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ABSTRACT

Transformers have the capacity to act as supervised learning algorithms: by prop-
erly encoding a set of labeled training (“in-context”) examples and an unlabeled
test example into an input sequence of vectors of the same dimension, the forward
pass of the transformer can produce predictions for that unlabeled test example.
A line of recent work has shown that when linear transformers are pre-trained
on random instances for linear regression tasks, these trained transformers make
predictions using an algorithm similar to that of ordinary least squares. In this
work, we investigate the behavior of linear transformers trained on random lin-
ear classification tasks. Via an analysis of the implicit regularization of gradient
descent, we characterize how many pre-training tasks and in-context examples
are needed for the trained transformer to generalize well at test-time. We further
show that in some settings, these trained transformers can exhibit “benign overfit-
ting in-context”: when in-context examples are corrupted by label flipping noise,
the transformer memorizes all of its in-context examples (including those with
noisy labels) yet still generalizes near-optimally for clean test examples.

1 INTRODUCTION

A key feature of transformer-based large language models (LLMs) is their ability to perform in-
context learning: by providing a few labeled examples to a trained transformer with an unlabeled
example for which the user wants a prediction, LLMs can formulate accurate predictions without
any updates to their parameters (Brown et al., 2020). This ability to perform in-context learning is in-
fluenced by the interplay between tokenization of inputs (i.e. how to feed data into the transformer),
pretraining datasets, optimization algorithms used for pre-training, the particular architecture of the
transformer, as well as the properties of the in-context examples that are provided at test time.

A number of recent works have sought to develop a deeper theoretical understanding of in-context
learning by investigating transformers trained on classical supervised learning tasks. This line of
work was initiated by the experiments of (Garg et al.|(2022), who showed that when transformers are
trained on random instances of supervised learning problems, they learn to implement supervised
learning algorithms at test-time: e.g., when training GPT2 architectures (Radford et al., 2019) on
random linear regression tasks with weights sampled from a Gaussian prior, the transformer learns
to implement an algorithm similar to ordinary least squares. This led to a series of follow-up works
which analyzed the dynamics of gradient descent/flow over simplified linear transformer architec-
tures when trained on linear regression tasks (von Oswald et al., 2022; |Akyurek et al., [2022)), some
providing guarantees for how many tasks or samples were needed to generalize well (Zhang et al.|
2024; |Ahn et al.l [2023; |Wu et al.| [2024).

In this work, we analyze the behavior of linear transformer architectures which are trained by
gradient descent on the logistic or exponential loss over random linear classification tasks. We
consider a restricted linear attention model, a setting considered in prior works (Wu et al., 2024;
Kim et al.| 2024). We assume that pre-training tasks are sampled from random instances of class-
conditional Gaussian mixture model data, i.e. for some R > 0, covariance matrix A and for each
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Figure 1: Benign overfitting in-context: after pre-training (not shown), when given a sequence of
in-context examples, the transformer memorizes noisy labels yet still generalizes well to unseen test
examples.
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We assume that test-time in-context examples also come from class-conditional Gaussian mixture
models as above but with two important differences. First, the signal-to-noise (determined by R) at
test time can differ from those seen during pre-training. Second, we allow for label-flipping noise to
be present at test time, i.e. we flip labels y; — —y; with probability p.

Our first contribution is an analysis of how many pre-training tasks are needed in order to generalize
well at test-time. We find that after pre-training the transformer can tolerate smaller SNR than those
tasks which it was trained on. Moreover, we find that at test time the transformer can tolerate label-
flipping noise, even though the pre-training data does not have label-flipping noise. Thus, even when
pre-training on simple and easy-to-learn datasets, the transformer can generalize on more complex
tasks. Our proof follows by an explicit analysis of the implicit regularization due to gradient descent
during pre-training. To our knowledge, this is the first theoretical result on in-context learning for
linear classification.

Our second contribution is the finding that the trained transformer can exhibit “benign overfitting in-
context”’: namely, if the test-time sequence is subject to label-flipping noise, then in some settings the
transformer memorizes the in-context training data yet still generalizes near-optimally. The precise
setting where this occurs requires the features to lie in a high-dimensional space and for the SNR to
be relatively small, a set of conditions observed in prior works on benign overfitting in classification
tasks (Chatterji & Long| 2021} |Frei et al., 2022} 2023a). Figure E]illustrates what this phenomenon
would look like in the language setting. To the best of our knowledge, no prior work demonstrated
that transformers could exhibit benign overfitting.

2 RELATED WORK

In-context learning for supervised learning tasks. Following the initial experiments of |Garg
et al.| (2022), a number of works sought to understand what types of algorithms are implemented
by transformers when trained on supervised learning tasks. /Akyurek et al.| (2022) and jvon Oswald
et al.| (2022)) used approximation-theoretic and mechanistic approaches to understand how a variety
of transformer architectures could implement linear regression algorithms. Bai et al.| (2024)) showed
that transformers could implement a variety of classical algorithms used for different supervised
learning tasks, e.g. ridge regression, Lasso, and gradient descent on two-layer networks. Zhang et al.
(2024),|Ahn et al.| (2023)) and [Mahankali et al.| (2024)) examined the landscape of single-layer linear
transformers trained on linear regression tasks, with |[Zhang et al| (2024) additionally developing
guarantees for convergence of (non-convex) gradient flow dynamics. There are other works which
examine training of transformers on data coming from hidden Markov chains (Edelman et al.| [2024)
or nonparametric function classes (Kim et all 2024). The most closely related work to this one
is|Wu et al.| (2024}, who focused on a convex linear transformer architecture, as we do in this work,
trained on linear regression tasks with SGD. They provided task and (in-context) sample complexity
guarantees when training by SGD. In contrast, we develop guarantees for the classification setting,
and we develop guarantees via an analysis of the implicit regularization of GD.
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Implicit regularization in transformers. The starting point for our analysis of the task complex-
ity of pre-training and the sample complexity of in-context learning is an analysis of the implicit
regularization of the optimization algorithm. We outline the most related works here and refer the
reader to the survey by [Vardi| (2022). The convex linear transformer architecture we study is linear
in (the vectorization of) its parameters, which by [Soudry et al.| (2018) implies that gradient descent
converges in direction to the max-margin solution. The more general class of linear transformer
architectures are non-convex in general, but certain subclasses of them are homogeneous in their
parameters and hence converge (in direction) to KKT points of max-margin solutions (Lyu & Li}
2020; ?). Another line of work seeks to understand the implicit bias of GD for softmax-based trans-
formers (Ataee Tarzanagh et al.} 2023} Tarzanagh et al., 2023} Thrampoulidis}, 2024} |Vasudeva et al.,
2024), typically with more stringent assumptions on the structure of the training data.

Benign overfitting. The ability for neural networks to overfit to noise yet still generalize
well (Zhang et al., [2017) led to a significant line of work on reconciling this phenomenon with
classical learning theory. We focus on the most directly relevant works here and point the reader to
the surveys Bartlett et al.[(2021); Belkin| (202 1) for a more extensive review. Prior works have shown
that kernel-based methods (Belkin et al.|[2019) and the ordinary least squares solution (Bartlett et al.,
2020) can exhibit benign overfitting in regression tasks, and that the max-margin solution can in clas-
sification tasks (Chatterji & Long, 2021} [Frei et al., 2023a). Our proof technique comes from the
works [Frei et al.| (2023cfa)), where it was shown that the max-margin solution over 2-layer neural
nets behaves similarly to a nearly uniform average of the training data and that this average can
exhibit benign overfitting in class-conditional Gaussian mixture models. We similarly show that the
forward pass of a pre-trained transformer behaves similarly to an average over the in-context training
examples, and use this to show benign overfitting.

3 PRELIMINARIES

In this section we introduce the pre-training distribution, the particular transformer architecture we
consider, and the assumptions on the pre-training data.

3.1 NOTATION

We denote matrices with capital letters ¥ and vectors and scalars in lowercase. The Frobenius
norm of a matrix is denoted |||, and its spectral norm as ||V ||2. We use a A b := min(a, b)
and ¢ V b = max(a, b). We use the standard O(-), 2(+), and O(-) notations, where O, (2, © ignore
logarithmic factors. We use 1(z) as the indicator function, which is 1 if z is true and 0 otherwise.
We denote [M] = {1,2,..., M} for a positive integer M, and we denote Unif(R - S?~1) as the
uniform distribution on the sphere of radius R in d dimensions. In Table [I] in the appendix, we
collect all notation used throughout the paper.

3.2 SETTING

In the linear regression setting, there is a natural distribution of pre-training tasks that serves as a
basis for a number of theoretical works on in-context learning in that setting (von Oswald et al.|
2022; |Akyurek et al., [2022; [Zhang et al., [2024} |/Ahn et al., 2023)), namely, a fixed distribution over
the features  and a Gaussian prior over the weights w, for each task 7 and labels generated as
y = w]x per task. We are unaware of any prior works in the linear classification setting, so we
propose the following. We assume each task is a random instance of a class-conditional Gaussian
mixture model with cluster means sz, ~ Unif(R - S9~1). In particular, we assume the following.
Assumption 3.1. Let A > 0 be a symmetric positive-definite d x d matrix and let B, N > 1 and
R>0.Lett=1,...Bandi=1,... , N+ 1.

