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Abstract

We initiate the study of tolerant adversarial PAC learning with respect to metric1

perturbation sets. In adversarial PAC learning, an adversary is allowed to replace a2

test point x with an arbitrary point in a closed ball of radius r centered at x. In the3

tolerant version, the error of the learner is compared with the best achievable error4

with respect to a slightly larger perturbation radius (1 + γ)r. This simple tweak5

helps us bridge the gap between theory and practice and obtain the first PAC-type6

guarantees for algorithmic techniques that are popular in practice. Furthermore, our7

sample complexity bounds improve exponentially over best known (non-tolerant)8

bounds in terms of the VC dimension of the hypothesis class. In particular, for9

perturbation sets with doubling dimension d, we show that a variant of the “perturb-10

and-smooth” algorithm PAC learns any hypothesis classH with VC dimension v in11

the γ-tolerant adversarial setting with O
(
v(1+1/γ)O(d)

ε

)
samples. This guarantee12

holds in the tolerant robust realizable setting. We extend this to the agnostic case13

by designing a novel sample compression scheme based on the perturb-and-smooth14

approach. This compression-based algorithm has a linear dependence on the15

doubling dimension as well as the VC-dimension.16

1 Introduction17

Several empirical studies (Szegedy et al., 2014; Goodfellow et al., 2018) have demonstrated that18

models trained to have a low accuracy on a data set often have the undesirable property that a small19

perturbation to an input instance can change the label outputted by the model. For most domains this20

does not align with human intuition and thus indicates that the learned models are not representing21

the ground truth despite obtaining good accuracy on test sets.22

The theory of PAC-learning characterizes the conditions under which learning is possible. For binary23

classification, the following conditions are sufficient: a) unseen data should arrive from the same24

distribution as training data, and b) the class of models should have a low capacity (as measured, for25

example, by its VC dimension). If these conditions are met, an Empirical Risk Minimizer (ERM) that26

simply optimizes model parameters to maximize accuracy on the training set learns successfully.27

Recent work has studied test-time adversarial perturbations under the PAC-learning framework. If28

an adversary is allowed to perturb data during test time then the conditions above do not hold, and29

we cannot hope for the model to learn to be robust just by running ERM. Thus, the goal here is to30

bias the learning process towards finding models where label-changing perturbations are rare. This is31

achieved by defining a loss function that combines both classification error and the probability of32

seeing label-changing perturbations, and learning models that minimize this loss on unseen data. It33

has been shown that even though (robust) ERM can fail in this setting, PAC learning is still possible34

as long as we know during training the kinds of perturbations we want to guard against at test35

time (Montasser et al., 2019). This result holds for all perturbation sets. However, the learning36
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algorithm is significantly more complex than robust ERM and requires a large number of samples37

(with the best known sample complexity bounds potentially being exponential in the VC-dimension).38

We study a tolerant version of the adversarially robust learning framework and restrict the perturba-39

tions to balls in a general metric space with finite doubling dimension. We show this slight shift in40

the learning objective yields significantly improved sample complexity bounds through a simpler41

learning paradigm than what was previously known. In fact, we show that a version of the common42

“perturb-and-smooth” paradigm successfully PAC-learns any class of bounded VC dimension in this43

setting.44

Learning in general metric spaces. What kinds of perturbations should a learning algorithm guard45

against? Any transformation of the input that we believe should not change its label could be a viable46

perturbation for the adversary to use. The early works in this area considered perturbations contained47

within a small `p-ball of the input. More recent work has considered other transformations such as48

a small rotation, or translation of an input image (Engstrom et al., 2019; Fawzi & Frossard, 2015;49

Kanbak et al., 2018; Xiao et al., 2018), or even adding small amounts of fog or snow (Kang et al.,50

2019). It has also been argued that small perturbations in some feature space should be allowed as51

opposed to the input space (Inkawhich et al., 2019; Sabour et al., 2016; Xu et al., 2020; Song et al.,52

2018; Hosseini & Poovendran, 2018). This motivates the study of more general perturbations.53

