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A HELE-SHAW LIMIT WITH A VARIABLE UPPER BOUND AND DRIFT

RAYMOND CHU

Abstract. We investigate a generalized Hele-Shaw equation with a source and drift terms
where the density is constrained by an upper-bound density constraint that varies in space
and time. By using a generalized porous medium equation approximation, we are able to
construct a weak solution to the generalized Hele-Shaw equations under mild assumptions.
Then we establish uniqueness of weak solutions to the generalized Hele-Shaw equations. Our
next main result is a pointwise characterization of the density variable in the generalized Hele-
Shaw equations when the system is in the congestion case. To obtain such a characterization
for the congestion case, we derive a new uniform lower bounds on the time derivative pressure
of the generalized porous medium equation via a refined Aronson-Bénilan estimate that implies
monotonicity properties of the density and pressure.

1. Introduction

We consider solutions ̺k for k > 1 of the modified Porous Medium Equation (mPME)

(1.1) ∂t̺k = ∇ · (̺k(∇pk +~b)) + f̺k in QT := R
d × (0, T ),

where the pressure pk := k
k−1

(̺k
m

)k−1
. In this equation m,~b, and f are given smooth functions

(see Section 2 for the exact assumptions on these functions), while the unknown is the density
̺k. Here k > 1 is a constant that reduces congestion by having strong diffusion when the density
is larger than the constraint m. We can also rewrite this equation as

(1.2) ∂t̺k = ∇ · (m∇vkk + ̺k~b) + f̺k in QT

because ̺k∇pk = m∇vkk where vk := ̺k/m is the normalized density. For the special case
of m being a constant, this equation reduces to the Porous Medium Equation (PME) with a

given drift −~b and source term f . This anti-congestion effect has led to the PME being used to
model many physical phenomena such as population dynamics [3, 4, 25] and density based tumor
growth [22, 8]. Due to the physical importance of the pressure, we obtain from the constitutive

law pk = k
k−1

(̺k
m

)k−1
that

(1.3) ∂tpk = |∇pk|2 +∇pk ·~b+ (k − 1)pk

[

1

m
∇ · (m∇pk) +

∇ · (m~b) +mf − ∂tm

m

]

.

We are interested in the Hele-Shaw limit of (1.1) and (1.3), that is the limit as k → ∞.
Formally if we let (̺∞, p∞) denote the limit of (̺k, pk), then we have the following free boundary
problem

(1.4)







∂t̺∞ = ∇ · (m∇p∞ + ̺∞~b) + f̺∞ in QT

∇ · (m∇p∞) +∇ · (m~b) +mf − ∂tm = 0 on {p∞ > 0}
̺∞(x, t) ≤ m(x, t) in QT

p∞(m− ̺∞) = 0 in QT

.

The case of m being a constant is well studied and in this case (1.4) is known as the Hele-
Shaw equations. The Hele-Shaw equations are used to model physical phenomena with a density
constraint such as congested crowd motion [20] and tumor growth [22, 8]. In the tumor growth
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Figure 1. Numerical Simulations of the mPME (1.1) with f = ~b = 0. In this
figure, we have k = 40 and m(x, t) = exp(−t/6 − x2/10), which corresponds to
the case of congestion, and we see the solution ̺40 becomes saturated on m.

models, m represents the maximum packaging density of cells [23], while for the congested crowd
motion models, m represents the maximum pedestrian population. By allowing m to vary in
space and time, instead of being a constant, it allows these models to account for spatial and
time changes to the maximum population or packaging density of cells.

By combining the techniques in the papers [22, 12, 8], we were able to take the Hele-Shaw

limit in L1(QT ) of (1.1) and (1.3) under mild assumption of m = m(x, t), ~b, f , and the initial
data. In addition, by using methods from [22], we were able to derive that the limiting density
and pressure are the unique weak solutions to (1.4). Then by using the arguments in [12], we
derive the normal velocity law for ∂Σ(t) where Σ(t) = {x : p∞(x, t) > 0} in the viscosity sense.
The velocity law V is given by

(1.5) V =

[

− m∇p∞
(m− ̺E)

−~b
]

· ~ν,

where ~ν is the outward normal of ∂Σ(t) and ̺E is the external density (the limit of ̺∞ from
outside Σ(t)). The velocity law (1.5) shows that a typical feature of the ∂Σ(t) is that it can
have infinite normal velocity.

Then we focus on the case of when

(1.6) mt < mf +∇ · (m~b) in QT ,

which we call the congestion case. This assumption has been used when m is a constant in
[15] and corresponds to when m grows strictly slower than the external density. In the con-
gestion case, we were able to derive an explicit pointwise formula for the limiting density up
to ∂Σ(t) that is consistent with the identification in [15] when m is constant. This identifi-
cation formula implies that when we are the congestion case, if the initial density is a patch,
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then it is as a patch for all time (that is if ̺∞(x, 0) = m(x, 0)χA(0), then ̺∞(x, t) = m(x, t)χA(t)).

We were able to explicitly identify the limiting density by deriving a novel uniform Aronson-
Bénilan estimate in the congestion case. This estimate appears to be new even for the case of

m being constant with non-zero ~b. An important consquence of the estimate is that it leads to
a uniform time derivative estimate of the pressure pk along the streamlines for all k > 1 is large

(1.7)
d

dt
pk(X(t, x0), t) ≥ −

(

C +
1

t

)

pk(X(t, x0), t),

where the constant C > 0 is independent of k. For each x0 ∈ R
d, the streamline X(t, x0) is

defined as the (unique) solution of

(1.8)

{
d
dtX(t, x0) = −~b(X(t, x0), t) in (0,∞)

X(0, x0) = x0
.

Note in the special case of ~b ≡ 0 that the streamlines reduce to the identity map.

We use (1.7) to show that the normalized density v∞ := ̺∞/m is non-decreasing with respect
to the streamlines. This means that if t1 < t2, then v∞(X(t1, x0), t1) ≤ v∞(X(t2, x0), t2). This
estimate also implies the geometric property that Σ(t) is non-decreasing with respect to the
streamlines. That is if x0 ∈ Σ(t), then the streamline containing the point (x0, t) is in Σ(s)
for all s ≥ t. The last monotonicity property is enough to allow us to characterize the limiting
density up to ∂Σ(t) pointwise.

Similar uniform time derivative estimates of the pressure are only known in the literature

when m is constant in the congestion case with ~b = 0 or m is constant with f = ~b = 0. Uniform
lower bounds on ∂tpk similar to (1.7) played an essential role in taking the Hele-Shaw limit for
weak solutions with no drift in the congestion case [5, 2, 9, 10, 22, 14].

The congestion assumption (1.6) is essentially necessary to have estimate such as (1.7). In-
deed, the the congestion assumption is formally equivalent to having p∞ satisfy ∇· (m∇p∞) < 0
inside Σ(t) for all t ≥ 0. If instead there was some time t0 such that ∇ · (m∇p∞)(·, t0) ≥ 0
in Σ(t0) where Σ(t0) open, connected, and smooth, then the maximum principle for uniformly
elliptic operators implies that p∞ ≡ 0. That is the set Σ(t) instantaneously collapsed at time t0.
However, if the time derivative estimate (1.7) was true for this case, then the estimate implies
for positive time that Σ(t) is non-decreasing with respect to the streamlines, which is a contra-
diction. So uniform time derivative estimate such as (1.7) can not hold in general when there is

a t0 > 0 such that [∂tm−mf −∇ · (m~b)](·, t0) = ∇ · (m∇p∞))(·, t0) ≥ 0 on Σ(t0).

We also mention that it is necessary to use some form of weak theory (viscosity solutions, gra-
dient flow in Wasserstein space, or weak solutions) to understand (1.4). It is well known even for
m being a constant that if we start with smooth data, the pressure can become discontinuous in
finite time due to topological changes (see [18, 22] for examples of how the pressure can become
discontinuous in finite time). In the recent paper [16], the authors produced some regularity re-
sults of ∂Σ(t) for constant m under the congestion assumption for continuous viscosity solutions.

Now we review the literature on similar Hele-Shaw limits. These Hele-Shaw limits are well
studied when m is a constant and until recently, these limits were only investigated when the

system is under congestion with m constant or when f = ~b = 0 with m(x, t) either being con-

stant or 1/t. The weak limit of (1.1) when m ≡ 1, f = 0, and ~b = 0 was studied in [5] and was
again studied in [2] with more general initial data. This investigation was continued in [9] and
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[10] when the equations (1.1) were posed on a domain Ω× (0,∞) with general initial data and
pressure boundary data. In [10] the authors considered the case of m(t) = 1/t of (1.4) in their
analysis. Then in [18], the author showed uniqueness and existence of (1.4) when m is constant

with f and ~b = 0 for viscosity solutions. In addition, in [22] and [14] the authors dealt with the

Hele-Shaw limits with the condition of f > 0, ~b = 0, and m ≡ 1 in a weak and viscosity sense

respectively. In [1] the authors were able to incorporate a non-zero drift when ~b(x, t) = ∇Φ(x)
such that ∆Φ > 0 with f = 0 and m ≡ 1 into their analysis by using viscosity solutions and
gradient flows in Wasserstein space. Then in [15] the authors were able to deal with the case of

f +∇ ·~b > 0 by using viscosity solutions.

The above literature primarily focused on the case when m is constant with congestion or

f = ~b = 0. These assumptions were used when ~b = 0 to obtain similar time derivatives as the
one in (1.7) to obtain the weak limit. In [15], which dealt with m ≡ 1 when there is congestion
with drift, Σ(t) non-decreasing along streamlines played an essential part in their analysis. As
mentioned earlier, these estimates and monotonicity property of Σ(t) are no longer generally
true when there is a general source term and drift.

In [12], the authors were able to remove the monotonicity conditions when there is a source

term f with ~b = 0 in the exterior of a bounded smooth domain with pressure boundary data
and m is constant. In addition, the authors of [8] were also able to take the Hele-Shaw limit
with m constant without monotonicity conditions on their source and drift terms.

The authors of [26] investigated (1.1) and its Hele-Shaw limit using the theory of gradient
flow in Wasserstein space (see [21] for the gradient flow structure of the PME) when f = 0,
~b = 0, ∂tm(x, t) < 0 (congestion case), and m(x, t) is approximately linear. The approximately
linear constraint on m was used in [26] to ensure a well defined limit from their JKO approx-
imation scheme and was conjectured to be necessary to take the Hele-Shaw limit of (1.1) and
(1.3). In comparison, our assumptions are rather mild (see Section 2) and we do not need the
approximately linear condition of m(x, t) used in [26]. Our methods appear to be the first to be
able to take the Hele-Shaw limit for a wide range of m that varies in space and time.

2. Notation, Assumptions, and Summary of Results

Throughout this paper, we denote the pair (̺k, pk) as weak solutions of (1.1) and (1.3) re-

spectively with initial conditions ̺
(0)
k and p

(0)
k .

Definition 2.1 (Weak Solutions to mPME). We say that ̺k is a weak sub solution to (1.1)
with initial data ̺0k ∈ L2(Rd) if ̺k ∈ L2(QT ) and vk := ̺k/m satisfies vkk ∈ H1(QT ) such that

for all non-negative test functions ϕ ∈ C∞
c (Rd × [0,∞))

(2.1)

¨

QT

−̺k∂tϕ ≤
ˆ

Rd

ϕ(t = 0)̺0k(x) +

¨

QT

−m∇ϕ · ∇vkk − ̺k(∇ϕ ·~b) + fϕ̺k,

where QT := R
d × (0, T ).

Similarly, we say that ̺k is a weak super solution if the inequality in (2.1) is reversed. Then
we say that ̺k is a weak solution if it is both a weak sub and super solution to (1.1). Now if

we denote pk := k
k−1

(̺k
m

)k−1
, then we say that pk is a weak solution (respectively super/sub)

solution of (1.3) if ̺k is a weak (respectively super/sub) solution of (1.1).

We refer the reader to Section 9 where we discuss properties of weak solutions of (1.1) such as
existence, comparison principle, and smooth approximation. As standard in the PME literature
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[24], when we obtain a priori estimates, we treat ̺k as if it is smooth because we can instead
use our smooth approximations and take limits to obtain the estimate for our non-smooth ̺k.

To simplify our notation we let F := (∇ · (m~b) +mf − ∂tm)/m, then (1.3) simplifies to

(2.2) ∂tpk = |∇pk|2 +∇pk ·~b+ (k − 1)pk

(
1

m
∇ · (m∇pk) + F

)

.

We also let wk := 1
m∇ · (m∇pk) because this quantity frequently shows up in our calculation.

In addition, for many computations, it will be easier to work with the normalized density
vk := ̺k/m compared to the density ̺k. The normalized density solves

(2.3) ∂tvk =
1

m
∇ · (m∇vkk) +∇vk ·~b+ Fvk in QT .

We will refer to the first equation in (1.4) as the density equation and the second equation as
the pressure equation. And we will use the letter C to denote a constant that is independent of k

that may change from line to line. And we denote ~b = (b1, ..., bd)
T as the negative drift, f as the

source term, and m(x, t) as the hard constraint. In addition, because many computations will
involve derivatives of m being divided by m, we will use the notation λ := log(m) to simplify our
expressions. Also we will also denote for τ, t > 0 the sets Qt := R

d× (0, t) and Qτ,t := R
d× (τ, t)

and we fix a T > 0. Finally the operators ∇,∇·, and ∆ will only be taken in the space variables.

Now we list some assumptions that will be used throughout this paper.

