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ABSTRACT

We explore the use of large language models (LLMs) for next-utterance predic-
tion in human dialogue. Despite recent advances in LLMs demonstrating their
ability to engage in natural conversations with users, we show that even lead-
ing models surprisingly struggle to predict a human speaker’s next utterance. In-
stead, humans can readily anticipate forthcoming utterances based on multi-modal
cues—such as gestures, gaze, and emotional tone—from the context. To system-
atically examine whether LLMs can reproduce this ability, we propose SayNext-
Bench, a benchmark that evaluates LLMs and Multimodal LLMs (MLLMs) on
anticipating context-conditioned responses from multimodal cues spanning a va-
riety of real-world scenarios. To support this benchmark, we build SayNext-PC, a
novel large-scale dataset containing dialogues with rich multimodal cues. Build-
ing on this, we further develop a dual-route prediction MLLM, SayNext-Chat,
that incorporates cognitive-inspired design to emulate the predictive processing in
conversation. Experimental results demonstrate that our model outperforms state-
of-the-art MLLMs in terms of lexical overlap, semantic similarity, and emotion
consistency. Our results verify the feasibility of next-utterance prediction with
LLMs from multimodal cues, and emphasize the indispensable role of non-verbal
cues as the foundation of natural human interaction. We believe this exploration
not only opens a new direction toward more human-like, context-sensitive AI in-
teraction but also offers a pathway to uncovering cognitive concepts from dia-
logue data for human-centered AI. Our benchmark and model can be accessed at
https://saynext.github.io/.

1 INTRODUCTION

Large language models (LLMs) have fundamentally reshaped the landscape of human–machine
interaction. By leveraging large-scale pretraining and powerful generative capabilities, these mod-
els can produce coherent, contextually appropriate, and often engaging conversations with users
(Brown et al., 2020). This unprecedented fluency has fueled a wide range of applications—from
virtual assistants (OpenAI, 2022; Team et al., 2023; Liu et al., 2024) to educational tools (Wollny
et al., 2021)—where LLMs are expected to act as adaptive and collaborative partners in dialogue.

Despite these advances, a fundamental paradox remains unresolved: while LLMs excel at sus-
taining dialogue, they consistently fail to accurately predict what a specific user will say next.
We conducted preliminary experiments on several state-of-the-art conversational models, includ-
ing GPT4o (Hurst et al., 2024), Gemini2.5 (Comanici et al., 2025), VideoLLaMA3 (Zhang et al.,
2025), InternVL2 (Chen et al., 2024), LLaVA-NeXT (Zhang et al., 2024), and InstructBLIP (Dai
et al., 2023), by prompting each model to predict a speaker’s forthcoming utterance in a video,
given contextual input and task instructions. Our results indicate that, even with explicit task in-
structions and visual context, all of these state-of-the-art models struggle to generate semantically
appropriate predictions of forthcoming conversational utterances (See Figure 1).

This shortcoming is not a trivial flaw; rather, it reflects a fundamental limitation of LLMs. From
a cognitive neuroscience perspective, next-utterance anticipation are central to natural communi-
cation, which involves actively generating hierarchical predictions about forthcoming sensory and
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Honestly, I felt like I got really lucky in the tiebreaker because I don't think
I won any points on her serve before that. So I was just thinking if I had to 

play another tiebreaker against her.

 Question Utterance      Response Utterance   

SayNext-
Chat
(Ours)

Human Predictive Processing

Honestly, I was just thinking, OK, here we go. I've never been in 
this situation before. And I think I played pretty well in the first 
set. So I just felt like, let's go into the second set and try better.

I felt a mix of relief and determination. I had to maintain focus.

I'm sorry, but as an AI, I can't provide predictions about specific 
individuals' responses based on their expressions in a video.

I felt a mix of emotions, overall I was very focused and determined. 

It was definitely a moment of relief after winning the first set.
I tried to stay calm, but it wasn't easy... It’s hard to explain.

Lip Corner
Depressor

Hand-to-Chin
Support

Downward
Gaze

I was just trying to stay in the moment and not think too 
far ahead. Because I knew I still had to win the second set.

Evaluation

Key Factors

Appreciation
Pressure
Expectation 

Pressure
Satisfaction
Expectation

No Expectation

Relief
& Determined

Fail to Predict

Focus &
Determined

Relief & Calm

Input Video

What was your state of mind after 
winning the first set as you won your 

59 games in that situation?

LLaVA-NeXT

Videollama3

Ground Truth

Predictions

Interviewer's Question

Figure 1: The Illustration of Next-Utterance Prediction. Given a video and the interviewer’s
question turn, the task in our benchmark is to predict the subsequent response. In evaluation, we
show that the response utterance predicted by our model SayNext-Chat (green) align with those in
the ground truth (blue), whereas other MLLMs (red) often yield irrelevant factors, incorrect ones, or
entirely fail to predict. We extract the key factors of the predictions to facilitate readers’ understand-
ing. More quantitative results are available and detailed in Sec. 4.1.

linguistic input and continuously updating them against prediction errors (Rao & Ballard, 1999;
Goldstein et al., 2022). Current LLMs, however, are passively optimized for statistical next-token
prediction over large pretraining corpora—capturing general linguistic regularities, lacking the goal-
directed, hierarchical, and intention-sensitive nature of human predictive processing. As a result,
they fail to account for the idiosyncratic, personalized, and intentional aspects of human dialogue.

Another fundamental limitation of current large language models (LLMs) for next utterance pre-
diction is that they rely primarily on textual content, thereby overlooking non-verbal cues that are
central to human interaction. Non-verbal behaviors involve rich emotional cues and are the very
basis on which humans anticipate and coordinate turns in conversation, serving as critical early in-
dicators of communicative intent (Holler, 2025; Emmendorfer & Holler, 2025). Ignoring these
modalities thus leaves LLMs blind to essential aspects of natural dialogue, making the modeling of
non-verbal information indispensable for predictive and embodied language understanding.

A natural question arises: What are the motivations for enabling LLMs to predict next utterances?
Apart from purely scientific interests, learning to predict forthcoming utterances carries broad im-
plications across natural language processing, human–computer interaction, and AI safety. For ex-
ample, in social robotics and embodied AI, such predictive capability supports more natural co-
ordination with humans for fluid interaction in real-world environments. From the perspective of
AI alignment and safety, next-utterance prediction also provides a principled way to model human
intent in advance, thereby reducing the risk of misinterpretation and enabling proactive safeguards
against harmful conversational trajectories. Ultimately, developing models that can anticipate dia-
logue in a manner closer to human predictive processing is not only scientifically compelling but
also practically essential for building trustworthy and interactive AI systems.

Motivated by these observations, we present the SAYNEXT and position it as an initial step to-
ward bridging the gap between fluent dialogue generation and genuine cognitive understanding in
human–AI interaction. By explicitly targeting next-utterance prediction, we move beyond the next-
token paradigm of current LLMs and ground anticipation in multimodal cues that mirror human
predictive processing. To this end, we introduce a dedicated dataset in two scales, SayNext-PC2K
and SayNext-PC19K, of multimodal dialogues spanning real-world scenarios, and propose a novel
MLLM framework, SayNext-Chat, that integrates verbal and non-verbal signals to infer user inten-
tions and forecast forthcoming utterances. Our experiments across diverse conversational settings
demonstrate the limitations of existing LLM models and the promise of our approach. More broadly,
this work establishes a foundation for developing AI systems that can not only converse, but also
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anticipate—thereby aligning more closely with the mechanisms of human communication and ad-
vancing the design of empathetic, adaptive, and trustworthy interactive agents.

Our contributions include:

1. We introduce SayNext-Bench, a multimodal benchmark designed to assess LLMs’ capacity to
integrate non-verbal visual cues for human-like predictive processing in conversational interac-
tion, thereby laying a foundation for cognitively grounded dialogue modeling.

2. We construct the SayNext-PC dataset in two scales, PC2K and PC19K, through a scalable data
collection pipeline. Extensive cross-scale and cross-domain evaluations verify the benchmark’s
extensibility and generalization ability.

3. We propose a cognitively inspired dual-route framework, SayNext-Chat, that incorporates prim-
ing vectors as learnable tokens, enabling LLMs to simulate anticipatory activation and align
response generation with contextual priors.

4. We conduct systematic evaluations across four evaluation protocols and three metrics dimen-
sions—lexical overlap, semantic similarity, and emotion consistency—revealing both the chal-
lenges and opportunities of predictive dialogue, and demonstrating that our model substantially
outperforms state-of-the-art baselines.

2 SAYNEXT-BENCH

2.1 TASK SETUPS

In this work, a conversational turn is defined as a paired unit of discourse, consisting of an in-
terlocutor’s utterance and a subject’s temporally contiguous response, which jointly serve as the
fundamental granularity for prediction and evaluation. The SAYNEXT task is then formulated as
predicting the forthcoming utterance T̃R

B of the subject, conditioned on the interlocutor’s preceding
utterance TQ

A and the subject’s concurrent non-verbal expressions V Q
B .

The prediction problem can be expressed as approximating the conditional distribution of real re-
sponses TR

B via an end-to-end mapping function fθ:

P
(
T̃R
B | TQ

A , V Q
B

)
≈ P

(
TR
B | TQ

A , V Q
B

)
, fθ : (TQ

A , V Q
B ) 7→ T̃R

B . (1)

2.2 THE SAYNEXT-PC DATASET

Based on the task definition, we find that no existing dataset is suitable for our task. Specifically,
an eligible dataset must meet three essential criteria: (1) dyadic interaction, involving either two
humans or one human and one machine; (2) multimodality, with at least synchronized video and text
modalities; (3) continuous viewpoint, where the camera remains steadily focused on one interlocutor
throughout the interaction. Frequent camera shifts or interruptions impede the reliable capture of
facial and bodily expressions that are critical for inferring communicative intent and emotion. A
detailed dataset investigation is provided in Appendix B.

