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Abstract—In this paper, the fragility-free global prescribed
performance control (GPPC) problem for multiagent systems
(MASs) is investigated. Firstly, a GPPC strategy is designed
for MASs, and the design parameters are independent of the
initial conditions, achieving global consensus tracking results.
Furthermore, a novel fragility-free control strategy is designed to
adjust the performance boundary based on error changes after
system stability in real time, avoiding the fragility problem of
conventional prescribed performance control schemes. Finally,
the proposed control strategy is applied to a simulation example
to verify its feasibility and effectiveness.

Index Terms—Nonlinear multiagent systems (MASs), fragility-
free global prescribed performance control (GPPC).

I. INTRODUCTION

The analysis and design of multiagent systems (MASs) [1]
have been a hot topic in the field of artificial intelligence in
recent years. They have broad application prospects in many
fields such as aerospace, industrial production, smart grids and
parallel computing, and have received widespread attention
from researchers. For the needs of large-scale actual engi-
neering, the completion of many control tasks often requires
multiple links or combinations to cooperate with each other,
and many control systems have complex nonlinearity and high
uncertainty. Therefore, more and more scholars are conducting
in-depth research on MASs.

The cooperative control of MASs has garnered significant
attention due to its widespread applications in various domain-
s, such as robots, unmanned aerial vehicles, smart grids and
distributed sensor networks. As a fundamental and important
aspect of the cooperative control problem of MASs, the con-
sensus control problem is a research focus of many scholars. A
key challenge in this lies in ensuring that the collective behav-
ior of the agents adheres to desired performance specifications
while adapting to uncertainties in the environment. To address
this challenge, the prescribed performance control (PPC) [2–4]
approach has emerged as a promising strategy that enables the
design of controllers that explicitly guarantee predetermined
transient and steady-state performance. However, the above
PPC strategies need to satisfy the initial condition that the
initial values of errors are forcibly constrained within the
initial performance boundaries, which limits the practicality of
the PPC strategies. To solve this problem, Li et al. [5] designed
a global consensus tracking control strategy for high-order

nonlinear MASs with prescribed performance, which removed
the restriction related to the initial condition.

The various uncertainties in complex environments may
cause significant disturbances to the systems. If interference
causes large amplitudes of errors, they may cause the errors
to exceed the performance boundary, which is known as the
fragility problem of the PPC approach. Many outstanding
results [6, 7] of the fragility-free PPC schemes were proposed,
which avoid the challenging fragility problem. Bu et al. [6]
developed a low-complexity fragility-free PPC approach for
constrained waverider vehicles. Most of the existing fragility-
free PPC schemes focus on waverider vehicle systems, with
few applicable to MASs. As the agent number increases, the
control objective changes from ordinary tracking to consensus,
which poses certain difficulties in designing fragility-free PPC
schemes. This paper aims to design a fragility-free PPC
strategy for MASs to avoid the fragility problem.

Taking inspiration from the above, this paper aims to
design a fragility-free GPPC scheme for MASs. The main
contributions are listed below:

1) A GPPC strategy is designed for MASs, and the design
parameters are independent of the initial conditions,
achieving global consensus tracking results.

2) A novel fragility-free control strategy is designed to
adjust the performance boundary based on error changes
after system stability in real time, avoiding the fragility
problem of conventional PPC schemes and improving
the robustness of the system.

II. PRELIMINARIES

A. Graph Theory

Every agent is regarded as a node in MASs. The communi-
cation relationships among agents are described by a directed
graph G = (V , E ,A), where V = {v1, v2, . . . , vN} is a node
set, E ⊆ V × V = {(vj, vi)| vj, vi ∈ V} is an edge set, and
A = [aij] ∈ RN×N is the adjacency matrix with aij > 0 ⇔
(vj, vi) ∈ E and aij = 0 ⇔ (vj, vi) /∈ E . The digraph G has
no self-loops in this paper. D = diag{ΣN

j=1a1j, . . . , ΣN
j=1aNj}

is the degree matrix. The Laplacian matrix is described as
L = D−A. There exists a particular node v0 that can connect
each node in the node set V through directed paths, then the
digraph G contains a spanning tree, where v0 is called to be



the root of the spanning tree. The direct transfer matrix is
expressed by the matrix B = diag{b1, . . . , bN}. Moreover, if
node v0 can directly transmit information to node vi, bi > 0,
otherwise, bi = 0.

Assumption 1: [8] The directed graph G contains a spanning
tree, and the leader is the root of the spanning tree.

Lemma 1: [8] If a spanning tree is contained in a digraph G,
and the leader is its root, then the matrix (L+B) is nonsingular.