1. Let p, e~y Unif(R - S4=1) be uniform on the sphere of radius R in d dimensions.

2. Let z;; i N(0,A), and y- Bl Unif ({£1}), where pr, 2z-; and y,; are mutually
independent.

3. Set xr; = Yrifbr + 27
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We tokenize samples to be fed into the transformer in the following way: for a sequence of N labeled
examples (x;, ;) which we use to formulate a prediction for an unlabeled test example 1,
we concatenate the (z;,y;) pairs into a d + 1 dimensional vector and tokenize the test example as
(n+1,0),

£ <x1 To - TN a:N+1) € RUEHDX(N+1) )

yi Y2 YN 0

In the standard softmax-based attention with a single head (Vaswani et al.,[2017), the transformer is
defined in terms of parameters WV € Rdexde WK W@ ¢ R&Xde I = (WK WS, WV) then
softmax attention computes

Km\TiQ
f(B;0) = E+ WV E - softmax (WE)WE) :

PN,d.

where py 4, is a normalization factor which is not optimized (but which may depend on IV and d..).
In linear transformers, the softmax is replaced with the identity function. Following prior work (von
Oswald et al.| 2022; [Zhang et al, [2024; [Ahn et al.l [2023)), we merge the K and () matrices into
WHEC .= (W) W& and we consider an objective function where the aim is to use the first N
columns of (I to formulate predictions for 241, whereby the bottom-right corner of the output
A A

AL MR for A € V. KQ),
(w31)

W33,
for the linear transformer architecture, this results in the prediction
N A
3:6) = ()T why)- g BET - (o
( ) N (w21Q)T

Due to the product of matrices appearing above, the resulting objective function is non-convex,
which makes the analysis of its training dynamics complex. In this work, we follow [Wu et al.
(2024); Kim et al.| (2024) and instead consider a convex parameterization of the linear transformer
which results from taking w2 = wY, = 0 and setting wY, = 1. This results in the following
prediction for the label of x4 1,

N T

N 1

y(E; W): (N E yl‘.’lﬁi) WJ]N+1. (2)
=1

That is, y(E; W) corresponds to the predictions coming from a linear predictor trained by one
step of gradient descent on the logistic or squared loss (initialized at 0) but where the parameter
W is a (learned) matrix preconditioner. Prior work by [Zhang et al.| (2024)) showed that when a
single-layer linear transformer architecture is trained by gradient flow on linear regression tasks, it
learns a function of the same type, where the preconditioner was found to correspond to the inverse
covariance matrix of the pretraining data.

matrix of f(E;#) serves as this prediction. Writing W4 = <

For each task 7, denote the embedding matrix E. as the one formed using labeled examples
(%74, yr, )Y, from Assumption as per (I). We consider linear transformers which are trained on
the prediction of the last token using the logistic or exponential loss, namely

B
L(W) = é > l(yrvir - GE;W))), L€ {glog(1+ exp(—q)), g+ exp(—q)}.

We are interested in the behavior of gradient descent on this objective,
Wt+1 = Wt - OéVE(Wt)

Note that y(E; W) is homogeneous in W (linear in vec(1/)) and so by |Soudry et al. (2018) we
know that gradient descent has an implicit bias towards maximum-margin solutions, as we recall in
the following theorem:

Theorem 3.2 (Soudry et al.|(2018))). Define the {5-max margin solution as

-
Wum = argmin{llUIQF : (1/N Zfil yT,ixm) Uy nt1ZrNg1 2> 1, VT =1, .. -,B} )]

If there exists U which satisfies the constraints in (@), then provided « is sufficiently small, then
W (t) converges in direction to Wy, i.e. for some constant ¢ > 0 we have Wi/|w|| — cWym.
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This theorem shows that the max-margin solution (3) characterizes the limiting behavior of gra-
dient descent. In the remainder, we will focus on the max-margin solution and derive all of the
generalization guarantees as a consequence of the properties of the max-margin solution.

We next introduce the assumptions we need to ensure that the max-margin solution is well-behaved
enough that we can later derive in-context learning guarantees. We fix a probability threshold § €
(0,1), and we shall show that all of our results hold with probability at least 1 — ¢ provided the
absolute constant C' > 1 appearing below is a large enough universal constant (independent of d, B,
A, and §).

(Al) R is large enough so that
A A2
R? > C2\/dt(A2) v C° (tr(d )y “(N )y ||A|2> log(2B/5)

(A2) For some cp > 0, we have B > ¢pd, and
(A3) d > Clog*(2B?/6).

The first assumption [(AT)| guarantees that the signal-to-noise ratio is sufficiently large (recall that A
is the covariance of z,; in the identity z,; = y- i+ + 2r;); provided B is polynomial in d, this
assumptions is satisfied for A = I when R >> v/d. The second assumption specifies how many
pre-training sequences we (pre-)train on; we shall see later on that the generalization error achieved
for in-context examples is determined in part by how small cg A 11is (cg A 1 larger ensures better
generalization). Note that we allow cp to be non-constant (so that o4(d) tasks as permitted). The
assumption [(A3)]is needed for a technical reason, namely to ensure certain concentration bounds
regarding sub-exponential random variables. Finally, note the near-independence of these assump-
tions on the number of examples N per task during training: in many situations (e.g., A = I), we
only require a single demonstration (i.e., N = 1) of the form (., 1,¥-1).

Finally, we introduce the distribution on the test-time in-context examples. We allow for a more
general distribution at test-time than the one used during pre-training, where the in-context examples
can have label-flipping noise and a potentially smaller cluster mean, corresponding to a potentially
smaller signal-to-noise ratio. We assume, fori =1,..., M,

g; ~ Unif({£1}).

Y¥; = y; w.p. 1 —pand y; = —y; w.p. p (label flipping noise).
p~ R-Unif(S®1).

z; ~N(0,A) and z; = g; 1 + 2;.

el N

We assume the random variables ¥;, u, z; are all mutually independent. We allow for the size of the
cluster mean R at test-time to potentially be different than the size of the cluster mean R from the
pretraining data, and indeed we shall see in Theorembelow that we can permit a smaller R than
what we require for R. Also note that we allow for a potentially different sequence length at test-
time (M) than was observed during training (/V); prior work in the linear regression setting showed
that the transformer’s behavior can depend quite differently on M vs. N (Zhang et al.| 2024)).

4 MAIN RESULTS

4.1 GENERALIZATION

Recall that the transformer with parameters W makes predictions by embedding the set
{(zs,y:)}M, U {(zrr41,0)} into a matrix E and then using sign(7(E; W)) as our prediction for
yam+1. Our goal is to understand the expected risk of the max-margin solution, i.e. the probability
of misclassification of the test example (xp74+1, Yar+1): using ,

R(Wum) =P, g, (sign(y(E; Wam)) 7# yar41)

T
=P i i x| W) T <0 @
= Vi - YiZsq MMYM +1LM+1 .
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Our main result regarding generalization is the following theorem.

Theorem 4.1. Let 6 € (0,1) be arbitrary. Suppose that p = 1/2 — ¢, where ¢, € (0,1/2] is
an absolute constant. There are absolute constants C > 1,c > 0 depending only on c,, such that
if assumptions (A] | A2 )} and |(A3) hold, then with probability at least 1 — 100 over the draws of

{ptrs (Tr i, yri) it Y B, when sampling a new task {p, (s, y;) 211}, the max-margin solution
satisfies
P(zl,%)Mﬁ-{ (sign(/y\(E; Wum)) # yM+1)

ol coM1/2 22
< (p+ 2exp(—eM)) 1(p > 0) + 2exp (—cpv/d) + dexp <_|Af/2||2> e <_W> ’
2

cpAl

where p 1= Toa?(352/9)"

Let us make a few observations on the above theorem. For simplicity let us assume that the covari-
ance matrix A = I, so that |A'/2|| = ||A|| = 1, and let us assume we want the results to hold with
a fixed probability threshold of § = 0.001. Then assumptions through are satisfied for
any N > 1 examples per task so long as R = ||| > C V/d. For the test error, there are a number
of different regimes which require different considerations.

* Due to the dependence on p, the test error degrades when cp gets smaller, and we require
cg = Q(d~1/?) to achieve a non-vacuous generalization bound, i.e. B = Q(d'/?) pre-
training tasks suffices if R and M are large enoughE]

* While we require pre-training signal R = Q(\/&) to achieve test error near the noise rate
at test-time the signal R can be as small as R = Q( ) provided M is large enough and

p = Q( ). This means the signal-to-noise ratio at test-time can be significantly smaller
than what was observed during pre-training.

