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Abstract

Graph Neural Networks (GNNs) resemble the Weisfeiler-Lehman (1-WL) test;
they iteratively update the representation of each node by aggregating information
from WL subtrees. However, despite the computational superiority of the iterative
aggregation scheme, it introduces redundant message flows to encode nodes. We
find that the redundancy in message passing prevented conventional GNNs from
propagating the information of long-length paths and learning graph similarities.
In order to address this issue, we proposed a Redundancy-Free Graph Neural
Network (RFGNN), in which the information of each path (of limited length)
in the original graph is propagated along a message flow devoid of duplicate
edges. Our rigorous theoretical analysis demonstrates the following advantages
of RFGNN: (1) The height K RFGNN is strictly more powerful than the k-layer
WL-test based GNNs; (2) RFGNN efficiently propagates structural information
in original graphs, avoiding the over-squashing issue; and (3) RFGNN encodes
graphs of small graph edit distances into similar representations in practice. The
experimental evaluation of graph property prediction tasks validates our theoretical
statements. And RFGNN achieves the best performance in most challenges.

1 Introduction

Graph Neural Networks (GNNs) generally imitate the Weisfeiler-Lehman (1-WL) test [1] in the sense
that they iteratively update the representation of each node of a graph by aggregating information
from its neighbors [2], which are referred to as WL-test based GNNs in this study. The iterative
neighborhood aggregation scheme encodes trees (called WL subtrees [3]), where a node’s WL subtree
children are its graph neighbors, so that a WL subtree is a height-balanced tree. Research on GNNs
has made great strides and achieved remarkable success in recent years. Nevertheless, the vast
majority of studies do not break the paradigm of repetitive neighborhood aggregation, which provides
computational superiority but generates negative consequences due to message flow redundancy ! in
tree-like encoding. Figure 1 illustrates an example of message flow redundancy in a computational
graph. Message flow redundancy is prevalent, especially when the number of message passing
iterations (a.k.a. neural network layers) increases.

'A recent study has been conducted on the computation of redundancy in GNNG, e.g. [4]. We add a note that
the computational redundancy is orthogonal to the message passing redundancy.
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(c) A message flow that transmits redundant

(a) Input Graph (b) 2-Layer GNN Computational Graph information (i.c., the orange node)

Figure 1: Redundancy exists in message flows, which are propagation chains in a GNN computational
graph that deliver the information from input nodes to output nodes.

The redundancy phenomenon is accompanied by the problem of over-squashing, which refers to
the phenomenon in which the information originating from distant nodes can be distorted, thus
limiting the efficiency of message passing for tasks that rely on long-distance interactions [5]. This
issue is attributable to the bottleneck of compressing a rapidly growing number of neighboring
nodes into a vector of finite length [6] and to the failure of certain input features to influence the
output representation [5]. However, in previous studies, the understanding of over-squashing and
the explanation for why it occurs are still deficient. In this study, we carefully analyze the influence
of an input feature on an output representation along a trail (extracted from the original graph), and
we observe that longer trails typically have a smaller impact than shorter trails in the neighborhood
aggregation process. One key reason behind this is that short trails usually result in a great number of
redundant message flows in the computational graph.

According to previous research [7, 8, 9, 10], a fundamental problem of graph learning is to quantify
the similarities between graphs. In the real world, many graphs, such as molecules, have structures at
both coarse levels (such as chains, rings, and trees) and fine levels (like chemical bonds and functional
groups). Some scholars [11] believe that an ideal method of graph similarity measurement should be
able to capture subgraphs at different levels of granularity. However, 1-WL [3] can only capture the
graph similarity at coarse levels because WL subtrees are height-balanced trees. Besides, WL-test
based GNNs tend to encode two graphs that yield similar message flows as similar representations.
However, even if only one edge in the two original graphs is different, it can lead to two very different
message flow sets due to message flow redundancy. Thus, WL-test based GNNs may have insufficient
expressive power to measure graph similarity.

