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A HELE-SHAW LIMIT WITH A VARIABLE UPPER BOUND AND DRIFT

RAYMOND CHU

ABSTRACT. We investigate a generalized Hele-Shaw equation with a source and drift terms
where the density is constrained by an upper-bound density constraint that varies in space
and time. By using a generalized porous medium equation approximation, we are able to
construct a weak solution to the generalized Hele-Shaw equations under mild assumptions.
Then we establish uniqueness of weak solutions to the generalized Hele-Shaw equations. Our
next main result is a pointwise characterization of the density variable in the generalized Hele-
Shaw equations when the system is in the congestion case. To obtain such a characterization
for the congestion case, we derive a new uniform lower bounds on the time derivative pressure
of the generalized porous medium equation via a refined Aronson-Bénilan estimate that implies
monotonicity properties of the density and pressure.

1. INTRODUCTION

We consider solutions g for & > 1 of the modified Porous Medium Equation (mPME)

(1.1) dvor =V - (0k(Vpr + ) + for in Qp :=R% x (0,7),
where the pressure p; := % ( Q—n‘z)k*l. In this equation m, 5, and f are given smooth functions

(see Section 2 for the exact assumptions on these functions), while the unknown is the density
or. Here k > 1 is a constant that reduces congestion by having strong diffusion when the density
is larger than the constraint m. We can also rewrite this equation as

(1.2) Oror, =V - (va]]j + gkl;) + for in Q

because opVpr = va,’i where v := gp/m is the normalized density. For the special case
of m being a constant, this equation reduces to the Porous Medium Equation (PME) with a
given drift —b and source term f. This anti-congestion effect has led to the PME being used to
model many physical phenomena such as population dynamics [3, 4, 25] and density based tumor
growth [22, 8]. Due to the physical importance of the pressure, we obtain from the constitutive

law pp = % (%’“)kil that

+V-(mb)—l—mf—atm
m

; 1
(1.3) Ok = |Vpr> + Vi - b+ (k — 1)py, RV - (mVpg)

We are interested in the Hele-Shaw limit of (1.1) and (1.3), that is the limit as k — oc.
Formally if we let (9s0, Poo) denote the limit of (og, px), then we have the following free boundary
problem

—.

01000 = V - (MVPeo + 000b) + f 000 in Qr
V- (mVps) + V- (mb)+mf —0m =0 on {ps >0}
Oco(,t) < m(z,t) in Qr
Poo(m — 0o0) = 0 in Qr

The case of m being a constant is well studied and in this case (1.4) is known as the Hele-
Shaw equations. The Hele-Shaw equations are used to model physical phenomena with a density
constraint such as congested crowd motion [20] and tumor growth [22, 8]. In the tumor growth
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FIGURE 1. Numerical Simulations of the mPME (1.1) with f = b = 0. In this
figure, we have k = 40 and m(z,t) = exp(—t/6 — 2%/10), which corresponds to
the case of congestion, and we see the solution g49 becomes saturated on m.

models, m represents the maximum packaging density of cells [23], while for the congested crowd
motion models, m represents the maximum pedestrian population. By allowing m to vary in
space and time, instead of being a constant, it allows these models to account for spatial and
time changes to the maximum population or packaging density of cells.

By combining the techniques in the papers [22, 12, 8], we were able to take the Hele-Shaw
limit in L'(Qr) of (1.1) and (1.3) under mild assumption of m = m(x,t), b, f, and the initial
data. In addition, by using methods from [22], we were able to derive that the limiting density
and pressure are the unique weak solutions to (1.4). Then by using the arguments in [12], we
derive the normal velocity law for 0% (t) where 3(t) = {z : poo(2,t) > 0} in the viscosity sense.
The velocity law V is given by

(1.5) V= [_(m& _ g} »

m — oF)
where 7 is the outward normal of OX(¢) and o is the external density (the limit of g, from
outside X(¢)). The velocity law (1.5) shows that a typical feature of the 0X(¢) is that it can
have infinite normal velocity.

Then we focus on the case of when

(1.6) my <mf+ V- (mb) in Qr,

which we call the congestion case. This assumption has been used when m is a constant in
[15] and corresponds to when m grows strictly slower than the external density. In the con-
gestion case, we were able to derive an explicit pointwise formula for the limiting density up
to 0X(t) that is consistent with the identification in [15] when m is constant. This identifi-
cation formula implies that when we are the congestion case, if the initial density is a patch,
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then it is as a patch for all time (that is if goo (2, 0) = m(z, 0)x 4(0), then o (z,t) = m(2, )X a(t))-

We were able to explicitly identify the limiting density by deriving a novel uniform Aronson-
Bénilan estimate in the congestion case. This estimate appears to be new even for the case of
m being constant with non-zero b. An important consquence of the estimate is that it leads to
a uniform time derivative estimate of the pressure p; along the streamlines for all £ > 1 is large

d 1
(17) Xt t) = = (C+ 7 ) mlX 0. )
where the constant C' > 0 is independent of k. For each zy € R%, the streamline X (t,zg) is
defined as the (unique) solution of

#X (t,0) = —b(X (t, 20),t) in (0,00)
(1.8) {g(((),mo) = o

Note in the special case of b = 0 that the streamlines reduce to the identity map.

We use (1.7) to show that the normalized density voo := 0oo/m is non-decreasing with respect
to the streamlines. This means that if ¢; < t2, then veo (X (t1,20),t1) < voo (X (t2,x0),t2). This
estimate also implies the geometric property that Y (¢) is non-decreasing with respect to the
streamlines. That is if zy € X(t), then the streamline containing the point (xo,t) is in 3(s)
for all s > t. The last monotonicity property is enough to allow us to characterize the limiting
density up to 0%(t) pointwise.

Similar uniform time derivative estimates of the pressure are only known in the literature
when m is constant in the congestion case with b =0 or m is constant with f= b = 0. Uniform
lower bounds on 0;pj, similar to (1.7) played an essential role in taking the Hele-Shaw limit for
weak solutions with no drift in the congestion case [5, 2, 9, 10, 22, 14].

The congestion assumption (1.6) is essentially necessary to have estimate such as (1.7). In-
deed, the the congestion assumption is formally equivalent to having po satisfy V- (mVps,) < 0
inside X(¢) for all ¢ > 0. If instead there was some time tp such that V - (mVps)(-,to) > 0
in X(t9) where X(tg) open, connected, and smooth, then the maximum principle for uniformly
elliptic operators implies that p,, = 0. That is the set 3(t) instantaneously collapsed at time t.
However, if the time derivative estimate (1.7) was true for this case, then the estimate implies
for positive time that X(¢) is non-decreasing with respect to the streamlines, which is a contra-
diction. So uniform time derivative estimate such as (1.7) can not hold in general when there is

-,

a to > 0 such that [Oym —mf — V- (mb)](-,t0) =V - (mVps))(-,t0) > 0 on X(tp).

We also mention that it is necessary to use some form of weak theory (viscosity solutions, gra-
dient flow in Wasserstein space, or weak solutions) to understand (1.4). It is well known even for
m being a constant that if we start with smooth data, the pressure can become discontinuous in
finite time due to topological changes (see [18, 22| for examples of how the pressure can become
discontinuous in finite time). In the recent paper [16], the authors produced some regularity re-
sults of 9% (t) for constant m under the congestion assumption for continuous viscosity solutions.

Now we review the literature on similar Hele-Shaw limits. These Hele-Shaw limits are well
studied when m is a constant and until recently, these limits were only investigated when the
system is under congestion with m constant or when f = b = 0 with m(x,t) either being con-
stant or 1/t. The weak limit of (1.1) when m =1, f = 0, and b = 0 was studied in [5] and was
again studied in [2] with more general initial data. This investigation was continued in [9] and
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[10] when the equations (1.1) were posed on a domain 2 x (0,00) with general initial data and
pressure boundary data. In [10] the authors considered the case of m(t) = 1/t of (1.4) in their
analysis. Then in [18], the author showed uniqueness and existence of (1.4) when m is constant
with f and b = 0 for viscosity solutions. In addition, in [22] and [14] the authors dealt with the
Hele-Shaw limits with the condition of f > 0, b= 0, and m = 1 in a weak and viscosity sense
respectively. In [1] the authors were able to incorporate a non-zero drift when b(z,t) = V&(x)
such that A® > 0 with f = 0 and m = 1 into their analysis by using viscosity solutions and
gradient flows in Wasserstein space. Then in [15] the authors were able to deal with the case of
f+V. b>0 by using viscosity solutions.

The above literature primarily focused on the case when m is constant with congestion or
f= b = 0. These assumptions were used when b = 0 to obtain similar time derivatives as the
one in (1.7) to obtain the weak limit. In [15], which dealt with m =1 when there is congestion
with drift, 3(¢) non-decreasing along streamlines played an essential part in their analysis. As
mentioned earlier, these estimates and monotonicity property of ¥ (¢) are no longer generally
true when there is a general source term and drift.

In [12], the authors were able to remove the monotonicity conditions when there is a source
term f with b = 0 in the exterior of a bounded smooth domain with pressure boundary data
and m is constant. In addition, the authors of [8] were also able to take the Hele-Shaw limit
with m constant without monotonicity conditions on their source and drift terms.

The authors of [26] investigated (1.1) and its Hele-Shaw limit using the theory of gradient
flow in Wasserstein space (see [21] for the gradient flow structure of the PME) when f = 0,
b=0, Oym(x,t) < 0 (congestion case), and m(z,t) is approximately linear. The approximately
linear constraint on m was used in [26] to ensure a well defined limit from their JKO approx-
imation scheme and was conjectured to be necessary to take the Hele-Shaw limit of (1.1) and
(1.3). In comparison, our assumptions are rather mild (see Section 2) and we do not need the
approximately linear condition of m(z,t) used in [26]. Our methods appear to be the first to be
able to take the Hele-Shaw limit for a wide range of m that varies in space and time.

2. NOTATION, ASSUMPTIONS, AND SUMMARY OF RESULTS

Throughout this paper, we denote the pair (o, px) as weak solutions of (1.1) and (1.3) re-
(0)

spectively with initial conditions g, ~ and pko).

Definition 2.1 (Weak Solutions to mPME). We say that o is a weak sub solution to (1.1)
with initial data ¢} € L*(RY) if o, € L?(Qr) and vy, := ox/m satisfies vf € HY(Qr) such that
for all non-negative test functions ¢ € C°(R? x [0, 00))

—.

en [ aves [ ot=0d@+ | -me Vit - oo B+ foor

where Qr := R x (0,T).

Similarly, we say that gy is a weak super solution if the inequality in (2.1) is reversed. Then
we say that g is a weak solution if it is both a weak sub and super solution to (1.1). Now if
we denote py, = % (%
solution of (1.3) if gy is a weak (respectively super/sub) solution of (1.1).

