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Abstract

Active Surveillance (AS) is the recommended management strategy for patients with low-
or intermediate-risk Prostate Cancer (PCa), providing a safe alternative that helps avoid
the adverse effects of overtreatment. While artificial intelligence (AI)-based models for
PCa detection have been extensively studied, their application in AS remains challenging,
with limited research addressing the detection of PCa progression in AS scenarios. In this
study, we present a novel framework for predicting PCa progression within AS protocols
using bi-parametric MRI (bpMRI). Due to the limited availability of longitudinal bpMRI
scans (206 patients in our study), we first developed a multi-scale foundation model trained
on a large cohort of single-year bpMRI scans, comprising 5,162 patients from 10 different
institutions. Building on this foundation model, we designed a three-module framework:
(1) a lesion detection module to identify PCa lesions in full bpMRI scans, (2) a lesion
classification module to perform detailed analysis of the identified lesion regions, and (3) a
multi-scan lesion progression prediction module to assess changes in lesions over time using
longitudinal bpMRI patches. The proposed framework was evaluated on a cohort from
an AS clinical trial and demonstrated significant performance improvements over baseline
models and radiologists, highlighting its potential to enhance clinical decision-making in
AS management.

Keywords: Prostate Cancer Diagnosis, Active Surveillance, Foundation Model, Longitu-
dinal bpMRI.

∗ A list of members and affiliations appears at the end of the paper

© 2025 CC-BY 4.0, Y. Wang et al.

https://creativecommons.org/licenses/by/4.0/


Wang Lou von Busch Grimm Punnen Comaniciu Kamen Collaborators

1. Introduction

Prostate Cancer (PCa) is the second most commonly diagnosed cancer and the sixth leading
cause of cancer-related deaths among men worldwide (Siegel et al., 2023). A substantial
proportion of newly diagnosed cases involve patients with low- or intermediate-risk localized
PCa, for whom curative treatments such as surgery or radiation offer limited benefits but
carry a significant risk of adverse side effects (Michaelson et al., 2008). In clinical practice,
Active Surveillance (AS) is widely recognized as a safe and effective alternative to imme-
diate treatment (Kinsella et al., 2018; Dall’Era and Evans, 2012), aiming to minimize the
overtreatment of low-risk PCa. Under AS protocols, radiologists monitor PCa progression
through follow-up evaluations, including Prostate-Specific Antigen (PSA) tests and repeat
prostate biopsies, with intervention considered only if progression is detected (Adamy et al.,
2011; Tosoian et al., 2015). Recently, Magnetic Resonance Imaging (MRI) has gained promi-
nence in AS protocols due to its potential to improve monitoring and reduce the need for
invasive procedures such as biopsies. Nevertheless, standardized guidelines for its use in AS
remain unclear (Baboudjian et al., 2022; Kinsella et al., 2018).

Currently, artificial intelligence (AI)-driven models have demonstrated significant ad-
vantages in detecting and assessing PCa using MRI scans from a single time point (Yu
et al., 2020b; De Vente et al., 2020). However, relatively few studies have explored methods
for detecting PCa progression in AS scenarios (Jones et al., 2021; Bozgo et al., 2024). Exist-
ing progression calculators based on clinical test results have shown moderate performance
(Tomer et al., 2021; Lee et al., 2022), but they often fail to fully utilize the rich information
available in MRI data. Deep learning-based approaches leveraging model-extracted features
have shown improved capabilities, but most are limited to single-year MRI examinations
(Sushentsev et al., 2021). For patients in AS, where the primary goal is to detect histo-
logical biopsy upgrading of a candidate lesion, a single-year MRI scan may not provide
sufficient information. Some deep learning models have attempted to combine baseline and
follow-up MRI exams to identify PCa progression (Sushentsev et al., 2021, 2023). However,
the limited availability of datasets containing longitudinal MRI scans for individual patients
often restricts these methods to small models with constrained feature spaces, focusing on
patient-level diagnosis rather than identifying which specific lesion has progressed. In the
deep learning domain, pretraining foundation models (Bommasani et al., 2021) on large-
scale imaging datasets using self-supervised learning (He et al., 2022) has emerged as a
promising solution to address the challenges posed by limited task-specific datasets and
annotations (Zhou et al., 2023; Pai et al., 2024). Following pretraining, foundation models
can be applied to task-specific problems, improving generalization, especially in tasks with
small datasets. To the best of our knowledge, this approach has not yet been explored for
detecting PCa progression in patients undergoing AS.

