
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LARGE LANGUAGE MODELS CAN SELF-IMPROVE
AT WEB AGENT TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Training models to act as agents that can effectively navigate and perform actions in
a complex environment, such as a web browser, has typically been challenging due
to lack of training data. Large language models (LLMs) have recently demonstrated
some capability to navigate novel environments as agents in a zero-shot or few-shot
fashion, purely guided by natural language instructions as prompts. Recent research
has also demonstrated LLMs have the capability to exceed their base performance
through self-improvement, i.e. fine-tuning on data generated by the model itself. In
this work, we explore the extent to which LLMs can self-improve their performance
as agents in long-horizon tasks in a complex environment using the WebArena
benchmark. In WebArena, an agent must autonomously navigate and perform
actions on web pages to achieve a specified objective. We explore fine-tuning on
three distinct synthetic training data mixtures and achieve a 31% improvement in
task completion rate over the base model on the WebArena benchmark through a
self-improvement procedure. We additionally contribute novel evaluation metrics
for assessing the performance, robustness, capabilities, and quality of trajectories
of our fine-tuned agent models to a greater degree than simple, aggregate-level
benchmark scores currently used to measure self-improvement.

1 INTRODUCTION

Large language models (LLMs) have demonstrated impressive capabilities in a variety of natural
language processing (NLP) tasks such as summarization and question answering (Radford et al.,
2019; Raffel et al., 2020; Brown et al., 2020) through zero-shot and few-shot prompting techniques
(Ouyang et al., 2022; Wei et al., 2021). However, prompting techniques alone are insufficient to
enable LLMs to act as agents and navigate environments in order to solve complex, multi-step, long-
horizon tasks (Yao et al., 2023). Fine-tuning LLMs to perform such tasks is also infeasible due to the
scarcity of training data suitable for these tasks. Acquiring data for sequential decision-making and
complex interactions is not only time-consuming, but also costly. Additionally, automatic evaluation
of trajectories (or sequences of actions) taken by an agent is also difficult (Dinu et al., 2024). The
absence of metrics that accurately capture the efficacy of each step in a sequence complicates the
assessment of incremental improvements or degradations in an agent’s performance.

A number of proposed self-improvement techniques have demonstrated that LLMs can use zero-
shot and few-shot prompting to achieve performance above the baseline without any additional
supervised training data (Huang et al., 2022; Chen et al., 2024). In place of supervised data as a
learning signal, many of these techniques use a self-critique technique (Weng et al., 2022; Yuan
et al., 2024), or obtain a critique through interactions with tools or environments (Gou et al., 2024).
While self-improvement techniques have shown promise on standard NLP benchmark tasks like
machine translation or question answering (Han et al., 2021; Huang et al., 2022; Chen et al., 2024),
their efficacy has not yet been thoroughly investigated for long-horizon tasks that require multi-step
interactions with a complex and realistic environment.

WebArena (Zhou et al., 2023) is a recently proposed benchmark wherein an LLM agent is required
to solve tasks using a web browser. One example WebArena task is to use the OpenStreetMap
website to answer the question “What is the minimum travel time by car from CMU to University of
Pittsburgh?”. Such a task requires an agent to complete a sequence of steps on the website, including
entering a start location, entering a destination location, submitting a form, and then, reasoning
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Figure 1: We generate synthetic data to fine-tune LLM agents to accomplish WebArena tasks such
as “Add this product to my wishlist”. Step 1: We first collect an initial set of trajectories, filter out
low-quality trajectories in an unsupervised fashion, and keep the remainder as synthetic in-domain
examples. We prompt our base LLM to generate novel out-of-domain tasks along with hypothetical
solution trajectories by providing a few in-domain examples. Step 2: We then fine-tune our base
LLM agent on each of the three distinct synthetic training data mixtures and evaluate performance.

over the result. The sequence of steps selected by an agent is called a trajectory. Unlike existing
benchmarks, WebArena tasks are realistic and diverse, require dynamic interaction, and require
navigating a complex environment. The baselines presented by Zhou et al. (2023) demonstrate that
while LLMs are capable of interacting with this environment, even the strongest baseline, GPT-4
(OpenAI et al., 2024), is only able to solve ~14% of the tasks. This demonstrates that WebArena is a
challenging benchmark even for the strongest frontier models (Chiang et al., 2024).

In summary, our contributions are:

• We propose and detail procedures for collecting and generating synthetic training examples
for complex, multi-step tasks involving interaction with an environment. We explore
collecting in-domain synthetic examples of trajectories as well as generating synthetic
examples of solution trajectories for novel, out-of-domain tasks.

• We propose auxiliary metrics to understand the effect self-improvement has with respect to
acquiring new capabilities and to evaluate variable-length trajectories produced by agents
through an extension of the VERTEX score. These metrics provide nuanced insights not
captured by aggregate-level benchmark scores currently used to evaluate self-improvement,
allowing us to better assess the effect self-improvement has on multiple dimensions: perfor-
mance, robustness, capability acquisition, and the quality of generated trajectories.

• We show that the performance of LLM agents improves after fine-tuning on this synthetic
data, demonstrating that self-improving techniques work for a new class of tasks. We
analyze three synthetic training data mixtures and find all three mixtures improve capability
acquisition, with the best performing mixture yielding a 31% improvement over the base
LLM agent on the WebArena benchmark. While we find models can self-improve once with
our procedure, we find models can not iteratively self-improve.

2 SYNTHETIC DATA COLLECTION AND GENERATION

Self-improvement techniques for large language models typically involve using the model’s own gen-
erations to create synthetic few-shot examples (Han et al., 2021) or synthetic fine-tuning data (Huang
et al., 2022). These techniques amplify knowledge, correct behaviors, and introduce regularization
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(Pham et al., 2022), often leading to an overall boost in performance. The self-generated examples
are often filtered, post-edited, or ranked with a set of unsupervised techniques such as self-critique to
introduce a signal for learning and improvement (Weng et al., 2022; Patel et al., 2023; Chen et al.,
2024; Yuan et al., 2024). For multi-step agent tasks, the environment itself can additionally provide
the LLM agent a way to detect failure in a fully unsupervised manner, which provides another useful
signal for learning (Gou et al., 2024; Yuan et al., 2023; Song et al., 2024).

Using the WebArena benchmark (Zhou et al., 2023), we define and experiment with both in-domain
synthetic training examples and out-of-domain synthetic training examples for web agent tasks, and
fine-tune on three different synthetic data mixtures: Mixture A (in-domain synthetic examples only),
Mixture B (both in-domain and out-of-domain synthetic examples), and Mixture C (out-of-domain
synthetic examples only). Figure 1 illustrates our process.

In-Domain Synthetic Data: For all tasks in WebArena, we collect an initial set of trajectories using
the base model. We filter out any trajectories where the model self-detected failure (self-critique)
or failure was detectable in the environment and keep the remainder. We denote the remaining
set of trajectories as plausible trajectories, where the model may or may not have completed the
task successfully. Since lower-quality trajectories where the model outright failed to complete the
task have been filtered out through self-detection, we hypothesize this remaining higher-quality
set of plausible trajectories can serve as reasonably high-quality in-domain synthetic examples for
fine-tuning. Similar to the self-improvement prior work we discuss earlier, the collection of this data
is completely unsupervised and no ground-truth labels are utilized for filtering and selection.

Out-of-Domain Synthetic Data: We also evaluate whether the base model can generate completely
novel tasks, objectives, web pages, and solution trajectories that can serve as useful training examples.
We use the plausible trajectories as few-shot examples in a prompt for the base model to generate
completely new tasks along with potential solution trajectories. To ensure the model generates
examples with sufficient diversity and to improve generalization, we prompt the model to generate
out-of-domain synthetic examples that are dissimilar from existing tasks and objectives as well as
generate tasks for different websites than the set of 6 websites covered by the WebArena benchmark.