)kil, then we say that py is a weak solution (respectively super/sub)

We refer the reader to Section 9 where we discuss properties of weak solutions of (1.1) such as
existence, comparison principle, and smooth approximation. As standard in the PME literature
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[24], when we obtain a priori estimates, we treat g as if it is smooth because we can instead
use our smooth approximations and take limits to obtain the estimate for our non-smooth gy.

—.

To simplify our notation we let F':= (V - (mb) + mf — 0ym)/m, then (1.3) simplifies to
= 1
(2.2) Ok = |Vpk|* + Vi - b+ (k — 1)py <RV - (mVpg) + F> .

We also let wy, := %V - (mVpg) because this quantity frequently shows up in our calculation.
In addition, for many computations, it will be easier to work with the normalized density
vk := ok/m compared to the density gx. The normalized density solves

1 -
(2.3) Oop = —V - (mVvk) + Vo - b+ Fop in Qr.

We will refer to the first equation in (1.4) as the density equation and the second equation as
the pressure equation. And we will use the letter C' to denote a constant that is independent of k
that may change from line to line. And we denote b= (b, ...,bq)T as the negative drift, f as the
source term, and m(z,t) as the hard constraint. In addition, because many computations will
involve derivatives of m being divided by m, we will use the notation A := log(m) to simplify our
expressions. Also we will also denote for 7,¢ > 0 the sets Q; := R? x (0,¢) and Q¢ := R% x (1,t)
and we fix a T' > 0. Finally the operators V, V-, and A will only be taken in the space variables.

Now we list some assumptions that will be used throughout this paper.

Assumption 1 (Hard Constraint, Drift, and Source Term Assumptions). We assume that

m(xz,t), b(z,t), and f(z,t) are in C*°(Qr) with bounded derivatives of all order such that there
is a § > 0 with m(x,t) > 0.

Remark 2.2. If m was allowed to go down to zero, the operator V - (mVps) in (1.4) would
become degenerate elliptic on the zero level set of m. But if a Hele-Shaw limit exists when m
1s allowed to go down to zero, it seems that the zero level set of m will lead to an additional
obstacle problem for poo on 0{x : m(z,t) > 0}.

Assumption 2 (Initial Density and Pressure). We will always assume that the initial density

ngo) (z) = ok(x,0) € WHL(RY) is such that ¢ > 0 almost everywhere. Also we will assume that

there is a compact set K C R such that for all k > 1 we have
0
supp(oy)) C K
and
. (0) <C . s (0) <C d (0) <C
SUPHQk ||L°°(Rd) >0, SUPHQk ||W1’1(Rd) >0, an SUPHID/LC ($)||L00(Rd) =0
k>1 k>1 k>1

Finally we assume there is a limiting density gE}Z) (x) such that ngo) — gE}Z) in L' (RY).

Remark 2.3. The purpose of the condition of ngo) — Q(()g) in LY(RY) in Assumption 2 is to

specify the initial data for the density in (1.4).

Assumption 3 (Hard Constraint Restrictions). We assume that either m(x,t) = m(|z|,t) (m
is radial in space), d =1 (one space dimension), or there is an R > 0 such that for e = €(d) > 0
sufficiently small, we have that |Vm(z,t)| < e/|z| for || > R .

Remark 2.4. The only purpose of Assumption 3 is to construct a super solution of the pressure
equation (2.2) to derive uniform L* and compact support bounds on the pressure.

With these assumptions, we have the following compactness theorem:
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Theorem 2.1. If Assumptions 1, 2, and 3 are met, then the sequence of pairs {(ok,Pr)} k=1
has a unique limit in L'(Q7) as k — oo. Also the limiting densities and pressures are in
the regularity class (0o, Poo) € L=(0,T; LY(RY) N L>®(RY)) x L2(0,T; H'(R?) N L= (RY)) with
compact support. Also the limiting density and pressure (0so0,Poo) are a weak solution to the

density equation in (1.4) with initial data ggg).

Definition 2.5 (Weak Solutions of Hele-Shaw Density). We say that the pair (0co,Poo) 1S @
solution to the density equation with initial data gé? for (1.4) if for all test functions ¢ € C°(Qr)

/Rd p(t=0) gg)+// —(0rp) 000 =/Q V- (Voo + 000) + ¢ f 000

and goo(x,t) < m(x,t) with pso(m — 00) = 0 almost everywhere.

Remark 2.6. For our analysis, we need an extra assumption to be able to show ps s a weak
solution to the pressure equation in (1.4).

We will refer to showing that p., is a weak solution to the pressure equation in (1.4) as the
complimentary relationship.

Assumption 4 (Complimentary Relationship Condition). Assume there is a constant C' > 0
independent of k such that

/ |Vor(x,0)|*dz < C.
R4

As in [22] the complimentary relationship is equivalent to Vpy — Vpso in L2(Qr). So this
control of the [|Vpg(z,0)||12(re) seems rather natural. However, in [12] the authors obtained the
complimentary relationship without this assumption with no drift and m constant by obtaining
an obstacle problem formulation of the pressure. When drift is added into the system, it is not
clear if the obstacle problem formulation in [12] still holds.

Assumption 4 was also used in [8] to obtain the complimentary relationship with m constant
with source and drift terms. We will modify the proof in [8] to obtain the optimal L*(Qr)
bounds on Vpy (see [7] for an example of the optimality of the bounds), which will give us
enough compactness to obtain the complimentary relationship.

Theorem 2.2 (Complimentary Relationship). Assume that Assumptions 1, 2, 3, and 4 are met,
then for any ¢ € C°(Qr) we have that

// DoV - Vipoe] — M| Vpol? + gpoomF = 0.
T

That is the limiting pressure satisfies the complimentary relationship
Poo [V - (MVps) + mE] =0 in Qr
in the sense of distributions.

Then with the existence and uniqueness of the generalized Hele-Shaw problem, we focus on
geometric properties of 3(t) := {x : poo(z,t) > 0}.
Theorem 2.3. The normal velocity V' of the free-boundary 0X(t) satisfies
mV -
V= [_71)0:3 _ b] i
(m — ")
in the sense of comparison with classical barriers where oF is the external density. The external

density is the limit of the density oo from outside the saturated region 3(t). See Section 6.1 for
a definition of classical barriers.
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Then we focus on the case of congestion (1.6). This constraint is a generalization of the one
used in [15] used for m = 1. And in this case, we can identify the limiting pressure up to 0%(t)
when we have control of the initial limiting pressure:

Theorem 2.4 (Explicit Identification of g, in The Congestion Case). Assume that Assumptions
1, 2, and 3, are met such that py(z,0) — peo(z,0) uniformly such that 3(0) is open and we are
in the congestion case (1.6). Then we have the pointwise formula

oo (1) = of (x,t) for a.e. (x,t) € Int({p(x,t) = 0})
o m(z,t) for a.e. (z,t) € {p(x,t) >0}

where the external density QE(x,t) solves the continuity equation

010" =V - (o) + fo in Qr
QE(x’O) = Qoo(x’o)

Remark 2.7. Note that this identification Theorem 2.4 is consistent with the one in [15], which
dealt with the case of m = 1 using viscosity solutions.

We were able to obtain this identification by refining the new Aronson-Bénilan estimate for
the PME with drift found in [17]. We showed that under the congestion case for all k& > 1 there
exists a C' > 0 independent of k such that

C 1
E—1 (=1t

1
—V - (mVpy) > —F —
m

Now our Aronson-Bénilan estimate implies that we have the following uniform estimate of the
pressure py along the streamlines X (¢, o) for all £ > 1 for some C' > 0 independent of k

(X (1,30),1) > ~(C + pel(X(t,70), 1),

In particular, we deduce that X(¢) is non-decreasing with respect to streamlines for positive
time. That is if x € X(¢) for ¢ > 0 then the streamline containing « is in ¥(s) for all T > s > ¢.
Then by using the uniform convergence of the initial limiting pressure and X(0) is open, we
can use the barrier constructed in Lemma 8.4 for the congestion case to conclude that X(t)
is non-decreasing with respect to the streamline for all 0 < ¢t < T. This is enough for us to
conclude the identification of pn.

2.1. Open Problems. Let us denote (90, Poo) @s the limiting density and pressure respectively.

o Obstacle Problem Formulation of the Pressure In [12] the authors derived an obstacle
problem formulation of po, when b = 0 and m = 1. However, when there is a non-zero
drift b, the proof used in [12] does not carry over.

o When m is allowed to go to zero When m is allowed to reach zero, the limiting PDE
(1.4) seems to be modified into a new obstacle problem that includes the zero level set
of m.
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during this project. The author is also very grateful to his advisor Inwon Kim for suggesting
this project, for her guidance and mentorship throughout this project, and for reading the
manuscript. The author is also very grateful to the two anonymous referees for their very
detailed comments.
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3. EXISTENCE OF THE HELE-SHAW LIMIT

3.1. L*°(Qr) Bounds and Finite Speed of Propagation. We will derive enough estimates
to be able to pass the limit in (1.1) and (2.2) to (1.4) as k — oo in the weak sense. Our first
estimate will be used to obtain L*°(Qr) and control the support of the pressure py.

First notice as pg(z,0) > 0 and 0 is a solution to the pressure equation, we may apply the
comparison principle to deduce that pg(x,t) > 0 almost everywhere. Now we will show the
following bounds:

Lemma 3.1 (L°°(Q7) Bounds and Finite Speed of Propagation). If Assumptions 1, 2, and 3
are met then there is a constant C = C(T) and a compact set Q C R? independent of k > 1
such that

0<pr <C ae inQp, supp(px(t)) CQ forae 0<t<T.

Proof. To prove this lemma, we use the viscosity super solution constructed in Lemma 8.2 and
8.3. We choose the initial conditions of this barrier so that the barrier at time 0 is larger than
SUPL>1 lego)H Loo(rd) inside K. So by the comparison principle, py, is dominated by the barrier.
Then as the barrier is compactly supported and bounded for all times, we deduce the same is
true for py. O

This immediately implies compact support and L>(Q7) bounds on the density and normalized
density.

Corollary 3.2. The density o and normalized density vy are also uniformly bounded in L*°(Qr),
uniformly compactly supported in Qr, and non-negative almost everywhere.

3.2. BV Estimates on the Pressure and Density. Now we will derive L?(Qr) estimates on
|Vpr|, which follows from just integrating (2.2). Then we obtain L!(R9) estimates for |Vuvy(t)|
for a.e. t € [0,T] via an integral Gronwall’s inequality with Kato’s inequality argument.

Lemma 3.3 (L?(Qr) bounds for |Vpy|). If Assumptions 1, 2, and 3 are met then for all k > 6
there is a constant C = C(T) such that

J on < em)

Proof. First we use %V - (mVpg) = Apr + VA - Vpi, and integrate the pressure equation over
Q7 to see that

k—2) //QT Vpil? = /dek(m,O) ~ pe(@,T) +/QT Vi - (54 (b — DpeVA) + (k — 1)piF.