Building on the strengths of previous studies while addressing their limitations, we
propose an end-to-end PCa progression prediction framework for AS protocols using bi-
parametric MRI (bpMRI). This framework introduces several key innovations that set it
apart from prior work. 1) First, we developed a multi-scale foundation model trained on
a large dataset of single-year bpMRI scans, comprising 5,162 cases from 10 institutions.
This model was designed to handle follow-up tasks where data availability is limited. The
multi-scale design enables the model to effectively process information at both the full
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bpMRI scan level and the lesion Region of Interest (ROI) level. 2) Second, we incorpo-
rated a transformer-based architecture into the framework. This architecture processed 2D
inputs at the full bpMRI scan level while functioning as a sequential-3D model at the le-
sion level. By combining the strengths of 3D modeling for detailed lesion analysis with the
computational efficiency of 2D processing, the framework minimizes processing time while
maintaining high-resolution insights into lesion characteristics. 3) Third, the framework
integrated longitudinal data by combining deep features extracted from lesion patches in
both prior and current-year bpMRI scans. This approach enables the model to detect lesion
progression over time, resulting in enhanced performance compared to methods that rely
on single-year data alone. 4) Finally, our framework outperformed both clinical radiolo-
gists and a Res-UNet-based PCa diagnosis model. These results underscore its potential
to advance PCa progression detection in AS protocols, providing an accurate, efficient, and
clinically meaningful tool for managing patients undergoing AS.
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Figure 1: Schematic diagram of our PCa progression prediction framework. The yellow
blocks represent the network components trained within this module, while the blue blocks
indicate network components with weights from the previous step.

2. Methods

As illustrated in Figure 1, our PCa progression prediction framework is composed of four key
modules: a multi-scale foundation model, a lesion detection module, a lesion classification
module, and a multi-scan lesion progression prediction module. The multi-scale foundation
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model extracts representative features from bpMRI. Based on these extracted features, the
lesion detection module identifies potential lesions across the full bpMRI scans, while the
lesion classification and progression prediction modules focus on analyzing each detected
lesion region in greater detail.

2.1. Multi-scale Foundation Model

Given the unique challenges of progression prediction in AS, particularly the limited data
availability, direct supervised training for progression remains constrained. In this study,
while a large volume of single-year bpMRI scans was available, only a relatively small subset
contained annotated PCa lesions, and longitudinal bpMRI scans were extremely limited. To
address these challenges, we first developed a multi-scale foundational model using a self-
supervised learning framework on the large-scale collection of single-year bpMRI scans. This
foundational model was then integrated into the supervised modules of our PCa progression
prediction framework.

2.1.1. Model structure and self-supervised learning approach

Our self-supervised model utilized an encoder-decoder architecture, where the encoder func-
tioned as the foundational model, and the decoder assisted in training the encoder but was
discarded once training was completed. For the core network block, we adopted the Vision
Transformer (ViT) structure (Dosovitskiy, 2020). To tailor the model to the specifics of our
problem and the available dataset, we customized a ViT-tiny architecture with 12 trans-
former blocks in the encoder, each containing 3 attention heads. The patch size was set to
16× 16, with an output dimension of 64 for each patch.

During training, the original 2D bpMRI scans underwent a series of random transforma-
tions, including non-linear local pixel value adjustments, inner/outer cutouts (Zhou et al.,
2021), and random patch dropping (He et al., 2022), to generate degraded images. This
combination of local and patch-level modifications ensures the model learns meaningful and
robust features through self-supervised tasks. The degraded images were processed by the
ViT-tiny encoder, followed by a 3-block transformer decoder (He et al., 2022), which recon-
structed the original images. The reconstruction was optimized using the Mean Squared
Error (MSE) loss between the original and reconstructed images, without requiring any
labels.