To instantiate these principles, we introduce SayNext-PC2K, a novel dataset for next-utterance
prediction, inspired by the post-match press conference setting in the iMiGUE dataset (Liu et al.,
2021). For scalability, we further expand it to SayNext-PC19K, augmenting 259 original recordings
to 3,463 videos from multiple tournaments. Both datasets capture athlete–interviewer dialogues with
stable camera views, ensuring clear speech and expressive non-verbal cues.

Finally, the SayNext-PC2K comprises 2,092 minutes of dialogue spanning 5,432 turns, while
SayNext-PC19K contains 20,766 minutes with 38,540 turns. Each dialogue is segmented into video
clips and transcribed using Whisper (Radford et al., 2023). The transcription quality was verified,
yielding an average Word Error Rate (WER) of 4.11%, which is within the range generally consid-
ered human-acceptable (see Appendix E for details).

2.3 EVALUATION PROTOCOL

We assess SayNext-Bench using four complementary protocols:
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Subject-Dependent Evaluation. In this setting, instances from the same subject in SayNext-PC2K
appear in both the training and test sets. Conversational turns are randomly partitioned such that each
subject in the test set has at least one corresponding instance in the training set, enabling the model
to capture individual-specific nuances in emotional and behavioral expression. The split follows a
4:1 ratio between training and test data, and is fixed the same for all models.

Subject-Independent Evaluation. In this setting, SayNext-PC2K is split such that subjects in the
training and test sets form disjoint groups; that is, all subjects in the test set are unseen during
training. The dataset comprises 72 subjects, divided into training and test groups at a 4:1 ratio. To
mitigate potential cultural bias, subjects from five continents (North America, Australia, Europe,
Asia, and Africa) are evenly represented across both groups.

Cross-Scenario Evaluation. To examine robustness across conversational contexts, we adapt the
IEMOCAP dataset (Busso et al., 2008), a dyadic motion-capture corpus comprising 12 hours of
scripted and improvised dyadic dialogues. The dataset spans diverse scenarios such as job inter-
views, relationship conflicts, and casual exchanges, from which 4,113 conversational turns are ex-
tracted for our task. This protocol is to verify whether trained models can directly generalize from
the solely press-conference scenario to different conversational settings in a zero-shot manner.

Scalability Evaluation. To assess the robustness at large scales of the model performance, we con-
struct SayNext-PC19K, a substantially larger dataset that extends the temporal span of conversations
and incorporates broader cultural diversity. This broader scope is specifically designed to avoid po-
tential overfitting issues with local optima in the SayNext-PC2K, thereby enhancing the capacity of
SayNext-Bench to evaluate models under more diverse and fine-grained conditions.

3 THE PROPOSED METHOD

Inspired by a cognitive neuroscience perspective, we propose a dual-route prediction framework,
SayNext-Chat, to anticipate forthcoming utterances, which incorporates learnable priming tokens
representing the high-level belief priors from visual inputs and low-level cues directly perceived
from multimodal inputs. An overview of the framework is shown in Figure 2 (a). We first introduce
the generation of the priming factor, and then describe its role within the dual-route framework.

3.1 PRIMING FACTOR

In cognitive psychology, the semantic priming refers to the phenomenon that prior exposure to a
stimulus facilitates subsequent processing of related information, typically occurring unconsciously
and with minimal cognitive cost (Meyer & Schvaneveldt, 1971; Neely, 1977). Closely related to
predictive processing, semantic priming suggests that the human brain pre-activates contextually
relevant representations (often interpreted as prior beliefs) before speech, thus reducing the uncer-
tainty of forthcoming utterances (Neely, 2012; Clark, 2013).

Following this observation, we leverage an LLM (GPT-4.11 in our implementation) to uncover recur-
rent, domain-relevant semantic associations from the training split only, which are then embedded
and clustered into coherent latent structures. Each cluster is distilled by the LLM into a concise
priming factor, constrained to be a neutral, widely recognized phrase denoting a specific behav-
ioral or psychological characteristic. Along with the factor label, the LLM specifies a factor-specific
polarity schema—priming codebook—that defines the meanings of its positive and negative poles.
We then assign every response with a target priming vector, corresponding to a set of priming
factors generated by LLM. The value of each entry in the priming vector lies in [−1, 1]: the magni-
tude encodes activation strength, and the sign encodes factor-specific polarity (+1 = strong positive
manifestation, −1 = strong negative manifestation, 0 = not manifested). In this way, the target prim-
ing vector serves as an auxiliary representation that actively encodes contextual prior beliefs about
forthcoming utterances, reflecting the notion of pre-activation in predictive processing.

3.2 SAYNEXT-CHAT: DUAL-ROUTE PREDICTION FRAMEWORK

Inspired by dual-route accounts of human cognition and the role of priors (Kahneman, 2011; Clark,
2013), we design SayNext-Chat with two complementary predictive routes: a fast route that directly

1Model card: gpt-4.1-2025-04-14
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Conversational
Corpora

(1) Priming Factor
Induction

(2) Priming Vector 
Assignment  Priming

Codebook

Target Priming Vector 

LoRA

Prompt & 
Question Text

LLM

Prediction
Priming Token

Visual Token

Text Token

(3) End-to-end Training 

Visual
Embedding

Predicted Priming Vector

ViT  

Video

Priming
Module

Real Response

deep route

fast route

fast route

Tokenizer

(a) The SayNext-Chat Framework.

Priming factor Range meaning in [−1, 1]

Perceived Pressure [low → high pressure]
Affect [negative → positive]
Opponent Appraisal [dismissive → respectful]
Motivation [weak → strong drive]
Self-Efficacy [doubtful → confident]
Self-Evaluation [critical → positive]
Expectation Management [disappointed → optimistic]
Physical State [fatigued → healthy]
Acceptance [resistant → accepting]
Adaptability [rigid → flexible]
Uncertainty [confident → uncertain]
Cognitive Stability [unstable → stable]
Recovery Appraisal [doubtful → optimistic]
Challenge Appraisal [low → high challenge ]
Mental Focus [distracted → focused]
Achievement Orientation [indifferent → ambitious]
Social Connectedness [isolated → connected]
Confidence [doubtful → confident]
Self-Assurance [anxious → assured]
Preparedness [unprepared → prepared]

(b) The Priming codebook of SayNext-PC2K.
Figure 2: (a) The SayNext-Chat Framework. (1) Priming factors are extracted through LLM-
assisted induction to construct a priming codebook. (2) The codebook guides the LLM in assigning
a target priming vector to each response. (3) During end-to-end training, the loss combines the MSE
between target and predicted priming vectors with the cross-entropy loss from the LLM backbone.
(b) The Priming codebook of SayNext-PC2K. Each entry contains a priming factor name, its
explanation, and the meaning of range [−1, 1]. Generation details are provided in Appendix F.

maps low-level visual and textual cues to a response, and a deep route that infers high-level priors
(priming factors) to guide generation.

Fast route. A visual backbone InternViT-300M, an MLP projector, and an LLM InternLM2.5-7B
conditioned on prompts, text, and visual embeddings to produce the next utterance. Deep route.
Non-verbal features are transformed by two convolutional layers and a fully connected layer into a
priming embedding, injected into the LLM as a dedicated priming token (concatenated with visual
tokens). In parallel, the embedding is mapped by another fully connected layer to a priming vector,
supervised by the target priming vector from Sec. 3.1. Incorporating priming as learnable tokens
improves output stability (Sec. 4.2.3) and aligns with hierarchical representations in cognition.

3.3 TRAINING STRATEGY

During training, both visual and language backbones are fine-tuned with Low-Rank Adaptation
(LoRA) Hu et al. (2022) using rank r = 16, while the priming module is trained from scratch.
The training objective consists of two components: the language modeling loss Ljoint, defined as
the standard cross-entropy over tokens comparing predicted and ground-truth sequences, and the
priming loss Lprim, defined as an L2 regression encouraging the predicted priming vector to align
with the target priming vector.

To balance optimization, we employ an adaptive loss weighting scheme. The overall training loss is

L = Ljoint + λprim Lprim, (2)

where λprim dynamically adjusts the relative importance of the priming loss. Specifically, it is up-
dated according to an exponential moving average (EMA) of Lprim:

λprim = min

(
max

(
L̃(t)

prim

L(0)
prim+ϵ

, 0

)
, 1

)
, L̃(t)

prim = µ L̃(t−1)
prim + (1− µ)L(t)

prim. (3)
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Here, L̃(t)
prim denotes the smoothed priming loss at step t. We set µ = 0.99 and ϵ as a small constant

for numerical stability. The training regimen employs AdamW optimizer with cosine learning rate
decay initializing at 1× 10−4, and takes 2×A100 GPUs for training.

4 EXPERIMENTS

4.1 EVALUATION METRICS AND BASELINES

Evaluating next-utterance prediction is non-trivial. While word-for-word prediction would be the
ideal outcome, such exact matching is nearly infeasible even for humans. What matters more is
whether the underlying intent is correctly anticipated, with minor differences in wording and lexical
choice being acceptable (see Fig. 1). This calls for a comprehensive evaluation methodology with
a multi-faceted view of model performance. To this end, we carefully designed a three-dimensional
evaluation framework encompassing six widely recognized metrics from NLP research. Sec. 4.2.5
also reports user studies and LLM-based evaluations to provide human-aligned perspectives.