Now we recall that Young’s Inequality with e > 0 says that |7 - ta| < ¢|#1]? + |2|%/(4€). Using
Young’s Inequality with & combined with our uniform sup bounds and uniform support control
on pi (Lemma 3.1) gives us that there is C' = C(T') such that

k+1
—2// \Vpr|* < kEC(T) + ~—— // V)2

Now because k > 6, we have that (k—2) — £ > 1/2 and sup,>¢ ((k—2) — &2)/k < C, which
implies the desired bound.
g

Note that this L?(Q7) estimate combined with Holder’s inequality and our uniform compact
support of pi (see Lemma 3.1) gives us L'(Qr) control of Vp;. Thus to obtain L'(Qr) conver-
gence of the pressure along a sub-sequence as k — oo, it remains to show time derivative bounds
on the pressure. Uniform time derivative bounds on p;. is one of the most delicate parts of our
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analysis. This is unsurprising because in [22] the authors constructed examples of p.o that have
strong jump discontinuities in time.

Our first step in obtaining time derivative control of pj is to obtain BV bounds for the
normalized density vg. To derive our BV bounds, we use the following lemma that shows
Vui] = [Vpil.

Lemma 3.4. If Assumptions 1, 2, and 3 are met with k > 6 then there is a constant C = C(T)
such that for the normalized density vi, we have that

//Q v < o).

Proof. Note that from Corollary 3.2 we have that 0 < v, < C almost everywhere, so
IVui] < Chog~?|Vug| = C|Vpy|.

Hence, by integrating this inequality and using Lemma 3.3, we conclude the desired inequality.

U
Now we have enough estimates to obtain L'(R?) bounds on |Vuy(t)| for a.e. t € [0,T].

Lemma 3.5 (BV bounds for the Normalized Density). Assume that Assumptions 1, 2, and 3
are met with k > 6. Then there is a constant C = C(T) such that for almost every t € [0,T]

/ |V (t)] < C(T).
Rd

Proof. We differentiate (2.3) in z; using that =V - (mVo}) = A(vf) + VA - Vof to obtain for
w; = Oy, v, that

(3.1)

Oyw; = A(kv,’jflwi) + V(9 \) - VoF + V- V(kv,lzflwi) +V(w;)-b+ V- (amll?) + Vg [On, F] + w; F.
Note that our assumptions tells us that F' is a smooth bounded function with bounded deriva-
tives. To deal with the term VA - V(kvzflwi), we observe that

V- V(kvfw;) = V- (kvpw; V) — kof 1o AN = V- (kvf w; V) — (85,08 AN

Now we multiply (3.1) by sign(w;) and use Kato’s Inequality, Cauchy-Schwarz, and vy < C' (see
Corollary 3.2) to see that

Blwi| < A(kvEYwi]) + OVl + V - (kvf | VA) 4 C|0,0F | 4+ Vwi - b+ C|Vug| + Clws| + C.

Hence, integrating this using that w; is compactly supported and that |Vv],§| € L'(Q;) uniformly
in k (see Lemma 3.4) gives

1/2
d /

d jd 2
= | < A(+ — iy . ) .
dt//Qt i 0+ [ il 0)+//Qt il (V- B) + Cloi| +C [ 3 ]

Jj=1

Summing this over all 1 < i < d with w := Z;‘l:1 |w;j| along with our initial BV bounds

(Assumption 2) gives
a4 // w<C+C // w.
dt J]o, ,

Now Gronwall’s Inequality implies with our initial BV bounds (Assumption 2) the desired
bounds. m
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3.3. Generalized Semi-Convexity Estimate. Now we aim to control the time derivatives of
the normalized density and pressure. To do this, we need a semi-convexity estimate in a similar
vein to the Aronson-Bénilan estimate. The famous Aronson-Bénilan (see [24]) estimate says

that for the case of m(z,t) =1, f =0, and b = 0 one has the following inequality

1
App > — .
Ph= "~ 1)t

We will derive for our case the following similar estimate

1
wy = —V - (mVpy) > — - K,
m

2
k- 1)t

where K7 > 0 is a constant independent of k. This generalized semi-convexity estimate will be
used to show for any 7 > 0 and a.e. t € [7,T] that [|9pvk(t)||11(rey < C(7,T). For this section,
we fix a k > 6 and will drop the subscript k£ on the p; and wy.

The main idea of the generalized semi-convexity estimate is to derive that w solves a parabolic
PDE and modify the barrier introduced in [17]. In Section 7, we modify the barrier used in this
section under the congestion assumption to derive a refined Aronson-Bénilan estimate.

We begin deriving the PDE that w solves. Observe that
(3.2) we = VA - Vp+ V- Vp + Apy.

Now we will derive expressions for Vp; and Ap;. By differentiating (2.2) in x; we see that

(3.3)
d

Ot = D [200,0) (02 1,p) + (82,0, )by + (02,0) (02,b5) | + (k= 1) [(00,p) (w + F) + p(Dy0 + 03, F)].
j=1

Differentiating in z; again and summing gives

d
(34) Apr = 2(02,.p)°+2Vp- V(Ap)+ V(Ap) - b+ Vp- (Ab) +2 Z 7 P) (O, b))+
P ig=1
(3.5) + (k= 1) {Ap(w + F) + 2Vp - (Vo + VF) + p(Aw + AF)} .

Using (3.3), (3.4), and (3.5) in (3.2), we obtain the following PDE for w
(3.6) w=VXN-Vp+(k—1)|ww+F)+ (Vw+ VEF)- (pVA+2Vp) + p(Aw + AF)] +

d
(B7) 4> 282,07 +2(Vw-Vp— (Vp)"D>A(Vp)) + V(w — Vp- V) - b+ Vp- (Ab)+
i,j=1
d
i,j= 1 ,j=1 = 1

To derive this equation we used the identity

d
> 2(0:,0)(92,4,0)(0 ) + 2Vp - V(Ap) = 2{Vw - Vp — (Vp)" D*A(Vp)},
ig=1

which follows from expanding the right hand side.
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Now we will use (3.6),(3.7), and (3.8) to derive that w is a super solution to a simpler parabolic
differential equation. Indeed, by Cauchy-Schwarz and Young’s Inequality with € we have that

1 2 € 2
. Vp > —— S .
(39) VA Vp >~ VM1 - £1Vp)
In addition, we have the following bound
d
2
(3.10) V(Vp-VA)- Z 2.0,P) (D Nbj + (92,5 ) (On,)b;
d € 1 €
(3.11) 22}:—5ﬁﬁqp9—§EUWMM@M%HQV—5VM2 z:meﬂH\WMé-
ij=1 ij=1
Also we observe that
. 1. -
(3.12) Vp- (AF) = —5|Vpf - || Ad .
2 2e
Then by using Young’s Inequality with e, we see that
d
2 2
(313) ) (9,0) (D) (D, N) +2 Z iz, P)(02;b5) 2 —C(e) — e|Vp|” — ¢ Z 102,01
i,j=1 i,j=1 t,j=1

Now by using that p > —C' (see Lemma 3.1)

w? Vol
(3.14) w(w+ F) > - = C, VF-(pVA+2Vp)>—-C— 5 and pAF > —C.
Combining these inequalities along with making e sufficiently small (independent of k) gives
2 Y w’ [Vp|? : 2
Ow > = |VpP+Vuwbt(k=1) § o +pVw  VA+2Vw - Vp+pAw — —— - C +> (07,0 +
i,j=1

+2(Vw - Vp — (Vp)T D2\ (Vp)).

Now we treat p as a known function and define the parabolic differential operator

(3.15) L{g] := 0,6 — Vw - b+ [Vp[* = 2(Vé - Vp — (Vp)" D2A(Vp))+
2 2
(3.16) ~ k=0 { G+ 90 r+ 299 +pas - L e

then we have by construction that L{w] > 0. Now we construct a sub-solution of this operator
using the barrier introduced in [17].

Lemma 3.6 (Subsolution for semi-convexity estimate). We denote p = py, and w = wy, for ease
of notation. Then there exists a sufficiently large K1 > 0 such that for any 7 > 0

Y, t;7) = +p— K,

2
S k=1)(t+71)

satisfies L[y] < 0 whenever k > 1 is sufficiently large where L is the parabolic differential
operator in (3.15) and (3.16).

Remark 3.1. This barrier ¢(x,t;7) is inspired by the one in [17].
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Proof. We plug in 9 to L to see that
2 23

Lly] = k=Dt +72 +2(Vp)TD2\(Vp) + (k — 1)(pF — e §|Vp|2 1 o).
Now we use that
4 2
V= (VR TEoER (m) +(p— K1)?

2 e TR

where we chose K1 > supy~ ||pk||pe (@) (Which is finite thanks to Lemma 3.1), so that p— K7 <

0. Now from k > 2, we have that (k — 1) (k_l)E(QHT)Q < (k—l);(Qt—l—T)Q’

which implies

1 3
LIV < (g 2~ 2 2T DN + - 1) | -3 0 +
; x
+ (k- 1)(-@ +C).
I

Note that we used the L>(Qr) pressure bounds (Lemma 3.1) to have pF < C' for some C' > 0.
Now for all (z,t) € Qr, let Aj(z,t) > Aao(z,t) > ... > A\,(x,t) be the eigenvalues of D?\(z,t).
Then let A :=sup(, yco,{A1(2,1)} be the biggest eigenvalue of D2\ over Qr. This implies

3 4
T, < 2A|Vp|? — (k — 1)§|Vp|2 <0 for k > §A + 1.
Then for Z,, by making K larger if necessary, we can also assume that K1 > supyq |[p&| zoe @)+
V2C' , which implies Zp < 0. So we conclude that L[] < 0. O
Now we reintroduce the subscript k.

Lemma 3.7 (Semi-Convexity Estimate). There ezists a K; independent of k such that we have
2

(k—l)t_Kl

1
wy = —V - (mVpy) > —
m
for sufficiently large k in the distribution sense.
Proof. Using the 9 (x,t; ) from Lemma 3.6, we see that
I 0;7) = —o0.
lim (., 0; 7) = —00
This implies for small enough 7 = 7(k) > 0 we can compare ¥(-,-,7) to wy (because L{wy| > 0
and L[y(-,-;7)] < 0) to obtain the claim. O

This gives us enough control to derive an Ll(QﬂT) estimate on wy.

Lemma 3.8 (Ll(QﬂT) bound on the semi-convexity term). Assume that Assumptions 1, 2, and
3 are met then if T > 0, there is a constant C' = C(1,T) such that for all sufficiently large k

//T’T lwg| < C(r,T).