We propose a Redundancy-Free Graph Neural Network (RFGNN) to address the aforementioned
issues. We first eliminate message flow redundancy with a concept called path-search-tree (a.k.a.
breadth-first tree), which is constructed by running a breadth-first search (BFS) from a node [12].
Since there are no repeated nodes in each path in the path-search-tree, by using the tree as the message
passing graph, the resulting model would not suffer from message flow redundancy. However, this
simple path-search-tree model cannot capture some graph structures, e.g., ring. To enhance the
expressiveness of the model, we define a new concept called extended path (epath), which can
represent a ring structure when its starting and finishing nodes are the same. Based on epath, we
propose a concept called Truncated ePaths Tree (TPT), an epath-search-tree obtained by running a
BFS, where all epaths of limited length starting from the node are accessed. Given a TPT (of a graph
node), RFGNN is a neural network to perform bottom-up message passing. Finally, we collect the
representations of all TPTs of a graph in order to update the representation of the entire graph.

In comparison to prior research in the field of GNNs, the new findings of this work were
summarized as follows: 1) To the best of our knowledge, this is the first study that investigates the
theoretical and practical implications of message flow redundancy in GNNs; 2) We proved that the
height £ RFGNN is strictly more expressive than k-layer WL-test based GNNs; 3) De-redundancy
balances the influence of epaths starting at the same node during message passing, propagates
structural information in original graphs efficiently, and reduces over-squashing; 4) RFGNN always
generates similar message flows for similar graphs compared to WL-test based GNNs; hence, RFGNN
can learn better representations of similar graphs than WL-test based GNNss.



The rest of this paper is structured as follows. Section 2 outlines the basic theories of GNNs. In
Section 3, we demonstrate that message flow redundancy is prevalent in GNNs and analyze why
it contributes to the issue of over-squashing in WL-test based GNNs. The framework of RFGNN
is presented in Section 4, which not only eliminates the redundancy in computational graphs but
also provides several additional advantages. Related work is then discussed in Section 5. Section 6
empirically validates REFGNN on a variety of graph property prediction challenges and demonstrates
that RFGNN achieves state-of-the-art performance on the vast majority of tasks. The conclusion is
given in Section 7.

2 Preliminaries

We begin by reviewing the most commonly used message passing paradigm and its derivative GNNS,
as well as introducing our notations. Let G (V, E) € G be a graph, where V = V(G) = {1,2,...},
E =E&(G) CV xV,and G is the graph set consisting of all possible graphs. The nodes and edges in
G can have feature vectors associated with them, denoted by x,, for v € V' and e,, ,, for (u,v) € E.
In this work, we consider the graph property prediction problem as follows: given a set of graphs
{G1,...,GNn} C G and their labels {y1,...,yn} C ), we aim to learn a representation vector h¢
that helps to predict the label of an entire graph by a predictor, y¢ = p(hg).

Message passing and graph neural networks. GNNss iteratively update the representation of a
node by aggregating its neighbor information. The [-th layer of a GNN can be described as

hgj) = ’L/)(l) (h/(u,lil)v U7/E./\f(u)¢(l) (GEL_;)) hgl71)>) ) (1)

where ¢ and ¢ denote differentiable functions such as MLPs (Multi Layer Perceptrons), U

denotes a differentiable and permutation invariant aggregator, (e.g., sum and mean), hg ) is the node u
(1-1)
(u,v)
function such as a linear function. We initialize h&o) = x,. The readout y function aggregates node
representations from the final layer to obtain the entire graph representation hg:

representation, and e is the edge (u, v) representation transformed from e(,, .,y by a differentiable

he = x ({h;'“) lue G}) : 2)
The readout x can be a simple permutation invariant function such as sum.

Weisfeiler-Lehman (WL) test and WL-subtree. The graph isomorphism problem is to identify
whether two graphs are topologically equivalent, i.e., isomorphic. The Weisfeiler-Lehman (1-WL)
test [1] iteratively updates the label of a node by hashing the labels of its own and neighbors. If
the node labels differ in any iteration, then 1-WL considers the graph to be non-isomorphic. Based
on 1-WL, Shervashidze et al. [3] propose WL-subtree, which is a kernel method to measures the
similarity of graphs based on the number of distinct node labels, where a node label indicates a WL
subtree. In consequence, the graph similarity is then measured by the number of distinct WL subtrees.

