
Continuous Episodic Control

Zhao Yang∗
Leiden University
The Netherlands

Thomas M. Moerland
Leiden University
The Netherlands

Mike Preuss
Leiden University
The Netherlands

Aske Plaat
Leiden University
The Netherlands

Abstract

Non-parametric episodic memory can be used to quickly latch onto high-rewarded
experience in reinforcement learning tasks. In contrast to parametric deep rein-
forcement learning approaches in which reward signals need to be back-propagated
slowly, these methods only need to discover the solution once, and may then re-
peatedly solve the task. However, episodic control solutions are stored in discrete
tables, and this approach has so far only been applied to discrete action space
problems. Therefore, this paper introduces Continuous Episodic Control (CEC), a
novel non-parametric episodic memory algorithm for sequential decision making
in problems with a continuous action space. Results on several sparse-reward
continuous control environments show that our proposed method learns faster than
state-of-the-art model-free RL and memory-augmented RL algorithms, while main-
taining good long-run performance as well. In short, CEC can be a fast approach
for learning in continuous control tasks.

1 Introduction

Deep reinforcement learning (RL) methods have recently demonstrated superhuman performance
on a wide range of tasks, including Gran Turisma [23], StarCraft [21], Go [18], etc. However, in
these methods, the weights of neural networks are slowly updated over time to match the target
predictions based on the encountered reward signal. Therefore, even if the agent finds the solution to
the problem, the learning still can be fairly slow, and the agent may not be able to solve the problem
in subsequent episodes. This is one of the reasons state-of-the-art RL methods generally require many
interactions with the environment and substantial computational resources [14, 17]. Non-parametric
episodic memory (EM) is introduced to directly store high-rewarded experiences, enabling the agent
to quickly latch onto these experiences in reinforcement learning problems. Compared to parametric
deep RL methods, these methods only need to solve the task once, because the solution is stored
in memory and can be quickly retrieved. This is especially helpful for tasks where the agent only
gets a final reward once it succeeds, i.e. sparse reward problems [3]. Although parametric RL
methods do perform well in the long run (due to its generalizability, optimality and ability of dealing
with stochasticity), sometimes we prefer a quick and less computationally expensive solution to the
problem [1]. The ability to quickly latch onto recent successful experiences is also clearly evident
in nature, where scrub jays for example store food and directly remember the exact location using
episodic memory [2].

Episodic memory is a term that originates from neuroscience [20], where it refers to memory that
we can quickly recollect. In the context of RL, this concept has generally been implemented as a
non-parametric (or semi-parametric) table that can be read from and written into rapidly. Information
stored in the memory can then either be used directly for control (for action selection) or to generate
training targets for parametric deep RL methods. When used for control (usually called episodic
control), episodic memory stores state-action pairs and their corresponding episodic returns in

∗email address: z.yang@liacs.leidenuniv.nl

16th European Workshop on Reinforcement Learning (EWRL 2023).

Figure 1: Conceptual illustration of the Continuous Episodic Control (CEC) algorithm. Left: We
store a non-parametric table/buffer of state-action-value estimates obtained from previous episodes.
Middle & Right: Action selection for a novel query state (dark blue circle) is performed by collecting
its nearest neighbours in the buffer (dashed circle), and then sampling one of the actions of these
neighbours proportional to their value (right). After possibly injecting exploration noise the selected
action for the query state is returned.

memory and extracts the policy by taking actions with maximum returns. It is therefore conceptually
similar to tabular RL methods [22] but with a different update rule, where stored values are directly
replaced with larger encountered ones instead of being gradually updated towards targets.

Since current episodic control methods maintain a value estimate for each state-action pair [1], they
cannot naturally deal with continuous action spaces. One solution to this problem is to combine
episodic memory with deep RL methods, where the episodic memory part generates training targets
for a value network that is used to act (value-based approaches [13]) or to guide act (actor-critic
approaches [9]) in the environment. The drawback of this approach is that we not only have to
maintain extra memory, but again rely on the relatively slow deep RL agent for action selection and
thereby performance is affected. The natural question that arises is: can we directly use episodic
memory for action selection in continuous control tasks, without relying on parametric RL methods?