Proof. Recall that |wyg| = wy + 2|wg|- where |z|- := —min(z,0) for x € R. Then our semi-
convexity estimate Lemma 3.7 implies that |wg|_ < ﬁ + K in Q1. Now using that wy, is
compactly supported thanks to Lemma 3.1, we conclude the claim by integrating. ]
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3.4. Time Derivative Estimates. Now equipped with our semi-convexity estimate we can
derive L'(R%) estimates on |0yvi(t)| for a.e. t € [7,T] and L'(Q, 1) estimates on |9;py|. Note
that we cannot expect to go down to t = 0 without stronger conditions on our initial data.

To begin we first observe the semi-convexity estimate Lemma 3.7 that

; 2
O > b- Vi + (k= 1)py [—m - K1:| .

Then by using p;, = %(v,’z*l) we have that

- 2
>b- — K .
O, > b - Vg vk[ 1+(/<:—1)t]

Cauchy-Schwarz implies that

2
8tvk > —C]Vvk\ — Vg [Kl + m] .

This estimate implies the following bound on the negative part of Oyvy,

2
< —_— | .
ool < CIF0l + Il [ K1+

Thus our BV bounds on v;, (Lemma 3.5) and L*°(Q7) bounds on vy (Corollary 3.2), implies for
a.e. t € [r,T] that

/ |0k | (t)dx < C(7,T).
R4
Now we integrate in space (2.3) to see that

/ at’Uk
R4

So using that |Oyv| = Orvg, + 2|0y |-, we see for a.e. t € [1,T] that

/ Oul(t) < C(m.T).
R

That is we have the following lemma:

<C.

Lemma 3.9 (Time Derivative Control of The Normalized Density). Assume that Assumptions
1, 2, and 3 are met, then for any 7 > 0 we have the bound for almost every t € [1,T]

/ 0,04l(t) < C(r,T)
R4
for sufficiently large k.

Now we will obtain LI(QT,T) estimates of Oypi. But we first need the following lemma based
on an estimate in [12].

Lemma 3.10. Assume that Assumptions 1, 2, and 3 are met and let 7 > 0. Then if we write
q = 0w (we drop the subscript k in this lemma). Then we have for sufficiently large k and

almost every 0 < 7 < T that
J| e < o).
QT,T
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Proof. Observe by differentiating the normalized density equation (2.3) in time that we have
Bq = A(kv" 1) + VA - VOF + VA -V (k" 1) + V- b+ V- (9,b) + ¢F + v(d,F).
Multiplying by sign(gq) and using Kato’s inequality implies that
Oilal < A(ko* M al) + [V - V¥ + VA V(ko*g|) + V- (glb) — |a|V - b

+|Vv - (8:b)] + Clg| + C|v].

Now we observe that A(kv*~1|q|) + V- V(kv*~1|q|) = V- (mV (kv¥~1|q|))/m. Hence, we have
from Young’s Inequality and Cauchy-Schwarz for any smooth ¢ = ¢(z) > 0 that is compactly
supported

Vo k\Q

$(Dlal) < %v (mV (kv*Hg)+6(—5—+C)+6 |V - (lalb) — |alV - b| +Co|Vo|+Colg|+Colu.

So by integration by parts and using our L?(Qr) bounds on |Vv*| (Lemma 3.4), BV bounds on
|Vu| (Lemma 3.5), L®(Qr) bounds on v (Corollary 3.2), and L'(Qr) bounds on ¢ (Lemma
3.9) we have that

// $(Blal) < // FF gV - (mV (d/m))] + C(6,7,T).

We now let R > 0 be so large such that
supp(vg) C Bgr(0) for all &k > 1 for ¢ € [0, 7.

Then we define ¢ = me where ¢ is the unique solution of the following uniformly elliptic PDE

V- (thp) =—1in BQR(O)
¢ =0 on 0By (0)

and defined to be 0 outside of this ball. Hence, we deduce that
J. @t < [ 6@ alGe.m) ~ lalw, T do + O T) < €. ),
T, T

where we used Lemma 3.9 in the final inequality. U

Now this gives enough estimates to prove our Ll(QﬂT) bounds on O;p. Indeed we proceed as
in [22] and use that |0;p| = kvF~2|q] to see

// 0| S// kv’“‘z\qH?// kv q]
T {v<1/2}NQ- T {v=1/2}NQ- 1

< || wgela 42w ol < 0 )
T, T

where in the final bound we used Lemma 3.9 and 3.10. That is we deduced

Lemma 3.11. Assume that Assumptions 1, 2, and 3 are met, then for almost every T > 0 we
have the bound for sufficiently large k > 1

// O] < C(7.T).
QT,T
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3.5. Passage To The Limit For The Density. Our bounds imply v and p; is a bounded
family in WH1(Q,.r) for almost every 0 < 7 < T (so the set of such 7 is dense). Hence, along a
subsequence (which we still denote by k), we can find a v, pso € LI(QT,T) such that

Uy = Voo in LN (Qr7) and pr — poo in LN(Qr 7).

Then by using a standard diagonal argument combined with the L*°(Qr) and support control

of the pressure and density Lemma 3.1, we see that we can extract a sub-sequence (which we

denote by k) such that (vg,py) has a limit in L'(Q7) x L'(Qr) . We denote the limit (along

this sub-sequence) as v and po,. Now if we denote by 0o := Mvs, then it implies g — 000 In
k

LY(Qr) since m > 6 > 0. Next observe from vpp = Cka where O, — 1 as k — oo that from
the pointwise convergence a.e. (we can use a further sub-sequence if needed) that
Poo(Voo — 1) =0 ace. = poo(m —us) =0 ace. .

Finally by considering the weak form of the density equation in (1.1) and letting & — oo with
our estimates, shows that for any test function ¢ we have

[z #1050 = Vo - (mVpos + 050b) + .f 000 + [ga p(t = 0)0, = 0
Poo(M — 000) = 0 a.e. in Qr

That is (0s0, Poo) is a weak solution to the density equation in (1.4) with initial data @2 . This
gives us the existence portion of Theorem 2.1.

4. UNIQUENESS AND COMPARISON PRINCIPLE OF THE GENERALIZED HELE-SHAW FLOW

In this section, we consider weak solutions (g,p) to the density equation (1.4) such that
0 € L=([0,T); LY (RY) N L®(R%)) and p € L2([0,T]; H'(R?) N L>°(R?)) with compact support
for any fixed time and we will show uniqueness among this class of functions with the same
initial density. We proceed via the Hilbert’s duality method used in [22, 12, 8]. Let (o1,p1)
and (p2,p2) be two weak solutions of (1.4) with the same initial data, then we see that for any
© € C®(R? x [0,T)) we have

@) ] e e+ =) [AOR) + BY (V) — AV T )] =0,
where

oL 02 <land 0<B:= L <1
(01— 02) + (p1 — p2) (01— 02) + (p1 — p2)
Note that these bounds on A and B follow from p;(m — ;) = 0. for i = 1,2 (where A := 0
when 91 = g2 and B := 0 when p; = p3). Now let R > 0 be so large such that o;(¢) and p;(t)
are supported in Br(0) C R? for ¢ € [0,T]. This leads us to be interested in solving the dual
problem; that is if ) € C2°(Qr) we want to find a ¢ such that

A(rp) + BV - (mV) = A(Vep-b—of) = A in Qr
e(t=T)=0and ¢(z,t) =0 on dBR(0) x (0,7) ’

(4.2) 0<A:=

(4.3)

where if necessary, we take R larger to ensure the support of % is contained in Bgr(0) x [0,7].
We also define ¢ = 0 for |z| > R.

Observe that (4.3) is a backwards degenerate parabolic operator due to the possible degeneracy
of A =0 and B = 0 at some points. So to solve (4.3) we use an approximation scheme. Indeed,
consider compactly supported smooth approximations A,, and B,, such that

[[An = Allr2(0y) <
[1Bn, — Bllr2(gr) <

and £ < A4, <1
<B,<1

3=
3=

and
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Now we note that the approximate problem for ¢ € C°(Qr)

{atson + B0V - (mVpn)] — (Vn b — ouf) =¥ in Qr

(4.4)
on(t=T) =0 and ¢,(x,t) =0 on 0Br(0) x (0,7T)

is a uniform backwards parabolic equation with a terminal time condition, so the equation is
classically solvable. In addition since the coefficients are smooth, the solution is smooth with a

smooth solution (see [24]). Then using ¢, as a test function in (4 1) gives us that
// 01— 02)Y = // (01 — 02) + (p1 — p2)] (AA——B + By = B)[V - (mVg,)].
T
In

For notational simplicity, we denote Z := [(01 — 02) — p2)] and we observe that
(4.5) I, = // Z—n(A — A,)[V - (mVep,)] // Z(B, — B)[V - (mVg,)].

T A” T

In,l In,2

Now we collect similar estimates on the dual problem to the ones in [22]:

Lemma 4.1. There are constant C = C(T,v) > 0 independent of n such that for all t € [0,T)
len )o@ < C, IIVen)ll2@a < C, (Ba/4n)' 2V - (mVn)llp2 gy < C.

Proof. For the first inequality, observe that the equation for ¢, is a backwards uniformly para-
bolic equation, and we can compare ¢, to et — 1 for large C' > 0 to obtain the bounds with
C independent of n.

For the second bound, we multiply (4.4) by V- (mV,,) and integrate over Q; 7 = R% x (¢,T)
for 0 <t < T to see that

By,
[ B0Vl + 3 V-V )P (¥ V) (Von B enf) = [ 0T (mVien)).
Qt,T n QtT

IQ
T T3
Now observe that from integration by parts that
(4.7)
_ 1 2y 2 _1 2 1 2
T = —3 O(m|Venl") = [Ven["(@m) = 5 | m(t)|Ven(t)]de + 5 (0rm)|Veon|
Qi1 Rd Q.1

(4.9 > [Laaor=c | val

And integration by parts along with Young’s Inequality comblned with m being bounded gives

(4.9) 17l < //Q (T V)| £0@) + € //Q el

For the final term, we split it

n-|[ 9 V) (e [ & (V) n)

1—271 I2,2
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Then we have from integration by parts and Young’s Inequality that combined with our first
estimate of ||¢n ()] ey < C that

(4.10) Toal < // MVn - (FVn+ oV )| < C +C // Venl?.
Qi1 t,T

Now to deal with 7 ; observe

. 8g0n 0? P, Own, Oy, Ob;
1—271 = //t’T(mVQOn V‘Pn //QtT 2 83?@ axzax] @Z or; axj or;

['hen notice that
// m C// < C// |v 7n|2,
t, T Qs, T ; t, T

where for the final inequality we used Young’s Inequahty. And we also have from integration by
parts on x; that

d d
ﬂ Z 89071 829071 // 32()071 89071 Z ‘({9(,0”’28 )

i ox; 8xi3xj v e Bmzax] Bx ox;

Hence, we deduce that
d
ﬂ Z 890n 89071 ) // Z‘a@n’28 )
0T ox; 0x; ij 0T ox; Ox;j
This implies that we have from Young’s Inequality that
(4.11) [Ton] < C+ C// IVion|”.
Qt T

Using our bounds of 71,75, and Z3 (see (4.7), (4.11), (4.10), (4.9)) in (4.6) gives

(4.12) /—|wn (t)]* + // —|v (mVen))? < CW) + C // IV ()%,
Q1 Ap Q1

which by B, /A, > 0, lets us use the integral form of Gronwall’s inequality to deduce that

(1.13) L v < cw. )

To obtain the 3rd inequality in the statement of Lemma 4.1, we use (4.13) and (4.12) to see
that

Opn o 0b;
—1 83?@ 8:6]' 83?@

(9g0n Opn,
&’UZ 0z

1(Bn/An) 2V - (mVon)llL2(, ) < C&,T)
for all 0 <t < T, so by letting ¢ — 0 we conclude the third inequality. O

Now these inequalities will be used to bound Z,; and Z,, 5 from (4.5). Indeed, observe that
since Z is bounded we have by Holder’s Inequality with Lemma 4.1 that

maise | 214 = Al | G2VPIV - Vi) < CIB/AD A = Ay

Cn1/2
<

_ 1/2
p C/n*=.