Assumption 1 (Hard Constraint, Drift, and Source Term Assumptions). We assume that

m(x, t), ~b(x, t), and f(x, t) are in C∞(QT ) with bounded derivatives of all order such that there
is a δ > 0 with m(x, t) ≥ δ.

Remark 2.2. If m was allowed to go down to zero, the operator ∇ · (m∇p∞) in (1.4) would
become degenerate elliptic on the zero level set of m. But if a Hele-Shaw limit exists when m
is allowed to go down to zero, it seems that the zero level set of m will lead to an additional
obstacle problem for ̺∞ on ∂{x : m(x, t) > 0}.
Assumption 2 (Initial Density and Pressure). We will always assume that the initial density

̺
(0)
k (x) = ̺k(x, 0) ∈ W 1,1(Rd) is such that ̺0k ≥ 0 almost everywhere. Also we will assume that

there is a compact set K ⊂ R
d such that for all k > 1 we have

supp(̺
(0)
k ) ⊂ K

and

sup
k>1

||̺(0)k ||L∞(Rd) ≤ C , sup
k>1

||̺(0)k ||W 1,1(Rd) ≤ C , and sup
k>1

||p(0)k (x)||L∞(Rd) ≤ C.

Finally we assume there is a limiting density ̺
(0)
∞ (x) such that ̺

(0)
k → ̺

(0)
∞ in L1(Rd).

Remark 2.3. The purpose of the condition of ̺
(0)
k → ̺

(0)
∞ in L1(Rd) in Assumption 2 is to

specify the initial data for the density in (1.4).

Assumption 3 (Hard Constraint Restrictions). We assume that either m(x, t) = m(|x|, t) (m
is radial in space), d = 1 (one space dimension), or there is an R > 0 such that for ε = ε(δ) > 0
sufficiently small, we have that |∇m(x, t)| ≤ ε/|x| for |x| ≥ R .

Remark 2.4. The only purpose of Assumption 3 is to construct a super solution of the pressure
equation (2.2) to derive uniform L∞ and compact support bounds on the pressure.

With these assumptions, we have the following compactness theorem:
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Theorem 2.1. If Assumptions 1, 2, and 3 are met, then the sequence of pairs {(̺k, pk)}k>1

has a unique limit in L1(QT ) as k → ∞. Also the limiting densities and pressures are in
the regularity class (̺∞, p∞) ∈ L∞(0, T ;L1(Rd) ∩ L∞(Rd)) × L2(0, T ;H1(Rd) ∩ L∞(Rd)) with
compact support. Also the limiting density and pressure (̺∞, p∞) are a weak solution to the

density equation in (1.4) with initial data ̺
(0)
∞ .

Definition 2.5 (Weak Solutions of Hele-Shaw Density). We say that the pair (̺∞, p∞) is a

solution to the density equation with initial data ̺
(0)
∞ for (1.4) if for all test functions ϕ ∈ C∞

c (QT )
ˆ

Rd

ϕ(t = 0)̺(0)∞ +

¨

QT

−(∂tϕ)̺∞ =

¨

QT

−∇ϕ · (m∇p∞ + ̺∞~b) + ϕf̺∞

and ̺∞(x, t) ≤ m(x, t) with p∞(m− ̺∞) = 0 almost everywhere.

Remark 2.6. For our analysis, we need an extra assumption to be able to show p∞ is a weak
solution to the pressure equation in (1.4).

We will refer to showing that p∞ is a weak solution to the pressure equation in (1.4) as the
complimentary relationship.

Assumption 4 (Complimentary Relationship Condition). Assume there is a constant C > 0
independent of k such that

ˆ

Rd

|∇pk(x, 0)|2dx ≤ C.

As in [22] the complimentary relationship is equivalent to ∇pk → ∇p∞ in L2(QT ). So this
control of the ||∇pk(x, 0)||L2(Rd) seems rather natural. However, in [12] the authors obtained the
complimentary relationship without this assumption with no drift and m constant by obtaining
an obstacle problem formulation of the pressure. When drift is added into the system, it is not
clear if the obstacle problem formulation in [12] still holds.

Assumption 4 was also used in [8] to obtain the complimentary relationship with m constant
with source and drift terms. We will modify the proof in [8] to obtain the optimal L4(QT )
bounds on ∇pk (see [7] for an example of the optimality of the bounds), which will give us
enough compactness to obtain the complimentary relationship.

Theorem 2.2 (Complimentary Relationship). Assume that Assumptions 1, 2, 3, and 4 are met,
then for any ϕ ∈ C∞

c (QT ) we have that
¨

QT

−mp∞[∇ϕ · ∇p∞]−mϕ|∇p∞|2 + ϕp∞mF = 0.

That is the limiting pressure satisfies the complimentary relationship

p∞ [∇ · (m∇p∞) +mF ] = 0 in QT

in the sense of distributions.

Then with the existence and uniqueness of the generalized Hele-Shaw problem, we focus on
geometric properties of Σ(t) := {x : p∞(x, t) > 0}.
Theorem 2.3. The normal velocity V of the free-boundary ∂Σ(t) satisfies

V =

[

− m∇p∞
(m− ̺E)

−~b
]

· ~ν

in the sense of comparison with classical barriers where ̺E is the external density. The external
density is the limit of the density ̺∞ from outside the saturated region Σ(t). See Section 6.1 for
a definition of classical barriers.
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Then we focus on the case of congestion (1.6). This constraint is a generalization of the one
used in [15] used for m ≡ 1. And in this case, we can identify the limiting pressure up to ∂Σ(t)
when we have control of the initial limiting pressure:

Theorem 2.4 (Explicit Identification of ̺∞ in The Congestion Case). Assume that Assumptions
1, 2, and 3, are met such that pk(x, 0) → p∞(x, 0) uniformly such that Σ(0) is open and we are
in the congestion case (1.6). Then we have the pointwise formula

̺∞(x, t) =

{

̺E(x, t) for a.e. (x, t) ∈ Int({p(x, t) = 0})
m(x, t) for a.e. (x, t) ∈ {p(x, t) > 0} ,

where the external density ̺E(x, t) solves the continuity equation
{

∂t̺
E = ∇ · (̺E~b) + f̺E in QT

̺E(x, 0) = ̺∞(x, 0)
.

Remark 2.7. Note that this identification Theorem 2.4 is consistent with the one in [15], which
dealt with the case of m ≡ 1 using viscosity solutions.

We were able to obtain this identification by refining the new Aronson-Bénilan estimate for
the PME with drift found in [17]. We showed that under the congestion case for all k > 1 there
exists a C > 0 independent of k such that

1

m
∇ · (m∇pk) ≥ −F − C

k − 1
− 1

(k − 1)t
.

Now our Aronson-Bénilan estimate implies that we have the following uniform estimate of the
pressure pk along the streamlines X(t, x0) for all k > 1 for some C > 0 independent of k

d

dt
pk(X(t, x0), t) ≥ −(C +

1

t
)pk(X(t, x0), t).

In particular, we deduce that Σ(t) is non-decreasing with respect to streamlines for positive
time. That is if x ∈ Σ(t) for t > 0 then the streamline containing x is in Σ(s) for all T ≥ s ≥ t.
Then by using the uniform convergence of the initial limiting pressure and Σ(0) is open, we
can use the barrier constructed in Lemma 8.4 for the congestion case to conclude that Σ(t)
is non-decreasing with respect to the streamline for all 0 ≤ t ≤ T . This is enough for us to
conclude the identification of ̺∞.

2.1. Open Problems. Let us denote (̺∞, p∞) as the limiting density and pressure respectively.

◦ Obstacle Problem Formulation of the Pressure In [12] the authors derived an obstacle

problem formulation of p∞ when ~b ≡ 0 and m ≡ 1. However, when there is a non-zero

drift ~b, the proof used in [12] does not carry over.

◦ When m is allowed to go to zero When m is allowed to reach zero, the limiting PDE
(1.4) seems to be modified into a new obstacle problem that includes the zero level set
of m.

2.2. Acknowledgements. The author was partially supported by NSF grant DMS-1900804
and the Summer Mentored Research Fellowship at the University of California, Los Angeles
during this project. The author is also very grateful to his advisor Inwon Kim for suggesting
this project, for her guidance and mentorship throughout this project, and for reading the
manuscript. The author is also very grateful to the two anonymous referees for their very
detailed comments.
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3. Existence of the Hele-Shaw Limit

3.1. L∞(QT ) Bounds and Finite Speed of Propagation. We will derive enough estimates
to be able to pass the limit in (1.1) and (2.2) to (1.4) as k → ∞ in the weak sense. Our first
estimate will be used to obtain L∞(QT ) and control the support of the pressure pk.

First notice as pk(x, 0) ≥ 0 and 0 is a solution to the pressure equation, we may apply the
comparison principle to deduce that pk(x, t) ≥ 0 almost everywhere. Now we will show the
following bounds:

Lemma 3.1 (L∞(QT ) Bounds and Finite Speed of Propagation). If Assumptions 1, 2, and 3
are met then there is a constant C = C(T ) and a compact set Ω ⊂ R

d independent of k > 1
such that

0 ≤ pk ≤ C a.e. in QT , supp(pk(t)) ⊂ Ω for a.e. 0 ≤ t ≤ T.

Proof. To prove this lemma, we use the viscosity super solution constructed in Lemma 8.2 and
8.3. We choose the initial conditions of this barrier so that the barrier at time 0 is larger than

supk>1 ||p
(0)
k ||L∞(Rd) inside K. So by the comparison principle, pk is dominated by the barrier.

Then as the barrier is compactly supported and bounded for all times, we deduce the same is
true for pk. �

This immediately implies compact support and L∞(QT ) bounds on the density and normalized
density.

Corollary 3.2. The density ̺k and normalized density vk are also uniformly bounded in L∞(QT ),
uniformly compactly supported in QT , and non-negative almost everywhere.

3.2. BV Estimates on the Pressure and Density. Now we will derive L2(QT ) estimates on
|∇pk|, which follows from just integrating (2.2). Then we obtain L1(Rd) estimates for |∇vk(t)|
for a.e. t ∈ [0, T ] via an integral Grönwall’s inequality with Kato’s inequality argument.

Lemma 3.3 (L2(QT ) bounds for |∇pk|). If Assumptions 1, 2, and 3 are met then for all k ≥ 6
there is a constant C = C(T ) such that

¨

QT

|∇pk|2 ≤ C(T ).

Proof. First we use 1
m∇ · (m∇pk) = ∆pk +∇λ · ∇pk and integrate the pressure equation over

QT to see that

(k − 2)

¨

QT

|∇pk|2 =
ˆ

Rd

pk(x, 0) − pk(x, T ) +

¨

QT

∇pk · (~b+ (k − 1)pk∇λ) + (k − 1)pkF.

Now we recall that Young’s Inequality with ε > 0 says that |~v1 · ~v2| ≤ ε|~v1|2 + |~v2|2/(4ε). Using
Young’s Inequality with ε combined with our uniform sup bounds and uniform support control
on pk (Lemma 3.1) gives us that there is C = C(T ) such that

(k − 2)

¨

QT

|∇pk|2 ≤ kC(T ) +
k + 1

2

¨

QT

|∇pk|2.

Now because k ≥ 6, we have that (k− 2)− k+1
2 ≥ 1/2 and supk≥6 ((k− 2)− k+1

2 )/k ≤ C̃, which
implies the desired bound.

�

Note that this L2(QT ) estimate combined with Hölder’s inequality and our uniform compact
support of pk (see Lemma 3.1) gives us L1(QT ) control of ∇pk. Thus to obtain L1(QT ) conver-
gence of the pressure along a sub-sequence as k → ∞, it remains to show time derivative bounds
on the pressure. Uniform time derivative bounds on pk is one of the most delicate parts of our



9

analysis. This is unsurprising because in [22] the authors constructed examples of p∞ that have
strong jump discontinuities in time.

Our first step in obtaining time derivative control of pk is to obtain BV bounds for the
normalized density vk. To derive our BV bounds, we use the following lemma that shows
|∇vkk | ≈ |∇pk|.
Lemma 3.4. If Assumptions 1, 2, and 3 are met with k ≥ 6 then there is a constant C = C(T )
such that for the normalized density vk we have that

¨

QT

|∇vkk |2 ≤ C(T ).

Proof. Note that from Corollary 3.2 we have that 0 ≤ vk ≤ C almost everywhere, so

|∇vkk | ≤ Ckvk−2
k |∇vk| = C|∇pk|.

Hence, by integrating this inequality and using Lemma 3.3, we conclude the desired inequality.
�

Now we have enough estimates to obtain L1(Rd) bounds on |∇vk(t)| for a.e. t ∈ [0, T ].

Lemma 3.5 (BV bounds for the Normalized Density). Assume that Assumptions 1, 2, and 3
are met with k ≥ 6. Then there is a constant C = C(T ) such that for almost every t ∈ [0, T ]

ˆ

Rd

|∇vk(t)| ≤ C(T ).

Proof. We differentiate (2.3) in xi using that 1
m∇ · (m∇vkk) = ∆(vkk) +∇λ · ∇vkk to obtain for

ωi := ∂xi
vk that

(3.1)

∂tωi = ∆(kvk−1
k ωi)+∇(∂xi

λ) ·∇vkk +∇λ ·∇(kvk−1
k ωi)+∇(ωi) ·~b+∇vk · (∂xi

~b)+ vk[∂xi
F ]+ωiF.

Note that our assumptions tells us that F is a smooth bounded function with bounded deriva-
tives. To deal with the term ∇λ · ∇(kvk−1

k ωi), we observe that

∇λ · ∇(kvk−1
k ωi) = ∇ · (kvk−1

k ωi∇λ)− kvk−1
k ωi∆λ = ∇ · (kvk−1

k ωi∇λ)− (∂xi
vkk)∆λ.

