Harris, Dylan J Foster, Cyril Zhang, and Aleksandrs Slivkins. Can
large language models explore in-context? arXiv preprint arXiv:2403.15371, 2024.

Minae Kwon, Sang Michael Xie, Kalesha Bullard, and Dorsa Sadigh. Reward design with language
models. arXiv preprint arXiv:2303.00001, 2023.

Beibin Li, Konstantina Mellou, Bo Zhang, Jeevan Pathuri, and Ishai Menache. Large language
models for supply chain optimization. arXiv preprint arXiv:2307.03875, 2023.

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paranjape, Michele Bevilacqua, Fabio Petroni, and
Percy Liang. Lost in the middle: How language models use long contexts. Transactions of the
Association for Computational Linguistics, 12:157-173, 2024.

Zhihan Liu, Hao Hu, Shenao Zhang, Hongyi Guo, Shuqi Ke, Boyi Liu, and Zhaoran Wang. Reason
for future, act for now: A principled framework for autonomous llm agents with provable sample
efficiency. arXiv preprint arXiv:2309.17382, 2023.

Nunzio Lore and Babak Heydari. Strategic behavior of large language models: Game structure vs.
contextual framing. arXiv preprint arXiv:2309.05898, 2023.

Boxiang Lyu, Qinglin Meng, Shuang Qiu, Zhaoran Wang, Zhuoran Yang, and Michael I Jordan.
Learning dynamic mechanisms in unknown environments: A reinforcement learning approach.
arXiv preprint arXiv:2202.12797, 2022.

Chanwoo Park, Xiangyu Liu, Asuman Ozdaglar, and Kaiqing Zhang. Do llm agents have regret? a
case study in online learning and games. arXiv preprint arXiv:2403.16843, 2024.

Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and
Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In Proceedings
of the 36th Annual ACM Symposium on User Interface Software and Technology, pp. 1-22, 2023.

Chen Qian, Xin Cong, Cheng Yang, Weize Chen, Yusheng Su, Juyuan Xu, Zhiyuan Liu,
and Maosong Sun. Communicative agents for software development. arXiv preprint
arXiv:2307.07924, 2023.

Rindranirina Ramamonjison, Timothy Yu, Raymond Li, Haley Li, Giuseppe Carenini, Bissan Ghad-
dar, Shiqi He, Mahdi Mostajabdaveh, Amin Banitalebi-Dehkordi, Zirui Zhou, et al. Nl4opt com-
petition: Formulating optimization problems based on their natural language descriptions. In
NeurIPS 2022 Competition Track, pp. 189-203. PMLR, 2023.

12

Under review as a conference paper at ICLR 2025

Ariel Rubinstein. Perfect equilibrium in a bargaining model. Econometrica: Journal of the Econo-
metric Society, pp. 97-109, 1982.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural Information
Processing Systems, 36, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre C6té, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv
preprint arXiv:2010.03768, 2020.

Joel Sobel and Ichiro Takahashi. A multistage model of bargaining. The Review of Economic
Studies, 50(3):411-426, 1983.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Mirac Suzgun, Nathan Scales, Nathanael Schérli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V Le, Ed H Chi, Denny Zhou, et al. Challenging big-bench tasks
and whether chain-of-thought can solve them. arXiv preprint arXiv:2210.09261, 2022.

Zhengyang Tang, Chenyu Huang, Xin Zheng, Shixi Hu, Zizhuo Wang, Dongdong Ge, and Benyou
Wang. Orlm: Training large language models for optimization modeling. arXiv preprint
arXiv:2405.17743, 2024.

Zihao Wang, Shaofei Cai, Guanzhou Chen, Anji Liu, Xiaojian Ma, and Yitao Liang. Describe,
explain, plan and select: Interactive planning with large language models enables open-world
multi-task agents. arXiv preprint arXiv:2302.01560, 2023.

Ziyang Xiao, Dongxiang Zhang, Yangjun Wu, Lilin Xu, Yuan Jessica Wang, Xiongwei Han, Xiaojin
Fu, Tao Zhong, Jia Zeng, Mingli Song, et al. Chain-of-experts: When llms meet complex opera-
tions research problems. In The Twelfth International Conference on Learning Representations,
2023.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question
answering. arXiv preprint arXiv:1809.09600, 2018.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Zirui Zhao, Wee Sun Lee, and David Hsu. Large language models as commonsense knowledge for
large-scale task planning. Advances in Neural Information Processing Systems, 36, 2024.

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Lan-
guage agent tree search unifies reasoning acting and planning in language models. arXiv preprint
arXiv:2310.04406, 2023.

Xizhou Zhu, Yuntao Chen, Hao Tian, Chenxin Tao, Weijie Su, Chenyu Yang, Gao Huang, Bin Li,
Lewei Lu, Xiaogang Wang, et al. Ghost in the minecraft: Generally capable agents for open-world
enviroments via large language models with text-based knowledge and memory. arXiv preprint
arXiv:2305.17144, 2023.

13

Under review as a conference paper at ICLR 2025

Algorithm 1 Value Iteration for MDPs with Known Model.

1: Initialize Vg 1(s) =0,Vs € S
2: > Question: Compute the Optimal Policy.
3: forsteph=H,H—-1,---,1do

4: > Thought: Now we can continue to compute the Q-values for the current step h.
5: > Operation: call UpdateQbyR with inputs {time_step: h}

6: > Operation: call UpdateQbyPV with inputs {time_step: h}

7: > Operation: call UpdateVbyQ with inputs {time_step: h}

8: for each state s € S do

9: for each action a € A do
10: Qn(s,a) = R(s,a) + >, cs P(s'|s,a)Viy1 ()
11: Vi(s) = maxgea Qr(s,a)

12: > Thought: I have finished value iteration. Now exit reasoning.
13: forsteph =1,2,--- | H do

14: Observe state sy,
15: > Question: Which action I should take?
16: > Thought: I should choose the action that maximizes the computed Q values.

17: > Operation: call GetQ with inputs {time_step: h, cur_state: sy }
18: > Operation: call Get ArgMax with inputs {q-vals: [...]}

19: > Exit: I should choose Action ay, as it maximizes the Q values. Now exit reasoning.
20: Take action aj, = arg max,c 4 Qr(sn,a)
21: Observe reward r(sp, ap) = R(sp,ap) + € and state transits to sp41

A ADDITIONAL DISCUSSION OF RELATED WORK

LLM-Enhanced Reinforcement Learning Algorithms. The works mentioned in the previous two
paragraphs, as well as the STRIDE framework proposed in this paper, utilize LLMs as the decision
maker, that is, LLMs are fed prompts containing the current state of the environment, and they
generate actions based on this input. The reasoning process that produces the recommendation,
regardless of whether it follows certain algorithmic behavior as STRIDE, happens in the language
space. Another distinct line of research integrates LLMs into traditional reinforcement learning
algorithms to leverage the common sense knowledge that LLMs acquire during pretraining (Hao
etal.,[2023;Liu et al.,[2023;Zhou et al.| 2023 Zhao et al.,[2024). In this way, the reasoning process is
hard-coded in programming language like Python, which defines how different components interact
with each other. Currently, the most prevalent approach in this domain is the integration of LLMs
into Monte Carlo tree search (MCTS) algorithms, where they typically serve as tree traversal policy
(Zhao et al.| 2024), action pruner (Liu et al., 2023), world model (Hao et al., 2023)), and evaluation
function (Liu et al.l [2023). In comparison, our approach is more flexible in the sense that we can
repurpose the reasoning process of STRIDE to emulate different algorithmic behaviors. In particular,
as demonstrated in our experiments, apart from the model-based algorithms like UCB-VI, we can
also make STRIDE reason as tree-search algorithms like MCTS and Minimax.