Also we have the following bound from Lemma 4.1

ANY? 7B\ 2
mad<c [ mo-ni(g) (F) 909
T n n
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< CH(An/Bn)l/z(Bn - B)HL2(QT) < C/nl/z-
So by letting n — oo in (4.5), we see that for any ¢ € C°(Qr) that

//Rd(gl —02)Y = 0.

That is we have shown that g; = g almost everywhere. Now using the density equation in (1.4)
with g1 = g2 a.e., we conclude that for all p € C°(Q7)

/ V- (mVe)(p1 — p2) = 0.
Qr

By an approximation argument we may take ¢ = p; — p2 to conclude by integration by parts

that
// m|V(p1 — p2)> = 0,
T

so from m > § > 0, we see this implies from p; being compactly supported that p; = ps a.e., so
we conclude that:

Theorem 4.2 (Uniqueness). There is at most one weak solution of (1.4) (o,p) in the reqularity
class L>=((0,T); LY (R?) N L= (RY)) x L2([0,T); HY(RY) N L>®(Qr)) with compact support and

o(x,0) = o (x).

Note that if Assumptions 1, 2, and 3 are met then our limiting density and pressure (90, Poo)
satisfy the hypothesis of (4.2). Hence, they are the unique solutions of the density equation in
(1.4) in this regularity class with oo (2,0) = 952,) (). This immediately implies with Urysohn’s
subsequence principle the following corollary:

Corollary 4.3. Assume that Assumptions 1, 2, and 3 are met, then the entire sequence (o, pk)
converges to (0o, Poo) i LY (Qr) x LY(Q7).

This concludes the proof of Theorem 2.1. In addition, an analogous proof of the above dual
problem shows the following comparison principle for bounded domains: (see [12] Proposition
5.1 for the case of m =1 with b= 0)

Theorem 4.4 (Density Comparison Principle For Limiting Equation). Let Q C R? be a open
and connected subset of R? with smooth boundary and 0 < t; < ty < co. Assume that (o1, p1)
and (02,p2) are weak solutions of (1.4) in Q x (t1,t2) such that (0;,p;) € L>¥((t1,t2); L' () N
L>®(Q)) x L2((t1,t2); HY(2) N L*°(Q)) with compact support such that o1(t = t1) > 0ot = t1)
and p1 > p2 on O X [t1,ta]. Then we have that

o1(x,t) > o0o(x,t) a.e. in Q X [t1,ta].

5. THE COMPLIMENTARY RELATIONSHIP ON THE PRESSURE

Now we focus on deriving the complimentary relationship. That is we will show that ps, is
a weak solution to the pressure equation in (1.4). To derive the complimentary relationship we
modify the arguments in [8] to obtain a uniform L*(Q,r) bounds on |Vpg|. To achieve such
bounds, we first prove the following technical lemma:

Lemma 5.1. Let f € C°(R?) then there is a constant C > 0 independent of f such that

4 2 2 ﬂ ) 2 : 2192 2
Lwst<e [ igvieee [ Low monpec S [ mirpiok,

ij=1
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Proof. Observe that from integration by parts that

4_ 2 ) _ 2 ) 2
[wat= [ (veevsy vi= [ sanvie- [ on-v(vip),

Il IQ

Expaning out Zy shows us that

I, = Z /fa NG

i,j=1
Hence, by applying Young’s Inequality, we have that

Tl < /err4+4Z/ P12, T

1,j=1
Now using that %V -(mVf)=VA-Vf+ Af implies

= i . 2 _ . 2
n= | Ly @vnwse- [ rox-vpit

Now by applying Young’s Inequality and Cauchy-Schwarz we have that

2
ni<y [ LW wvnp S [ wstee [ e

By using m > § > 0 and combining terms we obtain the desired bound. O

This gives us the following L*(Qr) control of the pressure gradient by an approximation
argument due to our L>(Qr) control of p;, and L?(Qr) control of Vp; (see Lemma 3.1 and
Lemma 3.3):

Corollary 5.2. If Assumptions 1, 2, and 3 are met, then there is a constant C = C(T) such
that

(51) ﬂ ‘Vpk’4 <C+ C// ‘V mka ’2 +C Z ﬂ mpk‘axlxjpk‘

2,7=1

Now we control the terms arising in Corollary 5.2 using (2.2).

Lemma 5.3. If Assumptions 1, 2, 3, and 4 are met, then there is a constant C' and C such that
for k > 19/3 we have

d

1

52 | i) [ B emr <€ [ [One0anie <
ig=1Qr T

Remark 5.1. This estimate with our smooth approximations of py constructed in Section 9
implies that py, € HE ({pr. > 0}). Then we interpret pk@%ﬂjpkﬁ classically on {pr > 0} and as

0 on {p; = 0}.

Proof. We will drop the subscript k for the rest of this proof. Multiplying the pressure equation
(2.2) by w:=V - (mVp) + mF and integrating over Qp yields

(52) //Twatp //Twwm? // KGAURY GRS
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We integrate each term separately. Observe

I = // ) [V - (mVp)] 0w + / o mE(9p) = // ) —mVp - 0,(Vp) + mF(Orp)

1 1
— [ ~30umIVeP) + Gmd Vil + mE @)
T
So now using mF (9;p) = 0y(pmF') — pOy(mF) and integrating gives

= /R E [m(m,O)|Vp(x,O)|2 —m(x, T)|Vp(z,T)|? + m(z, T)F(z, T)p(z,T) — m(z,0)F(z,0)p(z, 0)] +...

a2
1 2
+ imt|Vp| —p@t(mF).
T

So our L*(Q7) bounds on p; (Lemma 3.1) and L?(Q7) bounds on Vp;, (Lemma 3.3) implies

(5.3) 7, <C / Vp(z,0)2 + C.
]Rd

Now we deal with Z5. Observe that

(5.4) 12:/ v.(mvp)\vm?+/ mF|Vpl2,
T Qr

T2

so integrating by parts twice gives

I21—// pV - (mV(|Vp|?)) // (Vm - V(|Vp?) / mpA(|Vpl?).
T

T2

Now using that A(|Vp[2) =239 =1 ]@Cw,plz +2Vp - V(Ap) gives

% —2// w3 | M,pr2+2/QTmp<Vp-v<Ap>>,

i,7=1
J2,1
and integration by parts also implies
(5.5) T2 = —2/ V- (p(mVp))Ap = —2// m|Vpl>Ap + pAp [V - (mVp)].
Qr

Now we want to simplify the expression for J1 using our previous expressions. First notice
from the definition of Z5 ; in (5.4) that

(5 Ly~ [ (9m-olVaP =[] mapvsP
T Qr
So we obtain from (5.6) and (5.5) that
(5.7) Joq=—2Lr1 +2 // [Vm - Vp]|Vp|*> — pAp[V - (mVp)].
T

Observe that by unpacking our definitions that

I2,1=j1+2// mPZ| :vlm]p| + J2,1,
T

i,j=1
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so by using (5.7), we see that

68 Ta=ghg [l oS (020l + J[, 519 VHIen = Spnl - ()

i,j=1

Now our goal is to compute lower bounds of Zp;. To deal with the [f, [Vm Vp]|Vp|? term,
we first obtain bounds on fo pAp(Vp - Vm). Integrating by parts gives that

co pAR(Vp- m) // Vol (vp- vl - [ T V(T ).

J2,2

Note that p[Vp - V(Vp - Vm)] = p[Vp! D?>pVm + Vp? D?>mVp| so Young’s Inequality with e

gives
| J22| < Z // Pl wjpl2+0// p|Vpl® + // p|(Vp)" (D*m)(Vp)|

i,7=1
d_ i
<>y 5// mplaixjpl2+0// pIVp[®
ii=1 Qr Qr

(5.10) -y 3 [, ool v o

i,j=1

In this final inequality we used our L?(Q7) bounds on Vp (Lemma 3.3) and L>(Q7) bounds
on p (Lemma 3.1).

And to deal with the [Vm - Vp]|Vp|? term in Jo 1, we observe from (5.9) and (5.10) that

(5.11) // IVp|2[Vp-Vm] > —C — // pAp(Vp-Vm) — = Z/ mp| xxjp]2.

1]1

Now using (5.11) in (5.8) gives us

Tog > —C+ = j1+— // mpZIJC,achl2 - [// pAp[V - (mVp)] + pAp(Vp-Vm)| .

i,j=1
Now we use that
pAp[V - (mVp)] + pAp(Vp - Vm) = mp|Ap|* + 2pAp(Vp - Vm)
< mp|Ap? + 2pAp(Vp- V) + 2| Vp- Ymf> = Z|V - (mVp) P
Hence, we have that
612 Taz-Cipaty [ m S 162, 7 - H/Ea e
3 3o 2 3 /g, m

We use integration by parts to see

- (9 )+ pAm) 9%
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Hence, by using Young’s Inequality with £ and our L?(Qr) bounds on Vp (Lemma 3.3) and
LOO(QT) bounds on the pressure (Lemma 3.1), we see that for ¢ > 0

] <e // VIt + Oe) // IVml2|VpP + C //Q Vpl?
<e // VoIt + Ce).

Now using Corollary 5.2 with an approximation argument and a fixed € > 0 chosen such that
for the constant C' in from Corollary 5.2 satisfies eC' < 1/2 gives

d

L p o 1 2
(5.13) <Oy [ L7 onIn 4 g S el el
i,j=1
Then by using (5.13) in (5.12) we obtain

T 2 Piy. 2_¢.
21_ 6 Z/ mp’ mm]p‘ //QTm’v (mvP)’ C

2,7=1
Now using that
IV - (mVp)|> < 4|V - (mVp) +mF|? +4mF|?,

and that F' is bounded due to our assumptions implies

10 p
Ioy > Z/ mpld . pl* — 3//62 E!V-(mVp)erF]Q—
T

zgl

So now using (5.4) and our L?(Qr) bound on Vp (Lemma 3.3), we deduce that

10
(5.14) Iy > —-C+ = Z // mpl| m,xJP‘Q // =|V - (mVp) + mF,Q
So it remains to deal with Z3 to obtain the desired bounds. Observe that

(5.15) // (BT (V) + / 5 mF(Vp - V5).