Now we multiply (3.1) by sign(ωi) and use Kato’s Inequality, Cauchy-Schwarz, and vk ≤ C (see
Corollary 3.2) to see that

∂t|ωi| ≤ ∆(kvk−1
k |ωi|) +C|∇vkk |+∇ · (kvk−1

k |ωi|∇λ) +C|∂xi
vkk |+∇|ωi| ·~b+C|∇vk|+C|ωi|+C.

Hence, integrating this using that ωi is compactly supported and that |∇vkk | ∈ L1(Qt) uniformly
in k (see Lemma 3.4) gives

d

dt

¨

Qt

|ωi| ≤ C +

ˆ

Rd

|ωi|(t = 0) +

¨

Qt

−|ωi|(∇ ·~b) + C|ωi|+ C





d∑

j=1

|ωj |2




1/2

.

Summing this over all 1 ≤ i ≤ d with ω :=
∑d

j=1 |ωj| along with our initial BV bounds

(Assumption 2) gives
d

dt

¨

Qt

ω ≤ C + C

¨

Qt

ω.

Now Grönwall’s Inequality implies with our initial BV bounds (Assumption 2) the desired
bounds. �
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3.3. Generalized Semi-Convexity Estimate. Now we aim to control the time derivatives of
the normalized density and pressure. To do this, we need a semi-convexity estimate in a similar
vein to the Aronson-Bénilan estimate. The famous Aronson-Bénilan (see [24]) estimate says

that for the case of m(x, t) ≡ 1, f = 0, and ~b = ~0 one has the following inequality

∆pk ≥ − 1

(k − 1)t
.

We will derive for our case the following similar estimate

wk =
1

m
∇ · (m∇pk) ≥ − 2

(k − 1)t
−K1,

where K1 > 0 is a constant independent of k. This generalized semi-convexity estimate will be
used to show for any τ > 0 and a.e. t ∈ [τ, T ] that ||∂tvk(t)||L1(Rd) ≤ C(τ, T ). For this section,
we fix a k ≥ 6 and will drop the subscript k on the pk and wk.

The main idea of the generalized semi-convexity estimate is to derive that w solves a parabolic
PDE and modify the barrier introduced in [17]. In Section 7, we modify the barrier used in this
section under the congestion assumption to derive a refined Aronson-Bénilan estimate.

We begin deriving the PDE that w solves. Observe that

(3.2) wt = ∇λt · ∇p+∇λ · ∇pt +∆pt.

Now we will derive expressions for ∇pt and ∆pt. By differentiating (2.2) in xi we see that
(3.3)

∂xi
pt =

d∑

j=1

[

2(∂xj
p)(∂2xjxi

p) + (∂2xixj
p)bj + (∂xj

p)(∂xi
bj)

]

+(k−1) [(∂xi
p)(w + F ) + p(∂xi

w + ∂xi
F )] .

Differentiating in xi again and summing gives

(3.4) ∆pt =
d∑

j=1

2(∂2xixj
p)2 + 2∇p · ∇(∆p) +∇(∆p) ·~b+∇p · (∆~b) + 2

d∑

i,j=1

(∂2xixj
p)(∂xi

bj)+

(3.5) + (k − 1) {∆p(w + F ) + 2∇p · (∇w +∇F ) + p(∆w +∆F )} .
Using (3.3), (3.4), and (3.5) in (3.2), we obtain the following PDE for w

(3.6) wt = ∇λt · ∇p+ (k − 1) [w(w + F ) + (∇w +∇F ) · (p∇λ+ 2∇p) + p(∆w +∆F )] +

(3.7) +

d∑

i,j=1

2(∂2xixj
p)2 + 2(∇w · ∇p− (∇p)TD2λ(∇p)) +∇(w −∇p · ∇λ) ·~b+∇p · (∆~b)+

(3.8) +

d∑

i,j=1

(∂2xixj
p)(bj)(∂xi

λ) +

d∑

i,j=1

(∂xj
p)(∂xi

bj)(∂xi
λ) + 2

d∑

i,j=1

(∂2xixj
p)(∂xi

bj).

To derive this equation we used the identity

d∑

i,j=1

2(∂xj
p)(∂2xixj

p)(∂xi
λ) + 2∇p · ∇(∆p) = 2{∇w · ∇p− (∇p)TD2λ(∇p)},

which follows from expanding the right hand side.
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Now we will use (3.6),(3.7), and (3.8) to derive that w is a super solution to a simpler parabolic
differential equation. Indeed, by Cauchy-Schwarz and Young’s Inequality with ε we have that

(3.9) ∇λt · ∇p ≥ − 1

2ε
||∇λt||2∞ − ε

2
|∇p|2.

In addition, we have the following bound

(3.10) ∇(∇p · ∇λ) ·~b =
d∑

i,j=1

(∂2xixj
p)(∂xi

λ)bj + (∂2xixj
λ)(∂xi

p)bj

(3.11) ≥
d∑

i,j=1

−ε
2
|∂2xixj

p|2 − 1

2ε

(
||∂xi

λ||2∞||bj ||2∞
)
− ε

2
|∇p|2 − 1

2ε

d∑

i,j=1

||∂2xixj
λ||2∞||bj ||2∞.

Also we observe that

(3.12) ∇p · (∆~b) ≥ −ε
2
|∇p|2 − 1

2ε
||∆~b||2∞.

Then by using Young’s Inequality with ε, we see that

(3.13)
d∑

i,j=1

(∂xj
p)(∂xi

bj)(∂xi
λ) + 2

d∑

i,j=1

(∂2xixj
p)(∂xi

bj) ≥ −C(ε)− ε|∇p|2 − ε
d∑

i,j=1

|∂2xixj
p|2.

Now by using that p ≥ −C (see Lemma 3.1)

(3.14) w(w + F ) ≥ w2

2
− C, ∇F · (p∇λ+ 2∇p) ≥ −C − |∇p|2

2
, and p∆F ≥ −C.

Combining these inequalities along with making ε sufficiently small (independent of k) gives

∂tw ≥ −|∇p|2+∇w·~b+(k−1)

{
w2

2
+ p∇w · ∇λ+ 2∇w · ∇p+ p∆w − |∇p|2

2
− C

}

+

d∑

i,j=1

(∂2xixj
p)2+

+2(∇w · ∇p− (∇p)TD2λ(∇p)).
Now we treat p as a known function and define the parabolic differential operator

(3.15) L[φ] := ∂tφ−∇w ·~b+ |∇p|2 − 2(∇φ · ∇p− (∇p)TD2λ(∇p))+

(3.16) − (k − 1)

{
φ2

2
+∇φ · (p∇λ+ 2∇p) + p∆φ− |∇p|2

2
− C

}

,

then we have by construction that L[w] ≥ 0. Now we construct a sub-solution of this operator
using the barrier introduced in [17].

Lemma 3.6 (Subsolution for semi-convexity estimate). We denote p = pk and w = wk for ease
of notation. Then there exists a sufficiently large K1 > 0 such that for any τ > 0

ψ(x, t; τ) := − 2

(k − 1)(t+ τ)
+ p−K1

satisfies L[ψ] ≤ 0 whenever k > 1 is sufficiently large where L is the parabolic differential
operator in (3.15) and (3.16).

Remark 3.1. This barrier ψ(x, t; τ) is inspired by the one in [17].
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Proof. We plug in ψ to L to see that

L[ψ] =
2

(k − 1)(t + τ)2
+ 2(∇p)TD2λ(∇p) + (k − 1)(pF − ψ2

2
− 3

2
|∇p|2 + C).

Now we use that

ψ2 =
4

(k − 1)2(t+ τ)2
− 2(p −K1)

(
2

(k − 1)(t+ τ)

)

+ (p−K1)
2

≥ 4

(k − 1)2(t+ τ)2
+ (p−K1)

2,

where we chose K1 > supk>1 ||pk||L∞(QT ) (which is finite thanks to Lemma 3.1), so that p−K1 ≤
0. Now from k ≥ 2, we have that (k − 1) −2

(k−1)2(t+τ)2
≤ −2

(k−1)2(t+τ)2
, which implies

L[ψ] ≤ 1

(k − 1)(t + τ)2
[2− 2]

︸ ︷︷ ︸

0

+2(∇p)TD2λ(∇p) + (k − 1)

[

−3

2
|∇p|2

]

︸ ︷︷ ︸

I1

+

+(k − 1)(−(p −K1)
2

2
+C)

︸ ︷︷ ︸

I2

.

Note that we used the L∞(QT ) pressure bounds (Lemma 3.1) to have pF ≤ C for some C > 0.
Now for all (x, t) ∈ QT , let λ1(x, t) ≥ λ2(x, t) ≥ ... ≥ λn(x, t) be the eigenvalues of D2λ(x, t).
Then let Λ := sup(x,t)∈QT

{λ1(x, t)} be the biggest eigenvalue of D2λ over QT . This implies

I1 ≤ 2Λ|∇p|2 − (k − 1)
3

2
|∇p|2 ≤ 0 for k ≥ 4

3
Λ + 1.

Then for I2, by makingK1 larger if necessary, we can also assume thatK1 ≥ supk>1 ||pk||L∞(QT )+√
2C , which implies I2 ≤ 0. So we conclude that L[ψ] ≤ 0. �

Now we reintroduce the subscript k.

Lemma 3.7 (Semi-Convexity Estimate). There exists a K1 independent of k such that we have

wk :=
1

m
∇ · (m∇pk) ≥ − 2

(k − 1)t
−K1

for sufficiently large k in the distribution sense.

Proof. Using the ψ(x, t; τ) from Lemma 3.6, we see that

lim
τ↓0

ψ(x, 0; τ) = −∞.

This implies for small enough τ = τ(k) > 0 we can compare ψ(·, ·, τ) to wk (because L[wk] ≥ 0
and L[ψ(·, ·; τ)] ≤ 0) to obtain the claim. �

This gives us enough control to derive an L1(Qτ,T ) estimate on wk.

Lemma 3.8 (L1(Qτ,T ) bound on the semi-convexity term). Assume that Assumptions 1, 2, and
3 are met then if τ > 0, there is a constant C = C(τ, T ) such that for all sufficiently large k

¨

Qτ,T

|wk| ≤ C(τ, T ).

Proof. Recall that |wk| = wk + 2|wk|− where |x|− := −min(x, 0) for x ∈ R. Then our semi-
convexity estimate Lemma 3.7 implies that |wk|− ≤ 2

(k−1)τ +K1 in Qτ,T . Now using that wk is

compactly supported thanks to Lemma 3.1, we conclude the claim by integrating. �
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3.4. Time Derivative Estimates. Now equipped with our semi-convexity estimate we can
derive L1(Rd) estimates on |∂tvk(t)| for a.e. t ∈ [τ, T ] and L1(Qτ,T ) estimates on |∂tpk|. Note
that we cannot expect to go down to t = 0 without stronger conditions on our initial data.

To begin we first observe the semi-convexity estimate Lemma 3.7 that

∂tpk ≥ ~b · ∇pk + (k − 1)pk

[

− 2

(k − 1)t
−K1

]

.

Then by using pk = k
k−1(v

k−1
k ) we have that

∂tvk ≥ ~b · ∇vk − vk

[

K1 +
2

(k − 1)t

]

.

Cauchy-Schwarz implies that

∂tvk ≥ −C|∇vk| − vk

[

K1 +
2

(k − 1)t

]

.

This estimate implies the following bound on the negative part of ∂tvk,

|∂tvk|− ≤ C|∇vk|+ |vk|
[

K1 +
2

(k − 1)t

]

.

Thus our BV bounds on vk (Lemma 3.5) and L∞(QT ) bounds on vk (Corollary 3.2), implies for
a.e. t ∈ [τ, T ] that

ˆ

Rd

|∂tvk|−(t)dx ≤ C(τ, T ).

Now we integrate in space (2.3) to see that
∣
∣
∣
∣

ˆ

Rd

∂tvk

∣
∣
∣
∣
≤ C.

So using that |∂tvk| = ∂tvk + 2|∂tvk|−, we see for a.e. t ∈ [τ, T ] that
ˆ

Rd

|∂tvk|(t) ≤ C(τ, T ).

That is we have the following lemma:

Lemma 3.9 (Time Derivative Control of The Normalized Density). Assume that Assumptions
1, 2, and 3 are met, then for any τ > 0 we have the bound for almost every t ∈ [τ, T ]

ˆ

Rd

|∂tvk|(t) ≤ C(τ, T )

for sufficiently large k.

Now we will obtain L1(Qτ,T ) estimates of ∂tpk. But we first need the following lemma based
on an estimate in [12].

Lemma 3.10. Assume that Assumptions 1, 2, and 3 are met and let τ > 0. Then if we write
q := ∂tv (we drop the subscript k in this lemma). Then we have for sufficiently large k and
almost every 0 < τ < T that

¨

Qτ,T

kvk−1|q| ≤ C(τ, T ).
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Proof. Observe by differentiating the normalized density equation (2.3) in time that we have

∂tq = ∆(kvk−1q) +∇λt · ∇vk +∇λ · ∇(kvk−1q) +∇q ·~b+∇v · (∂t~b) + qF + v(∂tF ).