2.1.2. Multi-scale inputs

In the PCa progression prediction framework, the models must process bpMRI scans at both
the full scale to detect lesions and at the local scale to analyze lesion Regions of Interest
(ROI). Both scales relied on the foundation model to effectively leverage the large volume
of single-year bpMRI scans for enhanced feature extraction and analysis. To achieve this,
we developed a multi-scale training method that enables the foundation model to handle
variable image sizes.

Initially, the foundation model was trained on full-scale bpMRI scans (240×240 pixels),
as outlined in Section 2.1.1. Following this, the model underwent additional training on
cropped bpMRI patches (64×64 pixels) generated by the case-level lesion detection module,
as detailed in Section 2.2. To support this process, we modified the positional embedding
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strategy by retaining the relative positional encoding from the full scan for each patch. This
adjustment provides the model with spatial context, helping it understand each patch’s
location relative to the entire bpMRI scan and enhancing its ability to analyze patch-level
features within the broader scan.

2.2. Lesion Detection Module

Building upon the pre-trained foundation model, we integrated it with a transformer-based
decoder (Cheng et al., 2022) as the segmentation head to detect potential lesion patches.
This module was trained as a segmentation task, producing five pixel-wise binary segmenta-
tion masks corresponding to five categories: Prostate Imaging Reporting and Data System
(PI-RADS) ≥ 3, ≥ 4, and Gleason Score Grade Group (GGG) ≥ 1, ≥ 2, ≥ 3. This design
enables precise lesion detection and categorization, effectively utilizing the label information
available in our dataset. During training, binary cross-entropy and the Dice Similarity Co-
efficient were used to compute individual losses for each category-level binary segmentation
mask. These losses were then combined using appropriate weighting to obtain the total
training loss.

Upon completion of the training process, the output from the penultimate layer for the
GGG ≥ 2 label was used as a heatmap to propose clinically significant lesion areas. Each
pixel value in the heatmap represents the probability of lesion presence at that specific
location, indicating the associated malignancy risk. To extract lesion ROI patches, we
identified the center of each segmented area and cropped a 3D lesion patch of size 80×80×
slides pixels. The number of slides for each lesion was kept flexible, varying based on the
segmentation results.

2.3. Lesion Classification Module

Using the pre-trained foundation model, we integrated a 3-block transformer structure with
an additional class token to perform lesion classification. The output consists of patch-level
predictions for the five categories outlined in Section 2.2. Since our patches are 3D and may
contain varying numbers of slices, we treated each slice as a token in a sequence, similar to
variable-length sentences, as shown in Figure 1. During training, to address the variability
in the size of each data point, we set the batch size to 1 and accumulated gradients over 16
mini-batches before updating the model’s weights.

2.4. Multi-scan Lesion Progression Prediction Module

For longitudinal bpMRI lesion progression prediction, each 3D lesion patch was first pro-
cessed by the lesion classification module. The output from the penultimate layer of the
classification head is a 64-dimensional latent feature vector, representing the 3D candidate
patch regardless of the number of slices it contains. Subsequently, the latent features from
these patches, including lesion image patches from both the current and previous year’s
bpMRI scans, were passed through a one-block transformer structure with an additional
class token to generate the final detection result. This design adds flexibility, allowing the
framework to incorporate lesion patch information from multiple years, thus enabling the
detection of lesion progression in subsequent years, such as the third or fourth year.
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During training, due to the limited availability of cases with follow-up bpMRI scans,
we first generated many synthetic lesion pairs from the large-scale collection of single-year
bpMRI scans. Specifically, we randomly selected a malignant lesion patch (with GGG ≥
2) from a patient as the current-year lesion and identified the prostate sector in which the
lesion was located. Next, we selected another lesion with GGG < 2 from a different patient
but in the same prostate sector, referring to it as the previous-year lesion, and paired these
two patches together to form a progressed synthetic lesion pair. Using a similar approach,
we also selected non-malignant lesions (with GGG < 2) as the current-year lesions and
paired them with another non-malignant lesion from the same location in different patients
to create non-progressed synthetic lesion pairs. To ensure a meaningful progression pattern,
we ensured that the GGG score for the current-year lesion was always greater than or equal
to that of the previous-year lesion. The module was first pre-trained using these synthetic
lesion pairs. Following this, we used real lesion pairs from the active surveillance dataset,
where each lesion was paired with its corresponding image patches from the previous year’s
bpMRI scans to detect lesion progression. To ensure the patches come from the same
location, the previous year’s bpMRI scans were registered to the current year’s scans. A
3-fold cross-validation was employed during this step to assess the model’s performance.