~
I31 13,2

Now Cauchy-Schwarz and our L!(Q7) control of Vp; (Lemma 3.1 and Lemma 3.3) implies

(5.16) I32 > —C// IVp| > —C.
T

Now we compute from integration by parts that

_//Tpv.@[ (V) //TVb - (mVp)] // (- V[V (mVp)).
K

1 Ko

We apply Young’s Inequality to see that

o 1
an) il < g [ oiepp+ = 1 vip <o [ 29 @,
2[|m ||oo T - 2 s m
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Now we compute to see that

K = Z// by [(02,0,m Z// b [(0,m) (@2, Z// (mb) [02, 10,0 ] +

3,j=1 1,7=1

Ka1 Ka,2 Ka,3

+//T(z7

The last term can be bounded by integration by parts:

//T(E-Vm)Ap‘z ‘//T—V(E.Vm).vp‘ SC//TIVPI <c

Now we bound the other terms. Observe that from Young’s Inequality that

(5.18)

(5.19) IHEESS J[ ol ol ik mit < cm)

i,j=1

where we used our L?(Q7) bounds on Vp (Lemma (3.3)) and our L>(Q7) bounds on p (Lemma
(3.1)). Then by using Young’s Inequality again
(5.20)

[ICo,2| < // o1 Z | wlepIQ + — Z plbi \ameP <3 // Z mp| MJP\Q + C(T).
i,j=1 T 4,5=1
Now we deal with Ky 3. Let us define ¢ := mb = (c1,¢2,...,cq)T and integrate by parts to see

(5.21) S // S // PO, ci) (02, 1)

1,j=1 1,j=1

K24 Ka,s

By Young’s Inequality we have that

d
)
622 Kool |5y O ool + palonel < 5 Ly J[ ottt + o)
T 77 =1

i,j=1

Now we observe that

Kna = & // V() // V- (@VpP) = (- &)|Vpl?
- //QTw-apr.

Hence, we have from our L?(Q7) control of Vp (Lemma 3.3)
(5.23) |K2,4| < C(T).
So now combining our inequalities on Ky and Ky (see (5.17), (5.19), (5.18), (5.20), (5.23), (5.22))

gives
p
Tyil < C Z / mpl2,, pl? + //Q 219 mvp)P*.
T

1] 1
Now again using
IV - (mVp)|> < 4|V - (mVp) +mF|? +4mF|?,
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we deduce that

d
1
(5.24) [Z31] < C(T) + > / mplo?,, pl? +2// L\v . (mVp) + mF[%.

ij=1" Qr Qr ™M

So by using (5.24) and (5.16) in (5.15) we arrive at

d
1 P 9
(5.25) I3 > -C(T)— — E // mp‘@%ix_pﬁ — 2// —|V - (mVp) + F|*.
12 Qr ! Qr ™M

i,j=1

That is we have from (5.3), (5.14), (5.25), (5.2), and Assumption (4) that

d
Fiv. < < (C.
D E //QTmp|8xixjp| + (k 3)//Tm| (mVp)+ F|* < C Rd|Vp(a:,O)| +C<C

4,j=1
U

Now by combining Lemma 5.3 with Lemma 5.2 we obtain uniform L*(Qr) bounds on Vp for
k > 7 due to an approximation argument.

Corollary 5.4 (L*(Qr) bounds on |Vp|). If Assumptions 1, 2, 3, and 4 are met, then for k > 7
there is a constant C = C(T) such that

// Vpl* < C.
T

Now we have enough compactness for strong L?(Q) convergence of |Vpy|.

Lemma 5.5. Assume that Assumptions 1, 2, 3, and 4 are met, then Vpr, — Vpso in L"(Qr 1)
for any >0 and r € [1,4).

Proof. This proof is essentially identical to the proof of Lemma 3.5 in [8], so we omit the
proof. O

Now we use (2.2) to obtain L?(Qr) convergence of Vpy.
Theorem 5.6. Assume that Assumptions 1, 2, 3, and 4 are met then Vpy — Vpso in L?(QT).

Proof. By Lemma 5.5 we know that Vpp — Vps in LQ(QT,T) for any 7 > 0. So it remains to
control ||[Vp||r2(q,) for small 7 > 0. Integrating (2.2) over Q; gives

=) [ 19mtt = [ pe@0) =)+ ] o G k= 0pe + - e

By applying Young’s Inequality with € > 0 we arrive at

(k-2) //Q IVl < [ paore //Q Tp ) //Q Pkl o 9P IO, TR+

+O(E) k- 1) //Q e

where Q x [0,T] =: Qp is a compact set such that supp(py) C Qp for all £ > 1 and |A| is the
Lebesgue measure of A € R%*!. Choose £ > 0 so small such that ellprll oo (@ VAo < 3 for
all k, we arrive at

2
[ wnk <25 [ om0+ cigrnel
Q- =5 Jpa

So for k > 6, we have from Lemma 3.1 that

2C
(5.26) // ‘kaP < P + C|1Qr N Q+|,
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where |A| is the Lebesgue measure of A C R4*!. Note that this constant C' is independent of
both 7 and k.

Now if ¢ > 0 is given, there exists a K’ sufficiently large with 7 sufficiently small and

Vpeo € L?(Qr) such that
I 1+ 19 < 2
Qr

for all k > K’ thanks to (5.26). Now by making K’ even larger if necessary, Lemma 5.5 shows us
that fo - VDK — Vpoo|? < €'/2 for all k > K'. So now from the triangle inequality, we obtain

// IVpr — Vpoo? < €'
T

for k > K'. O

Now we have enough compactness to show that p., is a weak solution to the pressure equation
in (1.4). Indeed, this follows from similar arguments as in [22] Lemma 2.5 that showed when
m = 1 the complimentary relationship is equivalent to L?(Qr) convergence of Vpi. Or we could
proceed as in [7] and take the limit of the weak form of the pressure equation (2.2) to conclude
the proof of Theorem 2.2.

6. VELOCITY LAaw

6.1. Velocity Law. Now we aim to characterize the movement of {p,(t) > 0}. We will show
the velocity law (1.5) in the viscosity sense. Our arguments and definitions on the velocity law
and classical barriers closely follow the ones in [12].

Definition 6.1 (Classical Super-Solutions). Let B be any space ball in R? and 0 < t; <ty < 0o
and ¢ € C.(B x [t1,t2]) be non-negative. We also assume that ¢ € C*({¢ > 0}) and that
0{¢ > 0} is C? in space and C' in time. Then we choose a p¥ € CV1({¢ = 0}) such that

0" =V - (") + fp” in {¢ = 0}
with p¥ <m on {¢ = 0}. And we also assume that
{—V-(mV¢) > V- (mb) —my +mf in {¢ > 0}

(6.1) (m — PPV, > [_mw — B(m — pE)} -7 on 9{¢ > 0}

where Vi is the normal velocity of 0{¢(t) > 0} and U is the outward normal of 0{¢(t) > 0}.
Then we define

p = mx{¢>0y + pEX{qs:o}-

Then the pair (p, @) is called a classical super-solution.

Lemma 6.1. If the pair (p,¢) is a classical super-solution, then they are also a weak super-
solution of the limiting density equation (1.4) in B X (t1,ts) with initial data py == p(t =t1). In
particular, for all p € C°(B X [t1,t2)) that is non-negative we have

// —pip+ V- (mVe) > // wfp— V- (pb) + / ot =ti)m
BX[tl,tg] BX[tl,tg} B

Proof. The proof is essentially identical to the proof of Proposition 7.1 in [12], so we omit the
details. ]

And analogously, we have the following definition for classical sub-solutions.
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Definition 6.2 (Classical Sub-Solutions). Let B be any space ball and R? and 0 < t; <t < oo
and ¢ € C.(B x [t1,t2]) be non-negative. We also assume that ¢ € C?*({¢ > 0}) and that
o{¢ > 0} is C? in space and C' in time. Then we choose a p¥ € CV1({¢ = 0}) such that

0" < V- (") + fp” in {¢ = 0}
and p¥ <m on {¢ = 0}. And we also assume that

{—V-(mV¢) < V- (mb) —my +mf in {¢ > 0}

(6.2) (m = pP)Vy < |[=mV —b(m — pP)| - 7 on 0{$ > 0}

where Vi is the normal velocity of 0{¢(t) > 0} and U is the outward normal of 0{¢(t) > 0}.
Now if we define

pi=mX{g>0} + P X {90},

then the pair (o, ) is called a classical sub-solution.

Similarly we have the following relation between classical sub-solutions and weak sub-solutions
of the limiting density equation (1.4).

Lemma 6.2. If the pair (p,¢) is a classical sub-solution, then they are a weak sub-solution of
the limiting equation (1.4) in B X (t1,t2) with initial data py := p(t = t1). In particular, for all
p € C°(B X [t1,t2)) that is non-negative we have

// —ptp+ V- (mVe) < // wfp— V- (pb) + / et =t1)p
BX[tl,tQ] BX[tl,tQ} B

Recall that the limiting pair (900, Poo) is a weak solution to (1.4) in the sub-domain B X (t1,t2)
with the initial density condition g (t = t1) and pressure boundary conditions po, on B X [t1, t2].
So we deduce from the weak density comparison principle Lemma 4.4 for the limiting density
equation that we have

Proposition 6.3. Let the pair (p, ) be a classical super solution in B X (t1,ts), then if

(1) 0oo(t =t1) < p(t =1t1) on B
(2) poo <@ on OB x [ty,t3] ,

then we have that ooo < p on B X [t1,t2].

So in the sense of comparison with barriers (or viscosity sense) we have that
(m — 0"V, > [—quﬁ —b(m — 0")| - 7 on {pes > 0}.
Analogously, we have the following proposition:

Proposition 6.4. Let the pair (p, ) be a classical sub-solution on B x (t1,t2), then if

(1) 0oo(t =t1) > p(t =1t1) on B
(2) Poo = & on OB X [t1,tq] ,

then we have that 0oo > p on B X [t1,t2].
So in the sense of comparison with barriers (or viscosity sense) we have that
(m — ")V, < |-mVe¢— b(m — QE)] -V on 0{ps > 0}

Hence, we have derived the velocity law in the viscosity sense. That is we have proven
Theorem 2.3.
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7. CONGESTION CASE

In this section we focus on the congestion case. That is we assume throughout this section
that (1.6) holds. So now if  is a compact subset of R? such that py is uniformly supported in
Q x [0, 7] then there exists by continuity an € > 0 such that

(7.1) mi+e<mf+V-(mb)inQx[0,T].