We consider a setting where the input comes from a domain that is equipped with a distance metric54

and allows perturbations to be within a small metric ball around the input. Earlier work on general55

perturbation sets (for example, (Montasser et al., 2019)) considered arbitrary perturbations. In this56

setting one does not quantify the magnitude of a perturbation and thus cannot talk about small versus57

large perturbations. Modeling perturbations using a metric space enables us to do that while also58

keeping the setup general enough to be able to encode a large variety of perturbation sets by choosing59

appropriate distance functions.60

Learning with tolerance. In practice, we often believe that small perturbations of the input should61

not change its label but we do not know precisely what small means. However, in the PAC-learning62

framework for adversarially robust classification, we are required to define a precise perturbation set63

and learn a model that has error arbitrarily close to the smallest error that can be achieved with respect64

to that perturbation set. In other words, we aim to be arbitrarily close to a target that was picked65

somewhat arbitrarily to begin with. Due to the uncertainty about the correct perturbation size, it is66

more meaningful to allow for a wider range of error values. To achieve this, we introduce the concept67

of tolerance. In the tolerant setting, in addition to specifying a perturbation size r, we introduce a68

tolerance parameter γ that encodes our uncertainty about the size of allowed perturbations. Then, for69

any given ε > 0, we aim to learn a model whose error with respect to perturbations of size r is at70

most ε more than the smallest error achievable with respect to perturbations of size r(1 + γ).71

2 Our results72

In this paper we formalize and initiate the study of the problem of adversarially robust learning in73

the tolerant setting for general metric spaces and provide two algorithms for the task. Both of our74

algorithms rely on: 1) modifying the training data by randomly sampling points from the perturbation75

sets around each data point, and 2) smoothing the output of the model by taking a majority over the76

labels returned by the model for nearby points.77

Our first algorithm starts by modifying the training set by randomly perturbing each training point78

using a certain distribution (see Section 5 for details). It then trains a (non-robust) PAC learner (such79

as ERM) on the perturbed training set to find a hypothesis h. Finally, it outputs a smooth version80

of h. The smoothing step replaces h(x) at each point x with the a majority label outputted by h on81

the points around x. We show that for metric spaces of a fixed doubling dimension, this algorithm82

successfully learns in the (robustly realizable) tolerant setting.83

Theorem 1 (Informal version of Theorem 10). Let (X,dist) be a metric space with doubling84

dimension d andH a hypothesis class. Assuming robust realizability,H can be learned tolerantly in85

the adversarially robust setting using O
(

(1+1/γ)O(d)VC(H)
ε

)
samples, where γ encodes the amount86

of allowed tolerance, and ε is the desired accuracy.87
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An interesting feature of the above result is the linear dependence of the sample complexity with88

respect to VC(H). This is in contrast to the best known upper bound for non-tolerant adversarial89

setting (Montasser et al., 2019) which depends on the dual VC dimension of the hypothesis class90

and in general is exponential in VC(H). Moreover, this is the first PAC type guarantee for the91

general perturb-and-smooth paradigm, indicating that the tolerant adversarial learning is the “right”92

learning model for studying these approaches. While the above method enjoys simplicity and can93

be computationally efficient, one downside is that its sample complexity grows exponentially with94

the doubling dimension. For instance, such algorithm cannot be used on high-dimensional data in95

the Euclidean space. Another limitation is that the guarantee holds only in the (robustly) realizable96

setting. We propose another algorithm that improves the dependence on doubling dimension, and97

works in the general agnostic setting.98

Theorem 2 (Informal version of Corollary 16). Let (X,dist) be a metric space with doubling99

dimension d andH a hypothesis class. ThenH can be learned tolerantly in the adversarially robust100

setting using Õ
(
O(d)VC(H) log(1+1/γ)

ε2

)
samples, where Õ hides logarithmic factors, γ encodes the101

amount of allowed tolerance, and ε is the desired accuracy.102

This algorithm exploits the connection between sample compression and adversarially robust learn-103

ing Montasser et al. (2019). However, unlike Montasser et al. (2019), our new compression scheme104

sidesteps the dependence on the dual VC dimension. As a result, we get an exponential improvement105

over the best known (nontolerant) sample complexity in terms of dependence on VC dimension.106

3 Related work107

PAC-learning for adversarially robust classification has been studied extensively in recent years (Cul-108

lina et al., 2018; Awasthi et al., 2019; Montasser et al., 2019; Feige et al., 2015; Attias et al., 2019;109