3. Experiments and Results

3.1. Datasets and Implementation

The data used in this study can be divided into two cohorts. The first cohort consists of 5,162
cases from 10 different institutions, each containing a single-year prostate MRI examination.
In this cohort, patients undergo a single MRI exam from one specific year and receive a
diagnosis. Based on this diagnosis, the patient either proceeded with treatment or was
discharged, without any follow-up exams. The ground truth labels include both case-level
and lesion-level annotations (with voxel-wise lesion annotations, when applicable), along
with PI-RADS scores and GGG scores. The PCa lesion annotations were obtained based
on the clinical radiology reports and carefully reviewed by an expert radiologist with five
years of experience in radiology, specializing in prostate MRI examinations. Details of the
annotation process can be found in Appendix D.

The second cohort is a smaller dataset collected as part of the Miami Active Surveillance
Trial at the University of Miami. It includes 206 cases diagnosed with low to intermediate-
risk PCa who chose to manage their cancer using the AS protocol. This protocol involves
an initial MRI and biopsy with MRI targeting, followed by annual imaging and biopsies for
the next three years or until AS endpoints are reached, resulting in a total of 458 single-year
MRI scans. Consecutive MRI exams (previous year + current year) from the same cases
were paired to create case pairs. For cases with three or four MRI exams, this resulted in
two or three case pairs per patient. Only case pairs with radiologist-labeled lesions were
included, yielding a total of 232 case pairs in this cohort. The ground truth labels for
this cohort include the prostate sector locations where radiologists detected lesions, along
with their respective PI-RADS scores and GGG scores from both target and systematic
biopsies. There was no specific annotation step for this clinical trial cohort, and all labels
were provided by clinical radiologists and derived from radiology and biopsy reports directly.

6



Predicting PCa Progression During AS using Longitudinal bpMRI

For each MRI exam, the input to our modules included bpMRI data, which com-
prised axial T2-weighted (T2W) acquisition, apparent diffusion coefficient (ADC) images,
diffusion-weighted imaging (DWI b-2000), and binary masks of the transition zone and pe-
ripheral zone of the prostate. A detailed description of the MRI preprocessing steps can be
found in Appendix C.

3.2. Evaluation Metrics and Baseline Models

We primarily evaluated our framework using the second cohort, which includes multi-year
bpMRI scans collected under the AS protocol. Lesion-level progression was defined as a
lesion that had a biopsy GGG of 1 or lower in the previous year but increased to 2 or
higher in the current year. A case pair was considered positive if it contained at least
one lesion with biopsy-confirmed progression. A total of 38 lesions across 38 cases met
this criterion. The performance of the models was evaluated at both the case level and
the lesion level. At the case level, we calculated the Area Under the Receiver Operating
Characteristic Curve (AUROC), and at the lesion level, we calculated the Alternative Free-
response Receiver Operating Characteristic Curve AUC (AFROC AUC). Since the ground
truth does not include the exact pixel-wise location of the lesions, a true positive was defined
as the presence of a detected lesion mask that overlaps with the ground truth lesion sector.

We compared our framework against radiologists and two deep learning-based baseline
models. Radiologists assigned PI-RADS scores based on both the previous and current
year’s bpMRI scans, so the ability of PI-RADS to indicate biopsy-confirmed lesion progres-
sion reflects the radiologists’ performance. For the deep learning-based baseline models, we
employed a Res-UNet (Yu et al., 2020b,a) and an nnU-Net (Isensee et al., 2018), trained
from scratch on the same data cohorts. Further details are provided in Appendix G.

3.3. Experimental Results and Model Comparison

Figure 2 presents the main results of our PCa progression detection framework. At the lesion
level (left), our method achieved an AFROC AUC of 0.667, demonstrating a significant
improvement over the Res-UNet model (0.599). Additionally, the PI-RADS points from
radiologists fall below our curve. Out of the 38 progressed lesions, 24 were identified by
radiologists using PI-RADS ≥ 3 as a threshold and confirmed through targeted biopsy,
while 14 were detected by systematic biopsy but missed by radiologists. Our framework
successfully detected 12 of the 14 lesions missed by radiologists. At the case level (right), our
method achieved slightly better performance (AUROC 0.727) compared to the Res-UNet
model (0.720), although it remains slightly lower than radiologists’ performance (0.745).