Computational graph. Computational graphs represent neural networks as graphs on which
gradients can be conveniently computed using chaining laws [13]. In message passing GNNSs, the
computational graph of a node is the message passing graph that aggregates neighborhood information
into the node. The computational graph is jointly decided by the adopted message passing paradigm
and the structure of the input graph.

3 Message Flow Redundancy and Practical Implications

In this section, we first explain the redundancy issue in computational graphs and then discuss the
over-squashing issue. Without loss of generality, we discuss the computational graph of a k-layer
WL-test based GNN for (the representation of) a node. All the proofs can be found in Appendix A.



3.1 Message Flow Redundancy in Computational Graph

Definition 1 (Message flow). A message flow p in a computational graph depicts the propagation
chain of an input feature from an input node to an output node, where p(i) denotes the i-th node of p
(zero based index).

A WL-test based GNN iteratively updates the node representation by aggregating the neighbor
information, where the message passing process (of the neighbor information) is analogous to the
traverse of the graph by walks, defined as follows.

Definition 2 (Walk). A walk is a sequence of graph nodes and edges formed by a graph traversal
that permits backtracking and self-looping.

Corollary 1. A message flow for output node u in the computational graph is a walk of the same
length that ends at u in the original graph.

Definition 3 (Trail). A trail is a succession of edges with no repetition, where tr(i) refers to the i-th
node of tr (zero based index).

For instance, u; — ug — u3 — w1 — uy4 is a valid trail, which has no repeating edges.

Lemma 1. The message flows that propagate the information of a trail are the walks of the trail from
its beginning node to its ending node.

Message flow redundancy. A trail can not be compressed since there is no repeated edge in the
trail. As illustrated in Figure 2, we can transform a trail into message flows via unordered sampling
with replacement, a sampling fashion in which repetition is allowed and ordering does not matter [14,
Section 2.1.4]. Message flows derived from the same trail carry identical trail-related information.
The backtracking and self-looping edges in message flows do not provide additional information and
are therefore redundant.

G0 OO0

(a) Trail (¢) Sampling Self-Loop Edges
G0 Q0O O
(b) Sampling Backtracking Edges (d) Derived Message Flow

Figure 2: The process of deriving a message flow from a trail: Firstly, backtracking edges are sampled
and placed in the trail. Then, self-loop edges are sampled and inserted into the trail.

Message flow redundancy is prevalent. Suppose there is a trail of length r and a message flow
of length k derived from the trail. The backtracking edge of a self-loop edge is also a self-loop
edge. Thus, we begin by sampling s backtracking edges from the r backtracking edges. After the
backtracking edges are placed, we sample k — r — 2s self-loop edges from the r + 1 + 2s self-loop
edges. Lemma 2 demonstrates that message flow redundancy is widespread because a trail shorter
than the number of GNN layers would result in many message flows with backtracking and self-loop
edges.

Lemma 2. Given a length-r trail, the number of length-k message flows derived from the trail is

k—r
2

’I’S(’I” +1 +25)(k—r—2s)’
s=0
where 1 <r <k.

3.2 Redundancy Causes Message Over-squashing

Message flow redundancy in computational graphs comes with a phenomenon known as over-
squashing, which occurs when GNNs are unable to propagate information effectively across a graph



[6]. Recently, Topping et al. [5] have proposed the Jacobian of a GNN-output to quantify the effect
of over-squashing.

The influence of a change. Assume there is a graph with nodes u and v, as well as a k-layer
WL-test based GNN to update node representations. The Jacobian measures how a change in the

input feature x,, affects the node output h&k) as
o /ox,. 3)
Similar to [5], to avoid heavy notations, the node attributes and representations are assumed to be

scalar; this assumption simplifies the analysis, whereas the vector case yields equivalent results.

Lemma 3. Assume there is a graph with node set V, nodes u,v € V, and the computational graph
of a k-layer WL-test based GNN for u. If all length-k paths in the computational graph for u are
activated with the same probability, we can measure the relative influence of the input feature x,, on

the node output hq(f), on average, as

E( oh /ox, ) _ il
Zv,ev(‘?h&k)/@x”/ Dy [Hllzk g] "

where A = A + I is the adjacency matrix of the graph with self-loop.