2.1 IN-DOMAIN SYNTHETIC DATA COLLECTION

The WebArena environment can be formulated as a partially observable Markov decision process:
E = ⟨S,A,O, T ⟩, where S represents the state space, A represents the action space, O represents
the observation space, and T : S × A → S is the deterministic transition function (Zhou et al.,
2023). An agent model M produces a next action at ∈ A provided an objective represented by some
natural language intent i, the current observation ot ∈ O, and the previous action taken at−1 ∈ A:
(i, ot, at−1). This continues for T time steps until the agent produces a stop action or the environment
produces an error or stop condition. The models M we select for our experiments are the Qwen-1.5-
72B-Chat model (Bai et al., 2023) and the Llama-3-70B-Instruct model (Dubey et al., 2024), which
at the time of this work are highly ranked1 and competitive open source LLMs (Chiang et al., 2024)
that are accessible for fine-tuning. Further choice of inference parameters and other configuration
details can be found in Appendix A.

Given this definition, we propose a procedure for sampling a set of in-domain synthetic training
examples DIN-DOMAIN where each training example is structured as (i, ot, at−1) → at. These examples
are sampled from a filtered set of trajectories collected by an initial run of the base agent model M
over all tasks in WebArena:

1
https://chat.lmsys.org/?leaderboard
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Algorithm 1 Collect In-Domain Synthetic Training Examples DIN-DOMAIN

Input: WebArena environment E and base agent modelM
Output: A set of in-domain synthetic training examples DIN-DOMAIN

1: Initialize P ← ∅ ▷ Set of plausible trajectories
2: for i in WebArena benchmark do
3: Initialize trajectory X ← ∅
4: Initialize observation o0 ← INITIALOBSERVATION(E , i)
5: Initialize action a−1 ← null
6: for t = 0 to T do
7: at ← RUNAGENT(M, i, ot, at−1)
8: Append (i, ot, at−1, at) to X
9: if at = stop or ENVIRONMENTERROR(E , at, ot+1) then

10: break
11: end if
12: ot+1 ← T (ot, at) ▷ Observe updated state
13: end for
14: if not SELFCRITIQUE(X ) and not ISREFUSAL(X ) and not HASERROR(X ) then
15: Append X to P ▷ Filter out low-quality trajectories

. to only keep plausible trajectories
16: end if
17: end for
18: Initialize Di,Df ,Dint ← ∅ ▷ Set of initial steps, final steps, intermediate steps
19: for X in P do
20: Append X0 to Di

21: Append XT to Df

22: for t = 1 to T − 1 do
23: Append Xt to Dint

24: end for
25: end for
26: DIN-DOMAIN ← RANDSAMPLE(Di, |Di|) ∪ RANDSAMPLE(Df , |Di|) ∪ RANDSAMPLE(Dint, 2 ∗ |Di|)
27: return DIN-DOMAIN

We filter out low-quality trajectories where the model produced a generation stating the task to be
“impossible” or that it “cannot” make progress (a form of self-critique). Additionally, we filter out any
trajectories where the model produced stop[N/A], stop[No ...], or stop[], indicating when
the model may have refused to provide an answer. Finally, we also filter out any trajectories where
the WebArena environment encountered an error or the model failed to produce a valid, parsable
generation. The final dataset of synthetic examples is balanced by randomly sampling an equal
number of initial steps (t = 0), final steps (t = T ), and intermediate steps (t = 1 . . . (T − 1)) from
the plausible trajectories in P . In Table 1, we display how effective this unsupervised filtering process
is by measuring the accuracy, precision, and recall of the 58 remaining trajectories kept in P from the
812 total trajectories to assess the proportion of correct/incorrect examples in DIN-DOMAIN.

Set of Trajectories # Accuracy F1 Precision Recall

All Trajectories 812 0.071 0.133 0.071 1.000
Plausible Trajectories P 58 0.919 0.431 0.431 0.431

Table 1: Metrics on the proportion of trajectories that successfully completed the task in the set of
plausible trajectories kept in P after filtering out low-quality trajectories. Approximately 43% of
trajectories in P successfully completed the task, up from ~7% with no filtering, indicating useful
learning signal is introduced by filtering using self-critiques and information from the environment.

2.2 OUT-OF-DOMAIN SYNTHETIC DATA GENERATION

Using examples from DIN-DOMAIN as seed examples, we prompt our base LLM M to syntheti-
cally generate completely novel tasks, objectives, web pages, and solution trajectories to produce
DOUT-OF-DOMAIN.
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Algorithm 2 Generate Out-of-Domain Synthetic Training Examples DOUT-OF-DOMAIN

Input: Base LLM modelM and DIN-DOMAIN

Output: A set of out-of-domain synthetic training examples DOUT-OF-DOMAIN

1: Initialize DOUT-OF-DOMAIN ← ∅ ▷ Set of out-of-domain synthetic training examples
2: Initialize I ← {i | i ∈ WebArena benchmark} ▷ Set of 812 objectives in WebArena
3: Initialize I∗ ← ∅ ▷ Set of previously generated objectives
4: for j = 1 to |DIN-DOMAIN| do
5: while true do
6: i∗ ← GENERATEOBJECTIVE(M, RANDSAMPLE(I, 2) ∪ RANDSAMPLE(I∗, 2))
7: if max(sim(i∗, I∗)) < 0.70 then ▷ Ensure generated objectives are diverse
8: Append i∗ to I∗
9: break

10: end if
11: end while
12: p∗ ← GENERATEPLAN(M, i∗) ▷ Generate an outline of a hypothetical solution trajectory
13: k ← RANDCHOICE({1, . . . , |p∗|}) ▷ Randomly select one of the steps in the plan, weighted

. to equally balance initial, final, and intermediate steps
14: a∗

t−1, a
∗
t ← GENERATEACTIONS(M, RANDSAMPLE(DIN-DOMAIN, 2), i

∗,p∗, k)
15: o∗t ← GENERATEOBSERVATION(M, RANDSAMPLE(DIN-DOMAIN, 2), i

∗,p∗, k)
16: Append (i∗, o∗t , a

∗
t−1, a

∗
t ) to DOUT-OF-DOMAIN

17: end for
18: return DOUT-OF-DOMAIN

When generating new objectives, we use 4 few-shot examples (two objectives sampled from tasks in
WebArena and two sampled from previously generated objectives). We use 2 few-shot examples when
generating previous actions, next actions, and observations (web pages in the form of accessibility
trees). We use a temperature of 1.0 and set top-p to 1.0 during generation. Detailed information
on the prompts used for generating DOUT-OF-DOMAIN can be found in Appendix G. When generating
novel objectives, we specifically prompt the model to generate objectives that are dissimilar to the
example objectives to encourage out-of-domain generations. We also ensure each novel objective has
< 0.70 cosine similarity with any objective previously generated using the all-distilroberta-v1
sentence similarity model (Reimers and Gurevych, 2019; Liu et al., 2019; Sanh et al., 2019) to promote
diversity. Table 2 gives examples of out-of-domain objectives that our method generated.

Objectives in WebArena Benchmark Generated Out-of-Domain Objectives

• Tell me the total cost of my latest pending
order? (Shopping)

• Compare the time for walking and driving
route from AMC Waterfront to Univ of
Pittsburgh (Maps)

• Check out the most recent open issues
(GitLab)

• Which customer has placed 2 orders in the
entire history? (Shopping Admin)

• . . .

• Locate and purchase a subscription to The
Economist digital edition
(https://store.economist.com/...)

• Find the nutrition facts for a Grilled
Chicken Caesar Salad from Chili’s
(http://www.chilis.com/...)

• Find the active coupons for a one-year
subscription to Adobe Creative Cloud
(https://www.couponcabin.com/...)

• Subscribe to the premium plan for
Grammarly to unlock advanced writing
features. (https://www.grammarly.com/...)

• . . .

Table 2: A sample of the novel objectives generated compared with the objectives found in WebArena.
A full sample of a generated out-of-domain synthetic example can be found in Appendix B.

3 EVALUATION

We perform evaluation using the standard metrics proposed by the WebArena benchmark like
functional correctness (Zhou et al., 2023) as well as evaluate with new auxiliary metrics we propose
that give more nuanced insight into an agent’s performance.
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3.1 FUNCTIONAL CORRECTNESS SCORE

Functional correctness is the standard metric proposed by the WebArena benchmark that is a simple
binary task completion score (0 or 1) averaged over all 812 tasks in the benchmark.