Lemma 2: [8] The vectors Ψ and Γ satisfy the inequality

ΨTΓ ≤ ς̀ΨTΨ

2
+

ΓTΓ

2ς̀
,

where ς̀ is a positive constant.
Lemma 3: [9] For any continuous function F (x) defined on

a compact set ΛF, the radial basis function neural networks
(RBF NNs) ϕ̄TΓ̄(x) can be used to approximate the function
F (x) in arbitrary accuracy Ξ∗

F > 0 as follows:

F(x) = ϕ̄TΓ̄(x) + ΞF(x), ∀x ∈ ΛF,

where ϕ̄ is the ideal weight vector, Γ̄(x) is the basis function
vector, and ΞF(x) is the approximation error that satisfies
|ΞF(x)| ≤ Ξ∗

F.

III. MAIN RESULTS

A. Fragility-Free GPPC Strategy and Controller Design

Consider the following nonlinear MAS that contains a
leader and N followers. The model of the ith (i = 1, 2, . . . , N)
follower is expressed as

ẋi,k = xi,k+1 + fi,k(xi,k), k = 1, 2, . . . , n− 1,
ẋi,n = ui + fi,n(xi,n), i = 1, 2, . . . , N,
yi = xi,1,

(1)

where xi,k = [xi,1, xi,2, . . . , xi,k]T and xi,n = [xi,1, xi,2, . . . , xi,n]T

represent state vectors. fi,k(xi,k) and fi,n(xi,n) are unknown
nonlinear functions. ui and yi are the control input and the
output of the ith follower, respectively.

The additive mask privacy preservation transformation is
constructed as follows:{

ξi,k = xi,k + δi,k,
ξi,n = xi,n + δi,n,

(2)

where ξi,k and ξi,n are the ith agent states under privacy preser-
vation. δi,k and δi,n are privacy preservation mask functions
designed for the ith agent.

According to (1) and (2), the ith agent under privacy
preservation is modeled as follows:

ξ̇i,k = ξi,k+1 − δi,k+1 + δ̇i,k + fi,k(ξi,k),

ξ̇i,n = ui + δ̇i,n + fi,n(ξi,n), k = 1, 2, . . . , n− 1,
ȳi = ξi,1,

(3)

where ȳi is the output of the ith agent under privacy preser-
vation. ξi,k = [ξi,1, ξi,2, . . . , ξi,k]T and ξi,n = [ξi,1, ξi,2, . . . , ξi,n]T

represent state vectors under privacy preservation.

The distributed consensus tracking error of the ith agent is
defined as follows:

ei,1 =

N∑
j=1

aij
(
ξi,1 − ξj,1

)
+ bi

(
ξi,1 − ξ0,1

)
, (4)

The prescribed performance error transformation function
is designed as

σi,1 =
m̆izi,1

Fui − zi,1
+

m̆izi,1

Fli + zi,1
, (5)

where σi,1 is the transformed consensus tracking error. m̆i is a
positive constant.

Then, the coordinate transformations of the remaining or-
ders (from 2nd to nth order) are given as follows:

σi,s = ξi,s − αi,s−1, s = 2, 3, . . . , n, (6)

where αi,s−1 is the virtual controller to be designed later.
Step 1: The Lyapunov function of the ith agent is selected

as

Vi,1 =
σ2

i,1

2
+

θ̃2
i

2εi,θ1
, (7)

where θ̃i represents the adaptive estimation error that
satisfies the relationship θ̃i = θi − θ̂i, where θi ,
max{‖φi,1‖2, ‖φi,2‖2, . . . , ‖φi,n‖2}. φi,r (r = 1, 2, . . . , n) is the
weight vector of the RBF NNs, and θ̂i is the estimated value
of θi. εi,θ1 is a positive constant.

The derivative of the Lyapunov function Vi,1 is calculated
as

V̇i,1 =− m̆izi,1σi,1

( Ḟui

(Fui − zi,1)2 +
Ḟli

(Fli + zi,1)2

)
+ Qiσi,1

(( N∑
j=1

aij + bi
)(
σi,2 + αi,1 − δi,2 + δ̇i,1

+ fi,1(ξi,1)
)
−

N∑
j=1

aij
(
ξj,2 − δj,2 + δ̇j,1 + fj,1(ξj,1)

)
− bi

(
ξ0,2 − δ0,2 + δ̇0,1

))
− θ̃i

˙̂
θi

εi,θ1
, (8)

where Qi = 2m̆iβi
π(1+e2

i,1)

(
Fui

(Fui−zi,1)2 + Fli
(Fli+zi,1)2

)
.

The virtual controller αi,1 of the ith agent is designed as

αi,1 =− ci,1σi,1(∑N
j=1 aij + bi

)
Qi

+ δi,2 − δ̇i,1

+
m̆izi,1(∑N

j=1 aij + bi
)
Qi

( Ḟui

(Fui − zi,1)2 +
Ḟli

(Fli + zi,1)2

)
+

1∑N
j=1 aij + bi

( N∑
j=1

aij
(
− δj,2 + δ̇j,1

)
+ bi

(
ξ0,2

− δ0,2 + δ̇0,1
)
− εi,1

2
Qiσi,1θ̂i ‖ζi,1(Xi,1)‖2 − εi,2

2
Qiσi,1

)
,

(9)

where ci,1 is a designed positive constant.