* When p = 0, there is no label-flipping noise. Here it is possible to have as few as one
example per task (M = 1) provided R = Q(d'/*), and p = Q(1).

e When p > 0, there is label-flipping noise. The same analysis holds as in the p = 0 setting
except that we always require M = (1), which makes intuitive sense (with label noise,
one must see more than one example to guarantee generalization w.h.p.). Notably, there
was no label noise during pre-training, yet the transformer can generalize under label noise
at test time.

4.2 BENIGN OVERFITTING

In this subsection we shall assume that the covariance matrix A = I;. This is needed for technical
reasons of the proof. We could more accommodate a covariance matrix of the form A where ¢;1 <
A =< ¢o1 but we just present the case A = I for simplicity.

Our goal will be to show that the max-margin transformer can exhibit benign overfitting in-context.
By this we mean that in its forward pass, the transformer memorizes all of the in-context examples,
yet still generalizes Well for new test examples. To make this more precise, for a sequence of train-
ing examples {(z;,v;)}},, denote E(x) as the embedding matrix corresponding to the sequence
(wi,y:)M,, (z,0); recall that the examples (z;,y;)}, are used to formulate predictions for z. We
say that the transformer exhibits benign overfitting in-context if,

* All training examples are memorized: with high probability (over p and (z;, ;)M ), for
each example (xy, yr), k < M, we have sign(g(E(xg); W)) = k.-
* Test examples are classified near-optimally: P, . v (sign(y(E(za41); W) =
(@)
ym+1) < p+ ¢ for some vanishing e.

"We also require B = O(poly(d)), this comes from using a union bound over the pre-training tasks to
ensure the max-margin solution is well-behaved.
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Figure 2: Cluster separation R affects both (in-context) train and test accuracy, with small R leading
to overfitting, and large R leading to better test accuracy; in between, benign overfitting occurs.

In Figure [T] we provide a schematic of what this phenomenon would look like in language tasks,
where a user provides a sequence of country-capital pairs, some of which have errors, and the trans-
former repeats these errors at test time for those countries which it has seen with noisy labels, yet
still generalizes well for never-before-seen countries.

To prove this phenomenon holds, we need to show both memorization and generalization. Theo-
rem[4.T]in the previous subsection proved the generalization part, thus all that remains is to show that
memorization can co-occur with generalization. The next theorem demonstrates that this is possible
if the dimension d is sufficiently large with respect to the number of in-context examples M.

Theorem 4.2. Assume A = I and let § € (0,1) be arbitrary. Suppose p = 1/2 — ¢, where
¢p € (0,1/2) is an absolute constant. There are absolute constants C > 1, ¢ > 0 depending only
on ¢, such that if assumptionsl@through hold, then the following holds. With probability at

least 1 — 100 over the draws of {jir, (T1.i,yr.i) it Y2_1, for all T € [B), when sampling a new task
{1, (4, i) XYY, the max-margin solution @) satisfies,
* In-context training examples are memorized: for p := %,

Py yM, u (Fk € [M] s.t. sign(g(E(z); Wam)) # k)

cpVd ( cpd )
- P ( VM ) P M(R2V R)

* In-context test example achieves test error close to the noise rate:

Pyt  (SIEn(G(E (@ ar41); Wam)) # Y1)

~ M/2R2
<p+2exp(—cM)+ 2exp (—cp\/@ + 4exp (—ch) + 2exp (_cp) ,

Vd

The claim regarding generalization in the above theorem is the same as in Theorem (.| (we fo-
cus here on the case p > 0 since label noise is essential for overfitting), and the same comments
following that theorem apply here as well. But a natural question is whether one can satisfy both
memorization and near-noise-rate test error, i.e. benign overfitting. This is indeed possible, and
can be seen most easily in the following setting: let § = 0.001, let M be a large constant satis-
fying p + 2exp(—cM) < p + 0.0001, and assume B = d so p = 1/log*(2d?/5). If R = d
for 8 € (1/4,1/2), then w.p. at least 99.9% over the pre-training data, since § < 1/2 memoriza-
tion occurs with probability 1 — 04(1), and since 8 > 1/4 the test error for the fresh test example
Z a1 1s at most p + 0.0001 + o4(1). More generally, one can see that memorization occurs when
d>> M(R?*V R) and d > M, i.e. when the dimension is large relative to the number of samples
and when the signal of the test-time sequence is not too large relative to the dimension divided by
the number of in-context samples.

While Theorem 4.1 and Theorem [4.2) apply for the infinite-time limit of gradient descent, a natural
question is whether gradient descent trained for finite steps has similar behavior, and we indeed find
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Figure 3: In-context test accuracy improves as the number of pre-training tasks (batch size) B
approaches the ambient dimension d, provided Ris large enough, with fewer B needed for large R.

that it does. Figureexamines the role of high dimensionality and R, illustrating three qualitatively
different phenomena overfitting without generalization, when R is small and d /M is large; benign
overfitting, when R is in the sweet spot for generalization; and optimal test performance without
overfitting, which occurs when R is very large. In Figure [3 l we show the effect of the number of
pre-training tasks B on the in-context test accuracy, again showing improved performance for more
pre-training tasks with fewer pre-training tasks needed for optimal performance when Ris large, as
suggested by Theorem[#.2] In both figures, we have GD-trained networks with step size = 0.01
for 300 steps. Details on experiments and a link to our codebase are provided in Appendix [E]

5 PROOF SKETCH

We will first discuss a sketch of the proof of generalization given in Theorem .| when A = I. For

notational simplicity let us denote W = Wywm, 1 := i ZZ 1 Yi%4, and let us drop the M + 1
subscript so that we denote (zp7+1,yYnr+1,9m+1) = (2,9, 7). Then the test error is given by the
probability of the event,

{sign(Y(E; W)) # ypat = {2 Wyz <0,y =g} U{i Wyz <0,y = —5}.
The test error can thus be bounded as
PG(E; W) # yus1) < PETWgz < 0) + Py = —§) = P(A" Wiz < 0) + p.

Let us denote the examples (z;,y;) in the test-time sequence which have clean labels y; = ¥; as
i € C, while those with noisy labels y; = —g; as ¢ € N. Then Zf\il yix; = (IC] — N +
M gz = (M = 2N )+ XM yizi. If we denote p := |A|/M then by standard properties of

. Lid.
the Gaussian, we have for z, 2’ "= N(0, 1),

AL (1-2p) p+ M7V,
jr L+ 2.
We thus have
P(E;W) # yn41)
<p+P(((1L= 25+ M%) W+ =) <0)
=p+ [P’((l — ) W< —(1=2p)p W2 — M2 T W — M_l/zzTWz').

This decomposition allows for us to show the test error is near the noise rate p if we can show that
(1 — 2p)pu " Wy is large and positive while all of the other terms involving p" W2/, 2T Wy, and
2T W2 are small in comparison. Now if ;1 were a standard Gaussian, or if it were sub-Gaussian
with independent components, then 1" W would be close to its mean tr(1/), with fluctuations
determined from its mean determined by ||W ||, via a standard Hanson-Wright inequality. However,
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since y ~ Unif (R - S9=1), the components of 1 are not independent, and so we derive a modified

version of Hanson-Wright (Lemma|C.2)) which applies in this setting where we show " W . is close
. P2 . . . . .

to its mean £- tr(W) with fluctuations from its mean determined by ||W || . Thus, in order to show

that the max-margin solution achieves (in-context) test error close to the noise rate p, we must show

the following:

* A lower bound for tr(¥), so that the mean of y " Wy is large and positive.
* An upper bound on ||W|| , so that we can control the fluctuations of z " W i from its mean.
* An upper bound on p so that (1 — 2p) is positive.

+ Upper bounds on the quantities |(1 —2p)u W2/|, |[M /22T Wpu|and |[M~1/22TW2'| so
that these quantities are smaller than the positive term coming from the mean of " W p.
These, in turn, will require upper bounds on ||W|| p.

Thus provided we have control over tr(W) and ||W|| r, we can apply straightforward concentration
inequalities to show that the (in-context) test error is near the noise rate. So let us now describe how
to derive such bounds.

The starting place for our analysis is the definition of the max-margin solution (3). For notational
simplicity let us define fi, := % Z?:l YriTr,; and let us denote £ N41,Yr N+1 aS T, Y, SO that
the max-margin solution can be written

W = argmin{||U||% : i) Uy,x, > 1,¥7r =1,..., B}. 5)
Since V(E,; W) = [i,x., the KKT conditions imply that there exist Ay, ..., A\g > 0 such that
B
W =) Ayefira], (©)
=1

and moreover we have \, = 0 whenever y,7i] Wz, # 1. By a careful analysis of the KKT
conditions (see Lemma , we can derive nearly-matching upper and lower bounds for > _ .,
tr(W), and ||W || p: if we assume that cg > 0 is an absolute constant (i.e. the number of tasks B is
greater than a constant multiple of the input dimension d) then these bounds take the form

> A =0O(/RY),  w(W)=6(d/R}), |W|r=06(d/R). M

These bounds, together with the concentration inequalities outlined above, suffice for proving The-

orem[4.2]

As for the possibility of benign overfitting in-context shown in Theorem [4.2] since Theorem [.]
guarantees generalization, the only task that remains to be shown is that overfitting occurs: namely,
we want to ensure that for every example (zy, y), if we denote F(xy) as the embedding matrix
with input sequence (z;, y;) ; but with test example x,, then we want to show that

sign (Y(E(zi); W) =y, <= ' Wyzy > 0.