3.2 CAPABILITY SCORE (NEW)

While WebArena contains 812 unique task instances, these 812 tasks are instantiated using natural
language intent templates like “What is the minimum travel time by car from {{location1}} to
{{location2}}?”. Therefore, many tasks actually test the same capability. Aggregate-level metrics
like the functional correctness score may be misleading since improvements may only be due to the
model becoming more robust at solving capabilities it already could solve versus demonstrating the
ability to solve new capabilities that were previously unsolvable. There are 241 unique templates
in WebArena that are used to instantiate 812 tasks. Moreover, some of these templates are simple
paraphrases of each other. For example, “What is the estimated driving time between {{city1}}
and {{city2}}?” is a paraphrase of the prior template. Using a sentence similarity model,2 we
iteratively group these templates into a set of unique capabilities. Each template is grouped with
any existing capability if it has a similarity of > 0.60 with any template in the group, otherwise the
template is added to a new capability group. This results in 136 unique capabilities (see Appendix F).
A model receives a score of 1 for each capability group with at least one successful task completed,
otherwise it receives a score of 0.3 The capability score is then the averaged over all 136 capabilities.

We note, however, that a number of tasks in the WebArena benchmark are trivial tasks and can be
solved by a trivial baseline agent or weak model that performs no actions and only immediately exits
by always generating stop [N/A]. In the capability score computation, we do not count such trivial
tasks as evidence a model can perform the capability as these are degenerate cases of the capability.

3.3 VERTEXDTW SCORE (NEW)

Both functional correctness and the capability score only evaluate task completion, however, they do
not assess the quality of entire trajectories, therefore, a measure that is sensitive to incremental im-
provements and degradations in trajectories, independent of task completion, is desirable. We extend
the recently proposed VERTEX score (Dinu et al., 2024), which measures the similarity of two rela-
tional trajectories by using embeddings to compare node distributions within a computational graph.
The VERTEX score integrates the semantic meaning across the distributional path by computing at
each node the cross-similarity between the generated embeddings and embeddings sampled from a
reference distribution. An ideal reference distribution would be ground-truth reference trajectories
produced by humans for all of the WebArena tasks. In absence of this, we use a larger, stronger
model, GPT-4 (OpenAI et al., 2024), to collect three reference trajectories for each task.

One obstacle to the straightforward application of the VERTEX score is the assumption that both
trajectories are of the same length. Agents operating in complex environments, however, are not
constrained to a fixed-length for the trajectories they produce. Therefore, we propose modification in
the computation of the VERTEX score that enables comparison of sequences with different lengths.
Our extension consists of an additional alignment step prior to calculating the VERTEX score for
the aligned trajectories. First, we embed all steps of a trajectory X as et = f(ot, at) ∈ Rd, where f
is an embedding model4 with embedding dimension d. The embedding model f is independent of
both the model that generated the reference trajectories as well as the model that generated the test
trajectories. Then, we use Dynamic Time Warping (DTW) (Berndt and Clifford, 1994) to align two
embedded trajectories X̃m = (e0, . . . , ei, . . . , em) ∈ Rm×d and X̃n = (e0, . . . , ej , . . . , en) ∈ Rn×d

with length m and n, respectively. Consequently, we refer to our proposed measure as VERTEXDTW.
DTW returns an alignment path ν of length T , where each ei ∈ X̃m is aligned with a corresponding
ej ∈ X̃n, preserving the order in their respective trajectory. This order preservation occurs because
once a node is matched, it is excluded from potential new matches, maintaining the integrity of the
temporal alignment. As a scoring function for DTW, we choose cosine distance. In addition to the

2We use the all-distilroberta-v1 sentence similarity model (Sanh et al., 2019).
3Since we do not count trivial tasks as a successful completion, a single successful completion of a capability

provides sufficient evidence of acquisition. We discuss robustness and consistency separately in Section 5.
4We use the all-mpnet-base-v2 embedding model (Song et al., 2020).
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alignment step, we introduce a linear distance decay factor that decreases the contribution of aligned
embeddings if they are far apart in the original trajectories. Once two trajectories are aligned, we
compute the VERTEX score by Eq. (4) in Dinu et al. (2024) with the addition of the distance decay.
Therefore, the VERTEXDTW score is computed as:

s(X̃ref, X̃test, ν) :=
1

T

∫ tT

t0

[
min(max(0,

1

1 + |iνt − jνt |
M̃MD2(eνt

ref, e
νt
test)− zrand), 1)

]
dt, (1)

where iνt
and jνt

are the position indices in the alignment path ν at time t, X̃ref and X̃test are aligned
trajectories of embeddings from the reference set and the model under test, respectively, and zrand is
a baseline correction from a random baseline.5 Furthermore, if we have multiple reference sequences
for a given task, we compute the VERTEXDTW score for every reference sequence and choose the
maximum score, under the assumption that they describe different paths for solving the task.

4 EXPERIMENTS

We perform a number of experiments fine-tuning agent models on the synthetic training data mixtures
we discuss in Section 2 and assess the extent to which the agent model has self-improved over base
agent model M with our evaluation metrics. Table 3 displays the results of these experiments.

4.1 BASELINE AGENT PERFORMANCE

As baselines, we evaluate our base agent model M as well as implement a trivial agent that always
outputs stop [N/A]. A number of tasks in WebArena can be solved by this trivially implementable
agent or a weak model that always refuses to continue and exits immediately, therefore, our trivial
agent baseline helps discriminate which tasks being completed successfully should contribute to an
agent being meaningfully capable when computing the capability score.

4.2 SELF-IMPROVEMENT FINE-TUNED AGENT PERFORMANCE

We fine-tune our base agent model M on the 3 synthetic dataset mixtures previously discussed:
1) DA = DIN-DOMAIN 2) DB = DIN-DOMAIN ∪ DOUT-OF-DOMAIN and 3) DC = DOUT-OF-DOMAIN with a
straightforward auto-regressive loss using QLoRA (Dettmers et al., 2023; Hu et al., 2021):

LFT(θ) = −E[(i,ot,at−1),at]∼D [logPθ(at | (i, ot, at−1))]

to produce MA, MB , and MC . We perform a 90/10% train-validation split of our datasets and train
with an early stopping patience of 5 epochs, using a batch size of 16 examples and a learning rate of
1e-5. Further details about training configuration and hyperparameters can be found in Appendix A.

4.3 ITERATIVE SELF-IMPROVEMENT FINE-TUNED AGENT PERFORMANCE

We also experiment with iterative self-improvement (Chen et al., 2024) to assess whether further
improvement can be gained from a subsequent round of our self-improvement procedure. We perform
this experiment on Mixture A. It is conceivable that after fine-tuning on D1

A, filtering from a set of
trajectories with higher performance might yield a stronger set of plausible trajectories6 to produce
D2

A. Mixtures B and C are less likely to demonstrate improvement over a subsequent round since the
fine-tuned models are not specifically trained to generate better synthetic out-of-domain examples.

5 DISCUSSION

We summarize key results from our experiments as well as discuss insights towards the efficacy of
our self-improvement procedures for complex, multi-step tasks like web agent tasks.

5We use the trivial agent implementation described in Section 4.1 for baseline correction in our computation.
6To maximize data for iterative self-improvement, during filtering, we also fallback to checking the base

model trajectory for a task if the self-improved model’s trajectory for a task is filtered out.
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Agent Model Functional
Correctness

Capability VERTEXDTW

Baseline Agents
Trivial Agent 4.68 0.00 -
Base Agent Model (M) 7.14 15.44 0.35
Qwen-72B Self-Improvement
Base Agent Model (M) 7.2 ± 0.17 11.62 ± 0.28 0.35 ± 0.003
Agent Model Fine-Tuned on Mixture A (MA) 8.81 ± 0.2 14.19 ± 0.35 0.38 ± 0.003
Agent Model Fine-Tuned on Mixture B (MB ) 9.57 ± 0.22 14.54 ± 0.3 0.35 ± 0.0029
Agent Model Fine-Tuned on Mixture C (MC ) 6.11 ± 0.2 12.4 ± 0.3 0.28 ± 0.0027
Llama-3-70B Self-Improvement
Base Agent Model (M) 6.6 ± 0.16 12.96 ± 0.29 0.28 ± 0.0027
Agent Model Fine-Tuned on Mixture A (MA) 7.38 ± 0.2 15.08 ± 0.3 0.28 ± 0.0028
Agent Model Fine-Tuned on Mixture B (MB ) 6.67 ± 0.17 14.64 ± 0.3 0.26 ± 0.0032
Agent Model Fine-Tuned on Mixture C (MC ) 6.3 ± 0.18 13.68 ± 0.3 0.27 ± 0.0031
Iterative Self-Improved Agents
Agent Model 2x Fine-Tuned on Mixture A (M2

A) 8.37 16.91 0.37

Table 3: Evaluation metrics on WebArena for baseline agents and self-improved agent models over
two models. We include confidence intervals and bold significant (p=0.05) values (Efron, 1979) that
outperform the baseline (self-improve).