We further compared the performance of the multi-scan lesion progression prediction
module with the use of only lesion patches from the current year. After incorporating
multi-scan lesion patches, the lesion-level AFROC AUC improved to 0.667, up from 0.632.
Figure 3 shows the lesion-level AFROC, along with two visualization examples based on
T2-weighted imaging. The full bpMRI images are provided in Appendix E.

In routine clinical practice, single-year patient-level analysis is typically used to recom-
mend biopsy testing during AS. To align with this approach, we compared the patient-level
performance of our lesion detection module with baseline models. Specifically, the lesion
detection module evaluated all slices in each single-year bpMRI scan to generate a 3D
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Lesion-level AFROC Case-level ROC

Figure 2: (Left) Lesion-level PCa progression prediction performance of our method and
baseline models. ”PI-RADS ≥ 3 point 1” represents cases where radiologists identified an
increase in PI-RADS score in the current year, reaching ≥ 3 and ”PI-RADS ≥ 3 point 2”
reflects cases with PI-RADS scores ≥ 3 for the current year. ”PI-RADS ≥ 4 point 1” and
”PI-RADS ≥ 4 point 2” have similar definitions, only changing the threshold for PI-RADS
from 3 to 4. (Right) Case-level PCa progression detection performance of our method and
baseline models.

Lesion-level AFROC

PI-RADS = 4
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PI-RADS = 5
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Figure 3: (Left) Lesion-level PCa progression detection performance, comparing results
with and without the multi-scan lesion progression prediction module. (Right) Two T2W
visualization examples where the multi-scan prediction module improves lesion progression
detection.
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heatmap. The maximum value from the 3D heatmap was defined as the patient’s predic-
tion score for comparison purposes. The results are shown in Table 1. We also evaluated
the generalizability of our model across three additional datasets: the publicly available
ProstateX-Challenge dataset (Litjens et al., 2017) and two private datasets, all of which
include PI-RADS scores and biopsy results (with PI-RADS scores for the ProstateX dataset
assigned by our radiology expert). Since these datasets originate from different cohorts and
institutions than the training set, they serve as external validation for our model. Detailed
results are provided in Appendix A. In summary, our model consistently outperformed
baseline models in terms of AUROC across all datasets.

Table 1: Patient-level performance (AUROC) comparisons on AS cohort.

Model PI-RADS ≥ 3 PI-RADS ≥ 4 GGG ≥ 1 GGG ≥ 2 GGG ≥ 3

nnU-Net 0.702 0.736 0.620 0.691 0.660
Res-UNet 0.677 0.734 0.617 0.734 0.728
Radiologist nan nan 0.680 0.738 0.731
Our framework 0.723 0.741 0.655 0.745 0.733

We also performed ablation studies to evaluate the contributions of key components of
our model. The first ablation study assesses the advantages of the multi-scale design in the
foundation model. Without this setting, the lesion classification module would need to be
trained from scratch, resulting in a decrease in the final lesion-level AFROC AUC to 0.546.
The second ablation study investigates the benefits of using a sequential-3D approach at the
lesion level. When the commonly employed 2D method was applied—where the maximum
score from individual 2D slices was used to determine the score for the 3D lesion—the lesion-
level AFROC dropped to 0.609, highlighting the advantages of the sequential-3D approach.
A summary of the results is provided in Table 2.

Table 2: Lesion-level performance (AFROC AUC) comparisons for ablation studies.

Full framework w/o Multi-scan w/o Sequential-3D w/o Multi-scale

AFROC AUC 0.667 0.632 0.609 0.546

4. Conclusion

This paper presents a PCa progression prediction framework for AS protocols. The ap-
proach utilizes a large cohort of single-year prostate bpMRI scans to train a multi-scale
foundational model, which is then applied to task-specific modules within the framework.
By incorporating longitudinal bpMRI scans, the framework significantly improves lesion
progression detection compared to baseline models. It demonstrates strong potential to
advance prostate cancer (PCa) progression assessment within active surveillance (AS) pro-
tocols, and exhibits promising generalizability to other diseases requiring continuous moni-
toring scenarios, particularly where longitudinal data are limited.
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Chaunzwa, Simon Bernatz, Ahmed Hosny, Raymond H Mak, Nicolai J Birkbak, et al.
Foundation model for cancer imaging biomarkers. Nature machine intelligence, 6(3):
354–367, 2024.