B REFERENCE ALGORITHMS FOR STRIDE

As discussed in Section [3] the main strength of STRIDE lies in its capability of emulating various
algorithmic behaviors in its Thought process to solve decision-making problems that are challenging
to LLMs. In this section, we provide the descriptions of the reference algorithms that STRIDE
emulates when solving the problems in Section 4]

B.1 VI, MCTS AND UCB-VI ALGORITHMS FOR MDPs

For MDP with known model, the reference algorithms selected for STRIDE are VI and MCTS.
For MDP with unknown model, the reference algorithm is Upper Confidence Bound Value Iteration
(UCB-VI). Here we provide description of these three algorithms in Algorithm [T} Algorithm [2]
and Algorithm [3] as well as some simplified comments (e.g., results returned by the operations are

14

Under review as a conference paper at ICLR 2025

omitted for simplicity) showing how we augment the algorithm to generate the in-context examples
for the LLM.

Operations. The following operations are provided to the LLM to help it emulate VI and UCB-VI:

* UpdateQbyR: add reward R(s,a) to Qp(s, a) for all (s, a) pairs at the specified time step h,

* UpdateQbyPV: add one-step look-ahead value P(s|s,a)Vhy1(s') to Qp(s,a) for all
(s, a) pairs at the specified time step h,

* UpdateV: take maximum Vj,(s) = max,e 4 Qn (s, a) for the specified time step h,

* GetQ: retrieve the values of Q (s, a) for all action a € A at the specified time step h and state s.

* GetArgMax: return the indices corresponding to the maximal value in the given list of numbers

* UpdateQbyBonus: add exploration bonus to the Q values for all state-action pairs at the speci-
fied time step

* UpdateMDPModel: update the estimation of the reward and transition function of MDP based
on the observed quadruple (old state, action, new state, reward)

s'eS

The following additional operations are provided to the LLM to emulate MCTS:

* VisitCheck: check whether a state has been visited,

* Rollout: play the rollout policy until the depth limit d is reached and return the cumulative
reward,

* UCB: calculate and return the action that maximizes UCB score for the specified state,

* Generator: sample the next state and reward based on the transition function,

* UpdateNandQ: update the visit count and Q values based on the observed quadruple (old state,
action, new state, reward).

Equipped with these operations and the in-context examples showing how to utilize them, STRIDE
is capable of computing the optimal policy of MDP with known model by emulating Algorithm
and Algorithm 2] Similarly, STRIDE can emulate Algorithm [3] when facing MDP with unknown
model, which only needs two additional operations that (i) update the estimation for the unknown
reward and transition function, and (ii) update Q values with the exploration bonus, respectively.

B.2 DYNAMIC PROGRAMMING FOR DYNAMIC MECHANISM DESIGN

For dynamic mechanism design problem, the reference algorithm selected for STRIDE is described
in Algorithm[4] which is modified based on the Markov VCG mechanism of [Lyu et al|(2022). It is
known that the unique solution to equation [3is the VCG mechanism i.e.,

7 ;= arg max, V™ (P, Zf\il R;),
pr=VTi(PY L Ry) VT (Y Ry), fori=1,2,...n,

where ¥, := argmax, V™ (P, i EJ) Similar to equation |1} equation can be solved by
separately computing policies 7* and {7* ,} ¥ | via value iteration, and then evaluating 7* on MDP
instances with transition function P and reward function ot Rjfori=1,2,...,N.

Operations. The following operations are provided to the LLM:

* UpdateQbyRExcluding: add immediate rewards, excluding the reward of excluded_agent, to
the Q values for all state-action pairs at current time step. If excluded_agent is set to None, all
agents’ rewards are used.

* UpdateQbyPVExcluding: add the one-step look-ahead value, excluding the reward of ex-
cluded_agent, to the Q values for all state-action pairs at current time step. If excluded_agent is set
to None, all agents’ rewards are used.

* UpdateVExcluding: update the V values, excluding the reward of excluded_agent, based on
the computed Q values for the current time step. If excluded_agent is set to None, all agents’s
rewards are used.

* GetQExcluding: retrieve Q values, that excludes the rewards of excluded_agent, for all actions
at the current state and time step. If excluded_agent is set to None, the Q values computed using
all agents’ rewards will be returned.

* EvaluatePolicyExcluding: evaluate the optimal policy on an fictitious MDP that excludes
the reward function of excluded_agent.

15

Under review as a conference paper at ICLR 2025

Algorithm 2 Monte Carlo Tree Search for MDPs.

1: Initialize N(s,a) = 0,Q(s,a) =0,Vs € S,Va € A
2: > Question: Compute the Optimal Policy.
3: for simulation timesn =1,2,--- , N do

4: Observation: Initial state sp
5: for explorationdepthd = D, D —1,--- ,0do
6: if d = 0 then
7: > Thought: Since the remaining exploration depth is 0. I should update the Nsa
values and Q values.
8: else
9: > Operation: call VisitCheck with inputs {state: s;}
10: if s4 has not been visited then
11: > Thought: We should use rollout policy from now on, until the depth limit d is
reached
12: > Operation: call Rollout with inputs {state: sy, depth: d}
13: Break
14: else
15: > Thought: We should search from state s; by choosing the action that maxi-
mizes UCB score.
16: > Operation: call UCB with inputs {state: sq}
17: Observation: Action ¢ maximizes UCB score.
18: > Thought: We should simulate playing action a by querying the generator.
19: > Operation: call Generator with inputs {state: s, action: a}
20: Observation: The environment transits to state s;_; and received reward r4

21: > Thought: We should update the the Nsa values and Q values.
22: > Operation: call UpdateNandQ
23: Observation: The Nsa values and Q values have been updated.

24: > Question: which action I should take?

25: > Thought: I should choose the action that maximizes the computed Q values.

26: 1> Operation: call GetQ with inputs {state: sp}

27: > Operation: call Get ArgMax with inputs {q_vals: [...]}

28: > Exit: I should choose Action a as it maximizes the Q values. Now exit reasoning.
29: Take action @ = arg max,c 4 Q(sp,a)

* GetArgMax: return the indices corresponding to the maximal value in the given list of numbers
* GetMax: return the maximal value in the given list of numbers

With these operations, STRIDE is capable of computing the dynamic VCG mechanism by emulating
Algorithm 4]

B.3 BACKWARD INDUCTION FOR BARGAINING IN COMPLETE INFORMATION SETTING

For alternating offer bargaining under complete information, the reference algorithm selected for
STRIDE is the backward induction algorithm described in Algorithm [5] which given parameter of
the game, including buyer’s discount §;, seller’s discount d;, and deadline 7", can compute the SPE
of the game.

Operations. The following operations are provided to the LLM:

* CalcUtil: calculate buyer or seller’s utility using equation 4} with the role of the agent, the
specified price and time step as inputs.