Can models self-improve at web agent tasks? We find fine-tuning on both Mixtures A and B
improve overall benchmark performance with the best performing mixture, Mixture B, completing 18
more tasks correctly, a 31% relative improvement (7.14 → 9.36). Training on all Mixtures A, B, and
C demonstrate self-improvement on at least one metric, with MC showing a gain on capability score.

Do self-improved agents acquire new capabilities? We find agent models can acquire new
capabilities through self-improvement, however, they also may lose the ability to perform some
capabilities. In net, all of our self-improved agents acquire more capabilities than they lose. We find
fine-tuning on both Mixtures A and B improve the capability score equally and lead to the largest
net acquisition of capabilities demonstrating 5 more capabilities than the base agent model, a 24%
relative improvement (15.44 → 19.12). We find all agent models demonstrate at least one new
capability that no other agent model demonstrates, for example, only MC successfully completes
the “Fork {{repo}}” capability on the GitLab website. Interestingly, we find that the majority
of capabilities acquired by MA and MC are mutually exclusive, suggesting in-domain synthetic
examples and out-of-domain synthetic examples improve acquisition of different capabilities. We list
all capabilities MA, MB , and MC acquire and lose compared to M in Appendix C.

Are self-improved agents more robust? For MB , we find a larger improvement in functional
correctness (31%) than in capability score (24%), which supports that the agent model is improving
at more consistently succeeding at tasks belonging to the same capability, an indicator of one type of
robustness. MC is less robust by the same measure. Moreover, the capability analysis in Appendix
C also shows both MA and MB after self-improvement still demonstrate the majority of capabilities
demonstrated by the base agent model M, whereas MC only demonstrates a minority. This would
indicate MA and MB more reliably maintain the capabilities of the base agent model after self-
improvement, a measure of robustness that would be useful in deployed settings where users of agent
models may desire stability in performance.

Is there an effect on the quality of generated trajectories? Fine-tuning on Mixtures A and B
show no degradation in the quality of generated trajectories and show small improvement towards
the reference on VERTEXDTW. Fine-tuning on Mixture C degrades the the quality of generated
trajectories from the reference. Training on the out-of-domain synthetic examples allows MC

to demonstrate some unique capabilities no other agent model demonstrates, however, inspecting
trajectories from MC , we find this comes with trade-offs. For example, compared with MA, we find
MC produces longer trajectories (~1.6x) and produces more invalid actions (~3.9x). In comparison
with M, MA and MB do not greatly increase trajectory length (~1.1x and ~1.3x) or the rate of
invalid actions (~1x and ~1.3x), further explaining the quality difference VERTEXDTW highlights.
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Due to lack of human reference, the reliability of this evaluation is limited which we discuss in Section
7. In Appendix D, we compute variants of VERTEXDTW, weighting by capability and filtering out
trivial tasks. We find these variants make little difference in the relative ranking of agent models.

Can models iteratively self-improve at web agent tasks? Our results are consistent with prior
works such as Chen et al. (2024) and Feng et al. (2024) and we find diminishing returns to successive
rounds of self-improvement and training on synthetic data. While the agent model after a second
round of self-improvement outperforms the base agent model, it does not perform any better than
agent models with a single round of self-improvement. We analyze the set of plausible trajectories
in the second round in Appendix E and find that while more synthetic training examples can be
collected, they are of lower quality and contain a higher proportion of failed trajectories.

6 RELATED WORK

Self-Improvement A number of techniques have been proposed for self-improving LLMs (Huang
et al., 2022; Weng et al., 2022; Madaan et al., 2023, inter alia). Some self-improvement techniques
(Han et al., 2021; Gulcehre et al., 2023; Singh et al., 2024; Chen et al., 2024; Yuan et al., 2024)
involve self-distillation (Zhang et al., 2019), a special form of knowledge distillation (Hinton et al.,
2015) where the teacher and student are the same model. A growing trend of works (Wang et al.,
2023; Gunasekar et al., 2023) similarly prompt LLMs to generate synthetic fine-tuning data.

LLM Agents A number of prompting techniques proposed (Kojima et al., 2023; Wei et al., 2022;
Yao et al., 2023; Shinn et al., 2023) can improve an LLM agent’s performance, however, these
techniques are orthogonal to self-improvement fine-tuning. Chen et al. (2023) introduces a technique
for supervised fine-tuning of LLM agents. Sodhi et al. (2024) and Lai et al. (2024) introduce
handcrafted subprompts or supervised techniques that improve performance on WebArena.

Self-Improving Agents Bousmalis et al. (2023) demonstrates self-improving embodied agents
for complex robotics tasks. Aksitov et al. (2024) introduces a method for self-improving agents on
a simpler multi-step question answering task. Concurrently, Song et al. (2024) proposes a similar
procedure of filtering trajectories and fine-tuning, but primarily focuses on supervised filtering, does
not explore generating novel tasks and synthetic data, and evaluates on less realistic and complex
benchmarks. Pan et al. (2024) explores using vision models for critique to improve on WebArena.

7 LIMITATIONS AND BROADER IMPACTS

While we find self-improvement fine-tuning techniques can improve performance by reinforcing
correct actions and decisions of an underlying model, these techniques can also further reinforce
incorrect actions and biases of the underlying model. Some human or supervised filtering may
mitigate this drawback, however, in this paper we focus our investigation on the efficacy and quality
of unsupervised self-improvement as producing datasets for such complex tasks is difficult and
expensive. Our analysis of capabilities is limited by our method to group tasks by the intent template
used and cosine similarity. It is possible other strategies may produce more optimal groups to measure
capabilities. Our VERTEXDTW score utilizes a stronger model’s generations (GPT-4) as a reference,
however, human references would significantly improve the reliability of this evaluation. While
WebArena spans many different types of realistic tasks and websites (shopping, online forums, maps,
etc.), a future direction for this work might involve evaluation on larger, and more diverse benchmark.
Some hyperparameter choices and parameter choices are chosen arbitrarily, within the limits of
what was computationally feasible during our experiments and future work may seek to explore the
sensitivity of such techniques to hyperparameters.

8 CONCLUSION

In this work, we explore whether large language models can self-improve beyond their base perfor-
mance at complex, long-horizon web agent tasks. We conclude self-improvement can increase the
performance and robustness of agent models and allow agent models to acquire new capabilities.
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We also find it is possible for self-improvement to yield these benefits with minimal degradation
to the quality of trajectories. The self-improvement procedures we propose are a promising step
towards boosting the performance of LLMs in complex, multi-step agent environments such as web
environments, without relying on supervised training data. We release our code, evaluation metrics
with references, synthetic datasets, and model trajectories.
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APPENDIX

A TRAINING AND INFERENCE DETAILS

Hyperparameter Value

Model Qwen/Qwen1.5-72B-Chat
Hardware 2x NVIDIA RTX A6000
Distributed Protocol PyTorch FSDP
Data Type torch.bfloat16
Quantization 4-bit (nf4), double quantized

LoRA
all-linear, r=8
lora_alpha=8
lora_dropout=0.0

Optimizer adamw_torch
Learning Rate 1e-5
Weight Decay 0.01
Learning Rate Scheduler linear
Warmup Steps 0
Batch Size 16
Train-Validation Split 90/10%
Early Stopping Threshold 0.0
Early Stopping Patience 5 epochs

Table 4: Hyperparameters selected for fine-tuning experiments.