11



Wang Lou von Busch Grimm Punnen Comaniciu Kamen Collaborators

Rebecca L Siegel, Kimberly D Miller, Nikita Sandeep Wagle, and Ahmedin Jemal. Cancer
statistics, 2023. CA: a cancer journal for clinicians, 73(1):17–48, 2023.

Nikita Sushentsev, Leonardo Rundo, Oleg Blyuss, Vincent J Gnanapragasam, Evis Sala,
and Tristan Barrett. Mri-derived radiomics model for baseline prediction of prostate
cancer progression on active surveillance. Scientific Reports, 11(1):12917, 2021.

Nikita Sushentsev, Leonardo Rundo, Luis Abrego, Zonglun Li, Tatiana Nazarenko, Anne Y
Warren, Vincent J Gnanapragasam, Evis Sala, Alexey Zaikin, Tristan Barrett, et al.
Time series radiomics for the prediction of prostate cancer progression in patients on
active surveillance. European Radiology, 33(6):3792–3800, 2023.

Anirudh Tomer, Daan Nieboer, Monique J Roobol, Anders Bjartell, Ewout W Steyerberg,
Dimitris Rizopoulos, Movember Foundation’s Global Action Plan Prostate Cancer Active
Surveillance (GAP3) consortium, Bruce Trock, Behfar Ehdaie, Peter Carroll, et al. Per-
sonalised biopsy schedules based on risk of gleason upgrading for patients with low-risk
prostate cancer on active surveillance. BJU international, 127(1):96–107, 2021.

Jeffrey J Tosoian, Mufaddal Mamawala, Jonathan I Epstein, Patricia Landis, Sacha Wolf,
Bruce J Trock, and H Ballentine Carter. Intermediate and longer-term outcomes from
a prospective active-surveillance program for favorable-risk prostate cancer. Journal of
Clinical Oncology, 33(30):3379–3385, 2015.

Xin Yu, Bin Lou, Bibo Shi, David Winkel, Nacim Arrahmane, Mamadou Diallo, Tongbai
Meng, Heinrich Von Busch, Robert Grimm, Berthold Kiefer, et al. False positive reduction
using multiscale contextual features for prostate cancer detection in multi-parametric mri
scans. In 2020 IEEE 17th international symposium on biomedical imaging (ISBI), pages
1355–1359. IEEE, 2020a.

Xin Yu, Bin Lou, Donghao Zhang, David Winkel, Nacim Arrahmane, Mamadou Diallo,
Tongbai Meng, Heinrich von Busch, Robert Grimm, Berthold Kiefer, et al. Deep at-
tentive panoptic model for prostate cancer detection using biparametric mri scans. In
Medical Image Computing and Computer Assisted Intervention–MICCAI 2020: 23rd In-
ternational Conference, Lima, Peru, October 4–8, 2020, Proceedings, Part IV 23, pages
594–604. Springer, 2020b.

Yukun Zhou, Mark A Chia, Siegfried K Wagner, Murat S Ayhan, Dominic J Williamson,
Robbert R Struyven, Timing Liu, Moucheng Xu, Mateo G Lozano, Peter Woodward-
Court, et al. A foundation model for generalizable disease detection from retinal images.
Nature, 622(7981):156–163, 2023.

Zongwei Zhou, Vatsal Sodha, Jiaxuan Pang, Michael B Gotway, and Jianming Liang. Mod-
els genesis. Medical image analysis, 67:101840, 2021.

12



Predicting PCa Progression During AS using Longitudinal bpMRI

Appendix A. Additional External Evaluation of Our Model on
Single-year bpMRIs

As an extension of Table 1, Table 3 further demonstrates the model’s generalizability. Specif-
ically, this table presents patient-level performance for single-year MRI scans across three
additional datasets: the publicly available ProstateX-Challenge dataset and two private
datasets, all of which include PI-RADS scores and biopsy results (with PI-RADS scores
for the ProstateX dataset assigned by our radiology expert). Since these datasets origi-
nate from different cohorts and institutions than the training set, they serve as external
validation for our model.