* BackwardOneStep: compute the SPE price using one step of backward induction reasoning
based on the opponent’s utility if he/she choose to reject the offer at current time step (see the
constrained optimization problem in line 14 and line 17 in Algorithm [3))

* GetSPEPrice: retrieve the previously computed SPE price for the specified time step

With these operations, STRIDE is capable of computing the SPE by emulating Algorithm[5] SPE
can be used to predict the future offer to be made by the opponent, assuming the opponent is rational

16

Under review as a conference paper at ICLR 2025

Algorithm 3 Value Iteration Upper Confidence Bound for MDPs with Unknown Model

1: Initialize Viy11(s) =0,Vs € S

2: for episode t = 1,2,...,T do

3: > Question: Compute the Optimistic Policy for Exploration.

4 forsteph=H,H—1,---,1do

5: > Thought: Now we can continue to compute the Q-values for the current step h.
6: > Operation: call UpdateQbyR with inputs {time_step: h}
7.
8

> Operation: call UpdateQbyPV with inputs {time_step: h}
> Operation: call UpdateQbyBonus with inputs {time_step: h}

9: > Operation: call UpdateVbyQ with inputs {time_step: h}
10: for each state s € S do
11: for each action @ € A do
12: > Action: call Python function to calculate Q value for (s, a)
13: Qn(s,a) = R(s,a) + ZS’ES P(s'|s,a)Viht1(s') + b(N(s,a))
14: Vi(s) = maxgea Qr(s,a)
15: > Thought: I have finished value iteration. Now exit reasoning.
16: forsteph =1,2,--- ,H do
17: Observe state sy,
18: > Question: Which action I should take?
19: > Thought: I should choose the action that maximizes the computed Q values.
20: > Operation: call GetQ with inputs {time_step: h, cur_state: sy, }
21: > Operation: call GetArgMax with inputs {q_vals: [...]}
22: > Exit: I should choose Action ay, as it maximizes the Q values. Now exit reasoning.
23: Take action aj, = arg max,c 4 Qr(sn,a)
24: Observe reward r(sp, ap) = R(sn,an) + € and state transits to sp41
25: > Question: Update estimations of P and R.
26: > Thought: I should update my estimation using the observed (sp, an, Sht1,7h)-
27: > Operation: call UpdateMDPModel with inputs {s: sp, a: ap, s_prime: Spy1, I: 7'y}
28: > Thought: My estimation is updated. Now exit reasoning.
29: J/\\f(sh,ah) = N(sp,ap) + 1, N(S’Q ap, Sthlz\: N(8p,an,Sp+1) +1
0 Plonsalsnan) = HREEEL R,) = Ris,) x Tgetst 4 {e)

and that the opponent believes the player to be rational as well. When facing a new offer p made by
the opponent at time step ¢, STRIDE will emulate Algorithm [6]to produce a response.

B.4 BACKWARD INDUCTION FOR BARGAINING IN INCOMPLETE INFORMATION SETTING

Since the seller is uncertain about the value b of the buyer, at each time step ¢ the seller decides the
offer price p; based on his/her belief constructed using observations up to time step ¢ — 1, which
is denoted as U(0,b;—_1), i.e., the true value b is uniformly distributed in [0, b;—1] (with by = 1).
Therefore, different from SPE considered in complete information setting, SE specifies not only the
strategies of the players, but also the belief, which in our case is the sequence {bg, b1,...,br—1}. In
classic economics literature (Sobel & Takahashil [1983} |(Cramton, |1984), this sequence is obtained
by: backward induction from time 7" to time 1, which results in by expressed as a function of
br_q1; as the initial belief by = 1, we can solve this equation to obtain the value of by_;. This
provides an analytical form for {bg, b1, ..., br_1} using the parameters 6, d5, T'. To make the inner
logic more transparent during reasoning, we replace this analytical solution with a bisection search
when designing the reference algorithm for STRIDE, with its full description given in Algorithm 7]

We provide the following operations to STRIDE to help it emulate Algorithm [7}

* CalcUtil: calculate buyer or seller’s utility using equation [5] with the role of the agent, the
specified price and time step as inputs.

* ComputeBt: compute what seller’s belief about buyer’s value would be at the current time step,
given a guess of seller’s belief at time step 7' — 1 (description given in Algorithm 8]

* SolveLast: compute seller’s expected utility and the corresponding price at the last time step
(description given in Algorithm [0

17

Under review as a conference paper at ICLR 2025

Algorithm 4 Dynamic VCG Mechanism Design

1: Initialize Vi 1(s) =0,Vy41,_i(s) =0,Vs € S

2: > Question: Compute the optimal policy that maximizes all agents’ reported rewards.

3: forsteph=H,H—1,---,1do
> Thought: Now we can continue to compute the Q-values for the current step h.
5 > Operation: call UpdateQbyRExcluding with {time_step: h, excluded_agent:None}
6: > Operation: call UpdateQbyPVExcluding with {time_step: h, excluded_agent:None}
7: > Operation: call UpdateVbyQExcluding with {time_step: h, excluded_agent:None}
8.
9

nokR

for each action a € .A do
: Qn(s.a) = 3" Rils,a) + Xy e P(s']5,0) Vi ()
10: Vi(s) = maxge 4 Qn(s,a)
11: > Thought: I have finished value iteration. Now exit reasoning.
12: Denote the optimal policy as 7} (s) := argmax,c 4 Qn(s,a) forh € [H],s € S
13: forsteph =1,2,--- | H do

14: Observe state sy,

15: > Question: Which action I should take?

16: > Thought: I should choose the action that maximizes the computed Q values.

17: > Operation: call GetQExcluding with {time_step: h, cur_state: sp, ex-

cluded_agent=None}
18: > Operation: call Get ArgMax with {q-vals: [...]}

19: > Exit: I should choose Action ay, as it maximizes the Q values. Now exit reasoning.
20: Mechanism designer takes action a;, = arg max,c 4 Qn(sp, @)
21: Agent i observes reward 7;(sp, ap) = R;(sh, ap) + € for i € [N] and state transits to sp1

22: for agenti =1,2,--- , N do
23: > Question: Now compute the VCG price for agent ;.
24: forsteph=H,H—1,--- ,1do

25: > Thought: Now we can continue to compute the Q-values for the current step h.

26: > Operation: call UpdateQbyRExcluding with {time_step: h, excluded_agent: i}
27: > Operation: call UpdateQbyPVExcluding with {time_step: h, excluded_agent: i}
28: > Operation: call UpdateVbyQExcluding with {time_step: h, excluded_agent: i}
29: for each state s € S do

30: for each action a € A do

31 Qn,—i(s,a) =34 Ri(s,a) + 3 e P(8]s,0) Vigr,—i(s)

32: Vh,—i(8) = maxgea Qh,j‘(s, a)

33 pr=Vii(s) = V" (P,Y, . Ry)

34: > Thought: Now we know the optimal value of this fictitious MDP that ignores agent ¢’s
rewards. Next we should evaluate policy 77* on this fictitious MDP.

35: > Operation: call EvaluatePolicyExcluding with {excluded_agent: i}

36: > Thought: Then the VCG price for agent ¢ is simply their difference ... Now exit reasoning.