This work therefore introduces Continuous Episodic Control (CEC), an algorithm that uses episodic
memory directly for action selection in tasks with a continuous action space. The main idea is based
on the principle of generalisation: similar states generally require similar actions to obtain high
returns. However, given a new query state, we 1) may not have that exact state in our buffer, and 2)
we definitely only have value estimates for a few points in the continuous space of possible actions.
We solve these issues by 1) specifying the nearest neighbour search in state space and 2) selecting
actions proportionally to their value estimate, injected with Gaussian noise per action. The overall
process of CEC is illustrated in Fig. 1.

Experiments on a range of continuous control tasks show that our method outperforms state-of-the-art
model-free and memory-augmented RL methods in various continuous control problems. We also
visualize how CEC manages to capture state-action values quickly and reliably in the beginning of
the training, which results in steeper learning curves. In short, CEC seems to be a promising approach
to learn quickly in continuous control tasks.

2 Background

In reinforcement learning [19], an agent interacts with the environment. This process is formed as
a Markov Decision Process (MDP) defined as the tuple M = ⟨S,A, P,R, γ⟩, where S is a set of
states, A is a set of actions the agent can take, P specifies the transition dynamic of the environment,
R is the reward function, and γ is the discount factor. At timestep t, the agent observes a state
st ∈ S, and selects an action at ∈ A. The environment returns a next state st+1 ∼ P (·|st, at) and
an associated reward rt = R(st, at, st+1) after the action is executed. The agent selects actions
according to a policy π(·|st) that maps a state to a distribution over actions. The goal is to learn a
policy that can maximize the expected return: Est+1∼P (·|st,at),at∼π(·|st),rt∼R(·|st,at)[

∑T
t=0 γ

t · rt],
where γ ∈ [0, 1].

2

Define the state-action value Q(st, at) as the expected return:

Q(st, at) = EP,π,R[

T∑
k=t

γk · rk],

when the agent starts from state st and action at at time-step t. Q-learning learns the optimal
state-action value function by updating the current estimated value towards a target value (TD-target)
following:

Q̂(st, at)← Q̂(st, at) + α · [rt + γ ·max
a′∈A

Q̂(st+1, a
′)− Q̂(st, at)] ,

where α is the learning rate, Q̂(st, at) is estimated state-action value.

In deep Q-learning [12], state-action value function Q(st, at) is approximated by a neural network
denoted by Qϕ(st, at). Then the function is updated by minimizing the mean squared error L(ϕ,D)
between the TD-target and the estimated value computed using samples from D:

L(ϕ,D) = E(st,at,rt,st+1)∼D

(
rt + γ ·max

a′∈A
Q̂ϕ(st+1, a

′)− Q̂ϕ(st, at)
)2

After the optimal state-action value function is learned, the optimal policy can be exacted by greedily
taking actions that have highest state-action values:

at = argmax
at

Q(st, at). (1)

3 Related Work

In this section, we will discuss RL methods that use or are augmented with episodic memory. There
are mainly two directions, one that directly uses episodic memory for control (‘episodic control’),
and another which uses data in the episodic memory to guide the learning update of parametric RL
agents (‘memory-augmented RL’). We will discuss both.

Episodic control Model-free episodic control (MFEC) [1] uses a non-parametric table to store
episodic return Gt =

∑T
k=t γ

k−trk for each state-action pair and only overwrites it when a higher
return of the state-action pair is encountered:

Q̂em(st, at)← max[Q̂em(st, at), Gt]

The optimal policy is extracted by greedily taking actions with the greatest values stored in the EM
table, similar with Eq. 1. It outperforms state-of-the-art model-free RL methods on some Atari
games in the short run. Neural episodic control [16] proposed to use a semi-tabular approach called
differentiable neural dictionary (DND) which can store trainable representations which are updated
during the training process. NEC selects action in the same way as MFEC. The slowly changing
representations and quickly updating values lead to better performance than MFEC. To the best of
our knowledge, no previous method has studied the use of episodic memory for action selection in
continuous action spaces.