Table 3: Patient-level performance (AUROC) comparisons on three external validation set.

Model ProstateX (N = 343) Private A (N = 170) Private B (N = 181)
P ≥ 3 P ≥ 4 G ≥ 2 P ≥ 3 P ≥ 4 G ≥ 2 P ≥ 3 P ≥ 4 G ≥ 2

nnU-Net 0.840 0.856 0.808 0.858 0.841 0.790 0.846 0.883 0.770
Res-UNet 0.873 0.878 0.822 0.813 0.818 0.823 0.821 0.828 0.768
Our framework 0.861 0.888 0.832 0.878 0.891 0.869 0.852 0.886 0.824

Note: N represents the number of cases in the dataset, P denotes the PI-RADS scores, and G
stands for the GGG scores.

Appendix B. Training Protocols and Model Hyperparameters

B.1. Multi-scale Foundation Model

For generating degraded images, for each image, we first selected 100 image blocks with
randomly chosen lengths and widths between [1, 24] pixels and placed them at random
locations. We then performed local pixel shuffling within each block. Then, with a 50%
probability, the image underwent a nonlinear transformation based on Bézier Curves, as
defined in (Zhou et al., 2021). In the final step, we randomly masked 25% of the 16 × 16
patches.

For training the multi-scale foundation model, the batch size was set to 64 for each
GPU, with an initial learning rate of 0.001, using Adam as the optimization algorithm.
The model was trained for 600 epochs, taking approximately 72 hours using four NVIDIA
A100 GPUs.

B.2. Lesion Detection Module

For training the lesion detection module, the batch size was set to 32 for each GPU, with
an initial learning rate of 0.001, using Adam as the optimization algorithm. Early stopping
was applied based on the performance on the validation set. The model was trained for
around 100 epochs, taking approximately 5 hours using eight NVIDIA A100 GPUs.

After training, a threshold of 0.3 was applied to generate the segmentation areas. More
details related to this choice can be found in Appendix F.
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B.3. Lesion Classification Module

For training the lesion classification module, since the input 3D image patches may have
varying shapes due to different numbers of slides for each detected lesion, the batch size was
set to 1 for each GPU. Gradients were accumulated over 16 mini-batches before updating
the model’s weights. The initial learning rate was 0.001, using Adam as the optimization
algorithm. Early stopping was applied based on the performance on the validation set. The
model was trained for around 50 epochs, taking approximately 5 hours using eight NVIDIA
A4500 GPUs.

B.4. Multi-scan Lesion Progression Prediction Module

During the pre-training on the synthetic lesion pairs, the same as in the lesion classification
module, the batch size was set to 1 for each GPU. Gradients were accumulated over 16
mini-batches before updating the model’s weights. The initial learning rate was 0.001,
using Adam as the optimization algorithm. The model was trained for 100 epochs, taking
approximately 8 hours using eight NVIDIA A4500 GPUs.

During the cross-validation step on the AS cohort, we selected 3 folds. The batch size
was set to 1 for each GPU, and gradients were accumulated over 16 mini-batches before
updating the model’s weights. The initial learning rate was set to 0.0005, and Adam was
used as the optimization algorithm. Early stopping was applied based on the performance
on the validation set. The model was trained for 100 epochs, taking approximately 1 hour
using one NVIDIA A100 GPU for each fold.

Appendix C. Preprocessing of MRI

Initially, the original T2-weighted (T2W) and diffusion-weighted imaging (DWI) series were
extracted from the raw DICOM files. We employed a voxel-wise logarithmic extrapolation of
the fitted signal decay curves to compute the apparent diffusion coefficient (ADC) map and
new DWI volumes at b-values of 2000 sec/mm2. The ADC and DWI b-2000 images were
registered to their corresponding T2W series and resampled to a voxel spacing of 0.5 mm
× 0.5 mm in the axial plane while maintaining the original resolution along the slice axis.
All images were normalized to facilitate the training process. T2W images were linearly
normalized to the range [0, 1] based on the 0.05 and 99.5 percentiles of pixel intensity.
Since ADC volumes represent quantitative parametric maps, they were normalized using a
constant factor of 3000. For the DWI b-2000 volumes, we first normalized them by a factor
obtained from the median intensity within the prostate gland region of the corresponding
DWI b-0 volumes and then applied a constant value to linearly map the intensity range to
[0, 1].