Step p (p = 2, 3, . . . , n−1): Choose the Lyapunov function
as

Vi,p = Vi,p−1 +
σ2

i,p

2
. (10)

The derivative of Vi,p is calculated as

V̇i,p = V̇i,p−1 + σi,p
(
ξi,p+1 − δi,p+1 + δ̇i,p + fi,p(ξi,p)− α̇i,p−1

)
.

(11)

The virtual controller αi,p of the ith agent is designed as

αi,p =− ci,pσi,p − σi,p−1 + δi,p+1 − δ̇i,p + Li,p20

−
εi,3p−2 + εi,3p−1

2
σi,p −

εi,3(p−1)

2
σi,pθ̂i‖ζi,p(ξi,p)‖2,

(12)

where ci,p is a designed positive constant.
Step n: Choose the Lyapunov function as

Vi,n = Vi,n−1 +
σ2

i,n

2
. (13)

The derivative of Vi,n is calculated as

V̇i,n = V̇i,n−1 + σi,n
(
ui + δ̇i,n + fi,n(ξi,n)− α̇i,n−1

)
. (14)

The controller ui of the ith agent is designed as

ui =− ci,nσi,n − σi,n−1 − δ̇i,n + Li,n20

− εi,3n−2 + εi,3n−1

2
σi,n −

εi,3(n−1)

2
σi,nθ̂i‖ζi,n(ξi,n)‖2, (15)

where ci,n is a designed positive constant.

B. Stability Analysis

Theorem 1: Consider the MAS (3). Under Assumption 1, the
virtual controllers (9), (12), the controller (15), the following
control objectives can be guaranteed that

• All signals of the MAS are bounded.
• The consensus tracking errors of all agents can achieve

the predetermined accuracy.
Proof: The total Lyapunov function of N agents can be

selected as

VN =
N∑

i=1

Vi,n

=

N∑
i=1

( n∑
s=1

σ2
i,s

2
+

θ̃2
i

2εi,θ1

)
. (16)

The derivative of VN is calculated as

V̇N =

N∑
i=1

V̇i,n

≤
N∑

i=1

(
−

n∑
s=1

ci,sσ
2
i,s −

ci,θ

2εi,θ1
θ̃2

i + ∆i,n

)
≤ −κVN + γ. (17)

where κ = min{2ci,1, 2ci,2, . . . , 2ci,n, ci,θ}, γ =
∑N

i=1 ∆i,n.

IV. SIMULATION RESULTS

The trajectory of the leader vehicle is given as y0 =
−2 sin(0.1πt). Based on [10], the ith (i = 1, 2, . . . , 6) follower
vehicle is modeled as

miÿi = υi − µmig− τiẏi, (18)

where yi and υi are the output and the control force of the ith
vehicle, respectively. mi is the total mass of the ith vehicle.
µ is the rolling friction coefficient. g is the gravitational
acceleration. τi is the unknown viscous friction coefficient of
the ith vehicle.

Select the state variables xi,1 = yi, xi,2 = ẏi, the relationship
(18) can be expressed as the following double integrator model


ẋi,1 = xi,2, i = 1, 2, . . . , 6,

ẋi,2 = ui − µg− τi

mi
xi,2,

yi = xi,1,

(19)

where µ = 0.015, g = 9.8 m/s2, τ1 = τ2 = τ5 = 0.2 kg/s,
τ3 = τ4 = τ6 = 0.4 kg/s and mi = 2 kg.

Fig. 1. The tracking trajectories of the multi-vehicle system.

Fig. 2. The consensus tracking errors of the six vehicles.



The evolution of the tracking trajectories for the multi-
vehicle system is shown in Fig. 1. We can see that the trajec-
tories deviate during some time periods, which are exactly the
time periods. We can see that the trajectories deviate during
some time periods, which are precisely the time periods that
have been strongly disturbed.

Fig. 2 shows the consensus tracking errors of the six vehi-
cles. During the three protected time periods, the consensus
tracking errors of the six vehicles increase rapidly due to the
action of strong disturbance but quickly converge to near zero.

V. CONCLUSION

In this paper, the fragility-free GPPC problem for MASs
has been investigated. Firstly, a GPPC strategy has been
designed for MASs, and the design parameters are independent
of the initial conditions, achieving global consensus tracking
results. Furthermore, a novel fragility-free control strategy has
been designed to adjust the performance boundary based on
error changes after system stability in real time, avoiding
the fragility problem of conventional prescribed performance
control schemes. Finally, the proposed control strategy has
been applied to a simulation example to verify its feasibility
and effectiveness.
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