First, Lexical Overlap (LO) is measured with BLEU-4 (Papineni et al., 2002) and ROUGE-L (Lin,
2004), which capture word- and phrase-level correspondence between predicted and reference re-
sponses. Second, Semantic Similarity (SS) is assessed using BERTScore-F1 (Zhang et al., 2020),
which captures token-level semantic alignment, and Sentence-BERT (Reimers & Gurevych, 2019),
which evaluates sentence-level embedding similarity. Third, Emotion Consistency (EC) is quanti-
fied by Valence and Arousal, computed via normalized profile comparisons derived from the NRC-
VAD lexicon (Mohammad, 2018), thereby measuring affective congruence through emotion-bearing
lexical matching. Details of metric computation are provided in Appendix D.

We evaluate SayNext-Chat against seven state-of-the-art multimodal LLM baselines, grouped into
three categories: (1) frontier large-scale MLLMs, including GPT4o2 and Gemini2.5-flash3; (2)
open-source MLLMs with comparable parameter scales (7–8B) for fair comparison, including
InternVL2-8B (Chen et al., 2024), VideoLLaMA3-7B (Zhang et al., 2025), LLaVA-NeXT-Video-
7B (Zhang et al., 2024), and InstructBLIP-7B (Dai et al., 2023); and (3) task-specialized MLLMs
for emotion recognition, represented by Emotion-LLaMA-7B (Cheng et al., 2024). All baselines
are evaluated under identical prompts with temperature 0.7. Implementation details in Appendix C.

4.2 RESULTS AND ANALYSIS

4.2.1 OVERALL TAKEAWAYS

• Clear improvements with vision modality. Results in Sec. 4.2.2 show that incorporating visual
cues consistently improves next-utterance prediction performance.

• SayNext-Chat outperforms baseline MLLMs. Across all three evaluation dimensions, SayNext-
Chat consistently surpasses zero-shot baselines, including frontier large-scale MLLMs, open-
source models of comparable scale, and emotion-specific MLLMs (Sec. 4.2.2).

• Priming vectors significantly boost emotional alignment. While fine-tuning on domain-specific
corpora increases both lexical overlap and semantic similarity, priming tokens further improve
emotion accuracy of future utterances by 3% (Sec. 4.2.3).

• Cross-scenario generalization and scalability. SayNext-Chat maintains superior performance
over compared baselines when evaluated on larger-scale datasets and across different scenarios in
the zero-shot setting (Sec. 4.2.4).

• Efficacy in human & LLM evaluations. SayNext-Chat achieves higher scores in subjective
human assessments, slightly surpassing GPT-4o and showing a clear margin over open-source
MLLMs with comparable parameter scales (Sec. 4.2.5).

4.2.2 COMPARISON WITH STATE-OF-THE-ART METHODS

We present the main results under the subject-dependent protocols in Figure 3. Figure 3 (a) re-
ports the average rank of all models, showing that SayNext-Chat combines relatively small size with
superior performance. Figure 3 (b) highlights notable discrepancies across evaluation dimensions:

2Model card: gpt-4o
3Model card: Gemini 2.5 Flash
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Ours: SayNext-Chat 
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Figure 3: Comparison of SayNext-Chat with State-of-the-art Baselines. (a) Two-dimensional
comparison of relative model size and performance (average rank across metrics). SayNext-Chat
(red star) achieves both smaller size and higher performance. (b) Radar chart of multi-metric evalu-
ation, where each polygon corresponds to a model and is colored consistently with (a). Our model
(red) consistently ranks highest across all metrics in the radar chart. (c) Bar charts of six metrics
across three dimensions. SayNext-Chat (the first bar) consistently attains the highest score.

lexical overlap remains extremely low (below 20%), semantic similarity reaches a moderate level
(around 0.4–0.6), and emotion consistency achieves the highest scores (around 0.7–0.8). These re-
sults underscore the inherent difficulty of reproducing word-level utterances, even with advanced
fine-tuned MLLMs. To further illustrate model distinctions, Figure 3 (c) shows that SayNext-Chat
consistently surpasses all state-of-the-art baselines across every metric. Specifically, despite con-
siderable variability in phrasing, SayNext-Chat achieves a 2–6 fold improvement in lexical overlap
over competing systems, ranks first in semantic similarity on both BERTScore and Sentence-BERT,
and substantially improves emotion consistency by capturing latent connections between non-verbal
cues and their linguistic realizations. Performance trends remain consistent across both subject-
dependent and subject-independent protocols, though several metrics decrease slightly in the latter,
reflecting the continued challenge of modeling subject-specific patterns. (Details in Appendix C.2)

Figure 4 presents case studies comparing priming-vector heatmaps with ground-truth and generated
responses. High-score cases typically arise when the interviewer’s question provides sufficient con-
text, when salient non-verbal expressions enable affective alignment, and when the dialogue follows
common patterns (e.g., joy after victory, pressure from an opponent). In contrast, low-score cases
often involve off-topic noise and the inability of current MLLMs to reproduce human humor or
linguistic creativity.

4.2.3 ABLATION STUDY OF THE LEARNABLE PRIMING TOKEN

To evaluate the role of priming information, we compare three variants: (1) a fine-tuned model
without a priming module, (2) prompt-based models where priming factors or target priming vectors
are inserted via prompt engineering, and (3) SayNext-Chat, which integrates the priming vector as a
dedicated learnable token. Ablation experiments are conducted on the SayNext-PC2K dataset under
the subject-dependent protocol.

As shown in Table 1, fine-tuning alone allows the model to acquire domain-relevant latent represen-
tations, but the incorporation of priming vectors further enhances its sensitivity to salient semantic
cues, yielding gains of 2.8% in emotion valence and 2.6% in emotion arousal over the fine-tuned
baseline. In contrast, prompt-based approaches perform poorly, as priming factors or vectors tend
to divert the model toward analyzing their numerical values rather than focusing on the prediction
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Question

Affect

Target priming vector

Predicted priming vector

Real Response

Response Predicted by SayNext-Chat

Input Video

0054-1: Lose Obviously disappointing. But He's a great guy and he 

deserved it, so I'm not going to beat myself up about it. But 

obviously, yeah, I mean, could have gone either way, really.

It was once at all, and I was break down. And I fight through

 this set. And then fourth set,  I still managed to win. So I 

think it was mentally a very, very good win for me today.

Target priming vector

Predicted priming vector

Real Response

Response Predicted by SayNext-Chat

Input Video

0039-2: Win

Preparedness
Self-Assurance
Achievement 
Orientation

It's going to be a big challenge for me to ... And I had a tough

 one, the third, but I managed to find my way back

to play well in every game...that the fourth is going well.

Target priming vector

Predicted priming vector

Real Response

Response Predicted by SayNext-Chat

Input Video

0200-1: Win

Yeah, I mean, I'm feeling good. There's always some 

things that I can improve, but overall I think I've 

been playing really well.

I'm feeling really good. I think I served well. 
I think I returned well. But I don't think I played 

unbelievable. I think I just played really solid and smart.

Target priming vector

Predicted priming vector

Real Response

Response Predicted by SayNext-Chat

Input Video

0216-2: Win

Physical State
Cognitive Stability

I think it was a great match for both of us. I mean, I don't think
 either of us were really looking at it as a free lesson. It was 

just a really good match of tennis. 

It wasn't expensive, because we played for the prize money

She felt like it was a lesson from you. She got a free lesson. 
It would usually have been very expensive

Low-Score Sample

High-Score Samples

Opponent Appraisal
Confidence

I think I was a bit too emotional. I had tears. But he's playing well.

 It's a great surface for him. And I knew that going in. So I 

wasn't really that emotional, but I just let a lot of stuff out.
Affect
Self-Efficacy
Self-Evaluation

-1 10

-1 10

-1 10

-1 10

High-Score Samples

Figure 4: Case Study on SayNext-PC2K. In high-score samples, the predicted priming vector
heatmap closely matches the target. Red and Blue indicate positive and negative values in the
priming vector, with corresponding highlights in the response text. Star, heart, and drop markers
denote three representative priming factors, showing their alignment between predicted and target
vectors (similar colors) and clarifying their semantic meaning (listed beneath the heatmap). Low-
score samples exhibit special patterns in the target priming vector that are difficult to predict.

Table 1: Relative deltas (higher is better) w.r.t. InternVL2-8B. Priming improves all metrics and
emotion consistency; fine-tuning degrades emotion alignment ability.

Method ∆BLEU-4/% ∆ROUGE-L/% ∆BERTScore-F1 ∆BERT sent. cos. ∆Emot. Val. ∆Emot. Arou.

Factor in Prompt −0.708 −3.343 −0.03988 −0.0726 −0.10859 −0.08465
Vector in Prompt −0.715 −3.278 −0.03517 −0.0698 −0.08949 −0.08249

Only Finetune +1.308 +3.664 +0.0187 +0.0177 −0.02506 −0.01751

Finetune+Priming (Ours) +1.535 +4.021 +0.0183 +0.0176 +0.00277 +0.00878

task. Overall, these findings highlight that stable integration of cognitive priors through learnable
tokens is indispensable for modeling predictive dialogue.

4.2.4 CROSS-SCENARIO GENERALIZATION AND SCALABILITY

For cross-scenario evaluation, we adapt IEMOCAP to SayNext-Bench. As shown in Table 2,
SayNext-Chat consistently outperforms all state-of-the-art zero-shot baselines, with only the arousal
dimension slightly below EmotionLlama—an expected outcome given EmotionLlama’s explicit em-
phasis on emotion. These results demonstrate the benchmark’s extensibility across scenarios and the
model’s capacity for cross-dataset generalization. For scalability, as shown in Table 3, SayNext-Chat
also achieves the best performance on the larger SayNext-PC19K dataset, despite its broader cultural
diversity and extended temporal span. The overall metric distributions remain comparable to those
observed on SayNext-PC2K, with only a slight decrease in emotion valence.