Multiplying by sign(q) and using Kato’s inequality implies that

∂t|q| ≤ ∆(kvk−1|q|) + |∇λt · ∇vk|+∇λ · ∇(kvk−1|q|) +∇ · (|q|~b)− |q|∇ ·~b

+|∇v · (∂t~b)|+ C|q|+ C|v|.
Now we observe that ∆(kvk−1|q|) +∇λ · ∇(kvk−1|q|) = ∇ · (m∇(kvk−1|q|))/m. Hence, we have
from Young’s Inequality and Cauchy-Schwarz for any smooth φ = φ(x) ≥ 0 that is compactly
supported

φ(∂t|q|) ≤
φ

m
∇·(m∇(kvk−1|q|))+φ( |∇v

k|2
2

+C)+φ
[

∇ · (|q|~b)− |q|∇ ·~b
]

+Cφ|∇v|+Cφ|q|+Cφ|v|.

So by integration by parts and using our L2(QT ) bounds on |∇vk| (Lemma 3.4), BV bounds on
|∇v| (Lemma 3.5), L∞(QT ) bounds on v (Corollary 3.2), and L1(Qτ,T ) bounds on q (Lemma
3.9) we have that

¨

Qτ,T

φ(∂t|q|) ≤
¨

Qτ,T

(kvk−1|q|)[∇ · (m∇(φ/m))] + C(φ, τ, T ).

We now let R > 0 be so large such that

supp(vk) ⊂ BR(0) for all k > 1 for t ∈ [0, T ].

Then we define φ = mϕ where ϕ is the unique solution of the following uniformly elliptic PDE
{

∇ · (m∇ϕ) = −1 in B2R(0)

φ = 0 on ∂B2R(0)

and defined to be 0 outside of this ball. Hence, we deduce that
¨

Qτ,T

(kvk−1|q|) ≤
ˆ

Rd

φ(x) [|q|(x, τ) − |q|(x, T )] dx+ C(τ, T ) ≤ C(τ, T ),

where we used Lemma 3.9 in the final inequality. �

Now this gives enough estimates to prove our L1(Qτ,T ) bounds on ∂tp. Indeed we proceed as

in [22] and use that |∂tp| = kvk−2|q| to see
¨

Qτ,T

|∂tp| ≤
¨

{v<1/2}∩Qτ,T

kvk−2|q|+ 2

¨

{v≥1/2}∩Qτ,T

kvk−1|q|

≤
¨

Qτ,T

k
1

2k−2
|q|+ 2kvk−1|q| ≤ C(τ, T ),

where in the final bound we used Lemma 3.9 and 3.10. That is we deduced

Lemma 3.11. Assume that Assumptions 1, 2, and 3 are met, then for almost every τ > 0 we
have the bound for sufficiently large k > 1

¨

Qτ,T

|∂tpk| ≤ C(τ, T ).
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3.5. Passage To The Limit For The Density. Our bounds imply vk and pk is a bounded
family in W 1,1(Qτ,T ) for almost every 0 < τ < T (so the set of such τ is dense). Hence, along a
subsequence (which we still denote by k), we can find a v∞, p∞ ∈ L1(Qτ,T ) such that

vk → v∞ in L1(Qτ,T ) and pk → p∞ in L1(Qτ,T ).

Then by using a standard diagonal argument combined with the L∞(QT ) and support control
of the pressure and density Lemma 3.1, we see that we can extract a sub-sequence (which we
denote by k) such that (vk, pk) has a limit in L1(QT ) × L1(QT ) . We denote the limit (along
this sub-sequence) as v∞ and p∞. Now if we denote by ̺∞ := mv∞, then it implies ̺k → ̺∞ in

L1(QT ) since m ≥ δ > 0. Next observe from vkpk = Ckp
k

k−1

k where Ck → 1 as k → ∞ that from
the pointwise convergence a.e. (we can use a further sub-sequence if needed) that

p∞(v∞ − 1) = 0 a.e. ⇒ p∞(m− u∞) = 0 a.e. .

Finally by considering the weak form of the density equation in (1.1) and letting k → ∞ with
our estimates, shows that for any test function ϕ we have

{
˜

QT
ϕt̺∞ −∇ϕ · (m∇p∞ + ̺∞~b) + ϕf̺∞ +

´

Rd ϕ(t = 0)̺0∞ = 0

p∞(m− ̺∞) = 0 a.e. in QT

.

That is (̺∞, p∞) is a weak solution to the density equation in (1.4) with initial data ̺0∞. This
gives us the existence portion of Theorem 2.1.

4. Uniqueness and Comparison Principle of the Generalized Hele-Shaw Flow

In this section, we consider weak solutions (̺, p) to the density equation (1.4) such that
̺ ∈ L∞([0, T ];L1(Rd) ∩ L∞(Rd)) and p ∈ L2([0, T ];H1(Rd) ∩ L∞(Rd)) with compact support
for any fixed time and we will show uniqueness among this class of functions with the same
initial density. We proceed via the Hilbert’s duality method used in [22, 12, 8]. Let (̺1, p1)
and (̺2, p2) be two weak solutions of (1.4) with the same initial data, then we see that for any
ϕ ∈ C∞

c (Rd × [0, T )) we have

(4.1)

¨

QT

((̺1 − ̺2) + (p1 − p2))
[

A(∂tϕ) +B∇ · (m∇ϕ)−A(∇ϕ ·~b− ϕf)
]

= 0,

where

(4.2) 0 ≤ A :=
̺1 − ̺2

(̺1 − ̺2) + (p1 − p2)
≤ 1 and 0 ≤ B :=

p1 − p2
(̺1 − ̺2) + (p1 − p2)

≤ 1.

Note that these bounds on A and B follow from pi(m − ̺i) = 0. for i = 1, 2 (where A := 0
when ̺1 = ̺2 and B := 0 when p1 = p2). Now let R > 0 be so large such that ̺i(t) and pi(t)
are supported in BR(0) ⊂ R

d for t ∈ [0, T ]. This leads us to be interested in solving the dual
problem; that is if ψ ∈ C∞

c (QT ) we want to find a ϕ such that

(4.3)

{

A(∂tϕ) +B∇ · (m∇ϕ)−A(∇ϕ ·~b− ϕf) = Aψ in QT

ϕ(t = T ) = 0 and ϕ(x, t) = 0 on ∂BR(0)× (0, T )
,

where if necessary, we take R larger to ensure the support of ψ is contained in BR(0) × [0, T ].
We also define ϕ = 0 for |x| > R.

Observe that (4.3) is a backwards degenerate parabolic operator due to the possible degeneracy
of A = 0 and B = 0 at some points. So to solve (4.3) we use an approximation scheme. Indeed,
consider compactly supported smooth approximations An and Bn such that

{

||An −A||L2(QT ) ≤ 1
n and 1

n ≤ An ≤ 1

||Bn −B||L2(QT ) ≤ 1
n and 1

n ≤ Bn ≤ 1
.
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Now we note that the approximate problem for ψ ∈ C∞
c (QT )

(4.4)

{

∂tϕn + Bn

An
[∇ · (m∇ϕn)]− (∇ϕn ·~b− ϕnf) = ψ in QT

ϕn(t = T ) = 0 and ϕn(x, t) = 0 on ∂BR(0)× (0, T )
.

is a uniform backwards parabolic equation with a terminal time condition, so the equation is
classically solvable. In addition, since the coefficients are smooth, the solution is smooth with a
smooth solution (see [24]). Then using ϕn as a test function in (4.1) gives us that

¨

QT

(̺1 − ̺2)ψ =

¨

QT

[(̺1 − ̺2) + (p1 − p2)] (A
Bn

An
−Bn +Bn −B)[∇ · (m∇ϕn)]

︸ ︷︷ ︸

In

.

For notational simplicity, we denote Z := [(̺1 − ̺2)− (p1 − p2)] and we observe that

(4.5) In =

¨

QT

Z
Bn

An
(A−An)[∇ · (m∇ϕn)]

︸ ︷︷ ︸

In,1

+

¨

QT

Z(Bn −B)[∇ · (m∇ϕn)]

︸ ︷︷ ︸

In,2

.

Now we collect similar estimates on the dual problem to the ones in [22]:

Lemma 4.1. There are constant C = C(T, ψ) > 0 independent of n such that for all t ∈ [0, T ]

||ϕn(t)||L∞(Rd) ≤ C, ||∇ϕn(t)||L2(Rd) ≤ C, ||(Bn/An)
1/2∇ · (m∇ϕn)||L2(QT ) ≤ C.

Proof. For the first inequality, observe that the equation for ϕn is a backwards uniformly para-
bolic equation, and we can compare ϕn to e±Ct − 1 for large C > 0 to obtain the bounds with
C independent of n.

For the second bound, we multiply (4.4) by ∇· (m∇ϕn) and integrate over Qt,T = R
d× (t, T )

for 0 ≤ t < T to see that
(4.6)
¨

Qt,T

−m
2
∂t|∇ϕn|2

︸ ︷︷ ︸

I1

+
Bn

An
|∇·(m∇ϕn)|2−(∇ · (m∇ϕn))(∇ϕn ·~b− ϕnf)

︸ ︷︷ ︸

I2

=

¨

Qt,T

ψ(∇ · (m∇ϕn))

︸ ︷︷ ︸

I3

.

Now observe that from integration by parts that
(4.7)

I1 = −1

2

¨

Qt,T

∂t(m|∇ϕn|2)− |∇ϕn|2(∂tm) =
1

2

ˆ

Rd

m(t)|∇ϕn(t)|2dx+
1

2

¨

Qt,T

(∂tm)|∇ϕn|2

(4.8) ≥
ˆ

Rd

δ

2
|∇ϕn(t)|2 − C

¨

Qt,T

|∇ϕn|2.

And integration by parts along with Young’s Inequality combined with m being bounded gives

(4.9) |I3| ≤
¨

Qt,T

|m(∇ψ · ∇ϕn)| ≤ C(ψ) + C

¨

Qt,T

|∇ϕn|2.

For the final term, we split it

I2 =
¨

Qt,T

(∇ · (m∇ϕn))(∇ϕn ·~b)
︸ ︷︷ ︸

I2,1

−
¨

Qt,T

(∇ · (m∇ϕn))(ϕnf)

︸ ︷︷ ︸

I2,2

.
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Then we have from integration by parts and Young’s Inequality that combined with our first
estimate of ||ϕn(t)||L∞(Rd) ≤ C that

(4.10) |I2,2| ≤
¨

Qt,T

|m∇ϕn · (f∇ϕn + ϕn∇f)| ≤ C + C

¨

Qt,T

|∇ϕn|2.

Now to deal with I2,1 observe

−I2,1 =
¨

Qt,T

(m∇ϕn) · ∇(∇ϕn ·~b) =
¨

Qt,T

m





d∑

i,j=1

∂ϕn

∂xi

∂2ϕn

∂xi∂xj
bj +

d∑

i,j=1

∂ϕn

∂xi

∂ϕn

∂xj

∂bj
∂xi



 .

Then notice that
¨

Qt,T

m

d∑

i,j=1

∣
∣
∣
∣

∂ϕn

∂xi

∂ϕn

∂xj

∂bj
∂xi

∣
∣
∣
∣
≤ C

¨

Qt,T

d∑

i,j=1

∣
∣
∣
∣

∂ϕn

∂xi

∂ϕn

∂xj

∣
∣
∣
∣
≤ C

¨

Qt,T

|∇ϕn|2,

where for the final inequality we used Young’s Inequality. And we also have from integration by
parts on xj that

¨

Qt,T

d∑

i,j=1

∂ϕn

∂xi

∂2ϕn

∂xi∂xj
(mbj) =

¨

Qt,T

−
d∑

i,j=1

∂2ϕn

∂xi∂xj

∂ϕn

∂xi
(mbj)−

d∑

i,j=1

|∂ϕn

∂xi
|2 ∂(mbj)

∂xj
.

Hence, we deduce that
¨

Qt,T

d∑

i,j=1

∂ϕn

∂xi

∂2ϕn

∂xi∂xj
(mbj) = −1

2

¨

Qt,T

d∑

i,j=1

|∂ϕn

∂xi
|2 ∂(mbj)

∂xj
.

This implies that we have from Young’s Inequality that

(4.11) |I2,1| ≤ C + C

¨

Qt,T

|∇ϕn|2.

Using our bounds of I1,I2, and I3 (see (4.7), (4.11), (4.10), (4.9)) in (4.6) gives

(4.12)

ˆ

Rd

δ

2
|∇ϕn(t)|2 +

¨

Qt,T

Bn

An
|∇ · (m∇ϕn)|2 ≤ C(ψ) + C(ψ)

¨

Qt,T

|∇ϕn(t)|2,

which by Bn/An ≥ 0, lets us use the integral form of Grönwall’s inequality to deduce that

(4.13)

ˆ

Rd

|∇ϕn(t)|2 ≤ C(ψ, T ).

To obtain the 3rd inequality in the statement of Lemma 4.1, we use (4.13) and (4.12) to see
that

||(Bn/An)
1/2∇ · (m∇ϕn)||L2(Qt,T ) ≤ C(ψ, T )

for all 0 ≤ t ≤ T , so by letting t→ 0 we conclude the third inequality. �

Now these inequalities will be used to bound In,1 and In,2 from (4.5). Indeed, observe that
since Z is bounded we have by Hölder’s Inequality with Lemma 4.1 that

|In,1| ≤ C

¨

QT

[

(
Bn

An
)1/2|A−An|

] [

(
Bn

An
)1/2|∇ · (m∇ϕn)|

]

≤ C||(Bn/An)
1/2(A−An)||L2(QT )

≤ Cn1/2

n
= C/n1/2.