Appendix D. Details of Annotation Process

The annotation process for Prostate Imaging Reporting and Data System (PI-RADS) scor-
ing and voxel-level prostate lesion segmentation followed the following structured approach.
First, we collected all clinical radiology reports, each containing the PI-RADS score assigned
to individual lesions along with their corresponding lesion annotations. The raw clinical
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annotations varied in format, including landmarks indicating the lesion, bounding boxes
around the lesion, or single contours on at least one slice to guide annotators regarding the
location of the lesion of interest. Next, annotators were tasked with delineating a complete
3D lesion mask based on the original annotations. All annotators received training from
radiologists with Doctor of Medicine degrees and residency in Radiology. Under radiologist
supervision, annotators received guidance throughout the process, addressing any uncer-
tainties that arose. In the third step, the 3D lesion annotations from annotators underwent
review and necessary corrections by radiologists within the annotation team. Radiologists
possessed the authority to overrule annotators’ annotations when deemed necessary. Fi-
nally, all annotations and corresponding clinical reports were meticulously reviewed by an
expert radiologist with five years of experience in radiology, specializing in prostate MRI
examinations. As part of the annotation, we relied on the clinical assignment of PI-RADS
as determined by the original clinical site. The primary objective of the annotation process
was to harmonize and extend lesion contouring across slices, providing a 3D mask for each
identified lesion. The expert radiologist made minimal changes to the original PI-RADS as-
signment (< 1%) during case reviews to ensure consistency in applying the same PI-RADS
criterion across all datasets. All annotations were performed using an internally customized
tool where anonymized MRI DICOM series were loaded.

Appendix E. Visualization Examples of Multi-Scan Setting on Lesion
Progression Detection

Figure 4 presents two visualization examples where the multi-scan setting notably enhances
lesion progression detection performance. In both cases, lesion progression was confirmed
through biopsy results, and our proposed model accurately identifies lesions that progress
after one year. In the first example, the lesion exhibits an increased PI-RADS score, with
the patient’s predicted progression probability rising from 0.46 when using a single scan
to 0.78 under the multi-scan setting. In the second example, the lesion maintains a stable
PI-RADS score without any reported progression, and the predicted progression probability
increases from 0.52 to 0.91 under the multi-scan setting.

Appendix F. Threshold for Lesion Classification Module

In our experiments, we set the threshold for the output of the lesion detection module to
0.3 to generate the lesion segmentation areas.

Based on our overall pipeline design and clinical significance, we chose a relatively low
threshold to achieve high sensitivity, as our subsequent lesion classification and multi-scale
foundation model can help reduce false positives. This threshold was determined using the
validation set during the training of the lesion detection module, ensuring that the case-
level sensitivity achieved 0.95 on the validation set. Table 4 presents a sensitivity analysis
for positive lesions with GGG ≥ 2 in our AS cohort, which contains a total of 38 positive
lesions, of which the radiologist identified 26 of them (PI-RADS ≥ 3).
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Figure 4: Two bpMRI visualization examples where the multi-scan prediction module im-
proves lesion progression detection.

Table 4: Sensitivity analysis of the lesion detection module with varying thresholds.

Threshold 0.2 0.3 0.4 0.5 0.6 0.7

Lesion-level Sensitivity 0.921 0.921 0.868 0.789 0.658 0.605
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Appendix G. Baseline Deep-learning Models

We used the 2D Res-UNet model proposed in (Yu et al., 2020b,a), which includes a PCa
detection model followed by a false-positive reduction model, and an nnU-net (Isensee et al.,
2018) as the baselines for comparison. The preprocessed T2W, ADC, DWI b-2000 images,
and the binary prostate mask were concatenated as input to the network. The network was
trained using the first cohort, which is similar to our method. During training, we applied
both binary cross-entropy (BCE) loss and Dice loss.
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