Now, since tr(cI) = cd and ||cI||r = cV/d, the identities in (7) suggest that W has properties
similar to that of a scaled identity matrix. If 1/~ were indeed a scaled identity matrix, then the goal
would be to show that

T

M
M7 ypwy = <Z ym) etk = oel|® + ) (irs, year) > [lel® =Y (@i, 2)] > 0.

i=1 ik ik

That is, we would need to ensure that the examples {z;}}, are nearly-orthogonal in a particular
sense (Frei et al |2023c). This occurs provided the ambient dimension d is much larger than the
number of examples M and the signal strength R? = ||x||2, and has been shown in prior work on
benign overfitting in neural networks (Frei et al 2022;2023a)). In our setting, IV is not a multiple
of the identity matrix so this proof technique does not directly apply, but at a high level the proof
ideas are similar, and appear in Section D}
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6 CONCLUSION

In this work we developed task complexity and sample complexity guarantees for in-context learning
class-conditional Gaussian mixture models with a single-layer linear transformer architecture. We
analyzed the implicit regularization of gradient descent to characterize the algorithm implemented
by the transformer after pre-training. This allowed for us to quantify how many in-context samples
are needed in order to achieve small test error, which to the best of our knowledge has not been
explored in the classification setting prior to this work. We also showed how the trained transformer
can exhibit benign overfitting in-context, i.e. in its forward pass the transformer can memorize noisy
examples yet still achieve near-optimal test error.

There are a number of natural directions for future research. We relied upon a convex linear trans-
former architecture which allows for us to identify the pre-trained transformer as the global max-
margin solution in parameter space. More general linear transformer architectures are not convex
but are often homogeneous in their parameters. In this setting we thus know (Lyu & Lil 20205 J1
& Telgarsky, 2020) that GD has an implicit bias towards first-order stationary (KKT) points of the
max-margin problem in parameter space. It may be possible to analzye the consequences of the
KKT conditions to develop generalization guarantees (Safran et al., |2022; [Frei et al.| 2023bza). For
softmax-based transformer architectures, it would be interesting to see if prior works on implicit
regularization of GD over these architectures (Ataee Tarzanagh et al., [2023} [Tarzanagh et al., [2023;
Thrampoulidis, [2024; Vasudeva et al., 2024) can be used to understand in-context learning.

Finally, we assumed that the signal-to-noise ratio in the pre-training data was quite large (see|(A1)),
and that the pre-training data did not have noisy labels. It would be interesting to understand if
pre-training on more difficult or noisy data would result in a qualitatively different algorithm im-
plemented by the pre-trained transformer. We believe the theoretical analysis of pre-training with
noisy labels would be significantly different: if we aimed to use the implicit regularization approach
based on analyzing solutions to our equation (3), in this setting there may not be a U which satisfies
the constraints of (3), and even if such a U does exist then we would be investigating the behavior
of a pre-trained transformer which has memorized noisy labels. In this setting it is not clear that
generalization is possible.
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Table 1: Notation used throughout the paper.

)

<
=
=
3
=

Description

Cluster mean, p € R?

Features, v € RY, 2, ; = yriftr + 27

Labels, y € {£1}

Noise variables, z € R?

Feature dimension

Cluster noise covariance matrix

Probability of failure

Norm of cluster means during pre-training

Norm of cluster means at test time

Number of pre-training tasks

Quantity such that B > cgd

(cp A1)/(log?(2B2/5)), appears in generalization bounds

Number of samples per pre-training task

Number of samples per test-time task

Label noise flipping rate

Data matrix £ = (ml T2 N xNH) € R+ x(N+1)
vy Y2 - yn 0

Mean predictor: ﬁ Zf\il Yil;

Neural net output: 77 Zf\il izl Wz =0T Wa

Logistic loss

CELEN ANV Ed- RS

I

S

— =
=

A PROPERTIES OF THE PRE-TRAINING DATASETS

We begin by developing guarantees for various properties of the pre-training datasets, which will
form the basis for understanding properties of the max-margin solution (3).

Lemma A.1. There is an absolute constant co > 1 such that with probability at least 1 — 109 over
the draws Of{/‘LT7 (x7'7 y’r)a (xT,iv yT,i)iNzl}E:p for all T € [B] and q 7é T,

2 - R2’ < coR+\/tr(A)log(2B/9) +4tr(A) V egl|All2 log(2B/0)

|17

VNd N :
L R @BJO) Ly (tr(8) v collAlla og(28/3))
(s i) < o (ﬁ;ﬂﬁ; V“ A%) >log (2B2/6),
[(zr, 2g)| < co <§g + R\;%( + v tr(A2)> log(2B?/9),
. 5 1 ] RVtr(A)  /tr(A2)
[(firs o) — B2| < co ([1 T e ) log(2B/4)

Proof. By definition of fi, and properties of the Gaussian distribution, there is z,. ~ N(0, A) such
that
a | X | X 1
~ ) ) ) z : ) o r
Hr = N ;:1 yT,z(yT,zﬂr + ZT,’L) = Ur + N . yT,ZZT,’L Hr + /—NZT

Thus for 7 # g there are 27, z; £ “N(0, A) such that

(g fir) = (e + N7V220 g + N7V220)
<M77Uq>+N 1/2< T,Mq>+N 1/2< q7M7'>+N < Zrs :1> ®)

13
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We first derive an upper bound for this quantity when ¢ # 7. Now, since (4, 1, are independent and

sub-Gaussian random vectors with sub-Gaussian norm at most cR/ Vid (Vershynin, 2018, Theorem
3.4.6) for some absolute constant ¢ > 0, by |Vershynin| (2018, Lemma 6.2.3), we have for some

¢’ > 0 it holds that for any 8 € R, if g, ¢’ "~ N(0, I,y),
Elexp(Bpq pr)] < Elexp(¢ R*d™' 89" ¢')].
By [Vershynin| (2018, Lemma 6.2.2), for some c; > 0, provided c|3|R?/d < ¢y, it holds that
Elexp(cR*d™'Bg" ¢')] < exp(c18°R ™| 14]|%) = exp(c18°R*d ™).

Since g, (1 are mean-zero, by [Vershynin| (2018, Proposition 2.7.1) this implies the quantity ’un hr
is sub-exponential with || fir [y, < c2R?/ \/d for some absolute constant ¢; > 0. We therefore

have, for some absolute c3 > 0, w.p. at least 1 — ¢, for all 7 € [B],

[(pirs )| < c3R2d™/?1og(2B/9). )

Again using Lemmas 6.2.2 and 6.2.3 from (Vershynin, 2018)), since p, has sub-Gaussian norm at
most cR/v/d and 2. = A'/2g"” where g" has sub-Gaussian norm at most ¢, we have

Elexp(Bpq 27)] < Elexp(cRd™'/28g A g)],
and thus provided cRd~'/2|8| < ¢1/||AY/?||5 we have
Elexp(cRd~Y/289T AY2¢/)] < exp(c/ B2~ 82| AV2|[2) = exp(¢ R~ 62 tr(A)).

T /

In particular, the quantity p, z; is sub-exponential with sub-exponential norm || unz;le

cyRd™ 1/2 tr(A), and so for some absolute ¢5 > 0 we have with probability at least 1 — §, for
all ¢, 7 € [B] with ¢ # T,

(g, 22| < es Rd™Y % /tr(A) log(2B%/9). (10)
For (2, 27) with 7 # ¢ we can directly use the MGF of Gaussian chaos (Vershynin} 2018, Lemma
6.2.2): (24, 27) = g Ag forii.d. g,g' ~ N(0,I;) so that for 3 < c/||A||2,

Elexp(B{zg, 27))] < exp(ce8* | Al[F) = exp(esB? tr(A?)).

q, zZ; H " < e74/tr(A?) so that sub-exponential concentration implies that with
probability at least 1 — 0, forany ¢, 7 € [B] with ¢ # T,

21, zg)| < eqy/tr(A?) log( (2B2/9). (11)
Putting (@), (I0), and (TT)) into (8) we get for ¢ # ,
~ R?  Ry/tr( tr(A2
[(igs )] = e (W “F Y >>1og<232/5>. (12)

As for ||7i,||?, from (8) we have

7l = [l 1 + 2N 72 ) + N7 (13)

From here, the same argument used to bound (I0) holds since that bound only relied upon the
fact that p, and 2. are independent, while y; and 2. are independent as well. In particular, with
probability at least 1 — 4, for all 7 € [B],

(e, 20)] < esRd™23/tr(A) log(2B/9). (14)