Also we have the following bound from Lemma 4.1

|In,2| ≤ C

¨

QT

|Bn −B|
(
An

Bn

)1/2 (Bn

An

)1/2

|∇ · (m∇ϕn)|
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≤ C||(An/Bn)
1/2(Bn −B)||L2(QT ) ≤ C/n1/2.

So by letting n→ ∞ in (4.5), we see that for any ψ ∈ C∞
c (QT ) that

¨

Rd

(̺1 − ̺2)ψ = 0.

That is we have shown that ̺1 = ̺2 almost everywhere. Now using the density equation in (1.4)
with ̺1 = ̺2 a.e., we conclude that for all ϕ ∈ C∞

c (QT )
¨

QT

∇ · (m∇ϕ)(p1 − p2) = 0.

By an approximation argument we may take ϕ = p1 − p2 to conclude by integration by parts
that

¨

QT

m|∇(p1 − p2)|2 = 0,

so from m ≥ δ > 0, we see this implies from pi being compactly supported that p1 = p2 a.e., so
we conclude that:

Theorem 4.2 (Uniqueness). There is at most one weak solution of (1.4) (̺, p) in the regularity
class L∞((0, T );L1(Rd) ∩ L∞(Rd)) × L2([0, T ];H1(Rd) ∩ L∞(QT )) with compact support and

̺(x, 0) = ̺
(0)
∞ (x).

Note that if Assumptions 1, 2, and 3 are met then our limiting density and pressure (̺∞, p∞)
satisfy the hypothesis of (4.2). Hence, they are the unique solutions of the density equation in

(1.4) in this regularity class with ̺∞(x, 0) = ̺
(0)
∞ (x). This immediately implies with Urysohn’s

subsequence principle the following corollary:

Corollary 4.3. Assume that Assumptions 1, 2, and 3 are met, then the entire sequence (̺k, pk)
converges to (̺∞, p∞) in L1(QT )× L1(QT ).

This concludes the proof of Theorem 2.1. In addition, an analogous proof of the above dual
problem shows the following comparison principle for bounded domains: (see [12] Proposition

5.1 for the case of m ≡ 1 with ~b = 0)

Theorem 4.4 (Density Comparison Principle For Limiting Equation). Let Ω ⊂ R
d be a open

and connected subset of Rd with smooth boundary and 0 ≤ t1 < t2 < ∞. Assume that (̺1, p1)
and (̺2, p2) are weak solutions of (1.4) in Ω × (t1, t2) such that (̺i, pi) ∈ L∞((t1, t2);L

1(Ω) ∩
L∞(Ω)) × L2((t1, t2);H

1(Ω) ∩ L∞(Ω)) with compact support such that ̺1(t = t1) ≥ ̺2(t = t1)
and p1 ≥ p2 on ∂Ω× [t1, t2]. Then we have that

̺1(x, t) ≥ ̺2(x, t) a.e. in Ω× [t1, t2].

5. The Complimentary Relationship on the Pressure

Now we focus on deriving the complimentary relationship. That is we will show that p∞ is
a weak solution to the pressure equation in (1.4). To derive the complimentary relationship we
modify the arguments in [8] to obtain a uniform L4(Qτ,T ) bounds on |∇pk|. To achieve such
bounds, we first prove the following technical lemma:

Lemma 5.1. Let f ∈ C∞
c (Rd) then there is a constant C > 0 independent of f such that

ˆ

Rd

|∇f |4 ≤ C

ˆ

Rd

|f |2|∇f |2 + C

ˆ

Rd

|f |2
m

|∇ · (m∇f)|2 + C

d∑

i,j=1

ˆ

Rd

m|f |2|∂2xixj
f |2.
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Proof. Observe that from integration by parts that
ˆ

Rd

|∇f |4 =
ˆ

Rd

(
|∇f |2∇f

)
· ∇f = −

ˆ

Rd

f∆f |∇f |2
︸ ︷︷ ︸

I1

−
ˆ

Rd

f(∇f) · ∇(|∇f |2)
︸ ︷︷ ︸

I2

.

Expaning out I2 shows us that

I2 =
d∑

i,j=1

2

ˆ

Rd

f(∂xj
f)(∂xi

f)(∂2xixj
f).

Hence, by applying Young’s Inequality, we have that

|I2| ≤
1

4

ˆ

Rd

|∇f |4 + 4

d∑

i,j=1

ˆ

Rd

f2|∂2xixj
f |2.

Now using that 1
m∇ · (m∇f) = ∇λ · ∇f +∆f implies

I1 =
ˆ

Rd

f

m
∇ · (m∇f)|∇f |2 −

ˆ

Rd

f(∇λ · ∇f)|∇f |2.

Now by applying Young’s Inequality and Cauchy-Schwarz we have that

|I1| ≤
1

2

ˆ

Rd

|f |2
m2

|∇ · (m∇f)|2 + 2

3

ˆ

Rd

|∇f |4 + C

ˆ

Rd

|f |2|∇f |2.

By using m ≥ δ > 0 and combining terms we obtain the desired bound. �

This gives us the following L4(QT ) control of the pressure gradient by an approximation
argument due to our L∞(QT ) control of pk and L2(QT ) control of ∇pk (see Lemma 3.1 and
Lemma 3.3):

Corollary 5.2. If Assumptions 1, 2, and 3 are met, then there is a constant C = C(T ) such
that

(5.1)

¨

QT

|∇pk|4 ≤ C + C

¨

QT

pk
m

|∇ · (m∇pk)|2 + C

d∑

i,j=1

¨

QT

mpk|∂2xixj
pk|2.

Now we control the terms arising in Corollary 5.2 using (2.2).

Lemma 5.3. If Assumptions 1, 2, 3, and 4 are met, then there is a constant C and C̃ such that
for k > 19/3 we have

1

12

d∑

i,j=1

¨

QT

mpk|∂2xixj
pk|2+(k−19

3
)

¨

QT

pk
m

|∇·(m∇pk)+mF |2 ≤ C

ˆ

Rd

|∇pk(x, 0)|2dx+C ≤ C̃.

Remark 5.1. This estimate with our smooth approximations of pk constructed in Section 9
implies that pk ∈ H2

loc({pk > 0}). Then we interpret pk|∂2xixj
pk|2 classically on {pk > 0} and as

0 on {pk = 0}.
Proof. We will drop the subscript k for the rest of this proof. Multiplying the pressure equation
(2.2) by ω := ∇ · (m∇p) +mF and integrating over QT yields

(5.2)

¨

QT

ω∂tp

︸ ︷︷ ︸

I1

=

¨

QT

ω|∇p|2
︸ ︷︷ ︸

I2

+

¨

QT

ω(∇p ·~b)
︸ ︷︷ ︸

I3

+

¨

QT

(k − 1)
p

m
|ω|2.
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We integrate each term separately. Observe

I1 =
¨

QT

[∇ · (m∇p)] ∂tp+
¨

QT

mF (∂tp) =

¨

QT

−m∇p · ∂t(∇p) +mF (∂tp)

=

¨

QT

−1

2
∂t(m|∇p|2) + 1

2
mt|∇p|2 +mF (∂tp).

So now using mF (∂tp) = ∂t(pmF )− p∂t(mF ) and integrating gives

=

ˆ

Rd

1

2

[
m(x, 0)|∇p(x, 0)|2 −m(x, T )|∇p(x, T )|2 +m(x, T )F (x, T )p(x, T ) −m(x, 0)F (x, 0)p(x, 0)

]
+...

+

¨

QT

1

2
mt|∇p|2 − p∂t(mF ).

So our L∞(QT ) bounds on pk (Lemma 3.1) and L2(QT ) bounds on ∇pk (Lemma 3.3) implies

(5.3) I1 ≤ C

ˆ

Rd

|∇p(x, 0)|2 + C.

Now we deal with I2. Observe that

(5.4) I2 =
¨

QT

∇ · (m∇p)|∇p|2
︸ ︷︷ ︸

I2,1

+

¨

QT

mF |∇p|2,

so integrating by parts twice gives

I2,1 =
¨

QT

p∇ · (m∇(|∇p|2)) =
¨

QT

p(∇m · ∇(|∇p|2))
︸ ︷︷ ︸

J1

+

¨

QT

mp∆(|∇p|2)
︸ ︷︷ ︸

J2

.

Now using that ∆(|∇p|2) = 2
∑d

i,j=1 |∂2xixj
p|2 + 2∇p · ∇(∆p) gives

J2 = 2

¨

QT

mp
d∑

i,j=1

|∂2xixj
p|2 + 2

¨

QT

mp(∇p · ∇(∆p))

︸ ︷︷ ︸

J2,1

,

and integration by parts also implies

(5.5) J2,1 = −2

¨

QT

∇ · (p(m∇p))∆p = −2

¨

QT

m|∇p|2∆p+ p∆p [∇ · (m∇p)] .

Now we want to simplify the expression for J2,1 using our previous expressions. First notice
from the definition of I2,1 in (5.4) that

(5.6) I2,1 −
¨

QT

[∇m · ∇p]|∇p|2 =
¨

QT

m∆p|∇p|2.

So we obtain from (5.6) and (5.5) that

(5.7) J2,1 = −2I2,1 + 2

¨

QT

[∇m · ∇p]|∇p|2 − p∆p[∇ · (m∇p)].

Observe that by unpacking our definitions that

I2,1 = J1 + 2

¨

QT

mp

d∑

i,j=1

|∂2xixj
p|2 + J2,1,
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so by using (5.7), we see that

(5.8) I2,1 =
1

3
J1 +

2

3

¨

QT

mp
d∑

i,j=1

|∂2xixj
p|2 +

¨

QT

2

3
[∇m · ∇p]|∇p|2 − 2

3
p∆p[∇ · (m∇p)].

Now our goal is to compute lower bounds of I2,1. To deal with the
˜

QT
[∇m · ∇p]|∇p|2 term,

we first obtain bounds on
˜

QT
p∆p(∇p · ∇m). Integrating by parts gives that

(5.9)

¨

QT

p∆p(∇p · ∇m) = −
¨

QT

|∇p|2[∇p · ∇m]−
¨

QT

p[∇p · ∇(∇p · ∇m)]

︸ ︷︷ ︸

J2,2

.

Note that p[∇p · ∇(∇p · ∇m)] = p[∇pTD2p∇m + ∇pTD2m∇p] so Young’s Inequality with ε
gives

|J2,2| ≤
d∑

i,j=1

δ

2

¨

QT

p|∂2xixj
p|2 + C

¨

QT

p|∇p|2 +
¨

QT

p|(∇p)T (D2m)(∇p)|

≤
d∑

i,j=1

1

2

¨

QT

mp|∂2xixj
p|2 + C̃

¨

QT

p|∇p|2

(5.10) ≤
d∑

i,j=1

1

2

¨

QT

mp|∂2xixj
p|2 + C.

In this final inequality we used our L2(QT ) bounds on ∇p (Lemma 3.3) and L∞(QT ) bounds
on p (Lemma 3.1).

And to deal with the [∇m · ∇p]|∇p|2 term in J2,1, we observe from (5.9) and (5.10) that

(5.11)

¨

QT

|∇p|2[∇p · ∇m] ≥ −C −
¨

QT

p∆p(∇p · ∇m)− 1

2

d∑

i,j=1

¨

QT

mp|∂2xixj
p|2.

Now using (5.11) in (5.8) gives us

I2,1 ≥ −C +
1

3
J1 +

1

3





¨

QT

mp

d∑

i,j=1

|∂2xixj
p|2



− 2

3

[
¨

QT

p∆p[∇ · (m∇p)] + p∆p(∇p · ∇m)

]

.

Now we use that

p∆p[∇ · (m∇p)] + p∆p(∇p · ∇m) = mp|∆p|2 + 2p∆p(∇p · ∇m)

≤ mp|∆p|2 + 2p∆p(∇p · ∇m) +
p

m
|∇p · ∇m|2 = p

m
|∇ · (m∇p)|2.

Hence, we have that

(5.12) I2,1 ≥ −C +
1

3
J1 +

1

3

¨

QT

mp
d∑

i,j=1

|∂2xixj
p|2 −

[
2

3

¨

QT

p

m
|∇ · (m∇p)|2

]

.

We use integration by parts to see

J1 = −
¨

QT

([∇p · ∇m] + p∆m) |∇p|2.
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Hence, by using Young’s Inequality with ε and our L2(QT ) bounds on ∇p (Lemma 3.3) and
L∞(QT ) bounds on the pressure (Lemma 3.1), we see that for ε > 0

|J1| ≤ ε

¨

QT

|∇p|4 + C(ε)

¨

QT

||∇m||2∞|∇p|2 + C

¨

QT

|∇p|2

≤ ε

¨

QT

|∇p|4 + C(ε).

Now using Corollary 5.2 with an approximation argument and a fixed ε > 0 chosen such that
for the constant C in from Corollary 5.2 satisfies εC ≤ 1/2 gives

(5.13) |J1| ≤ C +
1

2

¨

QT

p

m
|∇ · (m∇p)|2 + 1

2

d∑

i,j=1

mp|∂2xixj
p|2.

Then by using (5.13) in (5.12) we obtain

I2,1 ≥
1

6

d∑

i,j=1

¨

QT

mp|∂2xixj
p|2 − 5

6

¨

QT

p

m
|∇ · (m∇p)|2 − C.

Now using that

|∇ · (m∇p)|2 ≤ 4|∇ · (m∇p) +mF |2 + 4|mF |2,
and that F is bounded due to our assumptions implies

I2,1 ≥
1

6

d∑

i,j=1

¨

QT

mp|∂2xixj
p|2 − 10

3

¨

QT

p

m
|∇ · (m∇p) +mF |2 − C.