Memory-augmented RL Instead of using non-parametric models directly for action selection,
information stored can also be used to enhance learning of a deep RL agent. During updates of value-
based deep RL methods [14] or critic parts of actor-critic RL methods [10], the neural network is
updated by minimizing the error between a TD target and the currently estimated Q value. Therefore,
values from the episodic memory can be used to form a new update target alongside the original TD
target:

L = α · (Q̂− Q̂original)
2 + β · (Q̂− Q̂em)2, (2)

3

where L is the loss/error to minimize, α and β are hyper-parameters to balance the contribution of
the original TD target Q̂original and the episodic target Q̂em, and Q̂ is the current Q value estimation.
Episodic Memory Deep Q-networks (EMDQN) [11], Episodic Memory Actor-Critic (EMAC) [7],
Model-based Episodic Control (MBEC) [8] and Generalizable Episodic Memory (GEM) [5] all use
this approach, but in different ways. EMDQN combines values from the EM with 1-step TD target in
deep Q learning using fixed α and β. EMAC combines values from the EM with 1-step TD target
in DDPG for solving tasks with continuous action space. MBEC brings episodic memory into the
model-based RL settings, and combines values from the EM with 1-step TD target using a learned
weight instead of fixed α and β. GEM uses EM for implicit planning and performs the update with
an n-step TD target [19], first taking n steps based on the EM then bootstrapping from a Q-network.
Aforementioned methods are all trying to distill information stored in EMs into parametric models.
Although by doing so the performance of parametric models is enhanced, meanwhile it also loses the
underlying benefit of EM which is fast reading and writing.

Method EM usage Action space
MFEC action selection discrete
NEC action selection discrete

EMAC target update continuous
EMDQN target update discrete

GEM target update continuous
MBEC target update discrete

Neural Map feature storage discrete
CEC (ours) action selection continuous

Table 1: Overview of related memory-based RL approaches. None of these previous works uses
episodic memory for action selection in problems with a continuous action space.

Finally, note that there are various other methods, such as Neural Map [15], that learn to interact
with an external (tabular) memory module to deal with partial observability, but these approaches
do not store any value or policy estimates in the table, like episodic memory. A summary of related
work is provided in Table 1.

4 Continuous Episodic Control (CEC)

The principle of CEC is that actions the agent takes in similar states should also be similar. It is
implemented by maintaining a table that contains a state-action-value tuple for each row. Each entry
stores the cumulative discounted reward the agent received in an episode after taking the specific
action in the specific state. To interact with the memory, CEC mainly has two functions: an update
function that adds new encountered data into the memory or updates old data after an episode is
terminated, and an action selection function that is used during the episode to select actions.

Update We update the episodic memory after each collected episode. Intuitively, we want our
episodic memory to have good coverage of the visited state space, for which we use the following
mechanism. We first collect state-action-value pairs (s, a, v) from episodes, where each value

v = Q̂em(s, a) =

T∑
i=0

(γ)i · rt+i|st = s, at = a

is the cumulative discounted reward obtained after taking action a in state s (for readability we often
omit the dependence of v on s and a when it is clear from the context). For each collected (s, a, v),
we then find its closest state neighbour sc in the current memory. The new state-action-value tuple is
directly added into the CEC memory if the state is far away from its closest neighbor. Thereby, if the
CEC memory does not contain any information about the area near the incoming state, we directly
add it into the memory.

When its closest neighbor is within a certain distance threshold d, and its corresponding value is
smaller than the value of the incoming state, we replace the previous state-action-value tuple with the
new one. The intuition is that when the closest neighbor is close enough, we assume that the CEC

4

memory has information about the area near the new state. However, if the stored value is worse than
the one of the new state-action-value tuple, we do overwrite it since we now have information about a
better action in the specific state region. The update rule can be expressed as:

EM(sc, ac, vc)←

(s, a, v) if f(s, sc) < d

and v > vc,

(sc, ac, vc) otherwise
(3)

Here, superscript c indicates the closest neighbour in the buffer, superscript l indicates the least
recently updated entry in the buffer, EM() refers to the slot of the specific entry in the memory buffer,
f() specifies a distance measure and d specifies a distance threshold. Once the buffer has filled
up, when a new coming state is out of the distance threshold of its closest state, the least updated
tuple will be thrown away and the new coming tuple will be added, otherwise, it will follow the
aforementioned update rule:

EM(sl, al, vl)←
{
(s, a, v) if f(s, sc) > d,

(sl, al, vl) otherwise

(4)

Here, superscript l indicates the least recently updated entry in the buffer.