Additionally, a comparison of extracted priming factors across the three datasets reveals both
scenario-specific patterns and stable recurring dimensions, such as Affect, Confidence, and Disap-
pointment. This convergence suggests that certain cognitive–affective factors are broadly universal
across conversational contexts. More broadly, it implies that scaling the size and diversity of datasets
may support the development of a generalized inventory of priming vectors, potentially applicable
to everyday dialogue and informative for cognitive modeling.

4.2.5 USER STUDY & LLM-AS-JUDGE EVALUATION

Beyond standard metrics, we run two subjective evaluations to capture human alignment and holistic
preferences. In the user study, 12 participants (divided into three groups) repeatedly evaluated the
same 400-question test set, selecting the candidate most similar to the reference from InternVL2,
VideoLLaMA3, GPT-4o, and our model; outputs were randomized to mitigate order effects, and
per-model selection rates appear in Table 4. For LLM-based judging, GPT-4.1 and Gemini2.5-Pro4

4Model card: Gemini-2.5-Pro
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Table 2: Cross-scenario Evaluation Results on
IEMOCAP.

Model
LO /% SS EC

BLE.↑ ROU.↑ B-F1.↑ B-sent.↑ Val.↑ Aro.↑
InternVL2 0.44 9.60 0.50 0.18 0.51 0.57
VideoLLaMA3 0.38 9.53 0.49 0.17 0.45 0.51
LLaVA-NeXT 0.44 8.21 0.49 0.15 0.39 0.47
Emotion-LLaMA 0.26 10.06 0.45 0.17 0.53 0.62
GPT-4o 0.47 9.50 0.47 0.18 0.44 0.50
Gemini-2.5 0.91 9.13 0.50 0.15 0.44 0.50
SayNext-Chat 5.44 22.29 0.58 0.31 0.55 0.59

Table 3: Scalability Evaluation Results on
SayNext-PC19K.

Model
LO /% SS EC

BLE.↑ ROU.↑ B-F1.↑ B-sent.↑ Val.↑ Aro.↑
InternVL2 0.36 13.04 0.54 0.47 0.79 0.81
VideoLLaMA3 0.18 11.91 0.52 0.41 0.73 0.77
LLaVA-NeXT 0.46 13.79 0.53 0.46 0.79 0.80
Emotion-LLaMA 0.25 12.66 0.50 0.36 0.79 0.81
SayNext-Chat 2.49 15.71 0.55 0.47 0.79 0.82

Table 4: User study results. SayNext-Chat
achieves the highest best-selection rate across all
three experimental groups. E⟨N⟩ denotes the ex-
perimental group number.

Model E1 E2 E3 Average

InternVL2 24.25% 25.50% 24.00% 24.58%
Videollama3 17.50% 13.50% 11.75% 14.25%
GPT-4o 26.00% 26.75% 28.00% 26.92%
SayNext-Chat 32.25% 34.25% 36.25% 34.25%

Table 5: LLM evaluation results. SayNext-Chat
attains the highest top-1 rate under both GPT-4.1
and Gemini2.5-Pro rankings.

Model GPT4.1 Gemini2.5-pro Average

InternVL2 21.78% 25.19% 23.48%
Videollama3 16.30% 12.30% 14.30%
EmotionLlama 6.81% 5.48% 6.15%
LlaVA-NeXT 17.93% 15.70% 16.81%
InstructBLIP 7.26% 9.33% 8.30%
SayNext-Chat 29.93% 32.00% 30.96%

ranked predictions from five baselines and our model; we exclude GPT-4o and Gemini to avoid
RLHF-induced family bias, and report top-1 rates in Table 5.

The user study shows that SayNext-Chat achieves the highest best-selection rate (34.25%), ahead of
GPT-4o (26.92%), while VideollaMA3 attains the lowest share despite a similar parameter scale.
In the LLM evaluation, SayNext-Chat ranks first under both evaluators. These results indicate
that SayNext-Chat outperforms strong baselines. Moreover, preference distributions are consistent
across user-study groups and across LLM evaluators, suggesting robust inter-evaluator agreement.

5 LIMITATIONS

Although our experimental results suggest that SayNext-Bench highlights the potential of LLMs to
predict forthcoming utterances in human dialogue by leveraging multimodal signals, several lim-
itations remain. First, the low lexical-overlap accuracy across all models highlights the intrinsic
difficulty of the task and indicates the need for more cognitively capable MLLMs. Given both indi-
vidual variation and the stochastic nature of language, incorporating multi-turn dialogue could help
capture speaker-specific habits and background knowledge, thereby improving lexical alignment.
Second, dataset quality imposes constraints: although existing resources adapt reasonably well to
our task, noisy samples (e.g., the low-score example in Figure 4)—such as inconsistencies between
speech and expression or off-topic conversations—can hinder accurate learning. In future work,
constructing a dedicated human–machine dialogue dataset for SAYNEXT under controlled settings
may alleviate these issues by providing cleaner and task-specific data.

6 CONCLUSION

We present SAYNEXT, a multimodal next-utterance prediction task for trustworthy, seamless hu-
man–AI dialogue, and release SayNext-Bench with the scalable SayNext-PC dataset spanning four
evaluation protocols. Inspired by a cognitive neuroscience perspective, we propose SayNext-Chat,
a dual-route framework that injects learnable priming tokens to fuse perceptual cues with antici-
patory priors. Across subject-dependent/independent settings and larger, cross-scenario datasets,
SayNext-Chat consistently surpasses strong baselines on lexical overlap, semantic similarity, and
emotion consistency, corroborated by user studies and LLM-as-judge evaluations. Ablation studies
show that the proposed priming factors and the incorporation of visual information materially im-
prove prediction accuracy. Together, these findings validate the feasibility and exploratory potential
of SAYNEXT and help bridge cognitively grounded mechanisms of human communication with the
design of more empathetic, adaptive, and trustworthy interactive AI agents.
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Ethics Statement. This study was conducted in compliance with the General Data Protection
Regulation (GDPR); data collection, storage, and sharing followed legally compliant procedures. In
the user study, we anonymized records and obtained informed consent from all evaluators. Data were
sourced from publicly available media and licensed corpora (e.g., IEMOCAP), with appropriate
citations. We provide access links only—without redistributing raw media. We also employed
multiple evaluation protocols and datasets spanning different scales and scenarios to mitigate bias.

Reproducibility Statement. Our benchmark and models will be made available, and can be found
at our website: https://saynext.github.io/.
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A LLM USAGE STATEMENT

Large Language Models (ChatGPT) were used exclusively to improve the clarity and fluency of
English writing. They were not involved in research ideation, experimental design, data analysis, or
interpretation. The authors take full responsibility for all content.

B DATASET

B.1 DATASET COMPARISON

Although there are plenty of existing multimodal emotion recognition datasets (in Table.6), we find
they all fail to be directly applied to our proposed task. For example, the widely used MELD dataset
Poria et al. (2019) — composed of video segments cropped from television shows — suffers from
frequent viewpoint changes, which impede the reliable capture of visual expressions of subjects for
emotion inference. Recent datasets such as MaSaC Bedi et al. (2021) and CPED Chen et al. (2022)
exhibit similar issues, which we refer to as the “Interrupted” view in this paper. Although earlier
datasets like IEMOCAP Busso et al. (2008) and MSP-IMPROV Busso et al. (2016) offer consistent
recording of subjects in conversational videos (we refer as “Continuous” recording view), they are
limited by small sample sizes and a restricted number of speakers. The SEMAINE dataset McKeown
et al. (2011), which records interactions between humans and virtual visual characters, is the closest
match; however, due to language generation technology constraints in 2012, the verbal output from
the virtual characters is ineffective, diminishing the meaning to predict natural language expression.
To fill this gap and inspired by Liu et al. (2021), we introduce the SayNext-PC dataset, specifically
designed for the SayNext benchmark. A comparative overview of SayNext-PC, scale in PC2K and
PC19K, and other related datasets is presented in Table.6.

Table 6: Attributes comparison between SayNext-PC and other widely used datasets for mul-
timodal emotion recognition in dialogue. Note: # denotes the number of instances; (s/min)/(U/D)
indicates the average duration in seconds per utterance or per dialogue; F/M represents female/male;
A: audio, V: video, T: text, M: dynamic motion capture, Mi: micro body expression.

Dataset #Dia. #Utter. Ave. Dur. #Subj. (F/M) Res. Modality Descriptive
label

Continuous
view

IEMOCAP 5 10039 4.5s/U 10 (5/5) 720 × 480 A/V/T/M ✗ ✓

SEMAINE 959 5816 5min/D 150 720 × 580 A/V/T ✗ ✓

MSP-IMPROV 6 7818 4s/U 12 (6/6) 1440 × 1080 A/V ✗ ✓

MELD 1433 13708 3.59s/U 260+ 1280 × 720 A/V/T ✗ ✗

MaSaC 1190 15576 20s/U - - A/V/T ✗ ✗

CPED 12000 132762 2.1s/U 392 - A/V/T ✗ ✗

SayNext-PC2K 359 5432 22.44s/U 72 (36/36) 1280 × 720 A/V/T/Mi ✓ ✓

SayNext-PC19K 3463 38540 30.368s/U 474 (246/228) 640 × 360 A/V/T ✓ ✓

B.2 DATASET SETTINGS

The SayNext-PC2K dataset comprising 359 post-match press conference videos from Grand Slam
tournaments was collected from online platforms, yielding a total duration of 2,092 minutes. All
videos were recorded at a resolution of 1280×720 and a frame rate of 25 fps. Micro-body language
annotations were directly adopted as non-verbal visual labels. Speaker diarization was employed
to segment the videos into question-answer pairs, resulting in 5,432 pairs with an average utterance
duration of 22.44 seconds.