Montasser et al., 2020a; Ashtiani et al., 2020). These works provide learning algorithms that guaran-110

tee low generalization error in the presence of adversarial perturbations in various settings. The most111

general result is due to (Montasser et al., 2019) which is proved for general hypothesis classes and112

perturbation sets. All of the above results assume that the learner knows the kinds of perturbations113

allowed for the adversary. Some more recent papers have considered scenarios where the learner114

does not even need to know that. Goldwasser et al. (2020) allow the adversary to perturb test data in115

unrestricted ways and are still able to provide learning guarantees. The catch is that it only works116

in the transductive setting and only if the learner is allowed to abstain from making a prediction on117

some test points. Montasser et al. (2021a) consider the case where the learner needs to infer the set of118

allowed perturbations by observing the actions of the adversary.119

Tolerance was introduced by Ashtiani et al. (2020) but in the context of certification. They provide120

examples where certification is not possible unless we allow some tolerance. Montasser et al. (2021b)121

study transductive adversarial learning and provide a “tolerant” guarantee. Note that unlike our work,122

the main focus of this paper is on the transductive setting. Moreover, they do not specifically study123

tolerance with respect to metric perturbation sets. Without a metric, it is not meaningful to expand124

perturbation sets by a factor (1 + γ) (as we do in the our definition of tolerance). Instead, they expand125

their perturbation sets by applying two perturbations in succession, which is akin to setting γ = 1. In126

contrast, our results hold in the more common inductive setting, and capture a more realistic setting127

where γ is any (small) real number larger than zero.128

Like many recent adversarially robust learning algorithms (Feige et al., 2015; Attias et al., 2019),129

our first algorithm relies on calls to a non-robust PAC-learner. Montasser et al. (2020b) formalize the130

question of reducing adversarially robust learning to non-robust learning and study finite perturbation131

sets of size k. They show a reduction that makes O(log2 k) calls to the non-robust learner and also132

prove a lower bound of Ω(log k). It will be interesting to see if our algorithms can be used to obtain133

better bounds for the tolerant setting. Our first algorithm makes one call to the non-robust PAC-learner134

at training time, but needs to perform potentially expensive smoothing for making actual predictions135

(see Theorem 10).136

The techniques of randomly perturbing the training data and smoothing the output classifier has been137

extensively used in practice and has shown good empirical success. Augmenting the training data with138

some randomly perturbed samples was used for handwriting recognition as early as in (Yaeger et al.,139

1996). More recently, “stability training” was introduced in (Zheng et al., 2016) for state of the art140
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image classifiers where training data is augmented with Gaussian perturbations. Empirical evidence141

was provided that the technique improved the accuracy against naturally occurring perturbations.142

Augmentations with non-Gaussian perturbations of a large variety were considered in (Hendrycks143

et al., 2019).144

Smoothing the output classifier using random samples around the test point is a popular technique145

for producing certifiably robust classifiers. A certification, in this context, is a guarantee that given a146

test point x, all points within a certain radius of x receive the same label as x. Several papers have147

provided theoretical analyses to show that smoothing produces certifiably robust classifiers (Cao &148

Gong, 2017; Cohen et al., 2019; Lecuyer et al., 2019; Li et al., 2019; Liu et al., 2018; Salman et al.,149

2019; Levine & Feizi, 2020).150

However, to the best of our knowledge, a PAC-like guarantee has not been shown for any algorithm151

that employs training data perturbations or output classifier smoothing, and our paper provides the152

first such analysis.153

4 Notations and setup154

We denote by X the input domain and by Y = {0, 1} the binary label space. We assume that155

X is equipped with a metric dist. A hypothesis h : X → Y is a function that assigns a label156

to each point in the domain. A hypothesis class H is a set of such hypotheses. For a sample157

S = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n, we use the notation SX = {x1, x2, . . . , xn} to denote158

the collection of domain points xi occurring in S. The binary (also called 0-1) loss of h on data point159

(x, y) ∈ X × Y is defined by160

`0/1(h, x, y) = 1 [h(x) 6= y] ,

where 1 [.] is the indicator function. Let P by a probability distribution over X × Y . Then the161

expected binary loss of h with respect to P is defined by162

L0/1
P (h) = E(x,y)∼P [`0/1(h, x, y)]

Similarly, the empirical binary loss of h on sample S = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n is163

defined as L0/1
S (h) = 1

n

∑n
i=1 `

0/1(h, xi, yi). We also define the approximation error of H with164

respect to P as L0/1
P (H) = infh∈H L0/1

P (h).165

A learner A is a function that takes in a finite sequence of labeled instances S =166

((x1, y1), . . . , (xn, yn)) and outputs a hypothesis h = A(S). The following definition abstracts167

the notion of PAC learning Vapnik & Chervonenkis (1971); Valiant (1984).168

Definition 3 (PAC Learner). Let P be a set of distributions over X × Y andH a hypothesis class.169

We say A PAC learns (H,P) with mA : (0, 1)2 → N samples if the following holds: for every170

distribution P ∈ P over X × Y , and every ε, δ ∈ (0, 1), if S is an i.i.d. sample of size at least171

mA(ε, δ) from P , then with probability at least 1− δ (over the randomness of S) we have172

LP (A(S)) ≤ LP (H) + ε.