Action selection When a state s is encountered, a corresponding action a is selected based on
information stored in the CEC memory. We first find the k nearest-neighbors of state s, denoted
by Sk, then filter out neighbors which are too far away. Especially when the memory is sparse, the
closest neighbors could still be very far away and we do not consider these faraway neighbors as
‘similar’ states. Next we let values stored for state-action pairs of the filtered neighbors Sk decide
which action should be selected. Higher values indicate better actions, but for exploration purposes
we still want to give other actions a chance to be chosen. Therefore, we sample an action from the set
Sk proportional to their value estimates, by taking a softmax:

p(as|Sk) =
evs/τ∑

s′∈Sk

evs′/τ
, s ∈ Sk (5)

where subscripts s and s′ indicate the state the specific action and value belong to in the buffer, and τ
is a temperature factor to scale exploration. We now have a sample from the discrete set of ai points
in the buffer, but our true action space is of course continuous. We therefore transform our sample to
a continuous distribution by adding Gaussian noise to the sampled action with probability ϵ. During
the evaluation, all exploration is turned off and actions are selected by greedily taking the action of
the closest neighbour.

Feature embedding While dealing with a high-dimensional state space, storing the original state
and finding its neighbors is expensive. We therefore utilize random projections to project the original
state space into a smaller space. We first sample a random matrix A ∈ RDori×Dnew for a standard
Gaussian distribution, where Dori and Dnew are the dimensions of the original and projected state
space, respectively. We then (matrix) multiply the original state by A to get an embedded state,
i.e. snew = A · sori, where snew and sori are the embedded and original state, respectively. These
transformations will still preserve the relative distance in the original state space. We only use the
random projection for FetchReach and Safexp-CarGoal environments, while for other environments
the original state is directly stored and queried.

The overall algorithm can be found in Alg. 1 in the appendix.

5 Experiments

In this section, we will first give some insights of CEC by using simple toy examples. Then we scale
up to more complex continuous control tasks and compare with state-of-the-art RL and memory-
augmented RL methods. Dimensions of environments we used for this work are shown in Tab. 2.

5

Although Safexp-PointGoal and Safexp-CarGoal have the same action space (two actuators, one
for turning and one for moving), in Safexp-CarGoal both turning and moving require coordinating
both of the actuators, which is more complex. Every experiment is averaged over 5 independent runs
and standard errors are plotted as well.

Env State Space Action Space
GrowingTree 1 1

MountainCarContinuous 2 1
PointUMaze 4 2
Point4Rooms 4 2

Safexp-PointGoal 24 2
Safexp-CarGoal 36 2

FetchReach 13 4

Table 2: Dimensions of state spaces and action spaces of different environments.

5.1 Toy Examples

Figure 2: Evaluation on the toy example. We train the CEC agent on the toy example for 100 k
steps and evaluate it every 10k steps. Training are from top to bottom. Left: the performance during
the evaluation. It gradually takes shorter episode to reach the goal. x-axis is taken steps during the
evaluation episode and y-axis is the state (the height of the current ‘tree’). Red horizontal lines are
targets we set. Right: actions selected by the trained CEC agent. x-axis represents different states
while y-axis represents actions. Red horizontal lines are final target states and green vertical lines are
optimal actions (0.1).

In order to first get an overview and more insights into the method, we create a toy example called
GrowingTree. In this environment, the agent needs to ‘grow’ the ‘tree’ to the given target height.
More details can be found in Tab. 3. The continuous action space ranges from -0.1 to 0.1, which
means the agent can chose to ‘cut’ (< 0) the ‘tree’ or ‘grow’ (> 0) the ‘tree’. The observation for the
agent is the height of the current ‘tree’ and the height changes every step by simply adding the action
to the previous observation. The optimal policy for the agent to get the final reward is to take 0.1 as
the action every step whatever the height of the tree is, which causes the ‘tree’ to grow linearly.

We train the CEC agent on the toy example, with results shown in Fig. 2. Every row of the figure
shows an evaluation of the CEC agent after another 10k training steps, from top to bottom. The nth
row therefore represents the evaluation results after n× 10k training steps. The left part of the figure
shows the heights of the tree during the evaluation episode. If the optimal policy is learned by the
agent, the height of the tree will increase quickly with the number of steps (x-axis) increases. The
right figure shows the actions the CEC agent takes for every possible state (we only evaluate states
that lie within [0,1]). The optimal action in every state is (near) 0.1.