So now using (5.4) and our L2(QT ) bound on ∇p (Lemma 3.3), we deduce that

(5.14) I2 ≥ −C +
1

6

d∑

i,j=1

¨

QT

mp|∂2xixj
p|2 − 10

3

¨

QT

p

m
|∇ · (m∇p) +mF |2.

So it remains to deal with I3 to obtain the desired bounds. Observe that

(5.15) I3 =
¨

QT

(∇p ·~b)(∇ · (m∇p))
︸ ︷︷ ︸

I3,1

+

¨

QT

mF (∇p · ∇~b)
︸ ︷︷ ︸

I3,2

.

Now Cauchy-Schwarz and our L1(QT ) control of ∇pk (Lemma 3.1 and Lemma 3.3) implies

(5.16) I3,2 ≥ −C
¨

QT

|∇p| ≥ −C̃.

Now we compute from integration by parts that

I3,1 = −
¨

QT

p∇ · (~b [∇ · (m∇p)]) = −
¨

QT

p(∇ ·~b)[∇ · (m∇p)]
︸ ︷︷ ︸

K1

−
¨

QT

p(~b · ∇ [∇ · (m∇p)])
︸ ︷︷ ︸

K2

.

We apply Young’s Inequality to see that

(5.17) |K1| ≤
1

2||m||∞

¨

QT

p|∇ · (m∇p)|2+ ||m||∞
2

¨

QT

p|∇ ·~b|2 ≤ C+
1

2

¨

QT

p

m
|∇ · (m∇p)|2.
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Now we compute to see that

K2 =

d∑

i,j=1

¨

QT

pbi

[

(∂2xixj
m)(∂xj

p)
]

︸ ︷︷ ︸

K2,1

+

d∑

i,j=1

¨

QT

pbi

[

(∂xj
m)(∂2xixj

p)
]

︸ ︷︷ ︸

K2,2

+

d∑

i,j=1

¨

QT

p(mbi)
[

∂3xjxixj
p.
]

︸ ︷︷ ︸

K2,3

+

+

¨

QT

(~b · ∇m)∆p.

The last term can be bounded by integration by parts:

(5.18)

∣
∣
∣
∣

¨

QT

(~b · ∇m)∆p

∣
∣
∣
∣
=

∣
∣
∣
∣

¨

QT

−∇(~b · ∇m) · ∇p
∣
∣
∣
∣
≤ C

¨

QT

|∇p| ≤ C.

Now we bound the other terms. Observe that from Young’s Inequality that

(5.19) |K2,1| ≤
1

2

d∑

i,j=1

¨

QT

p|∂xi
p|2 + p|bi|2|∂2xixj

m|2 ≤ C(T ),

where we used our L2(QT ) bounds on ∇p (Lemma (3.3)) and our L∞(QT ) bounds on p (Lemma
(3.1)). Then by using Young’s Inequality again
(5.20)

|K2,2| ≤
¨

QT

δ

24

d∑

i,j=1

p|∂2xixj
p|2 + 12

δ

d∑

i,j=1

p|bi|2|∂xj
m|2 ≤ 1

24

¨

QT

d∑

i,j=1

mp|∂2xixj
p|2 + C(T ).

Now we deal with K2,3. Let us define ~c := m~b = (c1, c2, ..., cd)
T and integrate by parts to see

(5.21) K2,3 = −
d∑

i,j=1

¨

QT

ci(∂xj
p)(∂2xixj

p)

︸ ︷︷ ︸

K2,4

−
d∑

i,j=1

¨

QT

p(∂xj
ci)(∂

2
xjxi

p)

︸ ︷︷ ︸

K2,5

.

By Young’s Inequality we have that

(5.22) |K2,5| ≤
¨

QT

δ

24

d∑

i,j=1

p|∂2xixj
p|2 + 12

δ
p|∂xj

ci|2 ≤
1

24

d∑

i,j=1

¨

QT

mp|∂2xixj
p|2 +C(T ).

Now we observe that

K2,4 =
1

2

¨

QT

~c · ∇(|∇p|2) = 1

2

¨

QT

∇ · (~c|∇p|2)− (∇ · ~c)|∇p|2

= −1

2

¨

QT

(∇ · ~c)|∇p|2.

Hence, we have from our L2(QT ) control of ∇p (Lemma 3.3)

(5.23) |K2,4| ≤ C(T ).

So now combining our inequalities on K1 and K2 (see (5.17), (5.19), (5.18), (5.20), (5.23), (5.22))
gives

|I3,1| ≤ C(T ) +
1

12

d∑

i,j=1

¨

QT

mp|∂2xixj
p|2 + 1

2

¨

QT

p

m
|∇ · (m∇p)|2.

Now again using

|∇ · (m∇p)|2 ≤ 4|∇ · (m∇p) +mF |2 + 4|mF |2,
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we deduce that

(5.24) |I3,1| ≤ C(T ) +
1

12

d∑

i,j=1

¨

QT

mp|∂2xixj
p|2 + 2

¨

QT

p

m
|∇ · (m∇p) +mF |2.

So by using (5.24) and (5.16) in (5.15) we arrive at

(5.25) I3 ≥ −C(T )− 1

12

d∑

i,j=1

¨

QT

mp|∂2xixj
p|2 − 2

¨

QT

p

m
|∇ · (m∇p) + F |2.

That is we have from (5.3), (5.14), (5.25), (5.2), and Assumption (4) that

1

12

d∑

i,j=1

¨

QT

mp|∂2xixj
p|2 + (k − 19

3
)

¨

QT

p

m
|∇ · (m∇p) + F |2 ≤ C

ˆ

Rd

|∇p(x, 0)|2 + C ≤ C̃.

�

Now by combining Lemma 5.3 with Lemma 5.2 we obtain uniform L4(QT ) bounds on ∇p for
k ≥ 7 due to an approximation argument.

Corollary 5.4 (L4(QT ) bounds on |∇p|). If Assumptions 1, 2, 3, and 4 are met, then for k ≥ 7
there is a constant C = C(T ) such that

¨

QT

|∇p|4 ≤ C.

Now we have enough compactness for strong L2(QT ) convergence of |∇pk|.
Lemma 5.5. Assume that Assumptions 1, 2, 3, and 4 are met, then ∇pk → ∇p∞ in Lr(Qτ,T )
for any τ > 0 and r ∈ [1, 4).

Proof. This proof is essentially identical to the proof of Lemma 3.5 in [8], so we omit the
proof. �

Now we use (2.2) to obtain L2(QT ) convergence of ∇pk.
Theorem 5.6. Assume that Assumptions 1, 2, 3, and 4 are met then ∇pk → ∇p∞ in L2(QT ).

Proof. By Lemma 5.5 we know that ∇pk → ∇p∞ in L2(Qτ,T ) for any τ > 0. So it remains to
control ||∇pk||L2(Qτ ) for small τ > 0. Integrating (2.2) over Qτ gives

(k − 2)

¨

Qτ

|∇pk|2 =
ˆ

Rd

pk(x, 0)− pk(x, τ) +

¨

Qτ

∇pk · (~b+ (k − 1)pk∇λ) + (k − 1)pkF.

By applying Young’s Inequality with ε > 0 we arrive at

(k−2)

¨

Qτ

|∇pk|2 ≤
ˆ

Rd

pk(x, 0)+

¨

Qτ

|∇pk|2+(k−1)

¨

Qτ

ε||pk||2L∞(QT )|∇pk|2+C|(Ω×[0, T ])∩Qτ |+

+C(ε)(k − 1)

¨

Qτ

pk,

where Ω × [0, T ] =: ΩT is a compact set such that supp(pk) ⊂ ΩT for all k > 1 and |A| is the
Lebesgue measure of A ⊂ R

d+1. Choose ε > 0 so small such that ε||pk||L∞(QT )||∇λ||∞ ≤ 1
2 for

all k, we arrive at
¨

Qτ

|∇pk|2 ≤
2

k − 5

ˆ

Rd

pk(x, 0) + C|ΩT ∩Qτ |.

So for k ≥ 6, we have from Lemma 3.1 that

(5.26)

¨

Qτ

|∇pk|2 ≤
2C

k − 5
+ C|ΩT ∩Qτ |,
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where |A| is the Lebesgue measure of A ⊂ R
d+1. Note that this constant C is independent of

both τ and k.

Now if ε′ > 0 is given, there exists a K ′ sufficiently large with τ sufficiently small and
∇p∞ ∈ L2(QT ) such that

¨

Qτ

|∇pk|2 + |∇p∞|2 ≤ ε′/2

for all k ≥ K ′ thanks to (5.26). Now by making K ′ even larger if necessary, Lemma 5.5 shows us
that

˜

Qτ,T
|∇pk −∇p∞|2 ≤ ε′/2 for all k ≥ K ′. So now from the triangle inequality, we obtain

¨

QT

|∇pk −∇p∞|2 ≤ ε′

for k ≥ K ′. �

Now we have enough compactness to show that p∞ is a weak solution to the pressure equation
in (1.4). Indeed, this follows from similar arguments as in [22] Lemma 2.5 that showed when
m ≡ 1 the complimentary relationship is equivalent to L2(QT ) convergence of ∇pk. Or we could
proceed as in [7] and take the limit of the weak form of the pressure equation (2.2) to conclude
the proof of Theorem 2.2.

6. Velocity Law

6.1. Velocity Law. Now we aim to characterize the movement of {p∞(t) > 0}. We will show
the velocity law (1.5) in the viscosity sense. Our arguments and definitions on the velocity law
and classical barriers closely follow the ones in [12].

Definition 6.1 (Classical Super-Solutions). Let B be any space ball in R
d and 0 ≤ t1 < t2 <∞

and φ ∈ Cc(B × [t1, t2]) be non-negative. We also assume that φ ∈ C2({φ > 0}) and that
∂{φ > 0} is C2 in space and C1 in time. Then we choose a ρE ∈ C1,1({φ = 0}) such that

∂tρ
E ≥ ∇ · (ρE~b) + fρE in {φ = 0}

with ρE ≤ m on {φ = 0}. And we also assume that

(6.1)

{

−∇ · (m∇φ) ≥ ∇ · (m~b)−mt +mf in {φ > 0}
(m− ρE)Vφ ≥

[

−m∇φ−~b(m− ρE)
]

· ~ν on ∂{φ > 0}

where Vφ is the normal velocity of ∂{φ(t) > 0} and ~ν is the outward normal of ∂{φ(t) > 0}.
Then we define

ρ := mχ{φ>0} + ρEχ{φ=0}.

Then the pair (ρ, φ) is called a classical super-solution.

Lemma 6.1. If the pair (ρ, φ) is a classical super-solution, then they are also a weak super-
solution of the limiting density equation (1.4) in B× (t1, t2) with initial data ρ1 := ρ(t = t1). In
particular, for all ϕ ∈ C∞

c (B × [t1, t2)) that is non-negative we have
¨

B×[t1,t2]
−ϕtρ+∇ϕ · (m∇φ) ≥

¨

B×[t1,t2]
ϕfρ−∇ϕ · (ρ~b) +

ˆ

B
ϕ(t = t1)ρ1

Proof. The proof is essentially identical to the proof of Proposition 7.1 in [12], so we omit the
details. �

And analogously, we have the following definition for classical sub-solutions.
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Definition 6.2 (Classical Sub-Solutions). Let B be any space ball and R
d and 0 ≤ t1 < t2 <∞

and φ ∈ Cc(B × [t1, t2]) be non-negative. We also assume that φ ∈ C2({φ > 0}) and that
∂{φ > 0} is C2 in space and C1 in time. Then we choose a ρE ∈ C1,1({φ = 0}) such that

∂tρ
E ≤ ∇ · (ρE~b) + fρE in {φ = 0}

and ρE ≤ m on {φ = 0}. And we also assume that

(6.2)

{

−∇ · (m∇φ) ≤ ∇ · (m~b)−mt +mf in {φ > 0}
(m− ρE)Vφ ≤

[

−m∇φ−~b(m− ρE)
]

· ~ν on ∂{φ > 0}

where Vφ is the normal velocity of ∂{φ(t) > 0} and ~ν is the outward normal of ∂{φ(t) > 0}.
Now if we define

ρ := mχ{φ>0} + ρEχ{φ=0},

then the pair (̺, φ) is called a classical sub-solution.

Similarly we have the following relation between classical sub-solutions and weak sub-solutions
of the limiting density equation (1.4).

Lemma 6.2. If the pair (ρ, φ) is a classical sub-solution, then they are a weak sub-solution of
the limiting equation (1.4) in B × (t1, t2) with initial data ρ1 := ρ(t = t1). In particular, for all
ϕ ∈ C∞

c (B × [t1, t2)) that is non-negative we have
¨

B×[t1,t2]
−ϕtρ+∇ϕ · (m∇φ) ≤

¨

B×[t1,t2]
ϕfρ−∇ϕ · (ρ~b) +

ˆ

B
ϕ(t = t1)ρ1

Recall that the limiting pair (̺∞, p∞) is a weak solution to (1.4) in the sub-domain B×(t1, t2)
with the initial density condition ̺∞(t = t1) and pressure boundary conditions p∞ on ∂B×[t1, t2].
So we deduce from the weak density comparison principle Lemma 4.4 for the limiting density
equation that we have

Proposition 6.3. Let the pair (ρ, φ) be a classical super solution in B × (t1, t2), then if

(1) ̺∞(t = t1) ≤ ρ(t = t1) on B
(2) p∞ ≤ φ on ∂B × [t1, t2] ,

then we have that ̺∞ ≤ ρ on B × [t1, t2].