Inference Parameter Value

Model Qwen/Qwen1.5-72B-Chat
Hardware 4x NVIDIA RTX A6000
Data Type torch.bfloat16
Quantization 4-bit (nf4), double quantized
Prompt Template p_cot_id_actree_2s
Temperature 1.0
Top-P 0.9
Max New Tokens 384

Table 5: Parameters used during inference, we follow the default parameters for inferencing set by
the WebArena benchmark (Zhou et al., 2023).
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B SAMPLE OF GENERATED OUT-OF-DOMAIN SYNTHETIC TRAINING
EXAMPLE

Objective Subscribe to the premium plan for Grammarly to unlock advanced writing
features.

URL https://www.grammarly.com/plans

Plan

1. Click on the “Go Premium” button located at the top right corner of the page.

2. Scroll down to review the available plans (if needed).

3. Click on the “Choose Plan” button for the preferred premium plan.

4. Provide payment information, such as credit card details, in the respective input fields.

5. Enter your billing information, including name, address, and zip code (if required).

6. Type your email address again to confirm it.

7. Create a password for your Grammarly account and type it into the password field.

8. Check the box to agree to the terms and conditions.

9. Click on the “Start Your Free Trial” (or similar) button if you qualify for a trial.

10. Review the confirmation message and wait for the subscription activation.

11. Stop when the subscription is successfully activated and the premium features are unlocked.

Selected Step in Plan 3

Previous Action click [1098] where [1098] is Generic 'Premium'

Next Action

Let’s think step-by-step. To proceed with subscribing to the premium plan,
the user must now choose their plan. They have already clicked on the
'Premium' plan option. The next logical action is to click on the 'Choose
Plan' button to finalize the selection and proceed to the payment page. In
summary, the next action I will perform is ```click [1105]``` to select the
premium plan and move to the next step in the subscription process.

Observation

[1] RootWebArea 'Grammarly plans - Premium, Business & Student Writing Tools' focused: True
[125] Generic 'Grammarly plans - Premium, Business & Student Writing Tools'

[127] link 'Privacy Policy'
[130] link 'Terms of Use'
[133] link 'Cookies'
[136] link 'TrustArc Privacy Notice'
[587] link 'Language'
[1054] link 'United States English'
[592] link 'Logout'
[595] link 'Invite'
[598] link 'Get the Extension'
[128] link 'Login'
[601] link 'Sign Up'
[580] Generic 'Plans'

[583] div 'Free'
[586] link 'Get Started'

[590] Generic 'Premium'
[1098] Generic 'Premium' haspopup: submenu expanded: False

[640] link 'View Features'
[643] StaticText 'Start Now!'
[1105] button 'Choose Plan'

[1089] Generic 'Business'
[649] link 'View Pricing'
[652] StaticText 'Get Quote'

[1092] Generic 'Student'
[646] link 'View Pricing'
[649] StaticText 'Start Now!'

[566] Generic 'Write with confidence, wherever you work'
[570] StaticText 'Powerful writing tools for work, school, and everything in between.'
[574] button 'Learn More &amp; Try it Free'

[1052] table '
[569] row '

[574] rowheader 'Free'
[575] gridcell '

[568] row '
[573] rowheader 'Premium'
[574] gridcell '

[567] row '
[572] rowheader 'Business'
[573] gridcell '

[566] row '
[571] rowheader 'Student'

[572] gridcell '

Table 6: A selected full sample of a generated novel, out-of-domain synthetic training example in
DOUT-OF-DOMAIN.
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C CAPABILITY ANALYSIS

Agent Model Net Change Capabilities Acquired Capabilities Lost

MA +5

1. Tell me the count of comments that
have received more downvotes than
upvotes for the user who made the
latest post on the {{forum}} forum.

2. Find a subreddit focused on topics
related to {{topic}}, and post my
question, "{{question}}" there

3. Measure distance between
{{location/address_1}} and
{{location/address_2}} by
walking

4. Tell me the coordinates of
{{location}} in DD format

5. Show me the "{{product}}" listings
by {{sorting_order}}.

6. Open my latest updated issue that has
keyword "{{keyword}}" in its title to
check if it is closed

7. Reply to
{{position_description}} with
my comment
"{{content_description}}"

8. Tell me the distance to drive from
Carnegie Mellon University to the top
computer science school in
massachusetts

9. How many commits did {{user}}

make on {{date}} in total?

1. Tell me the total cost of my latest
{{status}} order?

2. Checkout merge requests assigned to
me

3. Today is 6/12/2023. Tell me how many
fulfilled orders I have {{period}},
and the total amount of money I spent.

4. Subscribe to the newsletter of
OneStopMarket

MB +5

1. Tell me the count of comments that
have received more downvotes than
upvotes for the user who made the
latest post on the {{forum}} forum.

2. What is the minimum travel time by car
from {{location1}} to
{{location2}}?

3. Find a subreddit focused on topics
related to {{topic}}, and post my
question, "{{question}}" there

4. See all public projects
5. Set my gitlab status as {{status}}.
6. Show me the route and driving time

from {{city1}} to {{city2}}

7. Ask for advice about {{issue}} in a
subreddit for relations

8. Show me the "{{product}}" listings
by {{sorting_order}}.

9. Reply to
{{position_description}} with
my comment
"{{content_description}}"

10. Show me the way from {{location}}

to the home stadium of
{{sport_team}} {{time}}

1. Checkout merge requests assigned to
me

2. Today is 6/12/2023. Tell me how many
fulfilled orders I have {{period}},
and the total amount of money I spent.

3. Subscribe to the newsletter of
OneStopMarket

4. Show me the command to clone
{{repo}} with SSH.

5. Show me the {{info}} for order
number {{order_number}}.

Continued on next page. . .
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MC +2

1. Fork {{repo}}.
2. Tell me the count of comments that

have received more downvotes than
upvotes for the user who made the
latest post on the {{forum}} forum.

3. Which US states border {{state}}?
4. What is the minimum travel time by car

from {{location1}} to
{{location2}}?

5. See all public projects
6. I previously ordered some

{{product}} {{time}} and later
cancelled. Can you reorder it for me?

7. Today is 3/15/2023, generate a
{{report}} {{time_span}}

8. Ask for advice about {{issue}} in a
subreddit for relations

9. Show me the "{{product}}" listings
by {{sorting_order}}.

10. Pull up the description page of
{{location}} on Map

11. Reply to
{{position_description}} with
my comment
"{{content_description}}"

12. Edit my post on {{post}} by adding a
line to the body that says
"{{content}}"

13. Tell me who has made the most
contributions, in terms of number of
commits, to the {{repo}} project

14. List the top {{n}} search terms in my
store

1. How many commits did {{user}}

make to {{repo}} on {{date}}?
2. Checkout merge requests assigned to

me
3. What is the estimated driving time

between {{city1}} and {{city2}}?
4. Open the thread of a trending post on

the forum "{{subreddit}}" and
subscribe.