In the top rows, the agent still chooses to ‘cut’ the ‘tree’ sometimes, but the overall trend of the
‘tree’ is still growing. Although the solution is not the optimal, the agent is able to solve the problem
successfully. In the middle rows, the agent can solve the task fairly quickly. However, if we look
at the middle rows of the right figure, the chosen action for every possible state is still far from the

6

state space [-2, 2]
action space [-0.1, 0.1]

maximum steps 200
goal 1.0

final reward 1.0
distance tolerance 0.1

start height 0

Table 3: Details about GrowingTree environment. The agent only gets a final reward when it
successfully reaches the given goal (with a distance tolerance).

Figure 3: Four continuous navigation environments we used in this work and their corresponding
results. From left to right, they are ‘PointUMaze’, ‘Point4Rooms’, ‘Safexp-PointGoal’ and ‘Safexp-
CarGoal’, respectively. We see the proposed method CEC (blue lines) outperform SAC (orange lines)
and EMAC (grey lines) in all these four tasks. Results are averaged over five independent runs and
the shaded area represents standard errors.

Figure 4: MountainCarContinuous environment and learning curve of the CEC agent on it. The agent
gradually learns to solve the problem.

optimal and a few of them are still smaller than 0. Gradually, selected actions of all possible states
are getting closer and closer to the optimal values (bottom rows).

Through this simple example, we see that our principle “similar states should have similar actions"
does work and can indeed quickly solve the problem with a non-optimal solution, while it may also
discover a near-optimal solution given more time.

We next test our method in a simple classical RL task, MountainCarContinuous. We use the sparse
reward version of the task, where the agent only gets a final reward (+100) once it brings the car
successfully to the flag on the top of the mountain. Since the initial position of the car is randomly
generated near the bottom of the mountain, the agent also needs to deal with proper generalization.
The learning curve of CEC on this task is shown in Fig. 4. The CEC agent gradually learns to solve
the task, which gives a first indication that our method can indeed be used for basic RL problems that
require generalization.

7

Figure 5: State values produced by CEC (top) and SAC (bottom) during the training on PointUMaze.
Figures from left to right are after 5k, 50k, and 100k steps of training, respectively. Since the state
space is continuous, we discretize the location information into 12 × 12 grids and the orientation
information into 20 directions (represent as different directed arrows). Longer arrows indicate larger
state-action values, and SAC outputs very large values at the beginning which is not rational while
CEC has larger values for the area near the goal.

Env k τ σ n d
PointUMaze 5 0.1 0.3 1 0.1
Point4Rooms 5 1 0.3 3 0.1

PointGoal 5 0.1 0.1 1 0.1
CarGoal 1 10 0.1 3 0.1

Table 4: Hyper-parameters of CEC we are using for continuous navigation tasks. Notations can be
found in Alg. 1.

5.2 Continuous Navigation Tasks

We next move to more complicated test environments, in which we will also compare CEC to two
baselines: the model-free deep RL method SAC [4] and a memory-augmented deep RL method
EMAC [7] which uses EM for learning targets. We test these in four continuous Mujoco navigation
tasks, shown in Fig. 3. They are PointUMaze, Point4Rooms, Safexp-PointGoal, and Safexp-CarGoal,
respectively. These tasks are all sparse-reward problems, in which the agent only gets a final reward
when the task is successfully completed. Locations of both goals and agents are initialized with small
randomness every episode. Hyper-parameters we are using for CEC on these tasks can be found in
Tab 4.

Results are shown in Fig. 3. CEC agents can quickly solve the task and outperform SAC and EMAC
agents in all environments. In these four navigation tasks, there are explicit bottlenecks and CEC
can quickly remember the discovered solution by only discovering it once. In contrast, the deep RL
methods need to discover the solution multiple times in order to back-propagate reward signals for
learning, and this rediscovery is time-consuming due to the bottlenecks in the tasks.