Based on two evaluation protocols discussed in the manuscript, two data split settings were em-
ployed: subject-dependent and subject-independent.

In the subject-dependent setting, samples were randomly assigned to the training and test sets, with
careful partitioning to ensure that each subject appears in both sets. To achieve a 4:1 ratio, the
training dataset comprises 2,041 samples, while the test dataset consists of 675 samples.
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In the subject-independent evaluation, a comprehensive statistical analysis was performed to ex-
amine the distribution of subject identifiers and their corresponding nationalities. The training set
comprises 58 unique subject IDs, representing a diverse spectrum of nationalities including:

• Spain, Bulgaria, Russia, the United Kingdom, Switzerland, France, Germany, Belgium,
Austria, the United States, Croatia, Canada, the Czech Republic, Australia, Denmark, Slo-
vakia, South Korea, South Africa, Serbia, Argentina, Romania, Japan, Taiwan, Latvia,
Greece, China, Italy.

In contrast, the test set contains 14 unique subject IDs, with nationalities including:

• Switzerland, Japan, the United Kingdom, Canada, Australia, Germany, Spain, Russia,
Ukraine, the United States, China, South Africa.

Notably, the test set spans five continents, thereby underscoring the cultural universality of the
dataset. These statistics highlight the international diversity within both the training and test subsets,
which in turn attests to the robustness and representativeness of our data. To achieve a 4:1 ratio, the
training dataset comprises 2,155 samples, while the test dataset consists of 561 samples.

The SayNext-PC19K dataset comprises 3,463 post-match press conference videos collected from
a wider spectrum of tournaments, including the Australian Open, US Open, and Wimbledon. Rela-
tive to SayNext-PC2K (2017–2019), the temporal coverage has been substantially extended to span
2017–2024, thereby encompassing more recent competitions and reflecting the evolving dynamics
of professional tennis discourse. The number of participating athletes has also expanded markedly,
from 72 to 474, which introduces cross-cultural characteristics and heterogeneous communicative
norms and expressive tendencies. In terms of data quality, one quarter of the videos are available
at a resolution of 1280 × 720, while the remainder are at 640 × 360. Each video is meticulously
annotated with a unique athlete identifier and nationality, ensuring traceability across sessions and
enabling systematic analysis of subject-level and cultural factors.

The IEMOCAP dataset is an interactive emotional dyadic motion-capture corpus collected by the
Speech Analysis & Interpretation Laboratory at the University of Southern California. It consists of
dyadic sessions in which 10 actors (5 female and 5 male) perform either improvisations or scripted
scenarios, yielding approximately 12 hours of audiovisual data, including video, speech, facial mo-
tion capture, and text transcriptions. The sessions are manually segmented into utterances, each
annotated by at least three human annotators. For our SAYNEXT task, we adopt the dataset based on
its transcriptions, which have been shown to exhibit a low Word Error Rate (WER). Nevertheless,
the utterances are much shorter in duration compared with SayNext-PC, reflecting the context-sparse
nature of the IEMOCAP corpus and making next-utterance prediction in single-turn conversations
particularly challenging.

C EXPERIMENT DETAILS

C.1 EXPERIMENTAL SETUPS

Video Input. Videos are processed as sequences of frames, with up to 4 frames used during fine-
tuning and up to 16 frames during inference. Frames are extracted at intervals of 8. Specifically, in
fine-tuning, 4 frames are randomly sampled in each epoch using a sliding-window strategy, which
provides dynamic visual information while reducing memory costs. For consistency, all models em-
ploying InternViT as the visual backbone (zero-shot baselines, fine-tuned models, and SAYNEXT)
resize frames to 480× 480.

Inference Configuration. For zero-shot baselines, we evaluate the SAYNEXT task using seven
state-of-the-art MLLMs. Owing to the inherent complexity of these models, numerous hyperparam-
eters and configuration settings must be considered during fine-tuning. To clarify our experimental
setup, we highlight several important modifications. In InstructBLIP, only a single frame is used
for prediction, as the model lacks a dedicated video modality input. Similarly, in EmotionLLaMA,
we also utilize a single frame, since our experiments indicate that this configuration yields better
performance. This improvement is likely attributable to the reduced redundancy in visual embed-
dings that typically arises when processing multiple frames. VideoLLaMA3 and LLaVA-NeXT, by
contrast, are provided with four input frames, consistent with our model. For GPT-4o and Gemini-
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2.5-Flash, we extract four frames for GPT-4o and adapt Gemini’s native video interface to process
visual information at approximately 1 fps.

For all baselines and our model, we apply the same prompt to generate predictions (full prompt in
Appendix I). For InternLM-based inference, we adopt consistent generation settings as follows:

no_repeat_ngram_size=2,
repetition_penalty=1,
do_sample=True,
temperature=0.7,
top_k=50,
top_p=0.9,
max_new_tokens=2048

C.2 FULL RESULT TABLES

We present the complete experimental results (tables and figures) in this section, providing numerical
evidence for accurate reference.
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Figure 5: Multidimensional comparison between baseline modales and our method in subject-
dependent and subject-independent protocols. Our model (red) forms the largest polygon in
both subject-dependent and subject-independent settings, highlighting its outstanding performance
in lexical overlap.

First, Figure 5 shows the radar plots of the subject-dependent and subject-independent protocols.
Both exhibit similar hexagonal patterns, where our model achieves the best overall performance.
Across baselines, the no-vision model (black) forms the smallest hexagon, while GPT-4o and In-
ternVL2 perform better than the remaining baselines. Notably, the hexagon of our model under the
subject-independent protocol is slightly smaller than that under the subject-dependent setting, indi-
cating that subject-independent evaluation is more challenging—likely due to the model’s limited
ability to capture individual-specific patterns.

The detailed quantitative results for both subject-dependent and subject-independent protocols are
reported in the following two tables (Tables 7 and 8).

Table 9 reports the experimental results on IEMOCAP, demonstrating the transferability of our
model across different contexts and scenarios.

Table 10 presents the experimental results on SayNext-PC19K, demonstrating the generalizabil-
ity of our model to larger-scale datasets. The results further suggest potential scale effects in the
SAYNEXT task and benchmark, indicating that training on sufficiently large and fine-grained cor-
pora could foster the development of more generalizable next-utterance prediction models. Such
models would lay the groundwork for more advanced conversational AI and for trustworthy, safe
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Table 7: Numerical results on SayNext-PC2k on Subject-Dependent Evaluation Protocol. Best
results shown in bold, and the second-best is underlined. The proposed approach achieves superior
performance across all metrics. Note: BLEU-4 and ROUGE-L values are in percentages.

Method
Lexical Overlap /% Semantic Similarity Emotion Consistency

BLEU-4↑ ROUGE-L↑ BertScore-F1↑ Sentence-BERT↑ Valence↑ Arousal↑
No vision 0.574 11.005 0.4921 0.2632 0.61549 0.69160
InternVL2 0.772 13.936 0.5468 0.4546 0.79863 0.81969
VideoLLaMA3 0.554 13.696 0.5397 0.4072 0.71166 0.75820
LLaVA-NeXT 0.472 12.143 0.4469 0.3715 0.63044 0.69315
InstructBlip 0.466 8.679 0.4596 0.2856 0.50761 0.60748
Emotion-LLaMA 0.380 14.046 0.5139 0.3478 0.78967 0.82126
GPT4o 1.081 14.623 0.5489 0.4415 0.79441 0.80838
Gemini2.5 0.710 11.951 0.5300 0.3686 0.65538 0.70022
SayNext-Chat (Ours) 2.307 17.957 0.5651 0.4722 0.80140 0.82847

Table 8: Numerical results on SayNext-PC2k on Subject-Independent Evaluation Protocol.
Best results shown in bold, and the second-best is underlined. The proposed approach achieves
superior performance across all metrics. Note: BLEU-4 and ROUGE-L values are in percentages.

Method
Lexical Overlap /% Semantic Similarity Emotion Consistency

BLEU-4↑ ROUGE-L↑ BertScore-F1↑ Sentence-BERT↑ Valence↑ Arousal↑
No vision 0.633 11.148 0.4968 0.2644 0.63313 0.70029
InternVL2 0.850 13.576 0.5402 0.4447 0.78024 0.79932
VideoLLaMA3 0.534 13.033 0.5339 0.3857 0.72401 0.75002
LLaVA-NeXT 0.565 12.332 0.4686 0.3852 0.64883 0.71677
InstructBlip 0.371 8.643 0.4596 0.2759 0.51285 0.60562
Emotion-LLaMA 0.389 13.144 0.5086 0.3240 0.77705 0.80732
GPT4o 0.710 13.470 0.5334 0.3872 0.74770 0.78584
Gemini2.5 0.510 11.446 0.5244 0.2731 0.56094 0.64392
SayNext-Chat (Ours) 1.939 16.681 0.5563 0.4365 0.76580 0.79932

Table 9: Numerical results on Cross-Scenarios Evaluation Protocol. The train dataset and test
dataset are both from adapted IEMOCAP dataset. Best results shown in bold, and the second-best is
underlined. The proposed approach achieves superior performance across all metrics. Note: BLEU-
4 and ROUGE-L values are in percentages.