First we recall the definition of the streamlines. Since the external density solves a transport
equation, the natural coordinates are the streamlines (or characteristics). For any xo € R?, we
let the streamline X (-, zg) be the unique solution to

X (t,20) = —b(X(t,20)) for t € R
X(O, xo) =20

As b is Lipschitz, we know that there is a unique solution for all time and is continuously differ-
entiable in time. This uniqueness actually implies that for any ¢y € R that X (¢, z) : RY — R?
is invertible and its inverse is given by X (—tg,x) (see [15]).

We will show that {poo(t) > 0} := X(¢) is non-decreasing with respect to the streamlines.
That is if x € ¥(t), then X (s, X(—t,z)) € X(s) for all s > t (the streamline containing = at time
t is in X(s) for all s > t). This will follow from deriving a uniform positive retention principle
for py, along streamlines through a refined Aronson-Bénilan estimate. We refine the barrier used
in Section 3.3.

To derive such an Aronson-Bénilan estimate, we first drop the subscript k& and recall that

w:= +V . (mVp). Then we define the elliptic operator for sufficiently large C' > 0

LB := —C—C|Vp|*+2V¢-Vp+V-b+(k—1)(¢(¢p+F)+(Vo+VF)-(pVA+2Vp)+p(Ap+AF)).
Then when C' is large enough, by using (3.6), (3.7), (3.8) with a similar computation as in
Section 3.7 we see that dyw > Llw].

Now 7 > 0 and for a, 8 > 0 we define our barrier

ap—pf 1
t;T) = —F — .
Ve tim) LI R T g
We note that our constants C' and C in estimating 9y and L[] are also independent of o and
B. Plugging in ¢ into £ along with Young’s Inequality on the 2V - Vp term implies there exists
a large enough constant C' > C such that

- - 2 o
L) > ~C = C|Vp* + k%‘lwpﬁ + %Vp -b+ apw + 20| Vp|? + (k = 1)[* + ¢F].

Then from using (2.2)

8t¢ S é+ %|Vp|2 + %(VP 5) +apw —|—O&pF+

1
k k (k—1)(t—1)%

This implies that

« 1

— =2 Fhr— (k= 1)[? F].
po1 2Pt gy~ (- Dl vF]

So we first we choose 8 > 2asupy~q [|pk|| (@), S0 that ap— 3 < 0. This combined with F' > 0
gives

(7.2) Opp — L[Y] < 2C +|Vp[*(C —

)’ + - -z

F? S F ap—p
(k—1)2(t—71)2 4

F
(7.3) W +9F) =@ +35) - 2 (-5 + 57—
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fap—=B\  _(aw—B) 1
74 _< >_F k=1 k-2t —1)2

So using (7.3) and (7.4) in (7.2)

- - _B)2
Ot — L[] < 20 + [Vp(C — % — 20) + F2ap - ) - LI
Now because 2ap — 5 < 0 due to our choice of 5 and F > ¢ > 0 inside Q x [0, 7] we have that
~ ~ a2
Ot — L[] < 20+ [VpP(C — -0~ 20) +=(20p - 8) - L 0oy

Now we let o = C/2 and 8 = 2asupy |[Pk| Lo (@r) + 2C /e, then we see that
Oy — L[Y] <01in Q x [0, 7.

That is 1 is a sub-solution of a parabolic equation where w is a super solution of in £ x [0, 7.
And recalling that p is compactly supported inside € x [0,T] gives us w = 0 on 9Q x [0,T].
Also we have ¥ < 0 on 99 x [0,7T], so now as lim,_,04 ¢(z,0;7) = —o0, we deduce from the
comparison principle that

B 1

%V-(mVp) = w(z,t) 29(@,60) 2 —F =7 = =

Hence, we have shown

Lemma 7.1 (Refined Aronson-Bénilan Estimate). Assume we are in the congestion case (1.6)
with Assumptions 1, 2, and 3, then we have the following refined semi-convexity estimate for all
E>1

8 1
k—1 (k—1)t

for some constant B > 0 independent of k in the sense of distributions.

(7.5) LY (mVpe) > ~F -

This Aronson-Bénilan Estimate implies the following estimates by using (7.5) in (2.2)

Corollary 7.2. Assume we are in the congestion case (1.6) with Assumptions 1, 2, and 3, then
for all k > 1 we have for some constant 8 > 0 independent of k that

X)) = = (54 1) mlX(t.a0).0
and
L (X (20).0) >~ (/3 . %) o(X(t,20), 1)

in the sense of distributions.
The normalized density estimate implies the following monotonicity property:

Lemma 7.3. The limiting normalized density Voo := 000/ 1S non-decreasing along streamlines
fort > 0.

Note that as the streamlines X are a lipschitz bijection of )7, X maps sets of full measure
to sets of full measure. This along with the pressure estimate in Corollary 7.2 combined with
Gronwall’s Inequality gives us:

Lemma 7.4 (Retention Along Streamlines For Positive Time). Assume that Assumptions 1, 2,
and 3 are met, then we have the following estimate for all k > 1 and 7 > 0

Pe(X(t,0),8) 2 pr(X (7, 20), ) exp[~(5 + 1)t — 7)]
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for some constant > 0 independent of k for a.e. (xo,t),(xo,7) € Qr such that t > 7. This
implies that for a.e. (xg,t) and (zg,7) € Qr such that t > T that we have the estimate

Poel(X(t,20), 1) > pool X (7, 20), 7) expl (5 + 2t~ 7)].

This implies that for a.e. (x,t) € Qr with t > 0 that X(t) is non-decreasing with respect to
streamlines.

To obtain the retention property down to t = 0, we use the classical sub-solution |II|; =
max(II,0), as described in Section (8), to the pressure equation for all £ > 1. This barrier was
inspired by the one in [15].

Lemma 7.5 (Retention Property Along Streamlines For ¢t = 0). Assume that pg(x,0) —
Poo(x,0) uniformly such that 3(0) is open, we are in the congestion case (1.6), and Assumptions
1, 2, and 3. Then if poo(x,0) > 0 we have that ps(X (t,x),t) > 0 for a.e. (x,t) € Qr. That is
for a.e. (x,t) € Qr that X(t,X(0)) C X(¢).

Proof. Let x¢p € ¥(0), then there is an r; > 0 such that B, (zg) C ¥(0). By choosing v and
r sufficiently small in the barrier |II|4 constructed in Lemma 8.4, we can assume that for all &
sufficiently large that

Hence, by the comparison principle, we conclude that for all large k that

|4 (z,t) < pr(z,t) = |4 (2,t) < poo(z,t) for ae. (z,t) € Qr.
But notice [TI(X (t,20),t)|+ = 72 > 0 = poo(X(t,20),t) > 7? > 0 for a.e. (x9,t) € Q7. That is
we have X (¢,3(0)) C X(¢t) for a.e. (x,t) € Qp. O

By combining these two lemmas, we have that

Theorem 7.6 (X(t) Increases Along Streamlines). Assume that pg(x,0) = peo(x,0) uniformly
such that ¥(0) is open, we are in the congestion case (1.6), and Assumptions 1, 2, and 3 are met.
Then X(t) = {pso(t) > 0} is non-decreasing with respect to streamlines for a.e. (z,t) € Qr.

Now we can prove Theorem 2.4.

Proof. As {peo(x,t) > 0} C {00c(x,t) = m(z,t)}, it suffices to show if (zg,tp) € Int({poo(x,t) =
0}) then guo(z,t) = oF(x,t). So let (zo,tp) € Int({poo(z,t) = 0}), then by Lemma 7.6, we
conclude that X (¢, X (—to,z0)) ¢ X(t) for 0 < t < to (the streamline containing (xo, tp) is not in
Y.(t) for previous time). Combining this with o, weakly solving

-,

825@00 =V (Qoob) + fQoo in Int({poo(x’t) = 0})

we conclude that g, (xo,t) = o (x0, tg). O

This shows Theorem 2.4. Note that Theorem 2.4 implies that patch solutions stay patch
solutions for all times for congestion.

8. APPENDIX: BARRIER

In this section we will construct some barriers for (2.2) that we used throughout the article.
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8.1. Super Solutions For Radial m or d = 1. We first construct a super solution to the
pressure equation (2.2) for all £ > 1 when m is radial or we are in one spatial dimension.

Lemma 8.1. Assume that either m is radial (m(x,t) = m(r,t) where r = |z|), or we are working
in one spatial dimension (d =1). Then if Assumption 1 is met , then the radial function

1 T 74/
t) = — ——dr’
A d/o m(,8) "
solves
1
(8.1) —V - (mVy) = Lin R4
such that there exists C1,Cy, C3 > 0 with C17? < |p(r,t)| < Cor? and |Ve(r,t)| < Cslr|.

With the above ¢ we can construct a viscosity super solution to the pressure equation (2.2)
for all kK > 1 when d =1 or m is radial.

Definition 8.1 (Viscosity Super-Solutions). We say that ¢ is a viscosity super solution to (2.2)
if for all ¢ € C°(R?) that touch 1 from below at (xg,ty) then

(8.2) O > Vo> + V- b+ (k- 1)¢(%V - (mV¢) + F) at the point (zo,1o).

Lemma 8.2 (Viscosity Super Solutions To The Pressure Equation for Radial m or in 1D).
Assume that m is radial or we are in one spatial dimension with Assumption 1 met. Then let
o(z,t) be as in Lemma 8.1. Now if we fiz a v > 1 then there exists a large a« > 0 and a smooth
increasing R(t) with R(0) = v such that

Z(.%',t) = (X‘R(t) - gO(l',t)‘+
is viscosity super solution to (2.2) for all k > 1.

Proof. We note that in this lemma, it is important to keep track of the constants that are not
a. Let us denote U(t) := {x : Z(z,t) > 0}. We first show that Z is a classical super solution of
(2.2) in {Z > 0}. First thanks to Lemma 8.1, we have that

%V -(mVZ)=—a/min U(t).
This implies if « is sufficiently large that
%V -(mVZ)+ F<0inU(t) Vt>D0.
So by (2.2), it suffices to check that

Z > a*|Vy|> —a(Ve-b) in U(t)

to show that Z is a classical super solution in {Z > 0}. Now by Young’s Inequality with
M := ||b]||%, /2, it suffices to show that

3
(8.3) oz > a2§\V<p\2 + M in U(t).
Now we compute bounds on dyp and [Vip|?>. By Lemma 8.1 we have that |V(r, t)[* < C3r?
with C1r? < |p(r, t)], so by choosing K, := C1C3, we have
(8.4) IVel? < Kylgl.
Now to bound 0;p, we observe from Lemma (8.1) that
1 [" myr!