5. Today is 6/12/2023. Tell me how many
fulfilled orders I have {{period}},
and the total amount of money I spent.

6. Find the {{space}} around
{{location}}

7. What are the main criticisms of this
product? Please extract the relevant
sentences.

8. Subscribe to the newsletter of
OneStopMarket

9. Show me the command to clone
{{repo}} with SSH.

10. I want to browse the products in the
{{category}} category

11. Show me the {{info}} for order
number {{order_number}}.

12. Tell me the total cost of my latest
{{status}} order?

Table 7: Capabilities acquired and lost compared to the base agent model M, along with the net
change in the total number of capabilities demonstrated, for each self-improved fine-tuned agent
model.
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D FULL VERTEXDTW SCORE RESULTS

Agent Model VERTEXDTW VERTEXDTW-bycap VERTEXDTW-notrivial

Baseline Agents
Base Agent Model (M) 0.35 0.40 0.38
Self-Improved Agents
Agent Model Fine-Tuned on Mixture A (MA) 0.38 0.42 0.42
Agent Model Fine-Tuned on Mixture B (MB ) 0.35 0.40 0.40
Agent Model Fine-Tuned on Mixture C (MC ) 0.28 0.33 0.34
Iterative Self-Improved Agents
Agent Model 2x Fine-Tuned on Mixture A (M2

A) 0.37 0.41 0.43

Table 8: Variants of the VERTEXDTW score metric: 1) computed over all trajectories 2) weighting
the trajectories by capability 3) weighting the trajectories by capability and filtering out trajectories
for trivial tasks.
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E ITERATIVE SELF-IMPROVEMENT PLAUSIBLE TRAJECTORIES

Set of Trajectories # Accuracy F1 Precision Recall

All Trajectories 812 0.071 0.133 0.071 1.000
Plausible Trajectories P1 58 0.919 0.431 0.431 0.431
Plausible Trajectories P2 131 0.825 0.317 0.252 0.429

Table 9: Metrics on the proportion of trajectories that successfully completed the task in the set of
plausible trajectories kept in P after filtering out low-quality trajectories for each iterative round of
self-improvement. On the second round of self-improvement, we keep 131 plausible trajectories
making our potential synthetic training dataset larger, however, the accuracy and P/R/F1 metrics
indicate it would be a lower quality dataset to fine-tune on.
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F CAPABILITIES IN WEBARENA

In this appendix, we list the grouping of tasks into “capabilities” we find in WebArena using the
automated method we describe in Section 3.2. These tasks are grouped by the intent template used by
WebArena to create the task as well as cosine similarity to group paraphrases detected by a sentence
similarity model. We do not perform manual modifications to the groups and instead solely rely on
automated techniques. We acknowledge grouping of natural language task objectives into capability
areas is subjective and discuss this a limitation in Section 7:

Capability #1:

• What are the top-{{n}} best-selling
product in {{year}}

Capability #2:

• Tell me the the number of reviews that
our store received by far that mention
term “{{term}}”

Capability #3:

• What brands appear most frequently
among the top search terms?

• List the top {{n}} search terms in my
store

Capability #4:

• Telll me the grand total of invoice
{{id}}.

Capability #5:

• Presents the monthly count of success-
ful orders {{period}} in MM:COUNT
format

Capability #6:

• What’s the total number of items sold in
the most recent {{k}} orders?

Capability #7:

• Show all customers

Capability #8:

• Give me the {{Attribute}} of the
products that have {{N}} units left

Capability #9:

• Get the total payment amount of the last
{{N}} {{status}} orders

Capability #10:

• Find the customer name and email with
phone number {{PhoneNum}}

Capability #11:

• Tell me the {{attribute}} of the cus-
tomer who has the most cancellations in
the history

• Which customer has completed the
{{quantifier}} number of orders in
the entire history?

• Show me the {{information}} of the
customer who is the most unhappy with
{{product}}

Capability #12:

• How many reviews our shop received
{{time}}?

• What is the total count of {{status}}
reviews amongst all the reviews?

Capability #13:

• Preview the {{name}} theme for my
shop

Capability #14:

• Mark all {{brand}} shirts on sale

Capability #15:

• Disable {{product}} from the site, they
are facing some quality issues.

Capability #16:

• {{action}} the price of {{config}}

by {{amount}}

• {{action}} the price of this product by
{{amount}}

Capability #17:

• Update the description of {{product}}
to highlight the real user positive reviews
by quoting the comments

Capability #18:

• Cancel order {{id}}

Capability #19:

• Change the page title of
“{{old-heading}}” page on my
site to “{{heading}}”.

Capability #20:

• Notify {{name}} in their most re-
cent pending order with message
“{{message}}”

Capability #21:

• Update order #{{order}} with
the {{service}} tracking number
{{tracking}}

Capability #22:

• Make all {{product}} as out of stock

Capability #23:

• Modify the address of order
#{{order_id}} to {{address}}

Capability #24:

• Add new {{option}} {{value}} to
{{base_setting}} of {{product}}

Capability #25:

• Lookup orders that are {{status}}
• Get the {{attribute}} of the
{{status}} order

Capability #26:

• Add a simple product named
{{product}} with {{stock}} in
stock, available in size {{size}} and
color {{color}}, priced at ${{price}}

Capability #27:

• Draft a new marketing price rule for
{{topic}} that offers {{rule}} for all
customers

Capability #28:

• Today is 3/15/2023, generate a
{{report}} {{time_span}}

• Create a {{type}} report from
{{start_date}} to {{end_date}}

Capability #29:

• We’ve received {{quantity}}, update
the inventory.

Capability #30:

• Approve the positive reviews to display
in our store.

Capability #31:

• Delete all {{review_type}}

Capability #32:

• Tell me the full address of all
{{airport_type}} that are within
a driving distance of {{radius}} to
{{start}}

Capability #33:

• What is the {{information}} of
{{location}}

• I will arrive {{place}} soon. Pro-
vide the name of a {{target1}} in
the vicinity, if available. Then, tell me
the {{information}} to {{target2}}

from the hotel.

Capability #34:

• What is the zip code of {{place}}?

Capability #35:

• Given the following locations,
{{place_list}}, what would be
the optimal route to travel through them
all in order to minimize total travel time?
Please note the journey begins at the first
place listed.

Capability #36:

• Which US states border {{state}}?

Capability #37:

• Where is the nearest {{places}} to
{{start}}, and what is the walking dis-
tance to it?

• Find the walkway to the closest
{{store}} from {{location}}.

• How long does it take to walk from
{{start}} to {{end}}?

• Tell me the closest {{place1}}(s) to
{{place2}}

Capability #38:

• From my stay at {{hotel}}, what’s
the estimated driving time to reach
{{place}}?

• What is the minimum travel time
by car from {{location1}} to
{{location2}}?

• What is the duration required to first walk
from {{place_A}} to {{place_B}},
and then drive to {{place_C}}?

• Show me the walking distance from
nearby hotels to {{location}} that
take at most {{n}} minutes?

• What is the estimated driving time be-
tween {{city1}} and {{city2}}?
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Capability #39:

• From my stay at {{hotel}}, what’s
the estimated driving time to reach
{{place}}?

• What is the estimated driving time be-
tween {{city1}} and {{city2}}?

• I am at CMU Pittsburgh, how long
it takes to drive to the nearest
{{location}}

• Check if the {{place}} in pittsburgh
can be reached in one hour by car from
{{location}}

Capability #40:

• Find the {{space}} around
{{location}}

• Find the walkway to the closest
{{store}} from {{location}}.

• Tell me the closest {{place1}}(s) to
{{place2}}

• Where is the nearest {{location}}

from {{location2}} {{condition}}

Capability #41:

• What is the {{information}} of
{{location}}

• Tell me the coordinates of
{{location}} in DD format

Capability #42:

• How much time does it take from Pitts-
burgh to Philadelphia by car?

Capability #43:

• Show the route from SCS CMU in Pitts-
burgh to the location where the Decla-
ration of Independence and Constitution
were signed

Capability #44:

• Pull up the description page of
{{location}} on Map

• What is the {{information}} of
{{location}}

Capability #45:

• I am arriving at Carnegie Mellon Univer-
sity. Find the nearby US Citizenship and
Immigration Services and the walking
distance to the nearest Social Security
Administration from US Citizenship and
Immigration Services

Capability #46:

• I am arriving at Pittsburgh Airport. Show
me the name of a Hyatt hotel if there is
any nearby. Tell me the names of super-
markets that are within 15mins driving
from the hotel

Capability #47:

• Measure distance between
{{location/address_1}} and
{{location/address_2}} by walking

• Get directions from
{{location/address_1}} to
{{location/address_2}} using
{{transportation}} options.

Capability #48:

• List out reviewers, if exist, who mention
about {{description}}

Capability #49:

• Today is 6/12/2023. Tell me how many
fulfilled orders I have {{period}}, and
the total amount of money I spent.

Capability #50:

• Tell me the status of my latest order and
when will it arrive

Capability #51:

• What is the date when I made my first
purchase on this site?

Capability #52:

• I have jaw bruxism problem, show me
something that could alleviate the prob-
lem.