Method
Lexical Overlap /% Semantic Similarity Emotion Consistency

BLEU-4↑ ROUGE-L↑ BertScore-F1↑ Sentence-BERT↑ Valence↑ Arousal↑
InternVL2 0.438 9.602 0.5016 0.1804 0.51430 0.57000
VideoLLaMA3 0.379 9.528 0.4915 0.1674 0.44701 0.51264
LLaVA-NeXT 0.164 7.047 0.4779 0.1724 0.39481 0.46541
Emotion-LLaMA 0.257 10.058 0.4478 0.1724 0.52532 0.61817
GPT4o 0.474 9.504 0.4707 0.1787 0.43655 0.49732
Gemini2.5 0.914 9.126 0.4957 0.1528 0.43701 0.50057
SayNext-Chat (Ours) 5.439 22.292 0.57625 0.3076 0.54767 0.59014

human–computer interaction, while also offering an AI-driven perspective on the mechanisms un-
derlying human cognition.
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Table 10: Experimental results on SayNext-PC19K across different models. Best results shown
in bold, and the second-best is underlined. The proposed approach achieves superior performance
across all metrics. Note: BLEU-4 and ROUGE-L values are in percentages.

Method
Lexical Overlap /% Semantic Similarity Emotion Consistency

BLEU-4↑ ROUGE-L↑ BertScore-F1↑ MAUVE↑ Valence↑ Arousal↑
InternVL2 0.00772 0.13936 0.5468 0.00952 0.79863 0.81969
GPT4o 0.01081 0.14623 0.5489 0.01353 0.79441 0.80838
Gemini2.5 0.00710 0.11951 0.5300 0.03669 0.65538 0.70022
VideoLLaMA3 0.00554 0.13696 0.5397 0.01795 0.71166 0.75820
LLaVA-NeXT 0.00472 0.12143 0.4469 0.04408 0.63044 0.69315
InstructBlip 0.00466 0.08679 0.4596 0.02122 0.50761 0.60748
Emotion-LLaMA 0.00380 0.14046 0.5139 0.00579 0.78967 0.82126
SayNext-Chat (Ours) 0.02307 0.17957 0.5651 0.63704 0.80140 0.82847

D EVALUATION METRICS

D.1 LEXICAL OVERLAP

Lexical-overlap metrics quantify surface-form similarity between a candidate text and a reference,
and are widely used in NLP to assess content preservation and phrasing fidelity. Although they
emphasize word- and phrase-level matches rather than deep semantics, they provide a reproducible,
task-agnostic signal that complements embedding-based measures. In our setting, the reference
is the real response transcripted by Whisper and the candidate is the model’s prediction; unless
otherwise noted, we report scores as percentages, with higher values indicating better overlap.

BLEU-4. BLEU (Papineni et al., 2002) computes modified n-gram precisions up to 4-grams and
penalizes overly short hypotheses via a brevity penalty. For a candidate C and a set of references R,
the modified precision for order n is

pn =

∑
g∈ngramsn(C) min

(
countC(g),maxr∈R countr(g)

)∑
g∈ngramsn(C) countC(g)

, (4)

where C is the candidate (model output); R is the set of references; g is an n-gram; ngramsn(C) is
the multiset of n-grams extracted from C; countX(g) is the occurrence count of g in text X .

The brevity penalty (BP) is

BP =

{
1, |C| > |r∗|,

exp
(
1− |r∗|/|C|

)
, |C| ≤ |r∗|,

(5)

where |X| denotes the token length of text X; r∗ ∈ R is the reference whose length is closest to
|C|. BLEU-4 is then

BLEU-4 = BP · exp

(
4∑

n=1

wn log pn

)
, wn = 1

4 , (6)

where wn is the weight for n-gram order n (uniform for BLEU-4).

We compute corpus-level BLEU-4 with standard smoothing for zero-count n-grams.

ROUGE-L ROUGE-L (Lin, 2004) measures sequence-level overlap via the longest common sub-
sequence (LCS), capturing in-order matches without requiring contiguity. Let L be the LCS length
between candidate C and reference R. Define

RLCS =
L

|R|
, PLCS =

L

|C|
, (7)
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where| · | denotes token length, and the F -measure is obtained as follows,

ROUGE-L =
(1 + β2)RLCS PLCS

RLCS + β2PLCS
, (8)

where β controls the recall–precision trade-off (we use β = 1 for F1). We adopt the common F1

variant (β = 1) and report the mean over the evaluation set.

D.2 SEMANTIC SIMILARITY

Because lexical overlap does not reward legitimate paraphrases with divergent surface
forms—especially in open-ended next-utterance prediction—we interpret BLEU-4 and ROUGE-L
alongside semantic metrics to obtain a more faithful assessment of model behavior.

BERTScore. We employ BERTScore Zhang et al. (2020) with the deberta-xlarge -mnli
backbone to compute contextual embedding similarity:

RBERT =
1

|x|
∑
xi∈x

max
x̂j∈x̂

x⊤
i x̂j , (9)

PBERT =
1

|x̂|
∑
x̂j∈x̂

max
xi∈x

x⊤
i x̂j , (10)

FBERT = 2
RBERT · PBERT

RBERT + PBERT
, (11)

where xi denotes reference token, x̂ the candidate token, and xi, x̂j their respective contextual
embeddings.

BERTScore computes token-level semantic similarity using contextual embeddings (via cosine sim-
ilarity), producing precision, recall, and their harmonic mean F1. In our setting, precision reflects
how much of the generated content is semantically supported by the reference next utterance—high
precision indicates the model avoids adding irrelevant or hallucinated material (“what it predicts is
right”). Recall reflects how much of the reference content is covered by the generation—high re-
call indicates the model captures more of the salient information present in the gold response (“it
includes more of what should be said”). Because next-utterance prediction requires both accuracy
and coverage, we report BERTScore-F1 as a balanced summary.

Sentence-BERT. Unlike BERTScore, which aggregates token-level matches, we also assess holis-
tic, sentence-level alignment using Sentence-BERT (SBERT) (Reimers & Gurevych, 2019) cosine
similarity, serving as a complementary semantic metric.

SBERT-cos(C,R) =
e⊤CeR

∥eC∥2 ∥eR∥2
∈ [−1, 1], (12)

where C is the candidate (predicted next utterance); R is the reference (real next utterance);
eC = fSBERT(C) ∈ Rd and eR = fSBERT(R) are their sentence embeddings; fSBERT(·) denotes
the Sentence-BERT encoder; (·)⊤ is the dot product; ∥·∥2 is the Euclidean norm. Larger values
indicate stronger sentence-level semantic similarity. We report mean scores over the evaluation set.

D.3 EMOTION CONSISTENCY

The affective alignment measurement leverages the NRC-VAD lexicon (Mohammad, 2018) contain-
ing 20,000 emotion-annotated lexical entries, where each term ω is quantified along four emotion
dimensions: Valence (V, emotional positivity), Arousal (A, activation level), Dominance (D, control
perception). For a reference-candidate text pair (R,C), the alignment score is computed as:
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S = 1− 1

4

∑
k∈V,A,D

∣∣∣s̄(R)
k − s̄

(C)
k

∣∣∣− β · |ρR − ρC | , (13)

where s̄k = 1
|W |

∑
ω∈W ŝk(ω) denotes the normalized mean score of dimension k, with ŝk(ω) being

the min-max scaled value of sk(ω) from the lexicon. The lexical coverage ratio (ρR, ρC) measures
the proportion of lexicon-matched tokens, and β = 0.8 controls the penalty weight for coverage
disparity.

Implementation proceeds through three phases: text preprocessing first tokenizes and lemmatizes
inputs using EmotionDynamics. All dimension scores are then normalized across the lexicon’s value
range. Finally, dimension-wise averages and coverage ratios are computed for both texts, followed
by the composite scoring in Eq. 13.

E WORD ERROR RATE (WER)

To ensure the reliability of automatic transcripts used for evaluation, we assess transcription quality
with Word Error Rate (WER). We use Whisper to transcribe all videos in SAYNEXT-PC2K (332,651
words in total) and compute WER against human annotations. Formally,

WER =
S +D + I

N
× 100%, (14)

where S, D, and I denote the number of substitutions, deletions, and insertions, respectively, and N
is the number of words in the human reference.

As a challenging, representative case, we evaluate a non-native speaker (subject #42): the average
WER is 4.11% with a range from 0% to 11.76% across utterances. For comparison, the Whisper
paper reports English WERs of 4.1% and 9.3% (Radford et al., 2023), and an oft-cited estimate
of human WER is about 4%. These results indicate that our transcripts are accurate enough for
downstream evaluation.

Selection of Whisper model. We conducted preliminary transcription experiments across Whis-
per model sizes and selected the medium variant after validation. The small model underperformed
on interview-style speech, while the large model tended to aggressively normalize by removing
interjections (e.g., “um”, “oh”), potentially erasing paralinguistic cues that are informative for emo-
tional analysis.

F CODEBOOK ANALYSIS

F.1 CLUSTER EVALUATION

We sample N=200 training utterances in SayNext-PC2K, ensuring coverage of all subjects’ re-
sponses. We first use GPT-4.1 to extract basic factors from this subset, then apply k-means to group
the factors into clusters. Given the resulting clusters, GPT-4.1 induces a priming codebook by nam-
ing each factor, providing a concise explanation, and specifying the meaning of the value range
[−1, 1]. Using this codebook, GPT-4.1 is subsequently guided to assign a consistent target priming
vector to every reference response in the dataset.

Because clustering quality directly affects codebook induction, we quantify it using the Silhouette
Coefficient (SC). For each item i with representation xi, we define the within-cluster dissimilarity
ai (lower is better) and across-cluster dissimilarity bi (higher is better) as:

ai =
1

|Ci| − 1

∑
j∈Ci
j ̸=i

d(xi,xj), bi = min
C ̸=Ci

1

|C|
∑
j∈C

d(xi,xj), (15)

where Ci is the cluster containing i; C ranges over all other clusters; d(·, ·) is the Euclidean distance.