A is called an agnostic learner if P is the set of all distributions on X × Y , and a realizable learner if173

P = {P : LP (H) = 0}.174

The smallest function m : (0, 1)2 → N for which there exists a learner A that satisfies the above175

definition with mA = m is referred to as the (realizable or agnostic) sample complexity of learning176

H.177

The existence of sample-efficient PAC learners for VC classes is a standard result Vapnik & Chervo-178

nenkis (1971). We state the results formally in Appendix A.179

4.1 Tolerant adversarial PAC learning180

Let U : X → 2X be a function that maps each point in the domain to the set of its “admissible”181

perturbations. We call this function the perturbation type. The adversarial loss of h with respect to U182

on (x, y) ∈ X × Y is defined by183

`U (h, x, y) = max
z∈U(x)

{`0/1(h, z, y)}
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The expected adversarial loss with respect to P is defined by LUP (h) = E(x,y)∼P `
U (h, x, y). The184

empirical adversarial loss of h on sample S = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n is defined by185

LUS (h) = 1
n

∑n
i=1 `

U (h, xi, yi). Finally, the adversarial approximation error ofH with respect to U186

and P is defined by LUP (H) = infh∈H LUP (h).187

The following definition generalizes the setting of PAC adversarial learning to what we call the188

tolerant setting, where we consider two perturbation types U and V . We say U is contained in V and189

and write it as U ≺ V if U(x) ⊂ V(x) for all x ∈ X .190

Definition 4 (Tolerant Adversarial PAC Learner). Let P be a set of distributions over X × Y ,H a191

hypothesis class, and U ≺ V two perturbation types. We say A tolerantly PAC learns (H,P,U ,V)192

with mA : (0, 1)2 → N samples if the following holds: for every distribution P ∈ P and every193

ε, δ ∈ (0, 1), if S is an i.i.d. sample of size at least mA(ε, δ) from P , then with probability at least194

1− δ (over the randomness of S) we have195

LUP (A(S)) ≤ LVP (H) + ε.

We say A is a tolerant PAC learner in the agnostic setting if P is the set of all distributions over196

X × Y , and in the tolerantly realizable setting if P = {P : LVP (H) = 0}.197

In the above context, we refer to U as the actual perturbation type and to V as the reference198

perturbation type. The case where U(x) = V(x) for all x ∈ X corresponds to the usual adversarial199

learning scenario (with no tolerance).200

4.2 Tolerant adversarial PAC learning in metric spaces201

If X is equipped with a metric dist(., .), then U(x) can be naturally defined by a ball of radius r202

around x, i.e., U(x) = Br(x) = {z ∈ X | dist(x, z) ≤ r}. To simplify the notation, we sometimes203

use `r(h, x, y) instead of `Br (h, x, y) to denote the adversarial loss with respect to Br.204

In the tolerant setting, we consider the perturbation sets U(x) = Br(x) and V(x) = B(1+γ)r(x),205

where γ > 0 is called the tolerance parameter. Note that U ≺ V . We now define PAC learning with206

respect to the metric space.207

Definition 5 (Tolerant Adversarial Learning in metric spaces). Let (X,dist) be a metric space,H208

a hypothesis class, and P a set of distributions of X × Y . We say (H,P,dist) is tolerantly PAC209

learnable with m : (0, 1)3 → N samples when for every r, γ > 0 there exist a PAC learner Ar,γ for210

(H,P, Br, Br(1+γ)) that uses m(ε, δ, γ) samples.211

Remark 6. In this definition the learner receives γ and r as input but its sample complexity does212

not depend on r (but can depend on γ). Also, as in Definition 4, the tolerantly realizable setting213

corresponds to P = {P : Lr(1+γ)P (H) = 0} while in the agnostic setting P is the set of all214

distributions over X × Y .215

The doubling dimension and the doubling measure of the metric space will play important roles in216

our analysis. We refer the reader to Appendix B for their definitions.217

We will use the following lemma in our analysis, whose proof can be found in Appendix B:218