; “

The influence of a change along a message flow. Assume there is a graph, the computational
graph of a k-layer WL-test based GNN and its message flow p. The effect of a change in the node

feature x,,(o) on the output node hgz,)c) along the message flow p (a.k.a the influence of x,, ;) on

h;]ZI)c) along p) can be computed as

(k) 1 U]
Oy _ I Oh,, )
(-1 -
op I=k ahp(l—l)
Lemma 4. Assume there is a graph with node set V, the computational graph of a k-layer WL-test
based GNN for a node, and a message flow p in the computational graph. We compute the relative

influence of x, ) on hgz,)c) along p, on average, as
(k) 107
Oy Op _ e 4wwa-n
(k) /g, - 15
2 pepOy ) /o0 | 5 ey {Hz:zf A} S

where A = A + I is the adjacency matrix of the graph with self-loop and P is the set of message
Sflows that end at tr(k).

The influence of a change along a trail. Given a graph with a trail ¢ and the computational graph
of a k-layer WL-test based GNN for ¢r’s head node. Let P* be the set of message flows derived from
tr within the computational graph for the node ¢r(k). How a change in x;, (o) will be propagated

along ¢r) , denoted as o) /0tr,

along tr and affect hgf()r) (a.k.a the influence of x;,. (o) on n® tr(r)

tr(r)
is computed as the summation of the influence of x;,.(g) on hgf()r) along all message flows belonging

to P*, i.e.,

(k) (k)
ahtr(r) _ Z aht'r(r) (6)
.
otr s Op
Corollary 2. Assume there is a graph with a trail tr and the computational graph of a k-layer
WL-test based GNN for tr’s head node. We compute the relative influence along tr, on average, as

(k) .- 1 7
ahtr(r)/at, o Zp’EP* Hr:k AP/(T)»P/(T_U
(k) - 1
ZP'EPahP(k’) /8pl Zv’EV |:Hr:k A] p(k),v!



where A = A+ I is the adjacency matrix of the graph with self-loop and P~ is the set of message
Sflows derived from tr.

The relative influence along a trail is proportional (in terms of probability) to the number of message
flows derived from the trail, according to Corollary 2. According to Lemma 2, a trail typically
produces fewer message flows than its child trail. Therefore, the effect along a lengthy path is always
less than that of its sub-path. Thus, redundancy in the message passing paradigm is a significant
element in the occurrence of over-squashing. Topping et al. [5] stated the phenomenon of over-

squashing occurs when the absolute value of the Jacobian 0h£¢k) /0%, is small. Supplementally,
we find the phenomenon of over-squashing would occur even if the absolute value of the Jacobian
(’)h&k) /0%, is large; keeping the influence along ¢ constant, the relative influence along ¢r decreases
as the absolute value of the Jacobian ahgfg %) /0% (0 increases.

4 Redundancy-Free Graph Neural Network

In the last section, we discussed message flow redundancy and its practical implications. To overcome
this issue, we propose Redundancy-Free GNN (RFGNN), a kind of message passing GNN that is
not only message flow redundancy-free but also improves the overall expressive power and message
passing capability and thus generates better performance. All proofs for RFGNN can be found in
Appendix B, and the space and time complexity analysis can be found in Appendix C.

4.1 The RFGNN Framework

We first discuss the redundancy-free message passing paradigm based on a concept called extended
path, epath, formally defined as

Definition 4 (Extended Path, epath). An epath is a path that has no repeated node along the path
except that the starting node is allowed to be the ending node when the length of the path is larger
than 2.

For instance, u; — us — u3 — w1 is a valid epath, where u; is repeated at the ending node. Note
that u; — ug — wuy is not an epath since the length is not larger than 2.

A component of a graph is a connected subgraph that is not part of any larger connected subgraph [15].
Breadth-first search (BFS) [12] allows us to traverse all epaths of a component from a node. On the
basis of epath and BFS [12], we define the term Truncated ePath Tree (TPT) as follows.