* Solve: compute the expected utility and the corresponding price at the current time step, based
on the results computed for the next time step (description given in Algorithm
* GetSEPrice: retrieve the previously computed SE price for the specified time step

Then similar to the complete information setting, when deciding whether to accept an offer from the
seller, the buyer can compare the utility he/she can get by accepting the current offer, and the utility
he/she can get by waiting for seller’s offer in the next time step. For the latter, as the buyer assumes
the seller is rational, the next offer from seller is predicted using the SE price from Algorithm

C PROMPTS OF THE STRIDE FRAMEWORK AND BASELINES

The prompts used for the LLM agents in Section [consist of three parts, which we mark using
different colors in this section: a system prompt setting the role of the agent (gray), followed by a
formal description of the decision-making problem to be solved (light blue), and then parameters of
the problem instance (light green). The system prompt is problem-agnostic, which is given below.

18

Under review as a conference paper at ICLR 2025

Algorithm 5 Backward Induction to Compute SPE of Bargaining under Complete Information

1:
2:
3:

AN A

9:
10:
11:
12:
13:
14:
15:
16:
17:

18:
19:
20:

21:

> Question: Compute the SPE Prices via Backward Induction.
for time stept =17,7 —1,--- ,1do
> Thought: Compute the SPE price for time ¢, based on the results computed for time ¢ + 1
if £t =T then
if current_player = Buyer then
> Operation: call BackwardOneStep with {agent: buyer, op-u: 0.0, t: T'}
The SPE price pr := 0.0
else
> Operation: call BackwardOneStep with {agent: seller, op_u: 0.0, t: T'}
The SPE price pr := 1.0
else
if current_player = Buyer then
> Operation: call BackwardOneStep with {agent: buyer, op_u: us(ps41,t+ 1), t: ¢}
The SPE price p; := arg max, up(p, t), s.t. us(p,t) > us(pry1,t + 1)
else
> Operation: call BackwardOneStep with {agent: seller, op_u: up(pi41,t + 1), t: ¢}
The SPE price p; := arg max,, us(p, t), s.t. up(p, t) > up(p41,t +1).

> Operation: call CalcUtil with {agent: seller, price: ps, t: ¢}
> Operation: call CalcUtil with {agent: buyer, price: py, t: ¢}
Buyer utility u(py, t), Seller utility ug(py, t)
> Thought: SPE prices for all time steps are calculated. Now exit reasoning.

Algorithm 6 Response to Offer in Bargaining with Complete Information

. Inputs: current_player, price p, time ¢, SPE prices {p;}71_;

> Question: Should I accept or reject opponent’s offer?
> Thought: I should first compute the utility I get by accepting the offer, and then the utility I
get by rejecting the offer and making a counter offer using the SPE price in the next time step.
> Operation: call CalcUtil with inputs {agent: current_player, price: p, t: t}
> Operation: call GetSPEPrice with inputs {t: ¢ 4+ 1}
> Operation: call CalcUtil with inputs {agent: current_player, price: p;y1, t: t + 1}
if current_player = buyer then
Uqg = Ub(p7 t)7 Uy = ub(pt+17t + 1)
else
Ug = Us(p,t), up = s (P41t + 1)

. if u, > u, then

> Thought: T should accept the offer. Now exit reasoning.
return Accept

: else
15:
16:

> Thought: I should reject the offer. Now exit reasoning.
return Reject

System prompt for zero-shot CoT

You are a world class intelligent agent capable of solving various classes of decision mak-
ing problems. For each decision making problem you encounter next, you will be given the
description of the problem setup and your objective. You need to carefully reason about the
problem step-by-step, and make optimal decisions for the encountered problem instance.

System prompt for zero-shot CoT w/ code interpreter

19

Under review as a conference paper at ICLR 2025

Algorithm 7 Backward Induction to Compute SE of Bargaining under Incomplete Information

1:
2:

17:
18:
19:
20:
21:
22:
23:
24:
25:

> Question: Compute the SE Prices via Bisection Search and Backward Induction.
> Thought: I need to first compute my belief about buyer’s value at time step T-1 under sequen-
tial equilibrium, denoted b _ 1, which can be done via bisection search. I should terminate when
the value b{, computed based on b7, _, gets close enough to my actual initial belief by = 1.0.
l= 07h: 17B/T,1 = (l+h>/2
> Operation: Call ComputeBt with inputs {time_step: 1, b_last: B}._,}
by, = ComputeBt(1,b}_;)
while |, — 1.0/ > 1073 do
if b, < 1.0 then
> Thought: Since b}, is smaller than by, I should focus on the region [b/._,, h] next time.
=0,
else
> Thought: Since by, is larger than by, I should focus on the region [I, b%._,] next time.
h=bp_y
bp_y=(+h)/2
> Operation: Call ComputeBt with inputs {time_step: 1, b_last: B}._,}
b, = ComputeBt(1,b}_;)

: > Thought: Since |b}, — 1.0| < 1073, the value of my initial belief computed based on B}

is close enough to the actual value by = 1. Therefore, B/._, is an accurate approximation of
Br_4 in SE. Now I can start backward induction to compute the SE prices from time 7" to 1.
fort=T,T—1,...,1do
if t =T then
> Operation: Call function SOLVELAST with inputs {b_last: B}._, }.
ug, pr = SolveLast(Bf_,) # seller’s expected utility and price under SE
else
> Operation: Call function SOLVE with inputs {u: w1, p: pry1, t t}.
ug, pr = Solve(uiq1, Pet1,t) # seller’s expected utility and price under SE
> Thought: Now I need to continue to time step ¢ — 1.

> Thought: I have reached ¢ = 1. Exit reasoning now.

Algorithm 8 ComputeBt

1:

A AN R o

Inputs time_step, the time index of current belief, and b_last, the belief at time step 7.
cee 1e T . . _ (1=8p+3bcry1)?

Initialize constants {c, };_, with ¢y = 0.5 and ¢, = STt — for 7 > 2.

Set t = time_step, by_1 = b_last

forr=T-1,T-2,...,tdo

2(1—=8p+0pCr41)—0sCri1 b
1-6p+dpcri1 T

bT—l -

return b;_;

You are a world class intelligent agent capable of solving various classes of decision mak-
ing problems. For each decision making problem you encounter next, you will be given the
description of the problem setup and your objective. You need to carefully reason about the
problem step-by-step, and make optimal decisions for the encountered problem instance. You
are provided with a code interpreter. You should write and run code to answer the questions.

System prompt for few-shot CoT w/ code interpreter

You are a world class intelligent agent capable of solving various classes of decision making
problems. For each decision making problem you encounter next, you will be given the de-

20

Under review as a conference paper at ICLR 2025

Algorithm 9 Solvelast
1: Inputs b_last, the belief at time step 7.

2: Set by_1 = b_last

3: Compute SPE price pr := argmax,, p - bTb;il_:p =1br_4
4: Compute expected utility up := pp - bTb’TlijlpT = 1br_4
5: return ur, pr

Algorithm 10 Solve
1: Inputs u, seller’s expected utility at t+1, p, the associated price, and t, the current time step.
2: Setugr1 =U,pep1 =p,andt =t
3: Compute SPE price

b1 —b b
pr = argmax ————p+ ——uy1, St by = 0 (b — pry1)
p bi—1 bi—1

= (1= 8p)bs + Sppis1

bi—1—bt

4: Compute expected utility uy = =5"—p¢ + bf—jlutﬂ

5: return vy, p;

scription of the problem setup and your objective. Your need to carefully reason about the
problem, and make optimal decisions for the encountered problem instance. You are provided
with a code interpreter and an example implementation. You should write and run code to
answer the questions following the example.