Lemma 7. For any familyM of complete, doubling metric spaces, there exist constants c1, c2 > 0219

such that for any metric space (X,dist) ∈M with doubling dimension d, there exists a measure µ220

such that if a ball Br of radius r > 0 is completely contained inside a ball Bαr of radius αr (with221

potentially a different center) for any α > 1, then 0 < µ(Bαr) ≤ (c1α)c2dµ(Br). Furthermore, if222

we have a constant α0 > 1 such that we know that α ≥ α0 then the bound can be simplified to223

0 < µ(Bαr) ≤ αζdµ(Br), where ζ depends onM and α0.224

Later, we will set α = 1 + 1/γ where γ is the tolerance parameter. Since we are mostly interested in225

small values of γ, suppose we decide on some loose upper bound Γ� γ. This corresponds to saying226

that there exists some α0 > 1 such that α ≥ α0.227

It is worth noting that in the special case of Euclidean metric spaces, we can set both c1 and c2 to be228

1. In the rest of the paper, we will assume we have a loose upper bound Γ� γ and use the simpler229

bound from Lemma 24 extensively.230

Given a metric space (X, d) and a measure µ defined over it, for any subset Z ⊆ X for which µ(Z)231

is non-zero and finite, µ induces a probability measure PµZ over Z as follows. For any set Z ′ ⊆ Z in232
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the σ-algebra over Z, we define PµZ (Z ′) = µ(Z ′)/µ(Z). With a slight abuse of notation, we write233

z ∼ Z to mean z ∼ PµZ whenever we know µ from the context.234

Our learners rely on being able to sample from PµZ . Thus we define the following oracle, which can235

be implemented efficiently for `p spaces.236

Definition 8 (Sampling Oracle). Given a metric space (X,dist) equipped with a doubling measure237

µ, a sampling oracle is an algorithm that when queried with a Z ⊆ X such that µ(Z) is finite, returns238

a sample drawn from PµZ . We will use the notation z ∼ Z for queries to this oracle.239

5 The perturb-and-smooth approach for tolerant adversarial learning240

In this section we focus on tolerant adversarial PAC learning in metric spaces (Definition 5), and241

show that VC classes are tolerantly PAC learnable in the tolerantly realizable setting. Interestingly,242

we prove this result using an approach that resembles the “perturb-and-smooth” paradigm which is243

used in practice (for example, (Cohen et al., 2019). The overall idea is to “perturb” each training244

point x, train a classifier on the “perturbed” points, and “smooth out” the final hypothesis using a245

certain majority rule.246

For this, we employ three perturbation types: U and V play the role of the actual and the reference247

perturbation type respectively. Additionally, we consider a perturbation typeW : X → 2X , which is248

used for smoothing. We assume U ≺ V andW ≺ V . For this section, we will use metric balls for the249

three types. Specifically, if U consists of balls of radius r for some r > 0, thenW will consists of250

balls of radius γr and V will consist of balls of radius (1 + γ)r.251

Definition 9 (Smoothed classifier). For a hypothesis h : X → {0, 1}, we let h̄W denote the classifier252

resulting from replacing the label h(x) with the average label overW(x), that is253

h̄W(x) = 1
[
Ex′∼W(x)h(x′) ≥ 1/2

]
For metric perturbation types, whereW is a ball of some radius r, we also use the notation h̄r and254

when the typeW is clear from context, we may omit the subscript altogether and simply write h̄ for255

the smoothed classifier.256

The tolerant perturb-and-smooth algorithm We propose the following learning algorithm, TPaS,257

for tolerant learning in metric spaces. Let the perturbation radius be r > 0 for the actual type U = Br,258

and let S = ((x1, y1), . . . , (xm, ym)) be the training sample. For each xi ∈ SX , the learner samples259

a point x′i ∼ Br·(1+γ)(xi) (using the sampling oracle) from the expanded reference perturbation260

set V(xi) = B(1+γ)r(xi). Let S′ = ((x′1, y1), . . . , (x′m, ym)). TPaS then invokes a (standard, non-261

robust) PAC learner AH for the hypothesis class H on the perturbed data S′. We let ĥ = AH(S′)262

denote the output of this PAC learner. Finally, TPaS outputs theW-smoothed version of h̄γr for263

W = Bγr. That is, h̄γr(x) is simply the majority label in a ball of radius γr around x with respect to264

the distribution defined by µ, see also Definition 9. We will prove below that this h̄γr has a small265