QO node in TPT

¢ 2 node notin TPT
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Figure 3: The height-4 Truncated ePath Tree of G from u (hexagon).
Definition 5 (Truncated ePath Tree (TPT)). Given a graph G = (V, E) and a node u € V, the height
k TPT TPT?G w) is an epath search tree obtained by running a BFS from u, where all epaths of length

up to k are accessed. Additionally, uV) refers to a node w at level I, and C* (v) denotes the child node
set of the node v on level k.



As shown in Figure 3, the original graph can form a height-4 truncated epath tree (TPT) as a tree
structure of 8 nodes, where every tree path (from the root to the leaf) is an epath of length smaller
than or equal to 4.

Definition 6 (Truncated ePaths Forest (TPF)). Given a graph G = (V, E), the height k TPF of G is
a multiset for all nodes u € V as

TPFY,: = {{TPT?‘G#) | Vu € V}}

Redundancy-Free Graph Neural Network (RFGNN). Assume there is a graph G, a TPT € TPFg
and u € V(TPT) at level (I — 1). We denote x{/™Y as a hidden feature transformed from the node
features of u, h!" as a hidden feature of the subtree rooted at node v € (=) (u), and e ,)v as a hidden

feature transformed from the edge features of (u,v). We can describe the RFGNN representation
update process of a node u at level (I — 1) as follows.

hg_l) = w(l) (Xg_1)7uvec(l*”(u)¢(l) (egi)m hg}”)) ) (N

where U denotes a differentiable and permutation invariant function, e.g., sum and mean, and ¢ and
1) denote differentiable functions such as MLPs (Multi Layer Perceptrons).

To obtain the entire graph representation h, we adopt a readout function x that aggregates the root
node representations of the TPTs of G:

he = X ({hi?ot(TpT) | TPT € TPFG}> : ®)

where the readout function x can be a simple permutation invariant function such as sum.

Symmetries. Given a graph G with adjacency matrix A and feature matrix x, a function f is
(node) permutation equivalent if f(A,x) = f (M AM™, Mx), for any permutation matrix /. GNN
layers respect this equation, which ensures they compute the same functions up to a permutation (i.e.,
relabeling) of the nodes. Similarly, RFGNN is equivalent with respect to permutations of nodes, since
the resulted TPTs and TPF is independent on any node permutation.

Corollary 3. Redundancy-Free GNNs are permutation equivalent.

Memory consumption. RFGNN’s memory consumption may be higher than that of WL-test based
GNNs since RFGNN requires constructing a Truncated ePath Forest (TPF). In future work, we will
carefully study potential techniques, e.g., common paths consolidation, to overcome this issue.

4.2 The Expressive Power of RFGNN

1-WL is recognized as an indicator for the expressive power of GNNs [16, 17, 18]. In line with these
work, we measure the expressive power of our model using a hashing procedure of TPFs. We first
define the hashing procedure of TPFs (TPFH), Then, we prove that TPFH has the most expressive
power if there is no height constraint on the height of TPFs and that the height £ TPFH is strictly
more expressive than the 1-WL test of k rounds.

TPF Hashing (TPFH). The height £ TPFH is a hashing scheme for height £ TPFs, which is a
generalization of 1-WL [1]. In short, the hashing scheme is to assign labels to nodes. Let cg ) be
the label assigned to Y. And let tg’ ) be the label assigned to the tree rooted at u("). We initialize
the tree labels of nodes at level k by their labels in the original graph. The hashing procedure is
conducted recursively from the level (k — 1) to the root. Specifically, we collect the tree labels
of the child nodes of u, denoted as {{tSJZH) | Vo € CO(u)}} (note it would be a null multiset
if node u has no child nodes). Then, we compute the tree label of u by an injective mapping as
) = HASH(c,(p, {{t,(,lH) | Vo € CO(u)}}), where HASH is a perfect hash function. Finally,
we collect labels of all TPTs of a TPF as a multiset and injectively map it into a label by a perfect
hash function. Two graphs are considered non-isomorphic if the labels of their TPFs are not equal.
Otherwise, the test is inconclusive.



Lemma 5. Non-isomorphic graphs will generate non-isomorphic TPFs if the height of TPFs is not
constrained.