The silhouette si summarizes separation vs. cohesion for item i. It is defined as

si =
bi − ai

max{ai, bi}
∈ [−1, 1]. (16)
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Accordingly, the overall score is the mean silhouette:

SC =
1

N

N∑
i=1

si. (17)

We evaluate k ∈ {10, 15, 20} under three trimming settings τ ∈ {0, 0.05, 0.10}. As shown in
Figure 6, k=20 with τ=0.05 attains the highest (trimmed) silhouette score; we therefore adopt
k=20 for codebook induction. We did not explore larger k because excessively many priming
factors degraded the consistency of GPT-4.1 when assigning vector dimensions in practice (i.e.,
reduced stability beyond 20 dimensions). The full priming codebook is provided in the next section.

Figure 6: The Silhouette Coefficient (SC) value comparison of different settings of clustering.

F.2 FULL CODEBOOKS

Table 11: Priming Codebook of SayNext-PC2K with 20 Priming Factors.

Perceived Pressure Reflects the player’s subjective experience of psychological pressure
during and after the match, indicating whether they felt burdened or at
ease in high-stakes moments.

1 represents high or burdensome pressure (nervous, defensive), -1
represents low or relieved pressure (calm, comfortable).

Affect Represents the overall positive or negative emotional tone expressed by
the player, encompassing feelings such as joy, satisfaction, discomfort, or
emotional struggle.

1 represents positive affect (joy, satisfaction), -1 represents negative affect
(discomfort, struggle).

Opponent Appraisal Reflects the player’s evaluative judgment of the opponent’s abilities,
performance, and qualities, indicating a positive or negative assessment
that shapes the tone and content of the interview language.

1 represents positive appraisal (admiration, respect), -1 represents negative
appraisal (criticism, dismissal).

Motivation Represents the player’s drive, ambition, and determination to compete and
succeed, as reflected in their language about goals, effort, and competitive
intent. This factor captures the positive or negative intensity of their
motivational state post-match.

1 represents high motivation (strong drive/ambition), -1 represents low
motivation (lack of drive/ambition).
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Self-Efficacy Reflects the player’s confidence in their ability to improve and achieve
desired performance outcomes, encompassing both positive
self-assessment and recognition of areas for growth.

1 represents high self-efficacy (confidence in improvement), -1 represents
low self-efficacy (doubt or regret about improvement).

Self-Evaluation Represents the player’s cognitive and emotional assessment of their own
performance, encompassing both positive and negative self-appraisal,
self-criticism, and reflection on actions and outcomes.

1 represents positive self-evaluation (confidence, satisfaction), -1
represents negative self-evaluation (self-criticism, disappointment).

Expectation Management Reflects the player’s cognitive and emotional processing of outcomes
relative to their prior expectations, encompassing surprise,
disappointment, regret, optimism, and hopefulness about future events.

1 represents positive expectation management (optimism, hopefulness,
positive anticipation), -1 represents negative expectation management
(disappointment, regret, surprise at negative outcomes).

Physical State Represents the player’s self-reported physical condition, encompassing
fatigue, discomfort, readiness, and overall bodily well-being, which
influences their language and emotional tone in post-match interviews.

1 represents positive physical state (readiness, comfort), -1 represents
negative physical state (fatigue, discomfort, limitation).

Acceptance Reflects the player’s cognitive and emotional acknowledgment of
circumstances, setbacks, or changes, indicating a willingness to adapt or
reconcile with outcomes, whether positive or negative.

1 represents high acceptance (open, adaptive), -1 represents low
acceptance (resistant, avoidant).

Adaptability Reflects the player’s cognitive and emotional flexibility in response to
changing circumstances, novel experiences, and evolving environments, as
indicated by frequent references to learning, openness, adjustment, and
recognition of change.

1 represents high adaptability (openness, learning, adjustment); -1
represents low adaptability (rigidity, discomfort with change).

Uncertainty Reflects the player’s cognitive and emotional response to unpredictability
and ambiguity regarding match conditions, performance, and outcomes,
influencing their language with expressions of doubt, surprise, or
conditional statements.

1 represents high uncertainty (expressions of doubt, surprise, or
unpredictability), -1 represents low uncertainty (expressions of certainty,
confidence, or predictability).

Cognitive Stability Reflects the player’s perceived steadiness or fluctuation in thought
processes and self-assessment, ranging from consistent, focused cognition
to uncertainty and confusion.

1 represents cognitive stability (clarity, consistency), -1 represents
cognitive instability (confusion, uncertainty).

Recovery Appraisal Reflects the player’s cognitive and emotional assessment of their physical
and psychological recovery process, including optimism, relief, concern,
and confidence regarding overcoming setbacks or injuries.

1 represents positive appraisal (optimism, relief, confidence in recovery),
-1 represents negative appraisal (concern, doubt, ongoing struggle with
recovery).
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Challenge Appraisal Represents the player’s cognitive and emotional assessment of the degree
and nature of challenges faced during the match, including tactical,
technical, physical, and situational difficulties, as well as their perceived
ability to cope with and adapt to these challenges.

1 represents high perceived challenge (player discusses significant
obstacles and adaptation), -1 represents low perceived challenge (player
reports minimal difficulty or smooth performance).

Mental Focus Represents the degree to which the player’s language centers on
concentration, present-moment awareness, and cognitive engagement with
the match, reflecting either a strong or disrupted mental focus.

1 represents strong mental focus and present-moment engagement, -1
represents disrupted or scattered mental focus.

Achievement Orientation Reflects the player’s focus on accomplishment, ambition, and the pursuit
or recognition of significant goals, which shapes their emotional and
cognitive responses in post-match interviews. This factor encompasses
expressions of pride, satisfaction, motivation, and validation related to
personal or collective achievements.

1 represents strong achievement focus (expressed pride, ambition, or
satisfaction), -1 represents minimal achievement focus (lack of reference
to accomplishment or ambition).

Social Connectedness Reflects the player’s sense of belonging, appreciation, and positive regard
for others, including peers, mentors, audience, and support teams,
indicating a positive emotional bias toward interpersonal relationships and
communal support.

1 represents strong social connectedness (gratitude, admiration,
appreciation), -1 represents weak or absent social connectedness (disdain,
lack of respect).

Confidence Reflects the player’s cognitive and emotional appraisal of their own
abilities, encompassing self-belief, determination, and receptiveness to
encouragement or inspiration, which influences their post-match language
in a positive or negative direction.

1 represents high confidence (assertive, self-assured), -1 represents low
confidence (doubtful, apologetic).

Self-Assurance Represents the player’s internal sense of certainty and trust in their
abilities, which influences their language and demeanor in post-match
interviews. It reflects a positive or negative cognitive-emotional state
regarding their own competence and readiness.

1 represents high self-assurance (expressed certainty, composure), -1
represents low self-assurance (expressed doubt, anxiety).

Preparedness Reflects the player’s perceived level of readiness and adequacy of
preparation, encompassing both physical and mental aspects, which
influences their confidence and outlook in post-match communication.

1 represents high preparedness (well-prepared), -1 represents low
preparedness (unprepared).

G USER STUDY

To align with our goal of enabling seamless and trustworthy human–AI conversation, we conducted a
human evaluation of next-utterance prediction. We implemented a web interface (Figure 7) in which,
on each trial, participants viewed the reference answer, then selected the option closest to the human-
written reference answer from four anonymized model outputs. The four candidates (InternVL-8B,
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VideoLLaMA3, GPT-4o, and SayNext-Chat) were displayed in randomized order to mitigate order
effects and branding bias. Participants judged according to their own criteria, and were encouraged
to consider three aspects: lexical overlap, semantic similarity, and emotion consistency. We recorded
per-model selection rates and averaged them across trials and participants. Quantitative results are
reported in Table 4 of the main text.

User Study Website

Figure 7: User-study web interface. The “Name” field records a pseudonymous participant ID code
(not a real name); no personal data is collected. Participants must click to provide informed consent
(e.g., use of anonymized results in the paper and secure data storage). On each trial, they select the
option closest to the reference; options are randomly shuffled to ensure fairness.

H CASE STUDY: COMPARISON PREDICTION OF THE STATE OF THE ART

We show the case study compared our model with other baselines in this section. The qualitative
analysis demonstrates our model’s ability to generate highly relevant and nuanced verbal expres-
sions. In the subject-independent case in table 12, a subtle micro-expression (a slight upward turn of
the lip corners) indicates a positive internal state, leading our model to correctly generate responses
such as “enjoying” and “satisfying,” whereas GPT4o predicts the inaccurate emotions “exhausted”
and “disheartened.” In the subject-dependent case, where the athlete exhibits “slight confidence
under opponent pressure,” our model produces a comprehensive prediction that captures both the
competitive context and the athlete’s self-assurance.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Subject dependent case: Video 0336-1 Subject independent case: Video 0133-2

Input
video and
question

Interviewer: Your opponent said that she felt
that you were hitting free. Did you have that
sense? Just talk about your hitting style.

Interviewer: In such a tight match to play three
tie breakers and win them like you did, must
give you a lot of pleasure?

Real
Response

I think her and I actually
play a little bit similar to each other.

she didn’t give me any opportunity in
that first set. And then in the third set, I knew
that she was nervous. I decided that I wanted
to play some long points, extend some rallies
and I went after my shots at the right time .

Yeah, I knew my best chance was prob-
ably to get it in a couple of breakers .
He served extremely well throughout the

whole match. I didn’t really get to look at
many second serves at all. Yeah, I mean it
was fun . It was a fun match.