U-adversarial loss. Algorithm 1 below summarizes our learning procedure.266

Algorithm 1 Tolerant Perturb and Smooth (TPaS)
Input: Radius r, tolerance parameter γ, data S = ((x1, y1), . . . , (xm, ym)), accesss to sampling
oracle O for µ and PAC learner AH.
Initialize S′ = ∅
for i = 1 to m do

Sample x′i ∼ B(1+γ)r(xi)
Add (x′i, yi) to S′

end for
Set ĥ = AH(S′)
Output: h̄γr defined by

h̄γr(x) = 1
[
Ex′∼Bγr(x)ĥ(x′) ≥ 1/2

]
The following is the main result of this section.267
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Theorem 10. Let (X,dist) be an any metric space with doubling dimension d and doubling measure268

µ. Let O be a sampling oracle for µ. LetH be a hypothesis class and P a set of distributions over269

X × Y . Assume AH PAC learnsH with mH(ε, δ) samples in the realizable setting. Then there exists270

a learner A, namely TPaS, that271

• Tolerantly PAC learns (H,P,dist) in the tolerantly realizable setting with sample complexity272

bounded bym(ε, δ, γ) = O
(
mH(ε, δ) · (1 + 1/γ)ζd

)
= O

(
VC(H)+log 1/δ

ε · (1 + 1/γ)ζd
)

,273

where γ is the tolerance parameter and d is the doubling dimension.274

• Makes only one query to AH275

• Makes m(ε, δ, γ) queries to sampling oracle O276

The proof of this theorem uses the following key technical lemma (proof can be found in Appendix C):277

278

Lemma 11. Let r > 0 be a perturbation radius, γ > 0 a tolerance parameter, and g : X → Y a
classifier. For x ∈ X and y ∈ Y = {0, 1}, we define

Σg,y(x) = Ez∼Br(1+γ)(x)1 [g(z) 6= y] and σg,y(x) = Ez∼Brγ(x)1 [g(z) 6= y] .

Then Σg,y(x) ≤ 1
3 ·
(

1+γ
γ

)−ζd
implies that σg,y(z) ≤ 1/3 for all z ∈ Br(x).279

Proof of Theorem 10. Consider some ε0 > 0 and 0 < δ < 1 to be given (we will pick a suitable280

value of ε0 later), and assume the PAC learner AH was invoked on the perturbed sample S′ of size281

at least mA(ε0, δ). According to definition 3, this implies that with probability 1 − δ, the output282

ĥ = AH(S) has (binary) loss at most ε0 with respect to the data-generating distribution. Note that the283

relevant distribution here is the two-stage process of the original data generating distribution P and284

the perturbation sampling according to V = B(1+γ)r. Since P is V-robustly realizable, the two-stage285

process yields a realizable distribution with respect to the standard 0/1-loss. Thus, we have286

E(x,y)∼PEz∼Br(1+γ)(x)1
[
ĥ(z) 6= y

]
≤ ε0.

With Lemma 11, this becomes E(x,y)∼PΣĥ,y(x) ≤ ε0. For λ > 0, Markov’s inequality then yields :287

E(x,y)∼P1
[
Σĥ,y(x) ≤ λ

]
> 1− ε0/λ (1)

Thus setting λ = 1
3 ·
(

1+γ
γ

)−ζd
and plugging in the result of the Lemma 11 to equation (1), we get

E(x,y)∼P1
[
∀z ∈ Br(x), σĥ,y(z) ≤ 1/3

]
> 1− ε0/λ.

Since σĥ,y(z) ≤ 1/3 implies that 1
[
Ez′∼Bγr(z) ĥ(z′) ≥ 1/2

]
= y, using the definition of the288

smoothed classifier h̄γr we get289

E(x,y)∼P1
[
∃z ∈ Br(x), h̄γr(z) 6= y

]
≤ ε0/λ,

(2)

which implies LrP (h̄γr) ≤ ε0/λ. Thus, for the robust learning problem, if we are given a desired290

accuracy ε and we want LrP (h̄γr) ≤ ε, we can pick ε0 = λε. Putting it all together, we get291

sample complexity m ≤ O(VC(H)+log 1/δ
ε0

) where ε0 = λε, and λ = 1
3 ·
(

1+γ
γ

)−ζd
. Therefore,292

m ≤ O
(

VC(H)+log 1/δ
ε · (1 + 1/γ)ζd

)
.293

Since the dependence on d is exponential, the algorithm becomes impractical for high dimensions if γ294