Next, we have that |2/ ||? 4 g"Ag = ||AY/?g|]? for g ~ N(0,1,). Therefore Vershynin| (2018,
Theorem 6.3.2) implies ||||2%||2 — || AY/2||p ||y, < ¢|[A'/?|) for some absolute constant ¢ > 0. Note

14
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that ||[AY?||z = /tr(A). And thus by sub-Gaussian concentration, we have for some constant
¢ > 0, with probability at least 1 — ¢, for all T € [B],

122112 = Vir(A)] < eg2[[AY2]2/10g(2B/8) = [|24]| < 2(v/tr(A) V ¢ * | A2]l2+/10g(2B/5)).
In particular,

12212 < 4 (6x(A) v eol|All> log(23/5)) (1)
Putting (T5) and (T4) into (T3) and using that ||, ||* = R?, we get with probability at least 1 — 26,

2= R2| < C5R\/tr(\//\j%g(23/5) N 4tr(A) \Y 09||/}\|[|2 log(2B/6).

|17

As for ||z-||?, by definition,

||.137—||2 = ||MT||2 + 2<,u7'az7'> + HZT||2 =R + 2</’[’T7ZT> + ||Z7'||2

Since z; ~ N(0, A) has the same distribution as 2/, the same analysis used to prove (I4) and (13)
yields that with probability at least 1 — 24, for all 7 € [B],

|ty 2)| < esRA™Y2/tr(A) log(2B /6
Iz ]1* < 4(tr(A) V col|All2 log(2/9).
Substituting these into the preceding display we get

llz- 2 — B2 < 288 tr%bg(w/&) 4 (tr(A) V col|All2 log(2B/9))

Thus provided R is sufficiently large, then we also have ||z, || = ©(R?).

Next we bound |(x,,z,)|: There are 27, z; A N(0, A) such that

(YrTr, YgTq) < (r + 27, bg + Z¢/1>

It is clear that the same exact analysis we used to analyze (8) leads to the claim that with probability
at least 1 — ¢, for all ¢ # 7:

2 /
[{(zq,zr)| < co (\f;g + R \;1: + \/tr(A2) ) log(2B%/6). (16)

Finally, we consider y, /i, z,. Just as in the previous analyses, there are z,, z/. ~ N(0, A) such that

(T, yrxr) < (1r + N71/2Z7—, Hr + Z;—>
= ||MT||2 + N_1/2<ZTHUT> + (25 ) + N_1/2<z77 27).
Again using an analysis similar to that used for (8] yields that with probability at least 1 — d, for all

T € [B],
—~ 2 1 ] RVtr(A)  /tr(A2)
|, gz} — B| < 10 ([1 ; EN} = ) log(2B/6).  (17)

Taking a union bound over each of the events shows that all of the desired claims of Lemma [A]
hold with probability at least 1 — 106.

O

The events of Lemma [A1] hold with probability at least 1 — 105, independently of the assump-
tions |(A1)| [(A2)| and |(A3)?| Our results will require this event to hold, and so we introduce the
following to allow for us to refer to this in later lemmas.

Definition A.2. Let us say that a good run holds if the events of Lemmal[A.I] hold.

Note, however, that the quantities appearing on the right-hand sides of each inequality in the lemma are
only small when these assumptions hold; this is the reason for these assumptions.

15
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B ANALYSIS OF MAX-MARGIN SOLUTION

In this section we derive a number of properties of the max-margin solution (3)).

Lemma B.1. On a good run, for any cg > 0 and for C > 1 sufficiently large under Assump-
tions and the max-margin solution W of Problem3)

B
W= Z /\TyTﬁT‘T;—ra

T=1

is such that the \; > 0 satisfy the following:

anld XB: A < o
8c2R41og?(2B2/9) ~ R4

where ¢y > 1 is the constant from LemmalA.1| Further, we have the inequalities

(ce N1)Vd < 2\/3
16¢2R2 log?(2B2/6) — PSR
and ( )
cg N1)d 6d
2R 102282 /5) = "W = 7o
$R?log®(2B2/6)

Proof. We first derive an upper bound on ||| by showing that the matrix U = I satisfies the
constraints of the max-margin problem (3)).

yTﬂIIl‘T = ([r, Yr2r)

Q- F
>R <1 — 2cg < R \/7> log(23/6)>

(ii) 460
> R (1—-—
= (-7

1
> 5R?. (18)

Inequality (¢) uses Lemma | while inequality (4z) holds for C' > 8¢y sufﬁ01ently large via As-
sumptlon )} Thus the matrix 21 1/ R? separates the training data with margin at least 1 for every
sample. Since W is the minimum Frobenius norm matrix which separates all of the training data
with margin 1, this implies

2v/d
IWllr < l21a/R?||F = R (19)
On the other hand, by the variational definition of the norm, since ||I;/v/d||r = 1 we know
Wz > (W, I;/V/d), and hence
w — (W, I
Wllr = \/E< a)
1 B
= = )\T TYr I
(et
1 B
- = )\ A‘ra X1
\/g; (Hr, yrar)
1 B
> —=- 20
> f 5 Z:j (20)



Published as a conference paper at ICLR 2025

where the last line uses (I8). Putting this and the preceding display together, we get

B
4d
<o Q21
T=1 R4

Next, we note that by the feasibility conditions of the max-margin problem, we have for any 7,
1< yrﬁI Wxr

B
= ﬁ;l' (Z )‘quﬁqx;—> YrZr
q=1

B
Z A (Hirs Hg) (YrTry YgTq)
q=1

= Al Pl + > Aglfir fig) (Yag, Y7 ). (22)
q: qgFT

Now by Lemma|[A.T] we have

cor/ir(A) 05 (2B/3) _, tr(A) V collAs log(2B/0)
—1 S 4 ’
R RVNd NR?
and
o2 | - o /TR 0g(2B/5) _,tx(A) V collAl oa(2B/6)
R? RVd R2
Using Assumption[(AT)|we see that for C' sufficiently large we have
4cg 4c 3
ez P <R* (14— + —2 ) (1+ 2+ 2) < 2R 23
el < B (14 4 30 (14 24 20) < 2 3
where the inequality uses Assumption[(AT)] Likewise, we have
- 1
7 Pl |1* > SR (24)

As for the cross terms, again using LemmalA.T] for all 7 # ¢,
(7, Iig)] - |<xﬁxq>|

R?  Ry/tr(A \/tr(AQ) R?  Ry/tr(A) 9 m
<\/» \/7 N ) : (\/a + T + v tr(A2)> lOg (2B /5)
cod < \/tr ), \/dtr(A2)> . (1 . \/t;(A) . Jdtr(A?)

RVN R2N R2 ) log®(25%/0)

IN

(i) ZR 1 1 11 9o
— 1+ =4+-)1 2B
(gt aw) (1 g+ 1) eses)
() 2 p4 2
< 2cgR logzl (2B /5) 25)

Inequality (i) uses Lemma[A.T|and (i7) uses that C' is large enough. Puttmg this together with (23)
and substituting these into the consequences of the feasibility condition (22) we get for any 7,

3 4 2c2 R*1log?(2B2/9)
1< SR + ; > A (26)
q: qF#T
We now show that this implies Zqul Ag > %. Towards this end, let us first consider

the case that there exists some 7 with A\, < 4%%. Then the preceding display implies

3 4, cpd  2cAR*log®(2B?/6)
< Z .
L=t iRB T d Z Ag
4 9FT
3 2¢2R*1og?(2B?/6)
<7t y > A

q: qF#T
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The final inequality uses Assumption|(A2)} i.e. B > cpd. Rearranging we see that

d (CB A\ 1)d
ZA = Z Aq 2 P4 2 = Q2 R4 o2 2/8)°
80 R4log?(2B2/5) ~ 8cZR4log*(2B2/4)

q: qF#T

Let us now consider the only remaining case, whereby for each 7 we have A\, > ; R'il‘fg Then,
d d A1l)d
S>3 e
4R‘B ~ 4R% 8c3 R*log”(2B2%/6)

. B (cgAl)d .
where the final inequality uses that ¢y > 1. We therefore have > g1 Ag > m, which
together with completes the proof for the upper and lower bounds of Zqul Aq. The upper

bound for the Frobenius norm of W follow by (I9), while the lower bound follows by Zle Ag >
(egAl)d
8R4 1§g @rz7s) and (20 (0).