Capability #53:

• What is the price range for products from
{{brand}}?

• What is the price range of {{product}}
in the One Stop Market?

Capability #54:

• How much I spent on {{category}}

shopping during {{time}}

Capability #55:

• What is the {{option}} configuration
of the {{product}} I bought {{time}}

• I previously ordered some {{product}}
{{time}} and later cancelled. Can you
reorder it for me?

Capability #56:

• I have a lot of Nintendo Switch game
cards now, help me find the best storage
option to fit all {{num}} cards

Capability #57:

• What are the main criticisms of this prod-
uct? Please extract the relevant sen-
tences.

Capability #58:

• What do customers say about
{{product_type}} from
{{manufature}}

Capability #59:

• Buy the best rating product from
“{{category}}” category with at least
5 reviews and the product is least expen-
sive

• I am doing a market survey for one stop
market, show me the most expensive
product from {{product_category}}

category
• Buy the highest rated product from

the {{product_category}} category
within a budget {{dollar_value}}.

Capability #60:

• Search for “{{keyword}}”

Capability #61:

• List the full product names of slide slip-
pers from Nike and tell me the price
range of the available products

Capability #62:

• Look up the most recent models of XBox
controllers released between 2020-2021?

Capability #63:

• Show the least expensive {{product}}

with a minimum storage capacity of
{{min_storage}}.

Capability #64:

• Show the most recent {{status}} order
• Get the order number of my most recent
{{status}} order

Capability #65:

• Which number to call for the customer
service?

Capability #66:

• How much refund I should expect from
my order canlled in {{time}}? I only
kept the AC-DC Adapter and the shop
told me that I cannot get the shipping fee
back

Capability #67:

• Show me the “{{product}}” listings by
{{sorting_order}}.

Capability #68:

• How much did I spend on shopping at
One Stop Market {{time}}? They gave
me a 20% discount on the total amount
for orders exceeding $200 in cash

Capability #69:

• Tell me when I last ordered my
{{description}}?

Capability #70:

• List products from
{{product_category}} category
by {{order}} price

• Show me products under ${{price}} in
“{{product_category}}” category

Capability #71:

• Show me the {{info}} for order num-
ber {{order_number}}.

Capability #72:

• find discounted items.

Capability #73:

• Summarize customer reviews for
{{product}}.

Capability #74:

• List the customer names who thinks
EYZUTAK phone cases are of good
looking

• Who gave {{stars}} for phone cases
from EYZUTAK

Capability #75:

• What is the rating of {{product}}

Capability #76:

• Add the product with the lowest per unit
price from my open tabs to the shopping
cart

Capability #77:

• Add {{product}} to my wish list
• Add this product to my wishlist
• Add a {{product}} to my wish list.

Capability #78:

• Subscribe to the newsletter of OneStop-
Market

Capability #79:

• I recently moved, my address is
{{address}}, update my information on
OneStopShopping accordingly

• Change the delivery address for my most
recent order to {{address}}.

Capability #80:

• Rate my recent purchase of
{{product}} with {{num_star}} stars,
using my nickname {{nickname}}?
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Capability #81:

• Fill the “contact us” form in the site for
a refund on the {{product}} I bought,
stating that it broke after just three days
of use. Also, ensure to include the order
number #{{order_id}} and the prod-
uct SKU. Don’t submit yet, I will check.

• Draft a refund message via their “contact
us” form for the {{product}} I bought
{{time}}. It broke after three days of
use. The shop requires the order id, the
reason and the amount to refund in the
message. Don’t submit yet

Capability #82:

• Draft an email to the shop owner via
their contact us function for a coupon
as {{reason}}

Capability #83:

• Tell me the count of comments that have
received more downvotes than upvotes
for the user who made the latest post on
the {{forum}} forum.

Capability #84:

• Among the top {{number}} post
in “{{subreddit}}” forum,
{{description}}

Capability #85:

• Change my reddit bio to
“{{content}}”

Capability #86:

• Reply to {{position_description}}

with my comment
“{{content_description}}”

Capability #87:

• Create a new forum named {{name}},
with a description of {{description}},
and include {{sidebar_list}} in the
sidebar?

Capability #88:

• Open the thread of a trending post on the
forum “{{subreddit}}” and subscribe.

• Upvote the newest post in
{{subreddit}} subreddit

Capability #89:

• Create a discussion post about
“{{topic}}” in a relevant subred-
dit and ask users for their opinions with
the simple prompt, “your opinion”

• Find a subreddit focused on topics re-
lated to {{topic}}, and post my ques-
tion, “{{question}}” there

• Post my question, “{{question}} in a
subreddit where I’m likely to get an an-
swer

Capability #90:

• Post a review of my recent reading
“{{book}}” in the r/books with my com-
ment “{{content}}”.

Capability #91:

• Re-post the image of {{content}} in
this page to {{subreddit}} subreddit
and note “from /f/pics”

Capability #92:

• Ask for advice about {{issue}} in a
subreddit for relations

Capability #93:

• Post in the most appropriate subred-
dit and ask for recommendations for
{{category}} products within a budget
of {{price}}

• Ask for product recommendations for
{{category}} within a budget of
{{price}} in {{subreddit}}

Capability #94:

• Post a notice on a virtual meetup for
{{interest}} enthusiasts on {{date}}

in the {{subreddit}} subreddit

Capability #95:

• Post in {{subreddit}} subreddit about
what could diffusion model help the cor-
repong field.

Capability #96:

• Thumbs down the top {{k}} post ever in
{{subreddit}}.

Capability #97:

• Like all submissions created by
{{user}} in subreddit {{subreddit}}

• DisLike all submissions created by
{{user}} in subreddit {{subreddit}}

Capability #98:

• Edit my post on {{post}} by
adding a line to the body that says
“{{content}}”

Capability #99:

• Check out my todos

Capability #100:

• Check out the most recent open issues

Capability #101:

• Checkout merge requests assigned to me
• Checkout merge requests requiring my

review

Capability #102:

• Tell me the full names of the repositories
where I made contributions and they got
{{description}} stars?

Capability #103:

• Open my latest created issue that has
{{keyword}} in its title to check if it is
closed

• Open my latest updated issue that has
keyword “{{keyword}}” in its title to
check if it is closed

Capability #104:

• See all public projects

Capability #105:

• Get me my RSS feed token

Capability #106:

• Show me the command to clone
{{repo}} with SSH.

Capability #107:

• List all opened issues
{{description}}

Capability #108:

• Who else have access to my repo
{{repo}}, show me their usernames

Capability #109:

• Post “{{content}}” for the merge re-
quest related to {{mr}} in {{repo}}

project

Capability #110:

• Fork {{repo}}.

Capability #111:

• Make the LICENSE of {{repo}} to
MIT license.

Capability #112:

• Go to the merge request on {{topic}}

I have to review, find if the author of the
merge request responded at the end, and
reply “Thank you” if he did. Otherwise
remind him with a simple @.

Capability #113:

• Set my gitlab status as {{status}}.

Capability #114:

• Update the project site’s title to
“{{title}}”

Capability #115:

• set the homepage URL on my GitLab
profile to {{url}}

Capability #116:

• Set up a new, empty repository with the
name {{project_name}}?

• Create a private {{template}} reposi-
tory called “{{project_name}}” using
the right template to speed up develop-
ment.

Capability #117:

• Invite
{{collaborator_account_list}} as
collaborator to {{repo}} repo

• Add the following users to
repo {{repo}} as {{role}}:
{{user_list}}

Capability #118:

• {{name}} wants to check my dotfile con-
figurations. Please invite him to the repo
as a guest.

Capability #119:

• Star the top {{number}} most stared re-
pos in Gitlab

Capability #120:

• Follow {{account_list}} on Gitlab

Capability #121:

• Create a milestone for the upcoming
{{event}} starting on {{start_date}}
and ending on {{end_date}}

Capability #122:

• Create an issue {{issue}} in
{{repo}}.

• Assign the issue regarding {{issue}} in
{{repo}} to {{account}}.