System prompt for STRIDE

You are a world class intelligent agent capable of solving various classes of decision making
problems. For each decision making problem you encounter next, you will be given the de-
scription of the problem setup and your objective. Your need to carefully reason about the
problem step-by-step, and make optimal decisions for the encountered problem instance. You
are provided with a set of tools that handle low-level calculations and examples showing you
how to use these tools to solve this problem.

In the remainder of this section, we will provide the prompts describing the decision making prob-
lems and the problem parameters to the agents.

C.1 MDP wiTH KNOWN MODEL

The following are the prompts we provide to all agents to describe the formulation and the agent’s
objective in MDP when the model, i.e., the transition function and reward function, is known.

Description of MDP with known model

A finite horizon tabular Markov Decision Process (MDP) is a model for decision-making in
scenarios where outcomes are influenced by both randomness and controlled decisions, with
decisions being made over a finite number of time steps.

Components:
State Space S: so, 51, . . -, S|5|—1, Where |S] is the total number of states.
Action Space A: ag,ay,...,a 41, where | A] is the total number of actions.

21

Under review as a conference paper at ICLR 2025

Transition probability matrix P: a three-dimensional tensor with shape | S| x | A| x | A|, where
each entry represents the probability of transitioning from one state after taking a specific
action to another state.

Reward matrix R: a matrix with shape |S| x |A|, where each entry gives the mean of the
immediate reward received after taking an action in a state.

Horizon length H: The total number of time steps the decision process is constrained to.
Interaction protocol:

For timesteph =1,2,..., H

Agent takes an action aj, € A based on the current state sp,

Agent receives reward 7, := R|[sy,, ap] + np, where 05, ~ N(0,1)

The environment transits to the next state sp; with probability P[sp, ap, Sp+1] Goal of the
agent:

Maximize expected cumulative rewards E[Zle Rlsp, ahﬂ , where the expectation is w.r.t.
randomness of agent’s policy and state transition.

For zero-shot CoT, which can only read the parameters from context, we print the complete transition
matrix P and reward matrix R as shown below, where the empty curly brackets {} are substituted
with actual values of the problem instance.

Description of problem instance

Now you are going to play in a finite-horizon tabular Markov decision process, with length of
horizon {} (with time indices starting from h=0 to {}), number of states —S—={}, number
of actions —A—={}. The transition matrix P is: {} and reward matrix R is {}.

For zero-shot CoT w/ code, few-shot CoT w/ code and STRIDE, which can read the parameters
from their working memory or an external file, instead of directly printing the transition and reward
matrices in context, we state in the prompt where these values can be accessed.

Description of problem instance

Now you are going to play in a finite-horizon tabular Markov decision process, with length of
horizon {} (with time indices starting from h=0 to {}), number of states —S—={}, number
of actions —A—={}. The transition matrix P and reward matrix R are stored in working
memory.

C.2 MDP wiTH UNKNOWN MODEL

The following are the prompts we provide to all agents to describe the formulation and the agent’s
objective in MDP when the model, i.e., the transition function and reward function, is unknown.

Description of MDP with unknown model

A finite horizon tabular Markov Decision Process (MDP) is a model for decision-making in
scenarios where outcomes are influenced by both randomness and controlled decisions, with
decisions being made over a finite number of time steps.

Components:

22

Under review as a conference paper at ICLR 2025

State Space S: so, 51, . -, S|5|—1, Where |S] is the total number of states.
Action Space A: ag, a1, ...,a4—1, where | A] is the total number of actions.

Transition probability matrix P: a three-dimensional tensor with shape | S| x | A| x | A|, where
each entry represents the probability of transitioning from one state after taking a specific
action to another state.

Reward matrix R: a matrix with shape |S| x |A|, where each entry gives the mean of the
immediate reward received after taking an action in a state.

Horizon length H: The total number of time steps the decision process is constrained to.

Number of episodes K: The total number episodes the MDP is repeatedly played by the
agent, where in each episode, the agent starts fresh, makes a series of H decisions and then
the episode ends. Note that learning achieved in earlier episodes influences the behavior in
later episodes. Unknown model of the environment: The transition probability matrix P and
reward matrix R are unknown to the agent, and the agent needs to estimate them based on the
collected observations and improve its policy after each episode.

Interaction protocol:

For episode k =0,1,2,..., K — 1:

For time step h = 0,1,2,..., H — 1:

Agent takes an action ay, ;, € A based on the current state sy, 5,

Agent receives reward 7y, p, := R[S p, @k n] + 1k,n. Where ng p, ~ N(0,1)

The environment transits to the next state sy, 51 with probability P[sk n, G hs Sk h+1]

Agent can update its estimation of matrix P and R based on the newly observed quadruples
(Sk7h, ak_,h, 5k,h+1a Tk,h+1) fOI‘ h = 0, 1, 2, ey H -1

Goal of the agent:

Maximize expected cumulative rewards E[kK:_Ol hH:_()l Rlsp, ah]], where the expectation
is w.r.t. randomness of agent’s policy and state transition.

For STRIDE, since it can automatically update, store, and read the estimated transition and reward
matrices in working memory, we simply use the following description about the problem instance

for all episodes.

Description of problem instance

Now you are going to play in a finite-horizon tabular Markov decision process, with length of
horizon {} (with time indices starting from h=0 to {}), number of states —S—={}, number
of actions —A—={}. The transition matrix P and reward matrix R are unknown to you, so
you need to estimate them based on interaction history.

For all the baselines, since they cannot reliably summarize the interaction history and construct the
estimation of P and R, we explicitly provide the estimation of I” and R and the count of visitation of
state-action pairs as shown below. This is similar to the “externally summarized interaction history”

in the prompt for multi-armed bandit problems used by |Krishnamurthy et al.[(2024).

Description of problem instance

Now you are going to play in a finite-horizon tabular Markov decision process, with length of
horizon {} (with time indices starting from h=0 to {}), number of states —S—={}, number

23

Under review as a conference paper at ICLR 2025

of actions —A—={}. The transition matrix P and reward matrix R are unknown to you. Your
current estimation of transition matrix P is {}, your current estimation of reward matrix R is
{}, and your count of visitation of all the state-action pairs is {}.

C.3 DYNAMIC MECHANISM DESIGN PROBLEM

The following are the prompts we provide to all agents to describe the formulation and the agent’s
objective in Dynamic Mechanism Design problem, when the model, i.e., the transition function and
reward function, is known.

Description of dynamic mechanism design problem

The dynamic mechanism design problem involves creating allocation and pricing rules for
decision-making, where the value of resource to the agents changes over time as the state of
the environment changes.

Components:

Players: a mechanism designer and a set of N agents State Space S: sg, 51, . .., 5|51, Where
|S| is the total number of states.

Action Space A: ag, a1, ...,a4/—1, Where |A| is the total number of actions. Each action
represents the mechanism designer’s allocation of some scarce resource among [V agents.

Transition probability matrix P: a three-dimensional tensor with shape | S| x |A| x | A|, where
each entry represents the probability of transitioning from one state after taking a specific
action to another state.