For the trace term, we have,

B
tr(Wum) = tr <Z )\TyTﬁTxTT>
T=1

Ar tr(y, IZZTJ:‘—['F)

I
M=

3
I
=

Aryra] fir

I
M=

3
I
—

9

>

—~
=

M w

\-R?/2

3
Il
—

(;) (CB AN 1)d

~ 16¢2R?log?(2B2/6)
Inequality (¢) uses (I8) while inequality (i) uses the lower bound for > _\,. Similarly, by
Lemma[Alwe have

{fir, gries)| < B2 <1 te ([1 +—] Vi) |V “W))l g<2B/5>> g

27)

\/NRW VRN

where the last inequality uses Assumption[(AT)} Therefore,

WMM Z /\‘ryT-'lj /JT

3
< )\T -ZR?
6d
S ﬁv
where the last inequality uses the upper bound for Zle A proved earlier. O

C PROOF OF THEOREM [4_1]

Our goal is to bound

R(WN”\A) = P M+1 (Sign(g//\(E; WMM)) # yM_H)

(zi,yi

1
lMZym] Wamyar412ar41 <0 | - (28)

18
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The probability above is over the draws of x and of (x;,%;) 1" and p. The matrix Wy is the
max-margin solution when training on the in-context tasks (3). To prove the risk is close to the
label-flipping noise rate p, it suffices to show that the error on clean examples is small:

R(Wum) = P (yar41 - sign(y(E; Wum) <0, yare1 7 9a+1)
+ P (yar41 - sign(y(E; Wum) <0, ymr+1 = Jar+1)
<p+P(ym41 - sign(y(E; Wum) <0, yar+1 = Gn+1) - (29)

For notational simplicity, let us denote § := y(E; Wym). Let us also denote the event A as

A= {yM+1§< 0} = {yM+1§— E[Z/Mﬂﬂ < —E[ZUMH?]}a

so that R(Wum) = P(A). Further, let us introduce the sets C, ' C [M] as the clean and noisy test
examples respectively (|/C| + |N| = M) so that

yi=0Vi€C, yi=-yVieN.
Then we have the identities

Yiri = p+yizi, 1€C,
yiri = —p+yizi, i€N.

Therefore there exist independent ¢, {741 ~ N(0, A) such that

M
1 2N 1 -
i ;yz% 4 < - |M> w+ WC, TM+1TM 41 4 w4 Cargts

where we have used that |C| — [N| = M — 2|N].

In particular, if we define

.
A= { ((1 — 2N/ M)+ M_l/QC) W+ Cus1) — Elyar+19] < —]E[Z/M+1Z7]}
then we have
P (yar+1Y — Elynmr+19] < —Elyar19]s yavr1 = Gav41) = P(A).
Continuing from [29) this means for any v, aq, az, a3 > 0,

R(Wum)
.
<p+P (((1 — 2WN/m)p+ M_1/2C) W(p+ Q1) — Elyn19] < —]E[ZUMH??])

<p+P(N|/M < ag) + P(IM 2T Wymp| > o1)
+P(IM 2T WG 1] > az2) + P((1 — 2Nan) [T WiumCar 41| > as)

“P(A N{IN|/M < ag} 0 {|M V2T Wamp| < ar}

N{M Y2 T WamCaria| < ao} 0 {p " WumCars1| < a3}>. (30)

In particular, to derive an upper bound on the risk it suffices to derive a lower bound on
p" Wump and upper bounds on each of the absolute values of the four quantities |N|/M,
CTWumit, ¢ " WumCaro1 and i " W x4 1. We shall do so in what follows.

C.1 |N|/M

Lemma C.1. There is some constant ¢ > 0 such that for any t > 0, we have

{|N:07 p=0,

]P’(llMﬂfp’ Zt) < 2exp(—2t*M), p > 0. Gl

19



Published as a conference paper at ICLR 2025

Proof. If p = 0, there is no label flipping noise and so |[N'| = 0 deterministically. For the p > 0
case, by definition, [N| = Zj.vil 1(y; # ¥;) is a sum of M independent random variables bounded

between 0 and 1 with mean p.Z By Hoeffding’s inequality, for any u > 0 we have

P(| IN| = Mp | > u) = P(| |N/M—p|ZU/M)S26Xp(—2;\2_),

Setting © = Mt completes the proof. O

C2 u'Wpu

The quantity " Wy is a quadratic form, and we can provide a concentration inequality for this in
the following lemma.

Lemma C.2 (Hanson-Wright for uniform on the sphere). Let R > 0 and Q € R¥*? be a matrix. If
w~ Unif(R - Sdil), then for any t > 0,

¥ ( z t) =P(ju" Qu—Elp"Qul| >1t) <2exp (—cmin ( d’ td )) .

RYQIE R2|Qll2
Since ;' Quu is a quadratic form, we would like to use the Hanson-Wright inequality here. But the
trouble is that for i ~ RUnif(S?~1), the components of x are not independent, so the standard
Hanson-Wright inequality is not directly applicable, but requires some additional work. Our proof
instead leverages the following:

Theorem C.3 (Adamczak| (2015), Theorem 2.5). Let X be a mean-zero random vector in R<, If
X satisfies the K-convex concentration property, i.e. there exists K such that for every I-Lipschitz
convex function ¢ : R — R we have E|¢(X)| < oo and for every t > 0,

P(|¢(X) — E¢(X)| > t) < 2exp(—t*/K?),

then there exists ¢ > 0 such that for any matrix Q € R and everyt > 0,

D2
1 Qu— % tr(Q)

T T i v !
P(IX QX —E[X QX]| > 1) < 2exp (‘Cmm <2K4|Q||%’K2IIQ||2>>'

Proof of Lemma|C.2] By |Adamczak] (2015), a sufficient condition for a Hanson-Wright-type in-
equality to hold is that the random vector g satisfies Lipschitz concentration. By [Vershynin| (2018}
Theorem 5.1.4) we have that for some constant ¢ > 0, for any 1-Lipschitz function f on the sphere
Vd-S* 1 and for X ~ Unif(v/dS?1),
P(|f(X) — E[f(X)]] = t) < 2exp(—ct?).

Thus if we consider g : R-S%1 — R which is 1-Lipschitz and is defined on the sphere of radius
R, then Y = %X where X is uniform on the sphere of radius R. In particular, the function
g(Y) == ¢( R x ) is the composition of a 1-Lipschitz function and a R/+/d-Lipschitz function

Vd
defined on the sphere of radius \/E, and we therefore see that

P(lg(Y) — Eg(Y)| > t) < 2exp(—ct’d/R?).

That is, any 1-Lipschitz function on the sphere of radius R satisfies the K-convex concentration
property with K = R/+/d. Thus Theoremimplies for any matrix @,

Pl Qu—Elp' Qul| > t) < 2exp (—cmin ( A >> :
RYQIE R2IQI2

Finally, note that by rotational symmetry we have E[u] = 0 and E[u?] = R?/d for each i € [d].
Additionally, for distinct components i # j, E[u;p;] = E[u;(—p;)] = 0 and hence E[u " Qu] =

YL E2Qu) = £ tr(Q). 0
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C.3 pu"WC¢AND " Wi

Lemma C4. Let pi ~ R - Unif(S?1), g ~ N(0,1,) (independent of 1) and let Q € R be a
matrix. There is an absolute constant ¢ > 0 such that for any t > 0,

ctVd )

P(|u"Qg| >1t) < 2exp <_R|QIIF

Proof. The uniform distribution on the sphere of radius R is sub-Gaussian with sub-Gaussian norm

satisfying ||ul|y, < cR/v/d by [Vershynin (2018, Theorem 3.4.6), while ||g||,, < ¢, for some
absolute constant ¢ > 0. By [Vershynin| (2018, Lemma 6.2.3), this implies that for independent
91,92 ~ N(0,I;) and any 3 € R,

Eexp (B\I?MTQg> < Eexp (c189] Qg2) -

Then using the moment-generating function of Gaussian chaos (Vershynin, 2018, Lemma 6.2.2), for
B satisfying |5] < ¢2/]|@]|2 we have

E exp (Bg,uTQg> < Eexp (Clﬂg;—Q92)

< exp(esf?( Q)

That is, the random variable R_lx/EuTQg is mean-zero and has sub-exponential norm at most
max(cy ', c3)||Q| r. There is therefore a constant ¢4 > 0 such that for any u > 0,

P(|R'Vdu" Qg > u) =P <|MTQ9| > %) < 2exp(—cu/|| Q| r).

Setting u = t\/d/R we get

P(|u"Qg| >1t) < 2exp (— ctvd )

R|Q|

C4 ("Wl

Lemma C.5. Let ¢, (’ b N(0, A) and let Q € R*? be a matrix. There is a constant ¢ > 0 such
that for all t > 0,

, ct ct
PCTWC] 2 ) < 2exp (‘ ||A1/2QA1/2Q||F> < Zexp (‘ ||A||2||Q||F> |

Proof. We can write ¢ Wy, as gIA1/2WA1/2gQ where g1,g92 ~ N(0,I;) are independent,
i.e. it is a Gaussian chaos random variable. By |Vershynin| (2018, Lemma 6.2.2) this random vari-
able is sub-exponential with sub-exponential norm at most c||A'/2WW A'/2| .. Then standard sub-
exponential concentration (e.g.|Vershynin| (2018 Proposition 2.7.1)) completes the proof.