• Create an issue in {{repo}} repo with
title “{{issue}}”. Assign the issue
to {{account}}. Set due date to be
{{due}}
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Capability #123:

• Submit a merge request for
{{source_branch}} branch to be
merged into {{target_branch}}

branch, assign {{reviewer}} as the
reviewer

Capability #124:

• Open a new issue to discuss the imple-
mentation of {{feature}}

Capability #125:

• Start a private project
{{project_name}} with
{{template}} template and add
{{account_list}} as members

Capability #126:

• How many commits did {{user}} make
on {{date}} in total?

• Tell me who has made the most contribu-
tions, in terms of number of commits, to
the {{repo}} project

• Tell me the {{attribute}} of the con-
tributor who has the most commits to
branch {{branch_name}}

• List the {{attribute}} of the top 3
contributors to {{repo}} repo, ranked
by the number of commits?

Capability #127:

• create a new group “{{name}}” with
members {{members}}

Capability #128:

• Tell me the distance to drive from
Carnegie Mellon University to the
top computer science school in mas-
sachusetts

Capability #129:

• What’s the closest national park to
{{city}}? How long does it take to bike
there?

Capability #130:

• Find the page of {{description}} on
the map.

Capability #131:

• Show me the way from
{{location}} to the home stadium of
{{sport_team}} {{time}}

Capability #132:

• Find a GitLab repository related to
{{topic}} and make a Reddit post link-
ing to it in a relevant subreddit

• create a repository named {{name}} that
includes a README file with the links
to the most active {{num}} DIY ideas
on DIY subreddit?

• Make a folder named {{directory}}

on the {{gitlab_repo}} repo and in-
clude a file called urls.txt that consists of
the links to the 5 most recent posts from
{{subreddit}}.

Capability #133:

• Promote {{repo}} to subreddit
{{subreddit}} with the description
from the repo itself.

Capability #134:

• Create a repo named {{name}} with
{{topics}} in a README file

Capability #135:

• Gather the titles of {{product}} re-
views with {{rating}} rating from On-
eStopShop, and post them in the games
subreddit under the title “real user feed-
back on {{product}}”

Capability #136:

• Show me the route and driving time from
{{city1}} to {{city2}}
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G PROMPTS

We provide the prompts used to generate novel out-of-domain objectives, urls, web pages, and
solution trajectories.

Generate Novel Synthetic Objectives and Websites:

Here are a few example objectives (tasks) a user might be asked to perform on a webpage.

Closely following these example objectives, generate a potential objective a user might

want to perform on another American website that is similar to the examples. (in terms of

reasoning required, requiring navigating to multiple pages or taking multiple steps to solve,

etc.) The new objective should not be on a website that is the same or is similar to any of

the example objective’s websites/domains, it should be a completely different website. Ensure

the objective has a definitive, objective answer, and not a subjective answer. Return just

the objective and a domain name (no path in the URL, just the hostname) of the website (in the

same OBJECTIVE:/URL: format) and nothing else.

OBJECTIVE: {...}

URL: {...}

{...other examples}

Generate Plan for Hypothetical Synthetic Solution Trajectory:

OBJECTIVE: {...}

URL: {...}

Here is an objective a user can perform on the webpage. The user may need to perform multiple

actions / steps (clicking, typing, scrolling, storing/remembering information, or recalling

stored information) in order to solve the objective. Assuming the user is starting with a

web browser that is already loaded with the website, output the required / necessary steps the

user must take on the page to solve the objective, one step per line. Each step MUST involve

either clicking, scrolling, typing, or stopping (when the objective is complete). DO NOT

output steps that don’t involve one of these actions. If a step does not involve clicking,

scrolling, typing, or stopping, such as remembering/recalling/calculating information, combine

it instead with the next step in the sequence that does. Return nothing else other than the

necessary steps, no bullets and no numbered lists.

Generate Hypothetical URL for Random Step in Synthetic Trajectory:

OBJECTIVE: {...}

WEBSITE: {...}

STEPS:

1. {...}

2. {...}

{...other steps}

Here is an objective a user can perform on a website starting from the homepage and some

steps a user may take to solve the objective. Output a realistic and valid URL (don’t use

placeholders like ’123’, ’example’, ’acme’, etc.) for what page a user would be on after they

perform Step #{...}. Return just the URL and nothing else.
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Generate Hypothetical Previous and Next Action for Random Step in Synthetic Trajectory:

Here are 2 example objectives a user might be asked to perform on a URL / webpage (provided in

accessibility tree format). The goal is to perform a series of incremental actions that can

complete the objective. The previous action that was taken and the next action a user should

take towards completing the objective along with a "Let’s think step-by-step." explanation is

also provided for the 2 examples. All actions possible for the user are:

{...}

The action should always be placed inside ``````. For example, "In summary, the next action I

will perform is ```click [1234]```".

Example 1:

OBJECTIVE: {...}

URL: {...}

WEBPAGE: {...}

PREVIOUS ACTION: {...}

NEXT ACTION: {...}

Example 2:

{...other example}

Following the structure of these 2 examples closely, for the objective and URL below, generate

a realistic full-length webpage accessibility tree, realistic previous action, and realistic

next action that a user needs to perform on the webpage in order to complete Step #{...} of

the OVERALL PLAN towards the objective. Provide the actions and webpage in the same format

(WEBPAGE:/PREVIOUS ACTION:/NEXT ACTION:). Ensure the next action is Step #{...}, the next

action begins with "Let’s think step-by-step." and ends with "In summary, the next action I

will perform is ```...```", and the [id] for any actions is an ID number not a string. Do not

mention or reference the OVERALL PLAN or Step #{...} directly in the output. Return nothing

else other than the two actions and the webpage.

OBJECTIVE: {...}

URL: {...}

OVERALL PLAN:

1. {...}

2. {...}

{...other steps}

CURRENT STEP: {...}
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Generate Hypothetical Web Page for Random Step in Synthetic Trajectory:

Here are 2 example objectives a user might be asked to perform on a URL / webpage (provided in

accessibility tree format). The goal is to perform a series of incremental actions that can

complete the objective. The previous action that was taken and the next action a user should

take towards completing the objective along with a "Let’s think step-by-step." explanation is

also provided for the 2 examples. All actions possible for the user are:

{...}

The action should always be placed inside ``````. For example, "In summary, the next action I

will perform is ```click [1234]```".

Example 1:

OBJECTIVE: {...}

URL: {...}

WEBPAGE: {...}

PREVIOUS ACTION: {...}

NEXT ACTION: {...}

Example 2:

{...other example}

Following the structure of these 2 examples closely, for the objective, URL, previous action,

and next action below, generate a realistic full-length webpage accessibility tree (don’t

use placeholders like ’123’, ’example’, ’acme’, etc.). Ensure the page is in English and is

structured such that performing the next action described would realistically complete or make

incremental progress towards completing the objective. Provide the webpage in the same format

(WEBPAGE:) and return nothing else other than the webpage.

OBJECTIVE: {...}

URL: {...}

PREVIOUS ACTION: {...}

NEXT ACTION: {...}
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H RESOURCES

We provide links and citations to resources used in this paper which provide license information,
documentation, and their intended use. Our usage follows the intended usage of all resources.

We utilize the following models:

• GPT-4 (OpenAI et al., 2024)

• Qwen-1.5-72B-Chat (Bai et al., 2023)

• sentence-transformers/all-distilroberta-v1 (Sanh et al., 2019; Liu et al., 2019)

• sentence-transformers/all-mpnet-base-v2 (Song et al., 2020)

We utilize the following datasets:

• WebArena Benchmark (Zhou et al., 2023)

We utilize the following software:

• DataDreamer (Patel et al., 2024)

• PyTorch and PyTorch FSDP (Paszke et al., 2019; Zhao et al., 2023)

• QLora (Dettmers et al., 2023)

• Transformers (Wolf et al., 2019)

• Sentence-Transformers (Reimers and Gurevych, 2019)

• SymbolicAI (Dinu et al., 2024)

• fastdtw (slaypni, 2017; Salvador and Chan, 2004)

We estimate the total compute budget and detail computing infrastructure used to run the computa-
tional experiments found in this paper below:

• 4x NVIDIA RTX A6000 / 300GB RAM / 50x CPU – 900 hours
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