Reward matrix R: a three-dimensional tensor with shape N x |S| x | A|, where each matrix
RJi,:, :] represents the reward matrix of an agent ¢ fori = 1,2,..., N, and each of its entry
gives the mean of the immediate reward received by agent 7 after the mechanism designer
takes an action in a state.

Horizon length H: The total number of time steps the decision process is constrained to.
Interaction protocol:

Before the interaction starts, each agent ¢ reports a reward matrix (can be different from its

true reward matrix R[i,:, :]), denoted as R][i,:,:], to the designer. Based on agents’ reported
reward matrix, the designer chooses a policy 7 : S — A(A) and prices {p; }; to be charged
to each agent.

For timesteph =1,2,..., H:

Mechanism designer takes an action aj, ~ m(sy,) based on the policy 7 and the current state
Sh

Each agent i receives reward R|[i, sy, ap] for i = 1,2..., N The environment transits to the
next state sy with probability P[sp, an, Sp+1]

After the interaction, the mechanism designer charges each agent ¢ with some price p;

Goal of the agents:

Each agent wants to maximize its utility u; = E [ZhH:1 RJi, s, ahH — p;, that is, the differ-
ence

between the expected cumulative rewards, where the expectation is w.r.t. randomness of de-
signer’s policy and state transition, and the price charged by the mechanism designer. As the
agents cannot directly take actions, their only leverage is to decide whether to truthfully report
their reward matrix to the designer.

Goal of the mechanism designer:

24

Under review as a conference paper at ICLR 2025

Maximize the expected cumulative rewards of all agents £ [Zf\il Zle Rli, s, ap)], where
the expectation is w.r.t. randomness of designer’s policy and state transition. As the designer
only observes agents’ reported reward matrix R, to fulfil its objective, the designer needs to
guarantee, with its policy and pricing strategy, no agent ¢ has incentive to report E[z, ,] that
is different from the true reward matrix RJ[i, :, :] unilaterally.

It is known that VCG mechanism guarantees truthfulnes of the agents, and uniquely maxi-
mizes the objective. It is defined as follows:

N H
7 =argmaxE, p [Z Z E[z, Sh, ah]}

1=1 h=1

H H
p; =Ex P {Z > Rlj, sn, ah]] —Emp {Z > Rlj, sn, ah]]
j#i h=1 j#i h=1
fori =1,2,...,N, where 7%, = argmax, Er p[>", S Rl sn, an)] is the optimal
policy for a MDP with transition probability matrix P and reward matrix ., R[j,:,], that
is, excluding the reward matrix of agent ¢ itself.

Now as a strategic decision maker, your job is to compute the VCG mechanism based on
the given transition probability matrix P and the reward matrix R reported by the agents.
Then you should take an action at each time step and charges prices to each agent at the end,
according to your computed VCG mechanism.

Description of problem instance

Now you are going to play in a finite-horizon dynamic mechanism design problem, with
number of agents N={}, length of horizon {} (with time indices starting from h=0 to {}),
number of states —S—={}, number of actions —A—={}. The transition matrix P is:{} and
reward matrix R reported by the agents is {}.

C.4 SINGLE-ISSUE BARGAINING UNDER COMPLETE INFORMATION

The following are the prompts we provide to all agents to describe the formulation and the agent’s
objective in single-issue bargaining under complete information.

Description of single-issue bargaining under complete information

The alternating offer bargaining game is a negotiation framework between two players, a
buyer and a seller, aimed at determining the price of an item. This strategic game plays out
over several rounds with a finite deadline, emphasizing the tactics of bargaining under time
constraints.

Components:
Players: Two (Buyer and Seller).

Buyer’s Value: 1 (the maximum price the buyer is willing to pay). Seller’s Value: O (the
minimum price the seller is willing to accept).

Discount Factors (d, and d5): Represents how much each player values immediate transac-
tions over future possibilities, where d,ds € (0,1). Utility associated with future offers are
discounted by 6{;_1 and 6.1 for the buyer and the seller, respectively, where t indicates the
current round.

25

Under review as a conference paper at ICLR 2025

Buyer’s Utility: If a price p is agreed upon at time step ¢ <= T, then buyer’s utility is
up = (1 —p)* o, .

Seller’s Utility: If a price p is agreed upon at time step ¢ <= T, then seller’s utility is u, =
(p—0)*d6t1.

Deadline: If no sale is agreed upon by the end of time T, the negotiation fails, and no transac-
tion occurs, in which case, both agents get 0 utility.

Complete Information: All details about the item’s value range, the structure of the rounds,
and the potential outcomes are common knowledge.

Interaction Protocol:

Decision Turns: Starting with the buyer, players alternate in making price offers. The player
making an offer proposes a price within the range from the seller’s value to the buyer’s value.

Responses: The opponent can either accept the proposed price, resulting in a sale and the
game ending, or reject the offer, in which case the negotiation advances to the next round.

Goal of the agents:

The seller aims to maximize the sale price while the buyer seeks to minimize it. Each agent’s
goal is to negotiate a price as close as possible to their value (1 for the seller, O for the buyer)
while considering the risk of no agreement by the deadline.

Description of problem instance

For buyer

This is the beginning of a new game instance, where you will play as the buyer. Your discount
factor d,={}, seller’s discount factor J,={}, and the deadline T={}. In the following, you
should make your decision by assuming your opponent is rational as well.

For seller

This is the beginning of a new game instance, where you will play as the seller. Your discount
factor §,={}, buyer’s discount factor §,={}, and the deadline T={}. In the following, you
should make your decision by assuming your opponent is rational as well.

C.5 SINGLE-ISSUE BARGAINING UNDER INCOMPLETE INFORMATION

The following are the prompts we provide to all agents to describe the formulation and the agent’s
objective in single-issue bargaining under incomplete information.

Description of single-issue bargaining under incomplete information

This is a finite horizon bargaining game with one-sided uncertainty, in which the uninformed
bargainer, the seller, makes all the offers and the informed bargainer, the buyer, can only
decides to accept or reject the offer.

Components:

Players: Buyer (informed) and Seller (uninformed).

Buyer’s Value: b (the maximum price the buyer is willing to pay).
Seller’s Value: 0 (the minimum price the seller is willing to accept).

Discount Factors (d, and §5): Represents how much each player values immediate transac-
tions over future possibilities, where 8y, d5 € (0,1). Utility associated with future offers are

26

Under review as a conference paper at ICLR 2025

discounted by (5}2*1 and 6:~! for the buyer and the seller, respectively, where t indicates the
current time step.

Buyer’s Utility: If a price p is agreed upon at time step ¢ <= 7', then buyer’s utility is
_ t—1
up=(b—p)*0, .

Seller’s Utility: If a price p is agreed upon at time step t <= T, then seller’s utility is u, =
(p—0)*d6t1.

Deadline: If no sale is agreed upon by the end of time T, the negotiation fails, and no transac-
tion occurs, in which case, both agents get O utility.

Information Asymmetry: Buyer himself knows the true value of b, which is drawn from a
known distribution F'(v) supported on [0, 1]. We assume F'(v) = v, i.e., Buyer’s value b is
sampled from a uniform distribution. The seller does not know b but knows the distribution
F(v).

Interaction Protocol:

Decision Turns: In each time step t = 1,2,...,T, it is always Seller who makes an offer p,
within the range of [0,1].