So in the sense of comparison with barriers (or viscosity sense) we have that

(m− ̺E)Vp∞ ≥
[

−m∇φ−~b(m− ̺E)
]

· ~ν on ∂{p∞ > 0}.

Analogously, we have the following proposition:

Proposition 6.4. Let the pair (ρ, φ) be a classical sub-solution on B × (t1, t2), then if

(1) ̺∞(t = t1) ≥ ρ(t = t1) on B
(2) p∞ ≥ φ on ∂B × [t1, t2] ,

then we have that ̺∞ ≥ ρ on B × [t1, t2].

So in the sense of comparison with barriers (or viscosity sense) we have that

(m− ̺E)Vp∞ ≤
[

−m∇φ−~b(m− ̺E)
]

· ~ν on ∂{p∞ > 0}

Hence, we have derived the velocity law in the viscosity sense. That is we have proven
Theorem 2.3.
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7. Congestion Case

In this section we focus on the congestion case. That is we assume throughout this section
that (1.6) holds. So now if Ω is a compact subset of Rd such that pk is uniformly supported in
Ω× [0, T ] then there exists by continuity an ε > 0 such that

(7.1) mt + ε ≤ mf +∇ · (m~b) in Ω× [0, T ].

First we recall the definition of the streamlines. Since the external density solves a transport
equation, the natural coordinates are the streamlines (or characteristics). For any x0 ∈ R

d, we
let the streamline X(·, x0) be the unique solution to

{

∂tX(t, x0) = −~b(X(t, x0)) for t ∈ R

X(0, x0) = x0
.

As ~b is Lipschitz, we know that there is a unique solution for all time and is continuously differ-
entiable in time. This uniqueness actually implies that for any t0 ∈ R that X(t0, x) : R

d → R
d

is invertible and its inverse is given by X(−t0, x) (see [15]).

We will show that {p∞(t) > 0} := Σ(t) is non-decreasing with respect to the streamlines.
That is if x ∈ Σ(t), then X(s,X(−t, x)) ∈ Σ(s) for all s ≥ t (the streamline containing x at time
t is in Σ(s) for all s ≥ t). This will follow from deriving a uniform positive retention principle
for pk along streamlines through a refined Aronson-Bénilan estimate. We refine the barrier used
in Section 3.3.

To derive such an Aronson-Bénilan estimate, we first drop the subscript k and recall that
w := 1

m∇ · (m∇p). Then we define the elliptic operator for sufficiently large C > 0

L[φ] := −C−C|∇p|2+2∇φ·∇p+∇φ·~b+(k−1)(φ(φ+F )+(∇φ+∇F )·(p∇λ+2∇p)+p(∆φ+∆F )).

Then when C is large enough, by using (3.6), (3.7), (3.8) with a similar computation as in
Section 3.7 we see that ∂tw ≥ L[w].

Now τ > 0 and for α, β > 0 we define our barrier

ψ(x, t; τ) := −F +
αp − β

k − 1
− 1

(k − 1)(t − τ)
.

We note that our constants C and C̃ in estimating ∂tψ and L[ψ] are also independent of α and
β. Plugging in ψ into L along with Young’s Inequality on the 2∇ψ ·∇p term implies there exists
a large enough constant C̃ ≥ C such that

L[ψ] ≥ −C̃ − C̃|∇p|2 + 2α

k − 1
|∇p|2 + α

k − 1
∇p ·~b+ αpw + 2α|∇p|2 + (k − 1)[ψ2 + ψF ].

Then from using (2.2)

∂tψ ≤ C̃ +
α

k − 1
|∇p|2 + α

k − 1
(∇p ·~b) + αpw + αpF +

1

(k − 1)(t− τ)2
.

This implies that

(7.2) ∂tψ −L[ψ] ≤ 2C̃ + |∇p|2(C̃ − α

k − 1
− 2α) + αpF +

1

(k − 1)(t− τ)2
− (k − 1)[ψ2 + ψF ].

So we first we choose β > 2α supk>1 ||pk||L∞(QT ), so that αp−β ≤ 0. This combined with F > 0
gives

(7.3) (ψ2 + ψF ) = (ψ +
F

2
)2 − F 2

4
≥ (−F

2
+
αp − β

k − 1
)2 +

1

(k − 1)2(t− τ)2
− F 2

4
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(7.4) =

(
αp − β

k − 1

)2

− F
(αp − β)

k − 1
+

1

(k − 1)2(t− τ)2
.

So using (7.3) and (7.4) in (7.2)

∂tψ − L[ψ] ≤ 2C̃ + |∇p|2(C̃ − α

k − 1
− 2α) + F (2αp − β)− (αp − β)2

k − 1
.

Now because 2αp − β ≤ 0 due to our choice of β and F ≥ ε > 0 inside Ω× [0, T ] we have that

∂tψ − L[ψ] ≤ 2C̃ + |∇p|2(C̃ − α

k − 1
− 2α) + ε(2αp − β)− (αp− β)2

k − 1
in Ω× [0, T ].

Now we let α = C̃/2 and β = 2α supk>1 ||pk||L∞(QT ) + 2C̃/ε, then we see that

∂tψ − L[ψ] ≤ 0 in Ω× [0, T ].

That is ψ is a sub-solution of a parabolic equation where w is a super solution of in Ω× [0, T ].
And recalling that p is compactly supported inside Ω × [0, T ] gives us w ≡ 0 on ∂Ω × [0, T ].
Also we have ψ ≤ 0 on ∂Ω × [0, T ], so now as limτ→0+ ψ(x, 0; τ) = −∞, we deduce from the
comparison principle that

1

m
∇ · (m∇p) = w(x, t) ≥ ψ(x, t; 0) ≥ −F − β

k − 1
− 1

(k − 1)t
.

Hence, we have shown

Lemma 7.1 (Refined Aronson-Bénilan Estimate). Assume we are in the congestion case (1.6)
with Assumptions 1, 2, and 3, then we have the following refined semi-convexity estimate for all
k > 1

(7.5)
1

m
∇ · (m∇pk) ≥ −F − β

k − 1
− 1

(k − 1)t

for some constant β > 0 independent of k in the sense of distributions.

This Aronson-Bénilan Estimate implies the following estimates by using (7.5) in (2.2)

Corollary 7.2. Assume we are in the congestion case (1.6) with Assumptions 1, 2, and 3, then
for all k > 1 we have for some constant β > 0 independent of k that

d

dt
pk(X(t, x0), t) ≥ −

(

β +
1

t

)

pk(X(t, x0), t)

and
d

dt
vk(X(t, x0), t) ≥ − 1

k − 1

(

β +
1

t

)

v(X(t, x0), t)

in the sense of distributions.

The normalized density estimate implies the following monotonicity property:

Lemma 7.3. The limiting normalized density v∞ := ̺∞/m is non-decreasing along streamlines
for t > 0.

Note that as the streamlines X are a lipschitz bijection of QT , X maps sets of full measure
to sets of full measure. This along with the pressure estimate in Corollary 7.2 combined with
Grönwall’s Inequality gives us:

Lemma 7.4 (Retention Along Streamlines For Positive Time). Assume that Assumptions 1, 2,
and 3 are met, then we have the following estimate for all k > 1 and τ > 0

pk(X(t, x0), t) ≥ pk(X(τ, x0), τ) exp[−(β +
1

τ
)(t− τ)]
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for some constant β > 0 independent of k for a.e. (x0, t), (x0, τ) ∈ QT such that t ≥ τ . This
implies that for a.e. (x0, t) and (x0, τ) ∈ QT such that t ≥ τ that we have the estimate

p∞(X(t, x0), t) ≥ p∞(X(τ, x0), τ) exp[−(β +
1

τ
)(t− τ)].

This implies that for a.e. (x, t) ∈ QT with t > 0 that Σ(t) is non-decreasing with respect to
streamlines.

To obtain the retention property down to t = 0, we use the classical sub-solution |Π|+ =
max(Π, 0), as described in Section (8), to the pressure equation for all k > 1. This barrier was
inspired by the one in [15].

Lemma 7.5 (Retention Property Along Streamlines For t = 0). Assume that pk(x, 0) →
p∞(x, 0) uniformly such that Σ(0) is open, we are in the congestion case (1.6), and Assumptions
1, 2, and 3. Then if p∞(x, 0) > 0 we have that p∞(X(t, x), t) > 0 for a.e. (x, t) ∈ QT . That is
for a.e. (x, t) ∈ QT that X(t,Σ(0)) ⊂ Σ(t).

Proof. Let x0 ∈ Σ(0), then there is an r1 > 0 such that Br1(x0) ⊂ Σ(0). By choosing γ and
r sufficiently small in the barrier |Π|+ constructed in Lemma 8.4, we can assume that for all k
sufficiently large that

|Π|+(x, 0) ≤ pk(x, 0).

Hence, by the comparison principle, we conclude that for all large k that

|Π|+(x, t) ≤ pk(x, t) ⇒ |Π|+(x, t) ≤ p∞(x, t) for a.e. (x, t) ∈ QT .

But notice |Π(X(t, x0), t)|+ = γ2 > 0 ⇒ p∞(X(t, x0), t) ≥ γ2 > 0 for a.e. (x0, t) ∈ QT . That is
we have X(t,Σ(0)) ⊂ Σ(t) for a.e. (x, t) ∈ QT . �

By combining these two lemmas, we have that

Theorem 7.6 (Σ(t) Increases Along Streamlines). Assume that pk(x, 0) → p∞(x, 0) uniformly
such that Σ(0) is open, we are in the congestion case (1.6), and Assumptions 1, 2, and 3 are met.
Then Σ(t) = {p∞(t) > 0} is non-decreasing with respect to streamlines for a.e. (x, t) ∈ QT .

Now we can prove Theorem 2.4.

Proof. As {p∞(x, t) > 0} ⊂ {̺∞(x, t) = m(x, t)}, it suffices to show if (x0, t0) ∈ Int({p∞(x, t) =
0}) then ̺∞(x, t) = ̺E(x, t). So let (x0, t0) ∈ Int({p∞(x, t) = 0}), then by Lemma 7.6, we
conclude that X(t,X(−t0, x0)) /∈ Σ(t) for 0 ≤ t ≤ t0 (the streamline containing (x0, t0) is not in
Σ(t) for previous time). Combining this with ̺∞ weakly solving

∂t̺∞ = ∇ · (̺∞~b) + f̺∞ in Int({p∞(x, t) = 0})

we conclude that ̺∞(x0, t0) = ̺E(x0, t0). �

This shows Theorem 2.4. Note that Theorem 2.4 implies that patch solutions stay patch
solutions for all times for congestion.

8. Appendix: Barrier

In this section we will construct some barriers for (2.2) that we used throughout the article.
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8.1. Super Solutions For Radial m or d = 1. We first construct a super solution to the
pressure equation (2.2) for all k > 1 when m is radial or we are in one spatial dimension.

Lemma 8.1. Assume that either m is radial (m(x, t) = m(r, t) where r = |x|), or we are working
in one spatial dimension (d = 1). Then if Assumption 1 is met , then the radial function

ϕ(r, t) :=
1

d

ˆ r

0

r′

m(r′, t)
dr′

solves

(8.1)
1

m
∇ · (m∇ϕ) = 1 in R

d

such that there exists C1, C2, C3 > 0 with C1r
2 ≤ |ϕ(r, t)| ≤ C2r

2 and |∇ϕ(r, t)| ≤ C3|r|.
With the above ϕ we can construct a viscosity super solution to the pressure equation (2.2)

for all k > 1 when d = 1 or m is radial.

Definition 8.1 (Viscosity Super-Solutions). We say that ψ is a viscosity super solution to (2.2)
if for all φ ∈ C∞(Rd) that touch ψ from below at (x0, t0) then

(8.2) ∂tφ ≥ |∇φ|2 +∇φ ·~b+ (k − 1)φ(
1

m
∇ · (m∇φ) + F ) at the point (x0, t0).

Lemma 8.2 (Viscosity Super Solutions To The Pressure Equation for Radial m or in 1D).
Assume that m is radial or we are in one spatial dimension with Assumption 1 met. Then let
ϕ(x, t) be as in Lemma 8.1. Now if we fix a γ > 1 then there exists a large α > 0 and a smooth
increasing R(t) with R(0) = γ such that

Z(x, t) := α|R(t)− ϕ(x, t)|+
is viscosity super solution to (2.2) for all k > 1.

Proof. We note that in this lemma, it is important to keep track of the constants that are not
α. Let us denote U(t) := {x : Z(x, t) > 0}. We first show that Z is a classical super solution of
(2.2) in {Z > 0}. First thanks to Lemma 8.1, we have that

1

m
∇ · (m∇Z) = −α/m in U(t).

This implies if α is sufficiently large that

1

m
∇ · (m∇Z) + F ≤ 0 in U(t) ∀t > 0.

So by (2.2), it suffices to check that

∂tZ ≥ α2|∇ϕ|2 − α(∇ϕ ·~b) in U(t)

to show that Z is a classical super solution in {Z > 0}. Now by Young’s Inequality with

M := ||~b|||2∞/2, it suffices to show that

(8.3) ∂tZ ≥ α2 3

2
|∇ϕ|2 +M in U(t).

Now we compute bounds on ∂tϕ and |∇ϕ|2. By Lemma 8.1 we have that |∇ϕ(r, t)|2 ≤ C2
3r

2

with C1r
2 ≤ |ϕ(r, t)|, so by choosing Kϕ := C1C

2
3 , we have

(8.4) |∇ϕ|2 ≤ Kϕ|ϕ|.
Now to bound ∂tϕ, we observe from Lemma (8.1) that

∂tϕ(r, t) = −1

d

ˆ r

0

mtr
′

m2
dr′,
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so we have the bound

(8.5) |∂tϕ(r, t)| ≤ C4r
2 ≤Mϕϕ(r, t)

for some C4,Mϕ > 0.