We also visualize state-action values of CEC and SAC during the training for PointUMaze, which is
shown in Fig. 5. The agent always starts from the bottom-left corner and the goal is always located
at the top-left corner. Both of these locations are initialized with small randomness. Since the state
space of the environment is 3 dimensional (x location of the agent, y location of the agent, orientation
of the agent) and continuous, we discretize x, y locations as a grid world (12× 12) and orientations
as a group of different directed arrows (20 different directions). The length of the arrow represents
the state-action value of the state that is jointly indicated by the arrow and the position of the cell
and the action for that specific state (only one action is maintained for each state). The longer the
arrow is, the larger the state-action value is. From Fig. 5, we see that in the beginning the SAC agent
strongly overestimates all state-actions values, due to the random initialization(arrows went across
the whole state space, meaning all state-action values are extremely large). On the contrary, the CEC
agent obtains reasonable estimates more quickly, also identifying larger value estimates near the goal

8

region. While training progresses, both agents gradually improve their estimates to better propagate
high-value estimates towards the start region (i.e., identifying a good policy). Both agents eventually
solve the task, but CEC was much faster, as can be seen in Fig. 3 as well.

5.3 Robotics Control Task

We finally investigate our method on a more complicated robotics control task: FetchReach. The
goal of the task is to control the robotics arm to reach the red point, which is reset to a randomly
sampled position every episode. The environment and its associated learning curve are shown in
Fig. 6. We use k = 5, τ = 1, σ = 0.1, n = 3, d = 0.5 for CEC. We see that CEC still outperforms
the state-of-the-art baseline methods, although the difference is less pronounced compared to the
previous navigation tasks. We attribute this to the lack of bottlenecks in this task. CEC is probably
most useful when a task has some narrow passages, which are challenging from an exploration point
of view, and in which CEC can quickly latch onto a few successful trials. Nevertheless, even in a
robotics task with no bottleneck characteristics, CEC performs on par with current state-of-the-art
model-free baselines.

Figure 6: FetchReach environment and performance of different agents. CEC still outperforms other
RL agents but the benefits are not as large as the ones in previous navigation tasks.

6 Conclusion and Future Work

In this work, we propose a new episodic control method called continuous episodic control (CEC)
which can handle tasks with a continuous action space. It is the first work that uses episodic memory
for continuous action selection. By following the principle that “similar states should have similar
actions", CEC agents outperform the state-of-the-art RL method SAC and memory-augmented RL
method EMAC in various sparse-reward continuous control environments. Although RL methods
might outperform episodic control in the long run, sometimes we do prefer a quick and cheap solution
to the problem. Several experiments show CEC has strong performance on continuous navigation
tasks, especially when there are bottlenecks in the environment.

Although non-parametric methods (like episodic control) require increasing memory with new data,
this can be eliminated by employing a throw-away mechanism that only stores important data. In
fact, experimental results show that episodic control is able to scale up to Atari games [17], such as
Ms.Pac-Man, Space Invaders, and Frostbite, where pixel images are used as observations. However,
episodic control also has its limitations. For example, using Monte-Carlo returns as its state-action
values has high variance, and also it will not be able to learn the optimal solution in stochastic
environments by definition. But we believe sometimes we do prefer a quick (might be sub-optimal)
solution.

In the future, it would be very interesting to investigate better feature embedding methods (such as
using latent features of a pre-trained VAE [6]) and exploration strategies that work well with CEC.
In addition, we could also look at methods to improve the nearest neighbour search, for example,
based on clustering. Finally, we believe there is potential to combine episodic control and parametric
reinforcement learning methods to distill strengths from both sides and then end up with a more
powerful agent.

9

References
[1] C. Blundell, B. Uria, A. Pritzel, Y. Li, A. Ruderman, J. Z. Leibo, J. W. Rae, D. Wierstra, and

D. Hassabis. Model-free episodic control. CoRR, abs/1606.04460, 2016.

[2] N. S. Clayton and A. Dickinson. Episodic-like memory during cache recovery by scrub jays.
Nature, 395(6699):272–274, 1998.

[3] A. Ecoffet, J. Huizinga, J. Lehman, K. O. Stanley, and J. Clune. First return, then explore.
Nature, 590(7847):580–586, 2021.

[4] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In J. G. Dy and A. Krause,
editors, Proceedings of the 35th International Conference on Machine Learning, ICML 2018,
Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine
Learning Research, pages 1856–1865. PMLR, 2018.

[5] H. Hu, J. Ye, G. Zhu, Z. Ren, and C. Zhang. Generalizable episodic memory for deep
reinforcement learning. In M. Meila and T. Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume 139 of
Proceedings of Machine Learning Research, pages 4380–4390. PMLR, 2021.