Responses: Buyer can either accept the proposed price, resulting in a sale and the game end-
ing, or reject the offer, in which case the negotiation advances to the next time step.

Goal of the agents:

Seller’s Objective: Maximize their expected payoff over the horizon of the game without
knowing the true value of b. The seller must strategically decide on the prices p; to offer
in each time step, considering the declining number of opportunities to make a sale and the
distribution of b inferred from the buyer’s responses.

Buyer’s Objective: Maximize their surplus, which is the difference between the true value b
and the price paid p, if a transaction occurs. The buyer needs to decide whether to accept or
reject the seller’s offers based on the value b and the likelihood of a more favorable price in
subsequent time steps, considering the finite number of time steps.

Description of problem instance

For buyer

This is the beginning of a new game instance, where you will play as the buyer. Your discount
factor d,={}, seller’s discount factor d5={}, and the deadline T={}. Your value b = {},
which is uniformly sampled from [0, 1]. In the following, you should make your decision by
assuming your opponent is rational as well.

For seller

This is the beginning of a new game instance, where you will play as the seller. Your discount
factor §,={}, buyer’s discount factor 6,={}, and the deadline T={}. The buyer’s value b is
unknown to you, but you know it is uniformly sampled from [0, 1]. In the following, you
should make your decision by assuming your opponent is rational as well.

C.6 Tic-TAc-TOE

The following are the prompts we provide to all agents to describe the formulation and the agent’s
objective for the Tic-Tac-Toe game. The prompts also detail the agents’ goals and initial game setup.

Description of Tic-Tac-Toe Game

27

Under review as a conference paper at ICLR 2025

Tic-Tac-Toe is a classic two-player game where players take turns marking spaces in a 3x3
grid, aiming to place three of their marks in a horizontal, vertical, or diagonal row to win.
Components:
¢ Players: Two players, usually denoted as Player X and Player O.
* Board: A 3x3 grid where each cell can be empty, marked with an X, or marked with
an O.
* Marks: Each player has a unique mark (X or O) that they place on the board.
Interaction Protocol:
* Players take turns starting with Player X.
* On each turn, a player marks an empty cell on the grid with their mark (X or O).
* The game continues until a player has three of their marks in a horizontal, vertical,
or diagonal row, or all cells are filled resulting in a draw.
Rules:
1. Players alternate turns, with Player X always going first.
2. A player can only mark an empty cell.
3. The game ends when one player achieves a row of three marks horizontally, verti-
cally, or diagonally, or when all cells are filled with no winner (a draw).
Goals of the Players:
* Player X: Maximize the chances of placing three X’s in a row before Player O does.
* Player O: Maximize the chances of placing three O’s in a row before Player X does.
Winning Conditions:
* A player wins if they place three of their marks in a horizontal, vertical, or diagonal
TOW.
o If all cells are filled without any player achieving three marks in a row, the game
results in a draw.
Game Setup:
1. The game begins with an empty 3x3 grid.
2. Players decide who will be Player X and who will be Player O.
3. Player X makes the first move.
Objective:
Each player aims to either achieve a row of three of their marks or to block the opponent from
doing so. Strategic planning and anticipation of the opponent’s moves are crucial to winning
the game.

Description of problem instance

Now you are going to play a game of Tic-Tac-Toe. The current state of the board is {}. It
is player {}’s turn. Your objective is to place three of your marks in a horizontal, vertical, or
diagonal row to win while preventing your opponent from doing the same.

C.7 CONNECT-N

The following are the prompts we provide to all agents to describe the formulation and the agent’s
objective for the Connect-N game. The prompts also detail the agents’ goals and initial game setup.

Description of Connect-N

28

Under review as a conference paper at ICLR 2025

Connect-N is a generalized version of Connect-4, where two players alternate turns dropping
colored discs into a vertically suspended grid. The objective is to form a horizontal, vertical, or
diagonal line of NV discs. The game introduces a gravity effect where discs drop to the lowest
available position within a column, adding a unique strategic dimension to the gameplay.
Components:
 Players: Two players, typically referred to as Player X and Player O, who use differ-
ent colored discs.
* Board: A grid with configurable dimensions, larger than the typical 3x3 Tic-Tac-Toe
board.
* Discs: Each player has an ample supply of discs in their respective colors.
Interaction Protocol:
 Players take turns, starting with Player X.
* On each turn, a player chooses a column to drop a disc into. The disc falls, affected
by gravity, to the lowest available position within the column.
* The game continues until a player forms a line of N discs in a row (horizontally,
vertically, or diagonally) or the board is completely filled, resulting in a draw.
Rules:
1. Players must alternate turns, with Player X always going first.
2. A player can only choose a column that has available space.
3. The game ends when one player forms a line of N discs or when all columns are
filled without any player achieving this, which results in a draw.
Goals of the Players:
» Player X: Strategize to connect N of their discs in a row vertically, horizontally, or
diagonally before Player O.
* Player O: Similarly, aim to connect N of their discs in a row while blocking Player
X’s attempts.
Winning Conditions:
* A player wins by aligning N of their discs in a row in any direction.
* The game results in a draw if the entire board is filled without either player achieving
N in a row.
Game Setup:
1. The game starts with an empty board of the chosen dimensions.
2. Players decide who will play first (Player X) and choose their disc colors.
3. Player X makes the first move by dropping a disc into one of the columns.
Objective:
Each player aims to strategically drop their discs to form a line of N while preventing their
opponent from doing the same. Anticipating the opponent’s moves and effectively using the
gravity-affected game-play are critical to securing a victory.

Description of problem instance

Now, you are going to play a game of Connect-N, where two players alternate turns dropping
discs into a vertically suspended grid. The objective is to form a line of IV discs in a row, either
horizontally, vertically, or diagonally. The current state of the board is {}, the current player
is Player {}, the number of discs required to win is { }. Your objective is to strategically drop
your discs to form a line of {} discs while preventing your opponent from doing the same.

Description of Problem Instance Current board: {self.board}, Player: {self.player}, Available
moves: {self.get_available_moves()}

D ADDITIONAL EXPERIMENTS

In this section, we further evaluate STRIDE on a set of additional experiments.

29

Under review as a conference paper at ICLR 2025

Algorithm 11 BFS Minimax with Alpha-Beta Pruning
1: function BESALPHABETA(r00t, «, 3)

2 queue <— new Queue()
3 parentMap < new Dictionary() > To store parent-child relationships
4: queue.enqueue({root, a, 5})
5: scores <— new Dictionary() > To store scores temporarily
6 while queue is not empty do
7 {node, current_alpha, current_beta} + queue.dequeue()
8 if node is a terminal state then
9: scores[node] < U (node) > Utility of terminal state
10: else
11: value < —oo if node.isMaximizingPlayer() else co
12: for all child € Children(node) do
13: queue.enqueue({child, current_alpha, current_beta})
14: parent Map|child] + node
15: if node in parentM ap then
16: parent < parentM ap[node]
17: eval « scores[node]
18: if parent.isMaximizingPlayer() then
19: scores[parent] < max(scores[parent], eval)
20: current_alpha < max(current_alpha, scores[parent])
21: else
22: scores[parent] < min(scores[parent], eval)
23: current_beta + min(current_beta, scores[parent])
24: if current_beta < current_alpha then
25: break > Pruning
26: return scores|root]

D.1 Tic-TAc-TOE AND CONNECT-N

Here we evaluate STRIDE and the baselines (GPT—-3.5-Turbo-0125 with the temperature set to
0) on Tic-Tac-Toe and Connect-N Games. For these two games, we provide STRIDE with tools and
demonstration that make it emulate Minimax algorithm as shown in Algorithm [TT]

Agent’s Objective in Tic-Tac-Toe. The primary objective for each agent is to win the Tic-Tac-Toe
game by placing three markers in the same row, column, or diagonal before the opponent. If a win
is not feasible, the secondary objective is to aim for a tie, preventing the opponent from winning.
Each agent strives to select the optimal action based on the game’s current state. If both players play
optimally, the game results in a tie.