is very small. However, since γ represents our uncertainty in the value of the true perturbation radius,295

it is natural to assume that it is a small but positive number. We can therefore ask whether there296

exists a threshold for each dimension such that if γ is above the threshold we can learn efficiently. In297
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particular, for any constant c > 0, we can ensure that (1 + 1/γ)ζd ≤ 1 + c if we set γ ≥ ζd
c . Thus the298

sample complexity of our learner does not depend on the dimension as long as γ ≥ ζd
c . For example,299

for a Euclidean space with the `∞ metric, we have ζ = 1. Therefore setting c = 1000 would let us300

use a small γ for dimensions up to 1000.301

Computational complexity of the learner. Assuming we have access toO and an efficient algorithm302

for non-robust PAC-learning in the realizable setting, we can compute ĥ efficiently. Therefore, the303

learning can be done efficiently in this case. However, at the prediction time, we need to compute304

h̄(x) on new test points which requires us to compute an expectation. We can instead estimate the305

expectations using random samples from the sampling oracle. For a single test point x, if the number306

of samples we draw is Ω(log 1/δ) then with probability at least 1− δ we get the same result as that307

of the optimal h̄(x). Using more samples we can boost this probability to guarantee a similar output308

to that of h̄ on a larger set of test points.309

6 Improved tolerant learning guarantees through sample compression310

The perturb-and-smooth approach discussed in the previous section offers a general method for311

tolerant robust learning. However, one shortcoming of this approach is the exponential dependence312

of its sample complexity with respect to the doubling dimension of the metric space. Furthermore,313

the tolerant robust guarantee relied on the data generating distribution being tolerantly realizable.314

In this section, we propose another approach that addresses both of these issues. The idea is to315

adopt the perturb-and-smooth approach within a sample compression argument. We introduce the316

notion of a (U ,V)-tolerant sample compression scheme and present a learning bound based on such317

a compression scheme, starting with the realizable case. We then show that this implies learnability318

in the agnostic case as well. Remarkably, this tolerant compression based analysis will yield bounds319

on the sample complexity that avoid the exponential dependence on the doubling dimension.320

For a compact representation, we will use the general notation U ,V, andW for the three perturbation321

types (actual, reference and smoothing type) in this section and will assume that they satisfy the322

Property 1 below for some parameter β > 0. Lemma 11 implies that, in the metric setting, for any323

radius r and tolerance parameter γ the perturbation types U = Br, V = B(1+γ)r, andW = Bγr have324

this property for β = 1
3

(
1+γ
γ

)−ζd
.325

Property 1. For a fixed 0 < β < 1/2, we assume that the perturbation types V,U andW are so326

that for any classifier h and any x ∈ X , any y ∈ {0, 1} if327

Ez∼V(x)[h(z) = y] ≥ 1− β
thenW-smoothed class classifier h̄W satisfies h̄W(z) = y for all z ∈ U(x).328

A compression scheme of size k is a pair of functions (κ, ρ), where the compression function329

κ :
⋃∞
i=1(X × Y )i →

⋃k
i=1(X × Y )i maps samples S = ((x1, y1), (x2, y2), . . . , (xm, ym)) of330

arbitrary size to sub-samples of S of size at most k, and ρ :
⋃k
i=1(X×Y )i → Y X is a decompression331

function that maps samples to classifiers. The pair (κ, ρ) is a sample compression scheme for loss `332

and class H, if for any samples S realizable by H, we recover the correct labels for all (x, y) ∈ S,333

that is, LS(H) = 0 implies that LS(κ ◦ ρ(S)) = 0.334

For tolerant learning, we introduce the following generalization of compression schemes:335

Definition 12 (Tolerant sample compression scheme). A sample compression scheme (κ, ρ) is a336

U ,V-tolerant sample compression scheme for classH, if for any samples S that are `V realizable by337

H, that is LVS (H) = 0, we have LUS (κ ◦ ρ(S)) = 0.338

The next lemma establishes that the existence of a sufficiently small tolerant compression scheme339

for the classH yields bounds on the sample complexity of tolerantly learningH. The proof of the340

lemma is based on a modification of a standard compression based generalization bound. Appendix341