SayNext-
Chat

(Ours)

Yeah, I managed to hit more than she
did, so there was some pressure in this
tournament. This was my first Grand
Slam final, that made things different .I’m
happy with how I played today . She made

some errors and had some issues on her end,
but I still would have liked to play even better.

Yeah, I was enjoying it a lot . The
first set wasn’t too bad, and then
we had some momentum shifts , but in
tie-breaks , you just have to stay calm and

play the key points well. I knew serving well
was crucial. Winning in those moments defi-
nitely made the match even more satisfying.

InternVL I stay calm and composed during the match.

I’m glad to hear that my opponent noticed my
style.

Yeah, definitely. The first two tie-breaks were
really close, and I actually tied with Alex .
But yeah, it was a fun match.

GPT-4o I did feel like I was hitting freely out there

today. I stay aggressive and consistent .

They may be feeling a bit exhausted or
disheartened . It’s not about pleasure , it’s

about getting the job done.

Videollama3I think I hit a lot of free balls. I think my style is
more about power , but also about accuracy .

We worked hard as a team and pulled through
in the tie breakers. It’s always rewarding to
come out on top in close matches.

Emotion-
LLaMA

The athlete’s facial expressions and
body language are neutral , suggesting
that he is simply providing information
without any strong feelings or opinions .

He will say, with a hint of surprise and sat-
isfaction, indicating that he is feeling content
and pleased with himself.

Table 12: Case Study 1 of Baseline Methods and Our Approach in Subject-Dependent (Left)
and Subject-Independent (Right) Settings. Highlighted Text Annotations: Blue: Key language
expressions in ground truth, Green: Correct predictions of factors, Red: Incorrect or unrelated
predictions. See Supplementary Material for complete case studies and additional examples.
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Subject dependent case: Video 0294-8

Input
video and
question

Interviewer: Mr. Fonus, you like to look at things from a bigger perspective. What do you think
makes Serena special as a person in the sports figure in our culture?

Real
Response

She has a different approach than any female player I’ve met. She has this thing,
you know, she’s really... How can I explain it? She has a lot of confidence
in herself. Like, really, she knows what she’s doing on and off the court. She’s a
lovely person outside the court. And just this attitude that she has of, you know,
shading to lose, and that’s what makes her a great champion . That’s what I noticed on the

court. Even on the practice, she really wanted to do better than me , and that was, you know,
unusual to see something like this from a female player. When she’s playing against
a male player, but yeah, I do respect a lot what she did in her career. And she has
something different than the other players .

SayNext-
Chat

(Ours)

Well, I know her as a mother to her daughters, and she’s doing really well with them, obviously.
She has spent many long hours on court proving herself to be great—physically, mentally , in
every aspect. In my opinion, what brings all of those qualities together is family, which definitely
pushes someone like Serena or anyone else to the highest level . Even though it hurts today,
losing in the Wimbledon final against Justene Magirt in such a close late-night match, and also at
Pivotter, where we had some mental battles, she always finds a way to stay strong . They beat
me last year here, at this tournament three years ago, and then again over Christmas. Every time
we’ve faced each other one-on-one, it’s been tough because she is the greatest player ever in
any sport—no question. But I always find extra motivation to keep chasing results and proving
myself against such an elite competitor.

InternVL Serena is special because of her unwavering dedication and her ability to constantly push
herself to new heights. Her work ethic and mental toughness are truly remarkable, and she has

set a high standard for what it means to be a champion in our culture .

GPT-4o I think what makes Serena truly special is her resilience and ability to consistently perform
at the highest level for so many years. Beyond her incredible achievements on the court, she’s
been a powerful symbol of determination and hard work and a role model for so many people
around the world , inspiring not only athletes but everyone who watches her journey.

Videollama3I think what sets Serena apart is her relentless work ethic and her ability to maintain a positive
attitude even in the face of adversity . She’s not just a great athlete, but also an inspiration to

many. Her dedication and perseverance are truly remarkable.

Emotion-
LLaMA

i think serena williams is special as a person in the sports figure in our culture be-
cause she has been able to overcome many obstacles and challenges throughout her
career, including discrimination, sexism, and personal struggles she has shown incredible

resilience and determination , and her success is an inspiration to many people, particularly
young girls and women who are pursuing their dreams in sports

Table 13: Case Study 2. The question mentions “Culture” while the ground truth does not include
this element. Most MLLMs predict this keyword solely based on the question text. Highlighted
Text Annotations: Blue: Key language expressions in the ground truth; Green: Correct predic-
tions of factors; Red: Incorrect or unrelated predictions.
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Subject independent case: Video 0056-2

Input
video and
question

Interviewer: Why the match tone and fits it?

Real
Response

I mean, I cramped after that long rally . I still had game points to go up 3-2 and I

lost my service game , I think, because of that a little bit. So, yeah, those are big reasons
for it.

SayNext-
Chat

(Ours)

It was a good match , and I played well from the first point to the last . He played well too,
especially considering he had beaten Rafa and Zverev in the previous rounds. But for me,
reaching the semifinals feels unbelievable, so I’m quite happy with that.

InternVL The match tone and fit it because it’s crucial to maintain a consistent rhythm and energy

throughout the game. This helps in building momentum and ensuring that both the players
and the audience are engaged and energized.

GPT-4o It was a challenging match, and I think the tone of the match shifted at certain moments. I
need to adjust my game and focus on the next steps to improve.

Videollama3 I’m sorry, but I can’t provide a response to the question as it requires interpreting the athlete’s

facial expressions and body language in real-time, which is beyond my capabilities.

Emotion-
LLaMA

i’m not sure why the match tone and fit so well , but it’s definitely a good thing for us to have
this kind of technology available to us in the future it’s important to have a variety of materials
that can be used for different purposes, and having a material that is both strong and flexible like
this one is very beneficial

Table 14: Case Study 3. This is a chllenge case where the interviewer’s question is concise and
less informative. Our model gives some unrelated answer, while other models give wrong answer
or invalid answer. Highlighted Text Annotations: Blue: Key language expressions in the ground
truth; Green: Correct predictions of factors; Red: Incorrect or unrelated predictions.
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I PROMPTS

Prompt design critically influences LLM-based experiments; accordingly, we standardize it. For
prediction generation, we use an identical prompt across all systems—zero-shot baselines, the fine-
tuned model, and our proposed model—to ensure fairness and reproducibility.

I.1 PROMPTS FOR CODEBOOK GENERATION

Prompt for Basic Factors Extraction

sys-prompt = (
Please identify and list distinct, concrete factors from the following tennis post-match interview
response, following these rules:
1. Each factor must capture a core theme mentioned in the response; avoid vague or trivial
terms.
2. Factors should reflect the player’s cognitive or emotional state and may cover tactical,
technical, mental, or physical aspects.
3. Each factor should can be correspond to a specific behavioral or psychological characteristic
with a clear positive or negative emotional bias.
4. For each factor, list the exact expression from the original sentence (do not generalize).
Output **strictly** in JSON format, for example:
{”distinct factor 1”: [”exact expression from the original sentence”], ”distinct factor 1”: [”exact
expression”],...}
)

Prompt for Codebook Generation

sys-prompt = (
Based on the input factor clusters, summarize a single priming factor that organizes a tennis
player’s post-match interview language.
Do not repeat any factors that have appeared in the history factors list.
The priming factor should be a neutral, widely recognized, established word or phrase. Avoid
hyphenated terms, uncommon constructions, or vague words like ’orientation.’ Following these
rules:
1. The priming factor should distill specific factors into a universal, semantically clear category
(e.g., Emotion Valence, Physical State, Opponent Threat Perception), but avoid categories that
are overly broad or vague (e.g., Resilience)
2. Priming factor should represent the player’s cognitive or emotional state; avoid detailed or
context-specific categories
3. Priming factor should correspond to a specific behavioral or psychological characteristic
with a clear positive or negative emotional bias
Output **strictly** in JSON format, for example:
{”Priming factor”: ”Emotion Valence”, ”Explanation”: ”Indicates the emotional valence in the
player’s response, reflecting a positive (happy) or negative (upset) state”, ”Value” : ”1 represents
positive emotion (joy), -1 represents negative emotion (upset)”}
)
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Prompt for Target Priming Vector Assignment

sys-prompt = (
Given a factor book containing a list of priming factors, assign a priming activation probability
vector for a given tennis player post-match interview text.
This vector should describe which factors are activated in the text and the activation strength
for each factor.
1. Each value in the vector represents the activation strength of the corresponding factor, as a
float between -1 and 1.
2. Assign activation values based on the ’value’ in the factor book. If the text does not contain
information related to a specific factor, assign 0 to that dimension.
3. Strictly follow the order and definition of factors in the factor book when generating the
probability vector.
4. As a linguistics expert, consider both overall meaning and subtle language cues. Avoid
extreme values (-1 or 1) unless the evidence is very clear; use intermediate values to reflect
language nuance.” ”Output only an N-dimensional probability vector (N is the number of factors
in the factor-book), for example:
[-0.9, 0.5, 0.8, -0.5, 0.7, 0, -0.6, 1.0, -0.7, 0.9, 0, -1.0, 0, 0, 0.9...]
)

I.2 PROMPTS FOR NEXT-UTTERANCE PREDICTION

Prompt for Next-Utterance Prediction on SayNext-PC

You are a powerful multimodal model / professional psychologist.
Please predict the athlete’s next response to the reporter’s question based on their facial
expressions and body language in this video.
The reporter’s question is: question text
Output **strictly** in the following format: He/She will say:

Prompt for Next-Utterance Prediction on IEMOCAP

You are a powerful multimodal model / professional psychologist.
Please predict the athlete’s next response to the reporter’s question based on their facial
expressions and body language in this video.
The reporter’s question is: question text
Output **strictly** in the following format: He/She will say:
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