Experiment Setup and Results. In addition to the baselines mentioned in Section 4} here we also
include RAFA with Monte Carlo Tree Search (MCTS) (Liu et al., |2023) and RAFA with Minimax.
For CoT w/ code, the LLM has been instructed to implement Minimax algorithm to play the game,
and for the RAFA agents, the search breadth, denoted B, is set to 4. In addition to the original
RAFA MCTS implementatio we implemented RAFA with Minimax as an extra baseline. We adopt
the memory structure from their original implementation to store optimal actions and use similar
prompts and interactions with the LLM to expand the game tree and assess game states. Additionally,
for RAFA with Minimax, we set the search depth, denoted U, to the maximum value 9.

In our experiments, STRIDE is equipped with operational tools to emulate a Breadth-First version
of Minimax algorithm with alpha-beta pruning (see Algorithm [IT). Starting from depth 0 and pro-
gressing to the maximum depth — determined by the total number of empty cells on the board —
the algorithm evaluates potential outcomes at each node: +1 for a win, —1 for a loss, and 0 for a tie
or non-terminal states. Utilizing backward induction, the algorithm recursively refines and updates
these scores, ensuring that the decision path optimizes the expected outcome at each node from the
current player’s perspective. These scores are stored in STRIDE’s working memory. When STRIDE

"https://github.com/agentification/RAFA _code

30

Under review as a conference paper at ICLR 2025

agent starts playing the game, it retrieves the scores for each possible action, and then selects the ac-
tion with maximal or minimal score depending on the role of the player. We repeat the experiments
on a fixed set of parameters for 10 runs, with the initial player being ‘X’ and an empty board to start
the game. The results are presented in Table

Table 7: Model performances in Tic-Tac-Toe (10 runs).

Outcome RAFA w/ Minimax RAFA w/ MCTS zero-shot CoT zero-shot CoT w/ code = STRIDE

X Wins (%) 50 60 70 80 20
Tie (%) 30 20 0 20 80
O Wins (%) 20 20 30 0 0

STRIDE Vs. Baseline Models We also conducted experiments that pit STRIDE against baseline
models in Tic-Tac-Toe, including zero-shot CoT, zero-shot CoT w/ code, and RAFA w/ MCTS. We
instructed zero-shot CoT w/ code to implement the Minimax algorithm, and for RAFA w/ MCTS, we
set B = 4 and U = 4. The experiments were conducted over 10 runs, with STRIDE playing as
player ‘X’ and the baseline models as player ‘O’. The outcomes are summarized in Table[§]

Table 8: STRIDE against Baseline Models in Tic-Tac-Toe (10 runs)

Matchup STRIDE Wins (%) Tie (%) Opponent Wins (%)
STRIDE vs zero-shot CoT 90 10 0
STRIDE vs zero-shot CoT w/ code 80 20 0
STRIDE vs RAFA w/ MCTS 50 50 0

Agent’s Objective in Connect-N. In Connect-N, available moves can be made in the lowest empty
space of each column.The agent aims to drop its discs to form a line of N while preventing its
opponent from doing the same. Each agent attempts to choose the best possible action based on the
game’s state. Similar to Tic-Tac-Toe, the game ends with a draw if both players play optimally.

Experiment Setup and Results We conduct experiments with two configurations: (1) Connect-3
on a 3 x 3 board and (2) Connect-4 on a 4 x 4 board. Similar to the Tic-Tac-Toe game, STRIDE
simulates the Breadth-First Minimax algorithm with pruning (see Algorithm[IT) to find the optimal
action in Connect-N. It first simulates every possible move and scores each node at each game’s
depth (1 for a win, -1 for a loss, and O for a tie or non-leaf node), then uses backward induction
to update the scores for each game state. Using its working memory, STRIDE stores the computed
scores for all possible actions at various depths. When the game starts, it selects the best action
based on the computed scores. The results (averaged over 10 runs) are summarized in Tables [9] and
L0}

Table 9: Model performances in Connect-3 (10 runs).
Outcome zero-shot CoT zero-shot CoT w/ code STRIDE

X Wins (%) 60 90 30
Tie (%) 40 0 70
O Wins (%) 0 10 0

We provide the following operational tools to STRIDE to help it emulate Algorithm|TT}

* CalculateScores: expand every action at each depth and calculate the score for the nodes.
* GetScores: retrieve the computed scores for all the actions at the specified depth of the game
tree.

D.2 MDPS WITH LARGER STATE AND ACTIONS SPACES

As discussed in Section [3| since the detailed computations are encapsulated inside the operations,
change in the size of state and action spaces does not affect the difficulty of reasoning for problems

31

Under review as a conference paper at ICLR 2025

Table 10: Model performances in Connect-4 (10 runs).
Outcome zero-shot CoT zero-shot CoT w/ code STRIDE

X Wins (%) 50 30 50
Tie (%) 10 0 50
O Wins (%) 40 20 0

like MDPs. To provide a stronger support of this argument, we conducted additional experiments
on the tabular MDP and linear MDP environments, by varying the number of states and actions in
the range of (100, 500). The results are reported in Table [[I] We can see that the success rate in
computing the optimal policy remains relatively the same despite the fact that the size of state and
action spaces is increasing.

Table 11: Success rate in taking the optimal action under tabular and linear MDPs.
Environment A S d STRIDE

50 100,300,500 / 0.99,0.94,0.97

Tabular MDP 100 100,300,500 / 0.98,0.96,0.96
, S0 100,300,500 5 0.96,0.98,0.94
Linear MDP 100 100,300,500 5 0.97,0.96,0.98

32

	Introduction
	Related Work
	LLM Agent for Strategic and Interactive Decision Making
	Reasoning via a Sequence of Thought Units
	Operation Synthesis

	Experiments
	Markov Decision Processes
	Dynamic Mechanism Design
	Bargaining Games
	Evaluation of Operation Synthesis

	Conclusion
	Additional Discussion of Related Work
	Reference Algorithms for STRIDE
	VI, MCTS and UCB-VI Algorithms for MDPs
	Dynamic Programming for Dynamic Mechanism Design
	Backward Induction for Bargaining in Complete Information Setting
	Backward Induction for Bargaining in Incomplete Information Setting

	Prompts of the STRIDE Framework and Baselines
	MDP with Known Model
	MDP with Unknown Model
	Dynamic Mechanism Design Problem
	Single-Issue Bargaining under Complete Information
	Single-Issue Bargaining under Incomplete Information
	Tic-Tac-Toe
	Connect-N

	Additional Experiments
	Tic-Tac-Toe and Connect-N
	MDPs with larger state and actions spaces