O

C.5 E[,LLTWMMu]

Lemma C.6. On a good run, for any cg > 0 and for C > 1 sufficiently large under assump-
tions (Al ) through|(A3)| the max-margin solution W satisfies

(CB A 1)R2
16c2R2 log®(2B2/6)

< Elp Wump] < —5
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Proof. By definition,

R2
E [p" Wump] = i tr(Wum)- (32)

We therefore need only upper and lower bounds on tr(Wym). Using the bounds on tr(Wyum) from
Lemma [B.T} we get the desired inequalities. O

C.6 PUTTING IT ALL TOGETHER

Let’s denote R(Wywm) the test error for a clean example (yas+1 = §ar+1)- Returning to the decom-
position (30) and using (29), we have

R(Wwm) <p+ P((l — 2N/ )T W — Elyy]
< —E[yg] - M7V2CTWp — (1= 2N ) "W ar g — M-1/2<TW<M+1>
(33)

We’ll consider two cases, depending upon whether the label-flipping noise rate p = 0 or p > 0. For
notational simplicity let’s denote p as the quantity

cg N1

= € (0,1).
P Tatog@nrys) < Y
Then Lemma[C.6] states
R? 6R2
Pps S E[n"Wp) < ik (34

Noiseless case (p = 0). Since p = 0 we know |A/| = 0. From (33) we have
R(Wwum)
= P(uTWu —E[u Wyl < —Blp"Wp] = M7 2CTWp— p "W — M—l/ZcTWml)

R _
IP’(MTWM —Ep Wy < =2 - MW — T W — M 1/2CTWCM+1>

INE

RQ
P2

R N R2 R2
< IED(/«LTVVM —E[u" Wy < _§R2> +P <|M VECTW| > gR?) +P (}/I’TWCM+1| > gR”)

1/2 T PRQ
+P ’Mﬁ/C WCM+1’Z@ . (€R)

Inequality (i) uses Lemma We now proceed by bounding each of the remaining terms in the
inequality above.

For the first term we can use Lemma with t = pR? /2R?. To do so we need to examine the

quantity 7 ”t;iv”p , which we have

td pd pd pVd

> = > =
RY\W|p 2R*[WlF ~ 2R?.2VdR? 4
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Let’s assume for the moment that pv/d/4 > 1. We can then apply Lemma (noting that this
lemma holds if we replace the ||Q||2 with ||Q||F),

,DRQ ] d2 p2R4 d ,DRQ
Plpu Wy—Ep" Wy < ) < 2exp <cm1n ( ~ . , = e
( 2R BIWE AR R, 2

cdp
<2 -
= eXp( 2|W||FRQ)

(i)
< 2exp (— cpf) . (36)

Note that if pv/d/4 < 1 then the above bound still holds since P(-) < 1 is a trivial inequality. This
completes the bound for the first term in (33).

The second and third terms in @) can be bounded using Lemma since (pr41 = AY/ 2g for

g~ N(OaId)’
R? pR?
Pl W S>PE ) _p (| TwAY2g > P
(Iu Cr1| > 8R2> (Iu 92 gm

<2e cvd pR2

X —_—_— s —

=P\ TRwa), SR
< 2exp cVd pR2
~ X —_—_— —
R|AYV2|o||W || 8R?

(@) R
< 2exp ( cpRVd )

8R2||AL/2||; - 2v/dR~2

cpR
=2 —_ . 37
exp < 16||A1/2|2> 37

The inequality (i) uses the upper bound ||W|| < 2v/d/R? from Lemma
For the final term in (33)) we can use Lemma|[C.3]

8R?

<y c pM1/2R2
ex — .
= 2OPATALW s SR

(Z<') 5 c le/ZéQ
ex — .
= SOP\ TN 2VdR 2 SR

R2 ML/2R2
P <‘M_1/2CTWCM+1 > /8)Rﬂ> =P <|CTWCM+1‘ > p)

copM'/2 R2
=2exp | ——— ). (38)
( 16[|A[[2Vd

Again (i) uses Lemma [C.5)

Putting together (36), (37), (38) we get

cpVd CPR CPM1/2R2
R(Wum) < 2exp (—4) + 4exp <_16||A1/2||2> + 2exp <_W .

Noisy case. Returning to (33): as before, the ‘signal’ in the problem comes from the term (1 —
2|N'|/M )" W pi, which ideally is large and positive. It is natural that we should require more
samples M the closer the noise rate p gets to 1/2 (namely, the smaller ¢, is), since otherwise with
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nontrivial probability we will see more noisy examples than clean ones and learning should be
impossible. To this end, let’s assume that p < % — ¢, for some absolute constant ¢, € (0,1/2).
Continuing from (3T)) which shows that

1 2 6 18c2M
(1= aiar> o) <o (B -1, < B ) <20 (25 ) <2emi-gan

2 16
(39
Let’s call the event
._ 2NV 1
5 = { - W > 2Cp} .
Continuing from (33), since 1 — 2|A/|/M > 0 on € we have
R(Wwm) <p
(W B8 Elygl - M=2CT W — (1= 2N a) "W — MV 2TW
S C Ty (1—2V)/m)

<p+P(E)

wple Ty Ewil _ Elygl - M=Y2TWp— (1= 2N "W — M—Y2CTW

R T T 2 ) (1 — 2INl/a1)

(2 p+ 2exp(—c§M)

cple WTwu— Elyy] < CEfygl - MTVECTWp — (1= 2N "W — M2 W

BT T RN ) (1 — 2W/a)
<p+ 2exp(—cf,M)
Elyy]
.
M P<5’ w W N
—E[yy] -1 —1/2\ T oI T 1ot
< Toanar 2 MWl L= 2T G+ MW G ).
(40)
E[u" Wyl E[y7]

The inequality (7) uses (39). We want to deal with the quantity p" Wy — T-SINT/B = (T=alN730)
on the event £. We have,

R2(1 — 2p) tr(W) O RPe(W)  1-2p

T _ . .
w W= =, e d 1= 2N/
R*tr(W)  R2tr(W) 1-2p
_ ., T _ . —
=W a4 <1 1—2N|/m>
R2tr(W R2tr(W) —2p+2INl/m
T ROV R u(v) —2peny
d d 1— 2IVl/n
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Continuing from (@0) this means
R(Wwum) <p+2 exp(fc?,M)

R2tr(W)  R2tr(W) —2p+2WV/m
d d 1 — 2IN/ar

+]P’<5, w Wy —

—R%(1 — 2p) tr(W)
d(1 = 2|N|/M)

=p+2 exp(—cf,M)

+ 2(;;1 [M—1/2|CTWM| + 1= 2N/ M| - | "W gy | + |M—1/2<TWCM+1|} )

+ IP’(& p Wy —E[u" Wl

—R2tr(W
IV 4 ot [ 21T Wl 1= 2] 0T Wiagia ]+ MW G )

©)
<p+2 exp(—czM)

+ IP’(& p Wy —E[u" Wl

R? T _
<Pt 20 M TRCTW o]+ U= 2N M| - [ TW | + (M UQCTWCMH@ )
2 T T 1 R
<p+2exp(—c;,M) +P(p Wp—Elp Wp] <—5p-

é2
-1 1/2(,T
5 R2)+]P’<2c M12|¢ Wu|>8R2>

~2 RZ
+P <|1 — 2NIM | W aga] > 8R2> +P (M—l/QcTwcm > §R> S

Inequality (z) uses (34). From here the proof is exactly the same as in the clean case. For the first
term, we use similar arguments used derive (36). To apply Lemma [C.2] we need to examine the
quantity when t = pR?/2R?: we have,

_td_ pd pd _pVd @)
R2|W|p 2R?[|W]F ~ 2R?.-2VdR2 4

Again if pv/d/4 > 1 then we have by Lemma
RQ 42 p2R4 d pR2
Plp Wp—Ep'W <_L <2exp | —cmin | = : , = C
(“ PR g | S 2o RUWIE  ARTR2|We 2R
cdp )
<2exp| —————
. p< 2WwE2
(4)
< 2exp <— cpf) ) (43)

Inequality (i) uses (@2). Note that if pv/d/4 < 1 then the above bound still holds since P(-) < 1 is
a trivial inequality.

R2HWII

As for the ;" W41 and T Wy terms, similarly as to the analysis used to derive via
Lemmal|C.4] we have,

_ R2 cppR
P(zc U Wara| > 8R2> —P(WWW > f§R2> (g~ N(0, 1))

CCppR
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Note that |1 — 2|V|/M]| < 1 always so this takes care of the term involving s " W (s 1. Since the
analysis used to derive only relies upon upper bounds for |W |z = |W ||z, and since M > 1
and ¢, € (0, 1/2], the same analysis holds for the term [T W p].