If there were no height limitations on TPFs, the epath search would end when the TPF height reached
the length of the longest epath. Then, the TPF of a graph would be composed of all of its epaths.
Hashing TPFs with an unbounded height can therefore assign different labels to non-isomorphic
graphs. In other words, TPFH without a height limitation offers the greatest expressive capability for
distinguishing non-isomorphic graphs.

Lemma 6. For two graphs Gy and G2, and two nodes w € V(G1) and v € V(QG3), if the height k
WL subtree of u is non-isomorphic to that of v, the height k TPTs of them are non-isomorphic too.
Lemma 7. There exist two graphs G and G and two nodes, u € V(G1) and v € V(G5), where the
height k WL subtree of u is isomorphic to that of v, but the height k TPTs of them are non-isomorphic.

According to Lemma 6 and Lemma 7, the expressive power of the height £ TPFH is better than that
of the 1-WL with £k iterations. Similar to the proof in WL-test based GNNs [16], REFGNN can be
shown to provide the same expressive power of TPFH when each layer of RFGNN are equipped with
a sufficient number of layers and the parametric local aggregators they use can learn to be injective.

4.3 Advantages of RFGNN

We attempt to investigate what a RFGNN has learned by measuring how the output of a height k
RFGNN, as in Equation 7 , is influenced by input values and hidden representations.

Lemma 8. Assume there is a height k REGNN as in Equation 7, a graph G, and an epath ep in G of
length | < k. We can measure the influence of the node feature x') on the tree representation

epli]
b)) where 0 <i <1, as
on [
L ()P WAC)) (@) (4) ()
Dy I1 (82’1ﬁi (92(Z5J> (axepmzpz + 0oy, )

j=

Similarly, we can measure the influence of the tree representation hf;)[ jon the tree representation

i

h(,?))[o], where 0 <1 <, as
8h(0) i—1 ‘ _ ‘ ‘
Zv)[O] - 11 (52¢(.7>32¢(.7)) 00, B,
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Avoid over-quashing. Lemma 8 points out that if all edges in the computational graph of a RFGNN
is activated with the same probability, on average, epaths starting with the same node and having
the same length would have the same influence on their shared starting node. This is similar to the
finding of [19, 5]. Thus, the problem of over-squashing induced by message flow redundancy in the
computational graph is avoided.

Capture subgraphs at multiple levels of granularity. An ideal method of graph similarity mea-
surement should be able to capture subgraphs at different levels of granularity [11]. GIN [16] achieve
this by an architecture similar to Jumping Knowledge Networks [20], which concatenates node
representations across all layers. In contrast, REFGNN can directly detect the presence of subtrees of
arbitrary heights of TPTs by deactivating information about trees (rooted nodes in TPTs) that do not
belong to subtrees.

Graph similarity comparison and graph overlap detection. Intuitively, GNNs should be able
to encode graphs with near graph edit distance (GED) [21] into similar representations. However, a
similar graph pair’s message flow sets created by WL-test based GNNs may vary significantly. This
is because the difference in the message flow sets is dependent not only on the difference between the
two graphs but also on their own topologies. In contrast, RFGNN will always yield message flow sets
for graphs with near GED because of RFGNN'’s redundancy-free message passing, even if there are
rings in the graphs, as stated by Lemma 9. Therefore, RFGNN is likely more capable than WL-test
based GNNss at comparing graph similarity. A detailed discussion can be found in Appendix B.6.



Lemma 9. Assume there is a graph G = (V, E), anode w € V, and an edge e € E within the k-hop
neighborhood of u. Let n be the number of rings in the k-hop neighborhood of u. We have that the
number of repeations of e within the height k TPT of u is no more than 1 + n.

5 Related Work

Higher order GNNs. Recently, higher expressive GNNs have been developed, which based on
enhanced WL algorithms. such as PPGN (based on k-FWL) [17], 1-2-3-GNN (based on k-WL) [22],
CWNs (based on Cellular WL) [23], and Nested GNNs (based on Nested 1-WL) [24]. Nonetheless,
none of them breaks the iterative aggregation-update scheme.

Over-squashing issue. The Jacobian of a GNN-output is limited by a term given as the power of
the graph normalised adjacency matrix [5]. And, [6, 5] both argued that small absolute values of
the Jacobian are indicative of poor information propagation or over-squashing. Furthermore, [5]
investigated graphs from a Ricci curvature perspective and demonstrated how negative curved edges
contribute to the problem of over-squashing.