Now by (8.4) and (8.5) to show (8.3) it suffices to choose an R such that

∂tR ≥ (
3

2
α2Kϕ +Mϕ)R(t) +M.

In particular, we can choose

R(t) = (γ +M) exp((
3

2
α2Kϕ +Mϕ)t)−M,

which satisfies all the desired conditions. Thus, Z is a classical super solution inside {Z > 0}.

Because 0 is a solution of the pressure equation (2.2) and Z is a classical super solution in
U(t), it suffices to show the viscosity touching condition (8.2) on ∂{Z > 0} to conclude Z is a
viscosity super solution.

Let φ be a smooth test function that touches Z from below at (x0, t0) ∈ ∂{Z > 0}. We may
assume that we have |∇φ(x0, t0)| 6= 0 as then (8.2) would be trivial because ∂tφ(x0, t0) ≥ 0.
Indeed, observe

Z(x0, t0 + h)− Z(x0, t0) ≥ φ(x0, t0 + h)− φ(x0, t0),

which implies ∂tφ(x0, t0) ≥ 0.

So now assume that φ touches Z from below at (x0, t0) ∈ ∂{Z > 0} such that |∇φ(x0, t0)| > 0.
First observe from (8.3) that by undoing our Young’s Inequality that

(8.6) ∂tZ ≥ |∇Z|2 + (|∇Z|)||~b||∞ in {Z > 0}.
Now let Vφ and VZ denote the normal velocity of the free boundary of ∂{x : φ(x, t) > 0} and
∂{x : Z(x, t) > 0} respectively at (x0, t0) then from (8.6)

∂tφ(x0, t0)

|∇φ(x0, t0)|
= Vφ ≥ VZ ≥ |∇Z(x0, t0)|+ ||~b||∞.

Note that ∇Z(x0, t0) refers to the limit of the ∇Z(x, t) from inside {Z > 0} to the point (x0, t0)
and is non-zero because |∇φ(x0, t0)| ≤ |∇Z(x0, t0)| because φ is touching Z from below. Then
this implies

∂tψ(x0, t0) ≥ |∇ψ(x0, t0)|2 +∇ψ(x0, t0) ·~b(x0, t0),
which allows us to conclude that Z is a viscosity super solution. �

Remark 8.2. Assume that we can construct a u such that ∇ · (m∇u) ≥ 1 where C1|x|2 ≤
u(x, t) ≤ C2|x|2 and |∇u(x, t)| ≤ C|x| with |∂tu(x, t)| ≤ C|x|2 + C. Then the proof of Lemma
(8.2) implies that we can construct a viscosity super solution of (2.2) for all k > 1 that is
uniformly compact support in QT .

8.2. Super Solutions When ∇m Decays Fast Enough At ∞. Now we use this for the case
of |∇m(x, t)| ≤ ε/|x| for |x| ≥ R/2 to construct a positive sub-solution of the uniformly elliptic
operator ∇ · (m(x, t)∇u) in R

d. We first consider the unique solution of

(8.7)

{

∇ · (m(x, t)∇[φ(x, t)]) = 1 in BR(0)× [0, T ]

φ(x, t) = 1 on ∂BR(0)
.

Now we use a priori estimates to show that we may assume that φ(x, t) > 0 in BR(0)× [0, T ].
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By standard a priori estimates for uniformly elliptic PDEs (see [13, 11]), we have that there
is a constant C = C(m,∇m,R, d) such that

sup
(x,t)∈BR(0)×[0,T ]

|φ(x, t)| ≤ C.

So we may assume that φ(x, t) > 0 on BR(0)×[0, T ] since otherwise we may consider φ(x, t)+2C,
which solves the same PDE with constant boundary data.

Next we will obtain regularity of φ in time. First by global Schauder estimates (see [11]),
there is a C = C(m,∇m,R, d) such that
(8.8)

sup
(x,t)∈BR(0)×[0,T ]

|φ(x, t)| + sup
(x,t)∈BR(0)×[0,T ]

d∑

i=1

|∂xi
φ(x, t)| + sup

(x,t)∈BR(0)×[0,T ]

d∑

i,j=1

|∂2xixj
φ(x, t)| ≤ C.

Hence, by differentiating (8.7) in time, we have that
{

∇ · (mt∇φ) +∇ · (m∇φt) = 0 in BR(0) × [0, T ]

φt(x, t) = 0 on ∂BR(0)
.

The first term, ∇· (mt∇φ) is smooth in space and bounded in BR(0)× [0, T ], so by treating this
as a known term, we can conclude again by standard a priori arguments for uniformly elliptic
PDE that there is a C = C(m,∇m,R, d) such that

|φt(x, t)| ≤ C.

Observe that for |x| ≥ R by Cauchy-Schwarz we have that

∇ ·
[
m∇(|x|2)

]
= 2dm+ 2∇m · ~x ≥ 2dδ − 2ε ≥ δ.

Note that we used m(x, t) ≥ δ > 0, |∇m(x, t)| ≤ ε/|x| for |x| ≥ R/2, and assumed ε = ε(δ)
is sufficiently small. From (8.8), we can choose a C ≥ 1/δ so large such that for w(x) :=
1 + C(|x|2 −R2) and if x ∈ ∂BR(0), we have that the normal derivatives are ordered:

∂w

∂r
(x) >

∂φ

∂r
(x),

which implies

ϕ(x, t) :=

{

φ(x, t) for |x| ≤ R

w(x) for |x| ≥ R

is a viscosity solution of ∇ · (m∇u) ≥ 1 (since the maximum of two viscosity sub-solutions is
a viscosity sub-solution [6] and ϕ cannot be touched from above on ∂BR(0)). Also notice that
∂tϕ = 0 for |x| ≥ R, and |∂tϕ| = |∂tφ| ≤ C in BR(0), so ∂tϕ is bounded.

Now note that ϕ satisfies all the requirements of Remark 8.2, so we conclude

Lemma 8.3 (Super Solutions To The Pressure Equation when ∇m decays fast enough at ∞).
Assume that Assumption 1 is met and there is an R > 0 such that |∇m(x, t)| ≤ ε/|x| for
|x| ≥ R/2 and ε = ε(δ) sufficiently small and non-negative. Then for any γ > 1 we have that
there is an R with exponential growth such that R(0) = γ with ∂tR ≥ 0 and

Z(x, t) := α|R(t)− ϕ(x, t)|+
is a viscosity super solution to the pressure equation (2.2) when α > 0 is sufficiently large and
k > 1. And Z is bounded in L∞(QT ) and is compactly supported for any fixed time.
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8.3. Subsolutions For Congestion Case. Now we construct a barrier for the pressure equa-
tion when we are in the congestion case (1.6). By a similar argument as in [15] Lemma A.4 we
have the following:

Lemma 8.4. Let x0 ∈ R
d, L be the Lipschitz Constant of ~b, and for sufficiently small 0 < γ ≪ r,

then define

Π(x, t) := γ2 − r2e2Lt|x−X(t, x0)|2

Then if we are in the congestion case (1.6) and we have Assumption 1 then Π(x, t) is a classical
sub-solution of the pressure equation (2.2) on the set {Π > 0} ∩ {0 < t < T} for all k > 1.

Lemma 8.5. Let Π be as in Lemma 8.4. Then |Π|+ := max{Π, 0} is a viscosity sub-solution to
the pressure equation for all k > 1.

Proof. This follows from an analogous proof in Lemma 8.2 using the normal velocity of ∂{x :
Π(x, t) > 0}. �

9. Appendix: Weak Solutions of mPME

In this appendix, we will sketch the proofs of properties of weak solutions to (1.1).

Note that (1.1) is a parabolic equation that degenerates on the zero level set, so we still expect
a comparison principle to hold for weak sub and super solutions. We sketch the proof below,
which is based on the proof in [19].

Theorem 9.1 (Comparison Principle for mPME). Let u and u respectively be a weak super and
sub solution of (1.1) with initial datas u0 and u0 respectively. Assume further that u0 ≥ u0
almost everywhere, then we have u ≥ u almost everywhere.

Proof. The proof is based on a Hilbert duality argument. Let w := u− u, then we have for any
non-negative test function ϕ that

0 ≤
¨

QT

w
(

∂tϕ+A∇ · (m∇ϕ) + fϕ−∇ϕ ·~b
)

,

where 0 ≤ A := vk−vk

u−u with v := u/m and v := u/m. Then if ξ is a non-negative test function,

then we want to solve the following degenerate backwards parabolic PDE

(9.1)

{

∂tϕ+A∇ · (m∇ϕ) + fϕ−∇ϕ ·~b = ξ in QT

ϕ(x, T ) = 0
.

Note that solutions of (9.1) will be non-negative because 0 is a sub-solution of (9.1). Then if we
could solve (9.1), then we would have

¨

QT

wξ ≥ 0

for all non-negative test functions, which would imply w ≥ 0 almost everywhere.

To solve (9.1), we have to approximate A by a smooth approximation Aε where ε ≤ Aε ≤ 1
ε

with ε > 0. One can then solve (9.1) with A replaced by Aε by using uniform parabolic theory.
Then by following similar arguments as in [19] Theorem 3.4, one sees that as ε → 0 we obtain
that

˜

QT
wξ ≥ 0. �

Our comparison principle immediately implies that we have uniqueness of weak solutions of
(1.1). So we now focus on existence.
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Our existence proof is based on the methods in [24]. We first fix a large spatial domain Ω
and construct weak solutions on a bounded domain. We let ΩT := Ω × (0, T ), then we want to
construct a solution to

(9.2)







∂t̺k = ∇ · (̺k(∇pk +~b)) + f̺k in ΩT

̺k(x, 0) = ̺0k(x) in Ω

̺k(x, t) = 0 on ∂Ω× [0, T ]

,

where the initial data ̺0k(x) is compactly supported inside Ω.

Definition 9.1 (Weak Solutions to mPME on ΩT ). We say that ̺k is a weak solution to (9.2)
with initial data ̺0k ∈ L∞(Ω) that is compactly supported in Ω if ̺k ∈ L2(ΩT ) and vk := ̺k/m

satisfies vkk ∈ H1
0 (ΩT ) such that for all test functions ϕ ∈ C∞

c (Ω × [0,∞))

(9.3)

¨

ΩT

−̺k∂tϕ =

ˆ

Ω
ϕ(x, 0)̺0k(x) +

¨

ΩT

−m∇ϕ · ∇vkk − ̺k(∇ϕ ·~b) + fϕ̺k.

To construct a weak solution, we solve the following approximate solution. For n ∈ N, we
consider the approximate problem

(9.4)







∂t̺
(n)
k = ∇ · (̺(n)k (∇p(n)k +~b)) + f̺

(n)
k in ΩT

̺
(n)
k (x, 0) = ̺0k(x) +

m(x,0)
n in Ω

̺
(n)
k (x, t) = m(x, t)/n on ∂Ω × [0, T ]

.

We can compare ̺
(n)
k to the sub-solution δm(x, t) exp(−αt) for small enough δ > 0 and large

enough α > 0, to conclude ̺
(n)
k ≥ εn > 0. Then this implies ̺

(n)
k solves a uniformly parabolic

PDE, so by following the arguments in [24] Chapter 3, we know that ̺
(n)
k is a smooth and is a

classical solution to (9.2).

Now from the comparison principle, we have that ̺
(n)
k ≥ ̺

(n+1)
k , so there exists a limit

̺k := limn→∞ ̺
(n)
k . By the monotone convergence theorem, we have that ̺

(n)
k → ̺k in Lp(ΩT )

for p ∈ [1,∞). So from the weak formulation of (9.2), it suffices to show that if v
(n)
k := ̺

(n)
k /m,

then (v
(n)
k )k ⇀ vkk in H1(ΩT ) where vk := ̺k/m. In particular, it suffices to show that

||∇(v
(n)
k )k||L2(ΩT ) ≤ C where C is independent of n. To simplify our notations, let us write

qn := (v
(n)
k )k and un := ̺

(n)
k . Then we can multiply (1.1) by (qn − 1

nk ) which is 0 on ∂Ω to
see by integration that ||∇qn||L2(ΩT ) ≤ C. This concludes the existence of weak solutions of (9.2).

Notice in particular, that this shows we can approximate our weak solutions of (9.2) with pos-
itive smooth solutions of (9.2). Then by using our smooth approximations we have a comparison
principle for viscosity super solutions and our weak solutions on ΩT . Now to go from ΩT to
QT , we use our barriers constructed in Section 8. These barriers show that if we choose Ω suffi-
ciently large, then our weak solution of (9.3) will be compactly supported inside Ω. Then we can
extend our weak solution by defining to be zero outside of Ω, which gives a weak solution of (1.1).
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Mathématiques Pures et Appliquées 155 (2021), 62–82.
8. Noemi David and Markus Schmidtchen, On the incompressible limit for a tumour growth model incorporating

convective effects, arXiv preprint arXiv:2103.02564 (2021).
9. O Gil and Fernando Quirós, Convergence of the porous media equation to hele-shaw, Nonlinear Analysis:

Theory, Methods & Applications 44 (2001), no. 8, 1111–1131.
10. Omar Gil and F Quirós, Boundary layer formation in the transition from the porous media equation to a

hele-shaw flow, Annales de l’IHP Analyse non linéaire, vol. 20, 2003, pp. 13–36.
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