Section D provides more details.342

Lemma 13. LetH be a hypothesis class and U and V be perturbation types with U included in V . If343

the classH admits a (U ,V)-tolerant compression scheme of size bounded by k ln(m) for sample of344

size m, then the class is (U ,V)-tolerantly learnable in the realizable case with sample complexity345

bounded by m(ε, δ) = Õ
(
k+ln(1/δ)

ε

)
.346
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We next establish a bound on the tolerant compression size for general VC-classes, which will then347

immediately yield the improved sample complexity bounds for tolerant learning in the realizable case.348

The proof is sketched here; its full version has been moved to the Appendix for lack of space.349

Lemma 14. Let H ⊆ Y X be some hypothesis class with finite VC-dimension VC(H) < ∞, and350

let U ,V,W satisfy the conditions in Property 1 for some β > 0. Then there exists a (U ,V)-tolerant351

sample compression scheme forH of size Õ
(

VC(H) ln(mβ )
)

.352

Proof Sketch. We will employ a boosting-based approach to establish the claimed compression sizes.353

Let S = ((x1, y1), (x2, y2), . . . , (xm, ym)) be a data-set that is `V -realizable with respect toH. We354

let SV denote an “inflated data-set” that contains all domain points in the V-perturbation sets of355

the xi ∈ SX , that is SXV :=
⋃m
i=1 V(xi). Every point z ∈ SXV is assigned the label y = yi of the356

minimally-indexed (xi, yi) ∈ S with z ∈ V(xi), and we set SV to be the resulting collection of357

labeled data-points.358

We then use the boost-by-majority method to encode a classifier g that (roughly speaking) has error359

bounded by β/m over (a suitable measure over) SV . This boosting method outputs a T -majority360

vote g(x) = 1
[
ΣTi=1hi(x)

]
≥ 1/2 over weak learners hi, which in our case will be hypotheses from361

H. We prove that this error can be achieved with T = 18 ln( 2m
β ) rounds of boosting. We prove that362

each weak learner that is used in the boosting procedure can be encoded with n = Õ(VC(H)) many363

sample points from S. The resulting compression size is thus n · T = Õ
(

VC(H) ln(mβ )
)

.364

Finally, the error bound β/m of g over SV implies that the error in each perturbation set V(xi) of a365

sample point (xi, yi) ∈ S is at most β. Property 1 then implies LUS (ḡW) = 0 for theW-smoothed366

classifier ḡW , establishing the (U ,V)-tolerant correctness of the compression scheme.367

This yields the following result368

Theorem 15. LetH be a hypothesis class of finite VC-dimension and V,U ,W be three perturbation369

types (actual, reference and smoothing) satisfying Property 1 for some β > 0. Then the sample370

complexity (omitting log-factors) of (U ,V)-tolerantly learningH is bounded by371

m(ε, δ) = Õ

(
VC(H) ln(1/β) + ln(1/δ)

ε

)
in the realizable case, and in the agnostic case by372

m(ε, δ) = Õ

(
VC(H) ln(1/β) + ln(1/δ)

ε2

)
Proof. The bound for the realizable case follows immediately from Lemma 14 and the subsequent373

discussion (in the Appendix). For the agnostic case, we employ a reduction from agnostic robust374

learnabilty to realizable robust learnability (Montasser et al., 2019; Moran & Yehudayoff, 2016).375

The reduction is analogous to the one presented in Appendix C of Montasser et al. (2019) for usual376

(non-tolerant) robust learnablity with some minor modifications. Namely, for a sample S, we choose377

the largest subsample S′ that is `V -realizable (this will result in competitiveness with a `V -optimal378

classifier), and we will use the boosting procedure described there for the `U loss. For the sample sizes379

employed for the weak learners in that procedure, we can use the sample complexity for ε = δ = 1/3380

of an optimal (U ,V)-tolerant learner in the realizable case (note that each learning problem during381

the boosting procedure is a realizable (U ,V)-tolerant learning task). These modifications result in the382

stated sample complexity for agnostic tolerant learnability.383

In particular, for the doubling measure scenario (as considered in the previous section), we obtain384

Corollary 16. For metric tolerant learning with tolerance parameter γ in doubling di-385

mension d the sample complexity of learning in the realizable case is bounded by386

m(ε, δ) = Õ
(

VC(H)ζd ln(1+1/γ)+ln(1/δ)
ε

)
and in the agnostic case by m(ε, δ) =387

Õ
(

VC(H)ζd ln(1+1/γ)+ln(1/δ)
ε2

)
.388
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