Graph kernels. Graph kernels are frequently employed to measure the similarities between graphs
by decomposing graphs into substructures and comparing these substructures [25]. The measurement
of graph similarity could be utilized for subsequent tasks such as classifications [25]. In comparison
to earlier graph kernels, Tree++ [7], which allows comparing graphs at multiple levels of granularity,
has the highest classification accuracy on numerous benchmark datasets.

6 Experiments

We examine the performance of RFGNN and compare it with that of baseline approaches. REFEGNN
is implemented based on the Deep Graph Library (DGL) [26]. And the code is available at
https://github.com/RongqinChen/Redundancy-Free-Graph-Neural-Networks.

First, we evaluate RFGNN by conducting a series of supervised graph classification tasks on 5
bioinformatics datasets (NCI1 [27], PTC [28], MUTAG [29], PROTEINS [30], ENZYMES [30])
and 3 small molecules datasets (BZR [31], COX2 [31], DHFR [31]). We adopted two different sorts
of baselines: graph kernels (such as WL-subtree [3] and Tree++ [7]) and GNNs (such as GIN [16],
PPGN [18], 1-2-3-GNN [22], and CWN [23]). We applied RFGNN with a height of 3. ¢ and ¢
functions in Equation 7 are an identify mapping (because because all these datasets have no edge
attributes) and a 2-layer MLP, respectively. The experiment configurations follows that of GIN [16],
such as the number of hidden units (32), batch size (128), 10-fold cross validation, the number of
epochs (350), and learning rate (initialized as 0.01 decayed by 0.5 every 50 epochs). Configurations
of baselines are follow their original papers. Due to the lack of executable codes, some Tree++ results
are missing. In addition, a 1-2-3-GNN result is missing because of an out-of-memory error.

The data set statistics and the test set classification accuracy of REFGNN and baselines are shown in Ta-
ble 1. We see that REGNN outperforms GIN and even high order GNNs on most datasets, supporting
our argument that REGNN is a theoretically sound method for improving GNN performance.

Table 1: Statistics of the datasets and performance comparison.

Datasets MUTAG PROTEINS PTC NCI1 ENZYMES BZR COX2 DHFR

#graphs 188 1113 344 4110 600 405 467 756

#classes 2 2 2 2 6 2 2 2
Avg. #nodes 17.93 39.06 25.56 29.87 32.63 35.75 41.22 42.43
Avg. #edges 19.79 72.82 25.96 32.30 62.14 38.36 43.44 44.54

TPF Avg. #nodes  232.84 2165.3 336.56 376.48 1908.11 503.12 564.87 563.00
TPF Avg. #edges 216.77 2160.0 311.41 349.05 1904.98 469.98 525.87 522.69
WL-subtree 90.4+£5.7 75.0+3.1 59.9+43 86.0+1.8 626+12 87.3+08 81.2+1.1 824+0.9

Tree++ — 75.5£0.5 — 85.8+£0.1 — 87.9+1.0 84.3+0.9 83.7£0.6
GIN [16] 90.0£8.8 76.2+£28 64.6£70 82.7£17 T725£6.1 89.9+£38 87.6£4.0 829+3.9
1-2-3-GNN [22] 92.2+44 77.3+42 67.6+55 61.0+5.3 — 82.0+3.3 787+13 63.4+49

PPGN [17] 90.6 £8.7 77.2+47 662+£65 832+1.1 63.3+11.8 89.4+40 86.7+£4.1 79.6+4.5
CWN [23] 92.7+£6.1 77.0+43 682+£56 83.6+14 626+£81 788+10 784+1.1 681+3.1
RFGNN 93.3+£6.0 77.5+3.4 71.5+£3.2 836+1.6 753+50 909+3.2 874+46 84.5+4.6




To further evaluate the ability to model long-range interactions and the capacity to quantify graph
similarity of RFGNN, we computed and compared the performance of RFGNNs with heights ranging
from 6 to 8 and baseline approaches on QM9 [32, 33], a graph dataset with 12 regression tasks. QM9
[32, 33] contains 130K small molecules. The task here is to separately perform regressions on 12
targets representing energetic, electronic, geometric, and thermodynamic properties, based on the
graph structure and node/edge features. All evaluation metrics are mean absolute error (MAE). We
use a sum aggregator to obtain graph representations. ¢Y) and /(") in Equation 7 both are 2-layer
MLPs. All other settings follow [24].