8tg0(r,t) = _E 0 m2

dr’,
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so we have the bound
(8.5) |Orp(r )| < Cyr’ < M, o(r,t)
for some Cy, M, > 0.

Now by (8.4) and (8.5) to show (8.3) it suffices to choose an R such that
3
O R > (§a2K¢ + My)R(t) + M.
In particular, we can choose
3
R(t) = (v + M) exp((§a2K¢ + My)t) — M,

which satisfies all the desired conditions. Thus, Z is a classical super solution inside {Z > 0}.

Because 0 is a solution of the pressure equation (2.2) and Z is a classical super solution in
U(t), it suffices to show the viscosity touching condition (8.2) on d{Z > 0} to conclude Z is a
viscosity super solution.

Let ¢ be a smooth test function that touches Z from below at (zg,tp) € 0{Z > 0}. We may
assume that we have |V(xg,t9)| # 0 as then (8.2) would be trivial because 9,¢(xg,ty) > 0.
Indeed, observe

Z(zo,to + h) — Z(xg,tp) > (ﬁ(.%’o, to + h) — (ﬁ(.%’o, to),
which implies 0y¢(zo,t9) > 0.

So now assume that ¢ touches Z from below at (xg,tg) € 9{Z > 0} such that |V¢(zo, )| > 0.
First observe from (8.3) that by undoing our Young’s Inequality that

(8.6) 0Z > |VZ? + (VZ)||bl|s in {Z > 0}.
Now let V, and V7 denote the normal velocity of the free boundary of d{x : ¢(x,t) > 0} and
O{x : Z(x,t) > 0} respectively at (zg,tp) then from (8.6)
9 d(wo, to)
[Vé(xo, to)]
Note that VZ(zo,to) refers to the limit of the VZ(z,t) from inside {Z > 0} to the point (zg, %)

and is non-zero because |Vo(zo,t0)| < |VZ(zo,10)| because ¢ is touching Z from below. Then
this implies

=V > Vz > [VZ(x0, t0)| + ||b]|oo-

A (o, to) > [V (o, to)|* + Vib(xo, to) - blo, to),

which allows us to conclude that Z is a viscosity super solution. O

Remark 8.2. Assume that we can construct a u such that V - (mVu) > 1 where Cy|z|? <
u(z,t) < Colz|? and |Vu(z,t)| < Clz| with |Opu(z,t)| < Clz|> + C. Then the proof of Lemma
(8.2) implies that we can construct a viscosity super solution of (2.2) for all k > 1 that is
uniformly compact support in Qr.

8.2. Super Solutions When Vm Decays Fast Enough At oco. Now we use this for the case
of [Vm(z,t)| <e/|x| for |z| > R/2 to construct a positive sub-solution of the uniformly elliptic
operator V - (m(z,t)Vu) in R%. We first consider the unique solution of

{v (m(a,)V[o(x, 1)) = 1 in Br(0) x 0,7

(8.7) é(x,t) =1 on OBR(0)

Now we use a priori estimates to show that we may assume that ¢(x,t) > 0 in Bg(0) x [0,T].
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By standard a priori estimates for uniformly elliptic PDEs (see [13, 11]), we have that there
is a constant C' = C(m, Vm, R, d) such that

sup ¢z, )] < C.
(2,)€BR(0)x[0,T]

So we may assume that ¢(x,t) > 0 on Br(0)x [0, T] since otherwise we may consider ¢(x,t)+2C,
which solves the same PDE with constant boundary data.

Next we will obtain regularity of ¢ in time. First by global Schauder estimates (see [11]),
there is a C' = C'(m, Vm, R, d) such that
(8.8)

sup [Pz, )| + SUP Z |0z, 0(, )| sup Z 02,2, 6(x,1)] < C.
x[0.1] =

(z,t)€BR(0)x[0,T] (z,t)€BR(0 (m,t)eBR 1=

Hence, by differentiating (8.7) in time, we have that
¢¢(x,t) = 0 on IBR(0)
The first term, V - (m;V¢) is smooth in space and bounded in Br(0) x [0, T], so by treating this

as a known term, we can conclude again by standard a priori arguments for uniformly elliptic
PDE that there is a C' = C(m, Vm, R, d) such that

| (2, )] < C.
Observe that for |z| > R by Cauchy-Schwarz we have that
V- [mV(|jz]*)] = 2dm + 2Vm - T > 2d5 — 2e > 6.

Note that we used m(x,t) > 6 > 0, |[Vm(z,t)| < ¢/|z| for |x| > R/2, and assumed ¢ = £(9)
is sufficiently small. From (8.8), we can choose a C' > 1/§ so large such that for w(z) :=
1+ C(|]z]* — R?) and if z € 9Br(0), we have that the normal derivatives are ordered:
ow foler
ar @) > 3 @)
which implies
¢(z,t) for || <R
o(z,t) ==
w(x) for |z| > R
is a viscosity solution of V - (mVu) > 1 (since the maximum of two viscosity sub-solutions is

a viscosity sub-solution [6] and ¢ cannot be touched from above on 0Br(0)). Also notice that
Oy = 0 for |z| > R, and |0yp| = |0r¢| < C in Br(0), so dyp is bounded.

Now note that ¢ satisfies all the requirements of Remark 8.2, so we conclude

Lemma 8.3 (Super Solutions To The Pressure Equation when Vm decays fast enough at o).
Assume that Assumption 1 is met and there is an R > 0 such that |Vm(x,t)| < e/|z| for
|z| > R/2 and ¢ = €(0) sufficiently small and non-negative. Then for any v > 1 we have that
there is an R with exponential growth such that R(0) =~ with ;R > 0 and

Z(w,t) := a|R(t) — o(z, )|+

is a viscosity super solution to the pressure equation (2.2) when o > 0 is sufficiently large and
k> 1. And Z is bounded in L*°(Qr) and is compactly supported for any fized time.
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8.3. Subsolutions For Congestion Case. Now we construct a barrier for the pressure equa-
tion when we are in the congestion case (1.6). By a similar argument as in [15] Lemma A.4 we
have the following:

Lemma 8.4. Let g € R, L be the Lipschitz Constant ofg, and for sufficiently small 0 < v < 7,
then define

(xz,t) := 42 — r?e?P e — X (t, z0)?
Then if we are in the congestion case (1.6) and we have Assumption 1 then II(z,t) is a classical
sub-solution of the pressure equation (2.2) on the set {Il >0} N{0 <t < T} for all k > 1.

Lemma 8.5. Let II be as in Lemma 8.4. Then |II|1 := max{II,0} is a viscosity sub-solution to
the pressure equation for all k > 1.

Proof. This follows from an analogous proof in Lemma 8.2 using the normal velocity of d{x :

I(z,t) > 0}. 0

9. APPENDIX: WEAK SOLUTIONS OF MPME

In this appendix, we will sketch the proofs of properties of weak solutions to (1.1).

Note that (1.1) is a parabolic equation that degenerates on the zero level set, so we still expect
a comparison principle to hold for weak sub and super solutions. We sketch the proof below,
which is based on the proof in [19].

Theorem 9.1 (Comparison Principle for mPME). Let w and u respectively be a weak super and
sub solution of (1.1) with initial datas Wy and wg respectively. Assume further that uy > uy
almost everywhere, then we have w > u almost everywhere.

Proof. The proof is based on a Hilbert duality argument. Let w := u — u, then we have for any
non-negative test function ¢ that

OS// w(atsoJrAV-(mVso)Jrfso—Vso-g),

=k k
where 0 < A := “—= with ¥ := u/m and v := u/m. Then if £ is a non-negative test function,
then we want to solve the following degenerate backwards parabolic PDE

{8tg0+AV-(ng0)+fg0—Vgp-l;:£inQT

(9.1 o, T) = 0

Note that solutions of (9.1) will be non-negative because 0 is a sub-solution of (9.1). Then if we
could solve (9.1), then we would have
// wé >0
T

for all non-negative test functions, which would imply w > 0 almost everywhere.

To solve (9.1), we have to approximate A by a smooth approximation A, where e < A4, < 1
with € > 0. One can then solve (9.1) with A replaced by A. by using uniform parabolic theory
Then by following similar arguments as in [19] Theorem 3.4, one sees that as ¢ — 0 we obtain

that foT wé > 0. U

Our comparison principle immediately implies that we have uniqueness of weak solutions of
(1.1). So we now focus on existence.
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Our existence proof is based on the methods in [24]. We first fix a large spatial domain )
and construct weak solutions on a bounded domain. We let Q7 := Q x (0,7"), then we want to
construct a solution to

ok =V - (0c(Vpr + b)) + for in Qr
(9.2) 0k(7,0) = 0Y(z) in Q ,
or(z,t) =0 on 00 x [0,T]

where the initial data o (z) is compactly supported inside Q.

Definition 9.1 (Weak Solutions to mPME on Q7). We say that g is a weak solution to (9.2)
with initial data 0} € L>(Y) that is compactly supported in Q if o, € L*(Qr) and vy == g/m
satisfies vf € HE(Qr) such that for all test functions p € C2°(Q x [0, 00))

o) kg = [ ew.0die) + [ V- ek - 0V ) + foon

To construct a weak solution, we solve the following approximate solution. For n € N, we
consider the approximate problem

oy = V- (o (Vp” + ) + foi” in O
(94) 490,00 = o) + 222 i
le)(x,t) =m(x,t)/n on 9 x [0,T]
We can compare g,(:) to the sub-solution dm(x,t)exp(—at) for small enough § > 0 and large

enough a > 0, to conclude gén) > &n, > 0. Then this implies gén) solves a uniformly parabolic

PDE, so by following the arguments in [24] Chapter 3, we know that Q]E:n) is a smooth and is a

classical solution to (9.2).

Now from the comparison principle, we have that Q]gn) > Q]gn+1), so there exists a limit

o = limy_ s g,(gn). By the monotone convergence theorem, we have that g,(:) — gk in Lp (QT)

for p € [1,00). So from the weak formulation of (9.2), it suffices to show that if v = Qk /m
then (v,(cn))k — ok in HY(Qr) where vy := gr/m. In particular, it suffices to show that

HV(U,(Cn))kH 2@ < C where C is independent of n. To simplify our notations, let us write

Gn = (v,gn))k and wu, = Q](Cn). Then we can multiply (1.1) by (g, — n—lk) which is 0 on 99 to

see by integration that [|Vgyu||r2(q,) < C. This concludes the existence of weak solutions of (9.2).

Notice in particular, that this shows we can approximate our weak solutions of (9.2) with pos-
itive smooth solutions of (9.2). Then by using our smooth approximations we have a comparison
principle for viscosity super solutions and our weak solutions on 2. Now to go from Qp to
@1, we use our barriers constructed in Section 8. These barriers show that if we choose €2 suffi-
ciently large, then our weak solution of (9.3) will be compactly supported inside 2. Then we can
extend our weak solution by defining to be zero outside of €, which gives a weak solution of (1.1).
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