For the ¢ TWC M+1 term, the same analysis used for @ applies here as well, since

o2 ML/2R2
M~ 1/2,T > — P T > pi
<| ¢ W] SR? ¢ W] = <R?
1/2 p2
< 9exp | PM I (45)
16]|All2v/d

Plugging ([@3), (44), and @3) into (1) we get

cpVd ccppR cle/zR2
R(W, <p+2exp(—cEM)+2exp | ———— | +4dexp [ ——=L2— | +2exp | ———F— | .
(i) = et A0 p( 1 ) p( 3214177 ) 2P\ T igafva

By adjusting the constant c to depend on ¢, this completes the proof of Theorem@

D PROOF OF THEOREM

Recall that we assume that A = [ in this section, and for simplicity denote W = Wym. Our goal is
to show that for each k,

o Wygxy, > 0.
‘We have:

M

_ 1
i Wy = ( Z%%) Wygay

i=1

o Wy + Y yiyww] Wy,
i#k

E\H

Our goal here will be to show that the first quantity x,;'—ka is large and positive and dominates the
second term involving ] Wzy. By definition we have

zp Way = (i + yrze) "W (s + yezr)
=1 W+ yrzg Wo+ p Wyeze + 2 Wy (46)
In particular we have the identities
{n" Wypay < 0}

= {zf Way, < - D itk yiyrw] Way}
= {zf Wa, —tr(W) < —tr(W) — gz W — " Wypzp — " W — 35, viyear] Wy}
C {2 Wap — (W) < —% (W)} U {|2] Wl > étr(W)}
Ul W] > étr(W)} U{ W < —émW)} U {‘z#k v Wy | > étr(W)}.
(47)
We will therefore proceed by bounding the probability each of these events. We will use the same

notation from the proof of Theorem @ presented in Appendlx [Cl whereby i € C refers to clean
examples (x;,y;) with §; = y;, while i € V" means y; = —7;.
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D.1 Y, x Wxy TERM.

We have,
Zyi%z Z YiZi + Z YiTi
ik i€C, itk €N, itk
= > (w+dma)+ Y, (—n— k)
i€C, itk €N, itk
— e\ R = I\ TR Y G- Y e

ieC, itk iEN, itk

Now since the label-flipping noise is independent of zj, the random variables ¢ 2, are i.i.d. standard
normals. Therefore there is gi, ~ N(0, I4) such that

Yo oGka— > dkzm = VM —lg.
i€C, ik ie€N, ik
If we denote Ny, := |C \ {k}| — [N \ {k}] then clearly | N;| < M and thus we have
> wyiwi = Nep+ VM — gy,
i#k
where |Ni| < M and gy, is a standard normal and gy, is independent of zj, and yy. Therefore

Zyixz‘TWykxk = ‘(NMH' VM = 1gi) "W (fryni + yiz)

i#k
< M|p" Wyl + VMgl Wu| + M|u"Weg| + vV M|gp Wzl (48)
In particular we have
tr(W tr(W
P (| vl War| > ) < pasrwp > 100
itk
tr(W tr(W tr(W
BTG Wal > O Wl > S 4 BT Wl > T )

We’ll proceed by bounding each of these terms in sequence.

pu" Wy term.  Let L be an integer (we will take L = M in this proof but in a later proof we will
take L = 1). Since tr(W) > 0 by Lemma B.1] we have

tr(W) R2tr(W), ~ RZtr(W) _ tr(W)
32 i i~ s

{lLp"Wul > }={lu" Wy -

This means
tr(W
P(|Ly Wl > BV
32
Assume for now d > 1289~ ' R2L so that 32R2L/d < 1/2. We then have by Lemma|C.2]

. (|LMTWM| N tr(W)) . P( R tr(W)‘ tr(W)>

d 32L d

W R? tr(W)’ _ (W) (1 - 32R2L>> .

.
32 w W d 64L

exp [ —cmin d? (W) ’ d tr(W)
= p( <R4||W||%(64L> ’RQHWHF(ML )))

As for the quantity appearing in the minimum we have by Lemma [B.]

dtr(W) 1 _d  pd R pd3/? pd

C—_— e = — > —
64L R2 ~ 64L R? 2R2\/d 128LR2? ~ 128LR2
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‘We therefore have

tr(W cpd
P (|L,uTW,u| > é2 >> < 2exp (— 128;]%2) . (50)

We see that the case d < 128p~ ! R2L results in the same inequality to hold (albeit vacuously). This
completes the proof for the ;" Wy term in by taking L = M.

gy Wy and p" Wz, terms.  The terms 4 Wgx and 2z, Wy can be controlled using Lemma|C.4]
For an integer L € N we have

tr(W)) cvd  tr(W)
P( Ll Wl > <2e . .
< I War| > 3 ) < Xp( AW, 8L

We have
Vd o tr(W) - R*Vd  pd pd

R|W|| 320 = R-2Vd 32R’L  G4RL’

Note that the above argument applies to W T as well as IV, so that we have

tr(W) T tr(W) cpd
P(Llg, > 2 ) VP Lip W > —=) <2 ——. 51
(2ot wa = S ) ve (ouTwanl > 200 ) <o (—2L).

In particular, we have

P <\/M|QJIWH| > tr(W)) < 2exp <— crd > ;

32 64RVM
tr(W) cpd
P My "Wzl > <2 - . 52
( ' Wzl > 39 )_ eXp( 64RM> (52)

g,;r Wz, term. The last term ng W 2z, is a Gaussian chaos random variable. By [Vershynin| (2018,
Lemma 6.2.2) this random variable is sub-exponential with sub-exponential norm at most c||W || p.
Therefore we have

tr(W) tr(W) tr(W)
P(vV'M|g, W z| > =P(|g} Wz| > <2exp|—c——+"—].
Since tr(W)/||W||r > pv/d/2 by Lemmathis implies
tr(W) cpVd
P(VM|gi Wz > ——2) < 2exp | — . 53

Putting it all together. Continuing from {9) we can use (B0), (52)) and (33)) to get

tr(W) cpd
P Zyix;rWykxk > ——=— | <2exp <~)
ot 3 128 M R?

cpd cpd ) epVd
+2exp| ———=—= | +2exp| ——= | + 2ex — . 54
P < 64R\/M) P ( 64MR P ( 64/ M 6

D.2 ] Wazj TERM.

It remains to bound the probability of the first three events in {7).
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z,;r Wz, term. First note that since zj, is a standard Gaussian, by a standard Hanson-Wright in-
equality (Vershynin, 2018, Lemma 6.2.1) we have for some constant 0 < ¢ < 1, for any ¢t > 0,

t2 t
P(|z) W2y, — tr(W)| > t) < 2exp (cmin ( , >) .
’ WA [Vl

So for t = 1 tr(W) we have

t (W) S pd R? p\f

Wir ~ 2[Wir = R2 av/d 4
This means that if pv/d/4 > 1 we have by Lemma

P <z,szk ~tr(W)| > ;tr(W)) < 2exp (—cpﬂ/zi) : (55)

Since the same inequality trivially holds if p\/&/ 4 < 1 (by potentially taking c to be a smaller
constant), this completes this term.

pu' Wy term.  This is covered by (50) with L = 1:

tr(W cpd
P (,uTW,u| > é2 )) < 2exp ( 12;{%2) . (56)

2] Wy terms.  Since g, and 2y, are i.i.d., this is covered by with L = 1:

( AWl > é‘;v)) VP (|MTWzk| > tré?) < 2exp (W) : (57)

641

Putting it all together. Continuing from (@7) we have
P (i Wygzy < 0)

1 1
<P <szWzk —tr(W) < ~3 tr(W)) +P (|z,;rW,u| >3 tr(W) )

1 1
+P <|MTW,2;€| > 8tr(W)> —I—P< W < —ftr ) (‘Z#k yiyka?;'—ka‘ > 8tr(W))

cpVd ( cpd > <
<2e —— | +4e ———= | +2e¢
= 2o ( 4 > P 64R P 128MR2
cpd cpd ) cpVd
+ 2ex +2exp| ———= | +2exp | —
P ( ARV ) P ( 64MR Y < 64v/ 31

cpVd cpd
s dexp (‘64m> 8 exp (‘mmm) '

Using a union bound this allows for us to conclude

. epVd cpd
P (3k € [M] st. i Wyga < 0) <4Mexp | — + 8M ex <—>
(Sk € [M] st Wiy <0) p< 64\/M> PUsm(@2 v i)

as claimed in the theorem.

E EXPERIMENT DETAILS

We describe here the experimental setup for Figures and code is available on Github

*https://github.com/spencerfrei/icl_classification
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We pre-train models using standard full-batch gradient descent on the logistic loss with R = 5v/d,
N = 40, learning rate n = 0.01, for 300 steps from a zero initialization, using PyTorch. The in-
context training accuracy is measured using the definition of training accuracy from Theorem [4.2}
namely, we look at what proportion of the in-context examples (training data) that is accurately
predicted with the model y(EXM: W), where W is the trained transformer, for a single task 7,
i.e. averaging 1(y;. = sign(y(EXM (x1); W))) over k = 1,..., M. The in-context test accuracy is
computed by measuring whether sign(J(EXM (x3741); W)) = yars1. We then average over 2500
tasks, and we plot this average with error bars corresponding to one standard error over these 2500
numbers. All computations can be run within an hour on high-quality CPU, although we used an
NVIDIA RTX 3500 Ada which helped speed up the computations for the B = d > 1000 setting.
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