We report the average test MAE across 10 folds and show the QM9 results in Table 2. The results of
baseline methods are extracted from [24]. We highlight the results of RFGNN:Ss if they are better
than those of baselines. Several positive conclusions can be drawn from the experimental results: (1)
RFGNNSs achieved the best results on 7 out of 12 prediction targets, which means RFGNNs have
better performance on measuring graph similarity. (2) The performance of RFGNN increases with
increasing height on several targets, which underlines the need for modeling long-range interactions
in these targets. (3) Ne.1-GNN has the potential to model longer-range interactions better than
RFGNN-8 due to its deeper layers; however, Ne.1-GNN does not perform better than RFGNN-8. We
believe that redundancy-free message passing allows RFGNN to model long-range interactions more
competently than Ne.1-GNN, as Ne.l-GNN’s message passing is redundant.

Table 2: MAE results on QM9 (smaller the better)

Target j7 @  EHOMO ELUMO Ae <Rz ZPVE Uy U H G Cy
DTNN [34] 0.244 0.95 0.00388 0.00512 0.0112 17.0 0.00172 243 243 243 243 0.27
MPNN [2] 0.358 0.89 0.00541 0.00623 0.0066 28.5 0.00216 2.05 2.00 2.02 2.02 0.42

Deep LRP [35] 0.364 0.298 0.00254 0.00277 0.00353 19.3 0.00055 0.413 0.413 0.413 0413 0.129
1-GNN [22] 0.493 0.78 0.00321 0.00355 0.0049 34.1 0.00124 232 208 223 194 0.27
1-2-GNN [22]  0.493 0.27 0.00331 0.00350 0.0047 21.5 0.00018 0.0357 0.107 0.070 0.140 0.0989
1-3-GNN [22] 0.473 0.46 0.00328 0.00354 0.0046 25.8 0.00064 0.6855 0.686 0.794 0.587 0.158
1-2-3-GNN [22] 0.476 0.27 0.00337 0.00351 0.0048 229 0.00019 0.0427 0.111 0.0419 0.0469 0.0944
Ne.1-GNN [24] 0.428 0.29 0.00265 0.00297 0.0038 20.5 0.00020 0.295 0.361 0.305 0.489 0.174
Ne.1-2-GNN [24] 0.437 0.278 0.00275 0.00271 0.0039 20.4 0.00017 0.252 0.265 0.241 0.272 0.0891
Ne.1-3-GNN [24] 0.436 0.261 0.00265 0.00269 0.0039 20.2 0.00017 0.291 0.278 0.267 0.287 0.0879

Ne.1-2-3-GNN [24] 0.433 0.265 0.00279 0.00276 0.0039 20.1 0.00015 0.205 0.200 0.249 0.253 0.0811
RFGNN-6 0.323 0.216 0.00204 0.00206 0.00311 14.277 0.000156 0.0997 0.1257 0.1153 0.1103 0.07720
RFGNN-7 0.318 0.209 0.00200 0.00205 0.00310 14.316 0.000162 0.1082 0.1149 0.1101 0.1099 0.07420
RFGNN-8 0.322 0.208 0.00200 0.00205 0.00314 14.057 0.000159 0.0775 0.0741 0.0744 0.1015 0.07485

7 Conclusions

In this work, we carefully investigated the message flow redundancy issue in recent GNNs and its
implications. In particular, we have proved that message flow redundancy is one key factor in the
over-squashing phenomenon. To address the message flow redundancy issue, we have proposed
Redundancy-Free Graph Neural Networks (RFGNN), which conducts redundancy-free message
passing. Theoretically, we demonstrate the benefits of our method, and experimentally, we show
that our RFGNN outperforms existing WL-test based GNNs on a large number of graph property
prediction challenges.
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