[6] D. P. Kingma and M. Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

[7] I. Kuznetsov and A. Filchenkov. Solving continuous control with episodic memory. In Z.-H.
Zhou, editor, Proceedings of the Thirtieth International Joint Conference on Artificial Intelli-
gence, IJCAI-21, pages 2651–2657. International Joint Conferences on Artificial Intelligence
Organization, 2021.

[8] H. Le, T. G. Karimpanal, M. Abdolshah, T. Tran, and S. Venkatesh. Model-based episodic
memory induces dynamic hybrid controls. In M. Ranzato, A. Beygelzimer, Y. N. Dauphin,
P. Liang, and J. W. Vaughan, editors, Advances in Neural Information Processing Systems 34:
Annual Conference on Neural Information Processing Systems 2021, NeurIPS 2021, December
6-14, 2021, virtual, pages 30313–30325, 2021.

[9] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[10] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. In Y. Bengio and Y. LeCun, editors, 4th
International Conference on Learning Representations, ICLR 2016, San Juan, Puerto Rico,
May 2-4, 2016, Conference Track Proceedings, 2016.

[11] Z. Lin, T. Zhao, G. Yang, and L. Zhang. Episodic memory deep q-networks. In Proceedings of
the 27th International Joint Conference on Artificial Intelligence, IJCAI’18, page 2433–2439.
AAAI Press, 2018.

[12] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. nature, 518(7540):529–533, 2015.

[14] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. A. Riedmiller, A. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. Antonoglou,
H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-level control through
deep reinforcement learning. Nat., 518(7540):529–533, 2015.

[15] E. Parisotto and R. Salakhutdinov. Neural map: Structured memory for deep reinforcement
learning. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver,
BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net, 2018.

10

[16] A. Pritzel, B. Uria, S. Srinivasan, A. P. Badia, O. Vinyals, D. Hassabis, D. Wierstra, and
C. Blundell. Neural episodic control. In D. Precup and Y. W. Teh, editors, Proceedings of the
34th International Conference on Machine Learning, volume 70 of Proceedings of Machine
Learning Research, pages 2827–2836. PMLR, 06–11 Aug 2017.

[17] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser,
I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalch-
brenner, I. Sutskever, T. P. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis.
Mastering the game of go with deep neural networks and tree search. Nat., 529(7587):484–489,
2016.

[18] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge. nature,
550(7676):354–359, 2017.

[19] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.

[20] E. Tulving. Episodic and semantic memory. 1972.

[21] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent
reinforcement learning. Nature, 575(7782):350–354, 2019.

[22] C. J. C. H. Watkins. Learning from delayed rewards. 1989.

[23] P. R. Wurman, S. Barrett, K. Kawamoto, J. MacGlashan, K. Subramanian, T. J. Walsh, R. Capo-
bianco, A. Devlic, F. Eckert, F. Fuchs, et al. Outracing champion gran turismo drivers with deep
reinforcement learning. Nature, 602(7896):223–228, 2022.

11

A CEC algorithm

Algorithm 1: Continuous Episodic Control (CEC)

Initialize: CEC Memory M , environment Env, episode memory Meps, distance threshold d, filter
factor n, k for k-nearest-neighbors, discount factor γ, noise standard deviation σ, exploration factor
ϵ.
while training budget left do
s← Env.reset() {Reset the environment.}
done = false
while not done do

// SELECT ACTION
Sk = knn(k, s, n, d) {Find k nearest-neighbors of the state s within threshold n× d.}
a ∼ p(as|Sk) {Select actions based on Eq. 5}.
if ∆ ∼ U(0, 1) < ϵ then
ψ ∼ N (0, σ2)
a← a+ ψ

end if
s′, r, done← Env.step(a)
Append [s, a, r] to Meps

s← s′

end while
// UPDATE
v = 0
while Meps not empty do
s, a, r ←Meps.pop()
v ← r + γ · v
Update M using (s, a, v). {Update CEC memory based on Eq. (3 4)}.

end while
end while

In the algorithm above, knn(k, s, n, d) is a function that first finds the k nearest neighbors of the state
s, then filters out states whose distances are larger than n times of the distance threshold d.

12

	Introduction
	Background
	Related Work
	Continuous Episodic Control (CEC)
	Experiments
	Toy Examples
	Continuous Navigation Tasks
	Robotics Control Task

	Conclusion and Future Work
	CEC algorithm

